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Supermetal-insulator transition in a non-Hermitian network model
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We study a non-Hermitian and nonunitary version of the two-dimensional Chalker-Coddington network model
with balanced gain and loss. This model belongs to the class D† with particle-hole symmetry† and hosts both the
non-Hermitian skin effect as well as exceptional points. By calculating its two-terminal transmission, we find a
contact effect induced by the skin effect, which results in a nonquantized transmission for chiral edge states. In
addition, the model exhibits an insulator to “supermetal” transition, across which the transmission changes from
exponentially decaying with system size to exponentially growing with system size. In the clean system, the
critical point separating insulator from supermetal is characterized by a non-Hermitian Dirac point that produces
a quantized critical transmission of 4, instead of the value of 1 expected in Hermitian systems. This change in
critical transmission is a consequence of the balanced gain and loss. When adding disorder to the system, we find
a critical exponent for the divergence of the localization length ν ≈ 1, which is the same as that characterizing
the universality class of two-dimensional Hermitian systems in class D. Our work provides a way of exploring
the localization behavior of non-Hermitian systems, by using network models, which in the past proved versatile
tools to describe Hermitian physics.
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I. INTRODUCTION

Topological insulators are phases of matter in which an
insulating bulk coexists with robust, conducting edge states
[1,2]. The conducting edges are protected by a topological
invariant defined from the bulk band topology, a manifesta-
tion of the so-called bulk-edge correspondence. In Hermitian
systems, the edge states of two-dimensional topological in-
sulators are characterized by a quantized conductance. One
can expect that, if Hermiticity is broken [3–5], the topo-
logical structure could be significantly changed due to the
complex eigenvalues, and the imaginary part of eigenvalues
could cause an amplification or a decay of the quantized
conductance.

Non-Hermiticity arises naturally as an effective description
of a wide range of systems, including electronic systems with
a finite lifetime of quasiparticles [6–10], as well as photonic
systems under the influence of radiative loss [11–14]. One
of the more prominent phenomena present in non-Hermitian
systems is the emergence of exceptional points (EPs)
[3,15–17], where eigenvalues and eigenstates of the non-
Hermitian matrix coalesce. Analogous to the surface Fermi
arcs of Weyl semimetals, each pair of exceptional points is
connected by an open-ended bulk Fermi arc in the real (or
imaginary) energy spectrum [6,18–20]. Another unique phe-
nomenon present in non-Hermitian topology is the breakdown
of the bulk-edge correspondence [21]. In certain types of
non-Hermitian systems, such as when the hoppings are non-
reciprocal [22,23], the presence of open boundaries can cause
all eigenmodes to become localized on the edge and their

eigenvalues to be completely different from those of the cor-
responding system with periodic boundary conditions. This
phenomenon is called the non-Hermitian skin effect [21,24–
33], and has by now been experimentally observed in a variety
of systems [34–37].

Recently, several works have examined the conductance
of two-dimensional non-Hermitian topological insulators
[38–42]. However, the correspondence between this conduc-
tance and the non-Hermitian band topology, the exceptional
points, and the non-Hermitian skin effect remains largely
unexplored. A further question is how the “topological
semimetal” phase characterized by the bulk Fermi arc evolves
during the localization-delocalization transitions produced by
disorder.

In our work, we address these questions by turning to
one of the well-known tools used to characterize the local-
ization behavior of Hermitian systems: the network model.
This model was first introduced by Chalker and Coddington
to study the low-energy, course-grained physics of topological
systems, such as the integer quantum Hall effect [43]. Here,
unidirectional links correspond to chiral quantum Hall edge
modes and the scattering centers are the saddle points of the
chemical potential at which these modes mix.

By introducing balanced gain and loss to the links of the
original Chalker-Coddington (CC) network model, we show
that the resulting nonunitary network can realize both EPs
and the non-Hermitian skin effect. We compute the two-
terminal transmission and find that there is a contact effect
induced by non-Hermiticity, in the sense that the transmission
is influenced by the lead geometry and orientation. While
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reminiscent of the contact resistance characterizing transport
measurements in conventional, Hermitian mesoscopic sam-
ples [44,45], the non-Hermitian contact effect has drastic
consequences on the system’s transport properties. Due to this
contact effect, the transmission through the chiral edge states
is influenced by the non-Hermitian skin effect and becomes
nonquantized, even when gain and loss are balanced.

