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Dynamic polarizability of low-dimensional excitons
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Excitons in low-dimensional materials behave mathematically as confined hydrogen atoms. An appealing
unified description of confinement in quantum wells or wires, etc., is found by restricting space to a frac-
tional dimension 1 < D � 3 serving as an adjustable parameter. We compute the dynamic polarizability of
D-dimensional excitons in terms of discrete and continuum oscillator strengths. Analyzing exact sum rules,
we show that continuum contributions are increasingly important in low dimensions. The dynamical responses
of excitons in various dimensions are compared. Finally, an exact and compact closed-form expression for the
dynamic polarizability is found. This completely general formula takes D as input and provides exact results for
arbitrary frequency.
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I. INTRODUCTION

Low-dimensional hydrogen has been extensively applied
as a model of excitons in low-dimensional materials, two-
dimensional semiconductors, and quantum wells [1–3]. This
Wannier-Mott approach exploits the mathematical similarities
between electron-proton interactions in atoms and electron-
hole interactions in semiconductors. If screening can be
assumed local, i.e., spatially constant, and an effective
mass approximation is adopted, the connection is particu-
larly simple. Thus, the bare hydrogen Bohr radius a0 and
Hartree energy Ha are replaced by effective quantities a∗

0 =
(εm0/μ)a0 and Ha∗ = (μ/m0ε

2)Ha, respectively, where ε is
the dielectric constant, m0 the free-electron mass, and μ =
memh/(me + mh) the reduced effective mass given in terms
of effective electron and hole masses me and mh. It follows
that hydrogen results carry over to semiconductors, provided
a simple scaling of distance and energy units is applied. While
such models are often quantitatively correct in heterostruc-
tures, excitons in atomically thin two-dimensional materials
experience pronounced nonlocal screening, leading to non-
hydrogenic Rydberg series [4,5]. Nevertheless, hydrogenlike
states are frequently applied as a starting point for models of
these materials as well [6]. In addition, quasi-two-dimensional
hydrogenlike excitons emerge in extremely anisotropic bulk
semiconductors, such as multilayer transition-metal dichalco-
genides [7].

An atomically thin semiconductor is essentially two-
dimensional in the sense that motion in the third dimension is
effectively frozen by confinement dominating over Coulomb
effects for the dynamics in this direction. In contrast, semicon-
ductor quantum wells may have a thickness comparable with
the effective Bohr radius, and excitons extend into the third
dimension. A simple and intuitive picture of such delocaliza-
tion is through the concept of fractional dimensions [8–13].
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Hence, the effective dimension D of the exciton transitions
from two to three as the quantum well widens. Similarly,
excitons in quantum wires or nanotubes effectively behave
as hydrogenic states in dimensions 1 < D < 2. This picture
has been extremely useful in deriving simple and closed-form
expressions for the interband absorption spectrum of excitons
[8,9]. In the Wannier model, interband transition strength is
determined by the exciton wave function of the final state eval-
uated at the coordinate origin, which physically corresponds
to the amplitude for coinciding electron and hole locations.
Since only s states are finite at the origin, only these contribute
to interband absorption [8,9].

Confined excitons perturbed by external fields may simi-
larly be described by perturbation theory applied in fractional
dimensional space. The Stark shift in static electric fields
has been analyzed both at second and higher orders [11,13].
This procedure provides static (hyper-) polarizabilities and
field-induced ionization rates via resummation. Such po-
larizabilities and ionization rates have been successfully
compared with experiments in two-dimensional semicon-
ductors [14]. It is therefore highly desirable to extend
the analysis to time-dependent external fields. This would
allow for an analysis of field-induced excitation of ex-
citons, as well as AC ionization and Stark effects that
have recently been studied experimentally in transition-metal
dichalcogenides [15,16]. The response to dynamic electric
fields is significantly more complicated, however. The re-
quired tools from time-dependent perturbation theory are
less amenable to analytical results than time-independent
ones, for which the Dalgarno-Lewis approach [17] typically
provides analytic closed-form results. Fully numerical re-
sults within this approach are still possible though [18]. In
this paper, we show how traditional sum-over-states per-
turbation theory is a highly useful alternative allowing us
to find exact dynamical polarizabilities of low-dimensional
excitons and even closed-form results for arbitrary dimen-
sions including the especially important two-dimensional
case.
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II. DYNAMIC POLARIZABILITY