Furthermore, we find that the two-terminal transmission
shows a transition between gapped and gapless phases. At the
phase boundary, the non-Hermitian Dirac point possesses a
quantized transmission probability equal to 4, instead of the
usual value of 1, characteristic of Hermitian Dirac cones. By
applying a finite-size scaling fit to the transmission, we find
such a bulk “topological semimetal” behaves like a “superme-
tal” in which the transmission increases exponentially with
system size. The fit results show a critical exponent ν ≈ 1
for the divergence of the localization length, which means
the critical exponent ν for Hermitian class D systems [46–48]
is also valid for the non-Hermitian class D† [49]. However,
as far as we are able to deduce from our numerical results,
the critical transmission seems to no longer show a universal
value in this nonunitary system.

The rest of this work is organized as follows. In Sec. II
we introduce a modified version of the Chalker-Coddington
model, by adding balanced gain and loss to the system.
We briefly recapitulate the properties of the original model
(Sec. III), and then describe the features introduced by
non-Hermiticity: exceptional points (Sec. IV) and the non-
Hermitian skin effect (Sec. V). In Sec. VI we describe
the procedure used to determine the transport properties of
the network model, highlighting the emergence of the non-
Hermitian contact effect in Sec. VI A, as well as discussing
parameter regions in which infinite amplification loops cause
numerical instabilities (Sec. VI B). The transport properties of
the clean system are analyzed in Sec. VII, where we show that
the non-Hermitian Dirac cone is characterized by a quantized
conductance different from its Hermitian counterpart. Turning
to the disordered system in Sec. VIII, we show its phase
diagram, determine its critical exponent to be the same as
that of Hermitian systems in class D, and provide a heuristic
argument to justify this finding. Finally, we conclude and
discuss directions for future research in Sec. IX.

II. NETWORK MODEL

The Chalker-Coddington model is a network of unidirec-
tional modes, similar to the chiral edge modes of the quantum
Hall effect [43]. These modes comprise the links of the net-
work and scatter into each other at the nodes of the network,
which are assumed to form a periodic pattern in real space.
Each one of the scattering events is modeled using a scattering
matrix that connects the probability amplitudes of incoming
and outgoing modes. Therefore, the CC network model is
described by an array of scattering matrices that encodes the
full propagation of states through the system.

We start from the CC network model with two different
types of scattering nodes S1 and S2 inside one unit cell [see
Fig. 1(a)]. Each node transfers two incoming modes to two
outgoing modes, the degree of mixing between them being
parametrized by the mixing angle α ∈ (−π, π ]. Thus, as

FIG. 1. (a) Illustration of the nonunitary network model. ψi (i =
1, 2, 3, 4) represents a propagating mode inside the unit cell (blue
dashed square). Red and green nodes correspond to two types of
2 × 2 scattering matrices S1 and S2 with s ≡ sin α and c ≡ cos α,
respectively. (b), (c) The real and imaginary eigenphase spectra in
momentum space, respectively. The parameters are α = π/4 and
γ = 0.5.

shown Fig. 1(a), a mode entering from the top into a node of
type S1 has a probability amplitude cos α of turning clockwise,
and a probability amplitude sin α of turning counterclockwise.
The relative minus signs describing scattering events on the
nodes S1 and S2 are introduced in order to ensure current
conservation, that is to ensure that the scattering matrices
describing the two types of node are unitary.

To model a non-Hermitian and nonunitary system, we in-
troduce gain and loss into the CC model. After each scattering
event, one of the two outgoing modes is either amplified or
attenuated, by eγ and e−γ , respectively, as shown in Fig. 1(a).
The resulting network model is the same as that introduced in
Ref. [50], which used it primarily to study quantum pumping.

The behavior of the network can be studied by defining
a network wave function � describing the amplitude of a
state in each of the unidirectional links of the system. The
process by which different links scatter into each other is
encoded in the scattering amplitudes of the different nodes,
which together form a so-called Ho-Chalker operator [51] that
acts on the network wave function:

�(t + 1) = S�(t ). (1)

Thus, the network can be understood as describing a dis-
crete time-evolution process, parametrized by the integer time
t , similar to periodically driven, or Floquet systems. Here,
however, t labels the state of the network wave function in-
between different scattering events.

By analogy with Floquet systems, an eigenstate of the
network model can be thought of as a stationary state, one
which retains its shape after multiple scattering events. Using
the translation symmetry of the model in Fig. 1(a), it is ad-
vantageous to go to momentum space k = (kx, ky), where the
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wave function �(k) = (ψ1(k), ψ3(k), ψ2(k), ψ4(k))T has
four components since there are only four propagating states
inside a unit cell. The eigenstates of the network can then be
found from the Ho-Chalker operator in momentum space [51]

S (k)�(k) = eiε(k)�(k), (2)

with ε(k) describing the eigenphases of the network, similar
to the quasienergies characterizing Floquet systems. The re-
sulting band structure is shown in Figs. 1(b) and 1(c).

So far, this description is identical to the one commonly
used to study Hermitian systems using network models. The
main difference introduced in this work is that, due to the
gain and loss added to the network model, the Ho-Chalker
operator is no longer unitary. Instead, S (k) = UnuSu(k), with
Unu = diag[e−γ , 1, eγ , 1] and Su(k) is the unitary Ho-Chalker
operator for the original CC network model

Su(k) =

⎛
⎜⎜⎝

0 0 sin αe−ikx cos α

0 0 − cos α sin αeikx

cos α sin αeiky 0 0
− sin αe−iky cos α 0 0

⎞
⎟⎟⎠.

(3)

In the language of discrete time evolution, a unitary Ho-
Chalker operator corresponds to the dynamics generated by
a Hermitian Hamiltonian. Here, the Ho-Chalker operator is
not unitary if γ �= 0, and thus the dynamics it describes cor-
responds to a time evolution governed by a non-Hermitian
Hamiltonian. As a result, eigenphases are now complex, as
shown in Figs. 1(b) and 1(c), in contrast to the real quasiener-
gies expected for a periodically driven Hermitian model. This
is the sense in which the modified CC model we study de-
scribes the behavior of non-Hermitian systems.

In the unitary limit (γ = 0), the system belongs to class
D in the Altland Zirnbauer (AZ) classification [46]; it is the
well-known Cho-Fisher model [52]. It obeys particle-hole
symmetry (PHS) because of S (k) = S∗(−k). This means that
for any eigenstate at an eigenphase ε and momentum k, there
must exist an eigenstate at −ε and −k. Furthermore, we
note that there exists another symmetry, the phase-rotation
symmetry UpS (k)U−1

p = e−iπS (k) with Up = −σz ⊗ σ0 [53]
(σ are the conventional Pauli matrices). Because of phase-
rotation symmetry, for any state at eigenphase ε there must
exist another state at ε + π , meaning that the spectrum of the
system repeats twice in the full interval ε ∈ [−π, π ).

When switching on gain and loss, the unitarity (and
therefore current conservation) is broken: S (k)S†(k) �= 1.
However, the system still inherits S (k) = S∗(−k) and the
phase-rotation symmetry, since Unu is a real diagonal matrix
and obeys [Unu,Up] = 0. According to the non-Hermitian
38-fold symmetry classification [49], such a system belongs
to the class D† with PHS† (see Appendix A). In this sense,
for any eigenstate at ε and k, there is an eigenstate at −ε∗
and −k.

III. HERMITIAN LIMIT

As a model to simulate the integer quantum Hall transition,
the Hermitian (γ = 0) CC network supports a topological
distinction between the trivial phase (α < |π/4|) and the topo-

FIG. 2. Topological phase limit with α = π/2 (a) and trivial
phase limit with α = 0 (b). (c), (d) Their corresponding ribbon ge-
ometry eigenphase spectra. The ribbon consists of three unit cells in
the vertical direction and is infinite in the horizontal direction. The
green, blue, and red colors indicate eigenstates localized at the bulk,
the top edge, and the bottom edge, respectively.

logical phase [α ∈ (π/4, 3π/4) or α ∈ (−3π/4,−π/4)].
Such phases can be seen intuitively by the decoupled lim-
its α = 0, π/2, in which all propagating modes turn either
clockwise or counterclockwise with unit probability at the
scattering nodes [see Figs. 2(a) and 2(b)]. Here, we obtain
the finite network by setting a hard wall boundary where the
propagating modes are fully reflected. As can be seen, all of
the unidirectional modes on the links of the network form
closed loops which are decoupled from each other, meaning
that all bulk states are localized. However, the different pattern
of closed loops for α = 0 and π/2 means that in the latter case
there is a chiral edge mode encircling the system perimeter.
This is a topologically protected edge state, similar to that
present in the integer quantum Hall effect.