We consider the response of low-dimensional Wannier-
Mott excitons to monochromatic electric fields. The aim is
to find the frequency (ω)-dependent polarizability αD(ω) for
D-dimensional excitons with D an unspecified parameter that
may take noninteger values. This task requires exciton os-
cillator strengths, for which we establish several exact sum
rules. Moreover, they lead to a simple closed-form expression
for the dynamic polarizability of D-dimensional excitons. As
mentioned above, obtaining analytical results for the problem
at hand seems to be too complicated for the time-dependent
Dalgarno-Lewis method, and so all results have been derived
using a classical sum-over-states approach. A challenge with
this approach is that the continuum of ionized excited states
must be handled with special care. Hence, the frequency-
dependent polarizability of the 1s ground state is

αD(ω) =
∑

n

gD(n)

E2
n − ω2

+
∫ ∞

0

g′
D(k)

E2
k − ω2

dk, (1)

where gD(n) is the oscillator strength for discrete transitions,
while g′

D(k) is the oscillator strength distribution for the con-
tinuum. Throughout, we use natural exciton units, taking a∗

0
and Ha∗ as units of distance and energy, respectively. Polariz-

abilities are reported as dimensionless quantities but may be
converted into ordinary units through multiplication by a fac-
tor 4πε0a3

0(Ha/Ha∗)2. In D-dimensional hydrogen, energies
are −k2

n/2, with kn = 2/(2n + D − 3) and n a positive inte-
ger. Hence, denoting the ground state wave number as kD =
2/(D − 1), we find transition energies En = (k2

D − k2
n )/2 for

discrete transitions and Ek = (k2
D + k2)/2 for the continuum.

The optical field is assumed to point along an unconfined
direction (x), and so only p states couple to the ground
state. Consequently, the oscillator strength is gD(n) = 2En

|〈ϕnp|x |ϕ1s〉|2, with n � 2 and the dipole matrix element be-
tween the 1s ground state and np excited state given by

〈ϕnp|x|ϕ1s〉 = 1√
D

∫ ∞

0
Rnp(r)R1s(r)rDdr. (2)

In this expression, the prefractor follows from the angular in-
tegration, and the required radial eigenfunctions are R1s(r) =
(2kD)D/2e−kDr/

√
�(D) and

Rnp(r) = (2kn)(D+1)/2e−knrknr

√
(n − 2)!

�(D − 1 + n)
LD

n−2(2knr),

(3)
where Lm

n is an associated Laguerre polynomial. The required
integral can be carried out analytically with the result for the
oscillator strength:

gD(n) = (n − 1)2n−4(D − 1)2+D(2n − 3 + D)1+D�(n − 2 + D)

(n − 2 + D)2(n+D−1)(n − 1)!�(1 + D)
. (4)

It is readily verified that well-known integer-dimensional cases are reproduced as special cases of this more general result, i.e.,
[19]

g3(n) = 256(n − 1)2n−4n5

3(n + 1)2n+4 , g2(n) = 4(n − 1)2n−4
(
n − 1

2

)3

n2n+2
. (5)

Next, we need to handle transitions to the continuum of ionized states with positive energy k2/2. These states are like Eq. (3)
but with the substitution kn → ik and the hypergeometric function 1F1[ D+1

2 + i
k , D + 1, 2ikr] replacing the Laguerre polynomial.

We use the important result:

∫ ∞

0
e−kDr−ikr (kr)D+1

1F1

[
D + 1

2
+ i

k
, D + 1, 2ikr

]
dr = �(D + 1)

(D + 1)kD − 2

k2

(
k2

k2 + k2
D

)(D+3)/2

exp

(
−2

k
tan−1 k

kD

)
. (6)

In turn, the oscillator strength distribution due to the continuum becomes

g′
D(k) = 4D+1

π�(D + 1)k

(
kkD

k2
D + k2

)D+2

exp

{
π

k
− 4

k
tan−1 k

kD

}∣∣∣∣�
(

D + 1

2
− i

k

)∣∣∣∣
2

. (7)

Again, it may be verified that this general result conforms to special integer-dimensional cases [19]:

g′
3(k) = 28k

3(1 + k2)4

exp
(− 4

k tan−1k
)

1 − exp
(− 2π

k

) , g′
2(k) = 28k

(4 + k2)3

exp
(− 4

k tan−1 k
2

)
1 + exp

(− 2π
k

) . (8)

It may also be noted, however, that the general case with
arbitrary D cannot be further simplified due to the presence
of � functions with complex arguments. Nevertheless, several

important exact sum rules are readily established in terms of
matrix elements of the ground state. To this end, we consider
the pth transition energy moment of the sum over oscillator
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FIG. 1. Individual and summed oscillator strengths from dis-
crete transitions, i.e., omitting the continuum. The total sum of
discrete and continuum terms is unity for all D. Inset: Behav-
ior of the sum for large dimensions, asymptotically approaching
unity.

strengths:

Sp =
∑

n

gD(n)E p
n +

∫ ∞

0
g′

D(k)E p
k dk. (9)

These are evaluated in terms of matrix elements of the ground
state only. In this manner, generalizing the results of Jackiw
[20] to arbitrary dimensions, we find

S−2 = (D − 1)4(D + 1)(2D + 3)

128
, S−1 = (D − 1)2(D + 1)

8
,

S0 = 1, S1 = 8

(D − 1)2D
, S2 = 64

(D − 1)4(D − 2)D
. (10)

These have all been verified numerically to high preci-
sion. Note that S2 is finite only for D > 2. The negative
second moment is the static polarizability [11,13] αD(0) =
S−2, while S0 = 1 is the Thomas-Reiche-Kuhn [21,22] sum
rule.

As an interesting application, we show in Fig. 1 the con-
tribution to S0 from discrete transitions solely, i.e., retaining
only the discrete sum in Eq. (9). Thus, the graph provides a
measure of the importance of continuum states in the dynamic
response. It is clearly seen that, in low dimensions, the discrete
oscillator strength contribution is minor. In fact, at D = 2,
the fraction is 28%, while at D = 1.71, as appropriate for
carbon nanotubes [11], it is as low as 17%. Analytically, it can
be shown that

∑
n gD(n) ≈ 4ζ (3)(D − 1)3 ≈ 4.81(D − 1)3 as

D → 1, i.e., approaching the strict one-dimensional limit.
Conversely, in high dimensions, the discrete contribution
dominates, as seen in the inset. Similarly, the static polariz-
ability due to discrete transitions for quasi-one-dimensional
excitons is αD(0)discrete ≈ ζ (3)(D − 1)7, severely underesti-
mating the true result. It is, therefore, clear that transitions
to the continuum are indispensable for quantitatively correct
results.

III. RESULTS

We now turn to the dynamic polarizability of excitons in
various dimensions. Based on Eqs. (4) and (7) for the dis-
crete and continuous contributions, respectively, the general
sum-over-states expression Eq. (1) is readily evaluated by
numerical summation (in practice summing to n = 500 and
integrating using quadrature). Since the poles of the spec-
tra are known analytically, however, we can derive a simple
closed-form expression for the entire spectrum below. This
is accomplished by taking inspiration from the remarkable
closed-form result for three dimensions found by Gavrila [23]
that can be shown to agree with other differently formulated
but equivalent results [24,25]:

α3(ω) = − 1

2ω2
+ 128(1 − 2ω)2

ω2(
√

1 − 2ω + 1)
8
(2

√
1 − 2ω − 1)

2F1

[
4, 2 − 1√

1 − 2ω
, 3 − 1√

1 − 2ω
,

(√
1 − 2ω − 1√
1 − 2ω + 1

)2]
+ (ω → −ω).

(11)

The notation (ω → −ω) indicates adding all the previous terms but with opposite sign of the frequency. The elegant and compact
result Eq. (11) is readily demonstrated to agree with the numerical sum-over-states Eq. (1) for D = 3, as seen in Fig. 2. In all
spectral plots, a finite line width is included by the substitution ω → ω + iγ with broadening γ = 0.005kD. The correctness of
the analytical result Eq. (11) is consistent with the pole structure of the hypergeometric function. Thus, 2F1[a, b, c, z] has poles
whenever c = m with m a negative integer [26]. In the three-dimensional case, taking m = 1−n with n � 2, this translates into
resonances at ω = (1 − 1

n2 )/2 as required. In the D-dimensional case, this suggests a general structure

αD(ω) = − 1

2ω2
+ fD(ω)2F1

⎡
⎢⎣1 + D,

1 + D

2
− 1√

k2
D − 2ω

,
3 + D

2
− 1√

k2
D − 2ω

,

⎛
⎝

√
k2

D − 2ω − kD√
k2

D − 2ω + kD

⎞
⎠

2⎤⎥⎦ + (ω → −ω). (12)

The c argument is fixed by the D-dimensional resonances. It is then relatively straightforward to match the poles to the oscillator
strengths given by Eq. (4). In this manner,

fD(ω) = 21+2Dk3+D
D

(
k2

D − 2ω
)(1+D)/2

ω2
[
kD +

√
k2

D − 2ω
]2(1+D)[

(1 + kD)
√

k2
D − 2ω − kD

] . (13)
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FIG. 2. Real and imaginary parts of the polarizability for four different dimensions. The vertical dashed lines indicate the onset of the
continuum k2

D/2, and the circles are analytical results.

This exact and compact expression for the dynamic polarizability is the most important result of this paper. Given the complexity
of the oscillator strengths in Eqs. (4) and (7), it is remarkable that such a simple closed form exists. It is found to capture all
poles of the numerical spectra. Furthermore, the expression behaves appropriately in both low- and high-frequency limits. Thus,
at low frequency,

αD(ω) = (D − 1)4(D + 1)(2D + 3)

128
+ (D − 1)8(D + 1)(137 + 220D + 123D2 + 24D3)

98 304
ω2 + O(ω4). (14)

The first term of this expansion is precisely the known static polarizability [11,13] αD(0) = S−2, while the second term is new
for arbitrary D. As a particularly important application, we find for D = 2

α2(ω) = − 1

2ω2
+ 1024(4 − 2ω)3/2

ω2(
√

4 − 2ω + 2)
6
(3

√
4 − 2ω − 2)

×2F1

[
3,

3

2
− 1√

4 − 2ω
,

5

2
− 1√

4 − 2ω
,

(√
4 − 2ω − 2√
4 − 2ω + 2

)2]
+ (ω → −ω).

(15)

As seen in Figs. 2 and 3, this compact expression is in
perfect agreement with the numerical evaluation. Moreover,
we find the analytical low-frequency limit α2(ω) = 21

128 +
ω21261/32 768 + O(ω4), in agreement with known results
[11,13]. The high-frequency behavior is ∼ −1/ω2, as re-
quired by the Thomas-Reiche-Kuhn sum rule. Comparing
spectra for various dimensions in Fig. 2, several trends are
noted. With the scaling applied in the plot, all four cases
look quite similar. Apart from the obvious scaling with
energy, the ratio of oscillator strengths for the dominant tran-

sitions is only weakly dependent on D, i.e., g2(3)/g2(2) ≈
0.18, while g3(3)/g3(2) ≈ 0.19. The overall scale of the
spectra decreases, however, as dimension is reduced, as ev-
idenced by the oscillator strengths in Fig. 1. This is in
line with the static polarizability varying as αD(0) ∼ (D−1)4

as D → 1.
An advantage of the sum-over-states expression in Eq. (1),

as compared with closed-form results such as Eq. (11), (12),
or (15), is that contributions from discrete and continuum
transitions are easily separated. This provides a measure of the
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FIG. 3. Real and imaginary parts of the polarizability of two-
dimensional excitons. Discrete, continuum, and total contributions
are shown as dashed, dotted, and solid lines, respectively, while
circles are analytical results.

error introduced by ignoring continua, as is commonly done
in fully numerical approaches. In Fig. 3, we split the response
for two-dimensional materials into discrete and continuum
parts. In addition, we again illustrate how their sum agrees
with the analytical result. It is clearly seen that the absorptive
imaginary part is well approximated by discrete contributions
only, if the frequency is below the ionization threshold k2

D/2,
which equals 2 in this case. The real part, however, is severely
affected by continuum contributions. This is most clearly
seen in the vicinity of the ionization threshold. However, the
low-frequency response is also greatly underestimated using
only discrete contributions. We find α2(0)discrete ≈ 0.0848 to
be compared with the full result α2(0) = 21

128 ≈ 0.164. Thus,
the error introduced by omitting the continuum is ∼50%. Near
the ionization threshold, the error is even greater.

IV. SUMMARY

In summary, we have computed the dynamic polarizability
of Wannier-Mott excitons in arbitrary dimensions D. Exact
D-dimensional oscillator strengths for both discrete and con-
tinuum transitions have been derived. Moreover, several exact
sum rules have been established and applied to estimate the
error inherent in omitting continuum contributions. The pole
structure in the general case is analyzed and utilized to con-
struct a simple and compact closed-form expression for the
polarizability of D-dimensional excitons. An analysis of this
exact result implies that the real part of the exciton polarizabil-
ity is severely underestimated if only discrete-state transitions
are considered.
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