The localized bulk states and the chiral edge mode can
also be seen in the eigenphase spectrum of the CC network
obtained in a ribbon geometry, as shown Figs. 2(c) and 2(d).
In both cases, the bulk states are dispersionless and located at
ε = ±π/4 and ±3π/4. In the nontrivial phase of Fig. 2(c),
however, there appear chiral boundary modes on the ribbon
edges, which wind both in momentum and eigenphase. Since
the Chern number of a bulk band is equal to the net difference
between the number of chiral edge states above and below the
band, we can see that all bulk bands are trivial. As such, the
topological phase of the CC model is analogous to so-called
anomalous Floquet topological phases [54–57].

The phase transitions between the topological and triv-
ial phases occur by means of gap closings and reopenings
between eigenphase bands. In the Hermitian CC network,
such gapless points occur at α = ±π/4, where propagating
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states have an equal probability of turning clockwise and
counterclockwise at each node [43,58]. The result is the for-
mation of Dirac points between the bulk bands, which appear
at ε = 0, ±π/2, and π . We note that there exist other gapless
points at α = ±3π/4, which are also characterized by a Dirac
eigenphase spectrum, and which mark a transition to a weak
topological phase if further increasing |α|.

IV. EXCEPTIONAL POINTS

When turning on non-Hermiticity, γ �= 0, the Dirac points
of the network model split into pairs of EPs at which complex
eigenphase bands coalesce. To find these points, we use the
π -phase rotation symmetry of the network together with the
condition imposed by balanced gain and loss, det[S (k)] = 1.
The precondition for EPs becomes

e2iε(k) = ±1. (4)

This equation shows that there could exist EPs at ε = 0,
±π/2, and π , as shown in Figs. 1(b) and 1(c). We focus on
EPs at ε = 0. By solving Det[S (k) − I] = 0, we analytically
identify EPs kEP at

kx = ± arccos

(
2

sin 2α
+ cosh γ

)
, ky = 0, α ∈ (π/2, π ),

(5)

kx = ± arccos

(
2

sin 2α
− cosh γ

)
, ky = π, α ∈ (0, π/2).

(6)

Since cos kx ∈ [−1, 1] for real kx we find that

2

sin 2α
+ cosh γ = ±1, α ∈ (π/2, π ) (7)

2

sin 2α
− cosh γ = ±1, α ∈ (0, π/2) (8)

determines the boundary between gapped and gapless systems
with a pair of EPs. This indicates that, as γ increases away
from zero, the ε = 0 gap first closes to form a Dirac point,
after which this Dirac point splits into a pair of EPs. The latter
move in momentum space along the kx direction as γ is further
increased, eventually annihilating at kx = π .

During their evolution, the EPs are connected by a line for
which Re(ε) = 0 [see Fig. 1(b)], known as a bulk Fermi arc,
which is analogous of the Fermi arcs of three-dimensional
Hermitian Weyl semimetals [59–62]. This bulk Fermi arc is
a topological consequence of the EPs. When forming a closed
loop s1 in momentum space that encircles one of the EPs,
the presence of a bulk Fermi arc is connected to a nonzero
winding number [63]

W =
∮

s1

dk
2π i

· ∇klog(det[S (k) − eiε(kEP )]). (9)

We find that the two EPs have W = ±1, and are thus topolog-
ically protected (see Appendix B).

The formation of EPs at the transition between triv-
ial and topological phases can also be deduced from the
long-wavelength limit of the network model. By expanding
the Ho-Chalker operator S (k) around ε = 0, α = π/4, and

FIG. 3. (a) The eigenphases obtained in a ribbon geometry with
a width of of 50 unit cells (purple color) are circled by the eigen-
phases of the infinite system. Outside of these winding contours,
there appear chiral edge modes located on the ribbon boundaries
(black points, shown by arrows). (b) The probability distribution of
all the eigenvectors with open boundary conditions. All bulk states
are pushed to the bottom boundary, but the top edge mode remains
unaffected. The inset shows the sum of probability densities for all
states on the bottom three unit cells, which we label “LDOS” by anal-
ogy to Hermitian systems. The summed probability density increases
linearly with the width of the ribbon, indicating that an extensive
number of states are present on the bottom boundary. The plots are
with α = 0.35π , γ = 0.5, and for panel (b) we chose kx = 0.05.

γ = 0, we obtain an effective Hamiltonian describing a non-
Hermitian Chern insulator, as expected. The latter takes the
form

H = px
σ−
2

+ (py − iγ )
σ+
2

+ mσy, (10)

with σ± = σz ± σx and m being the mass term (see
Appendix C for more details).

V. SKIN EFFECT

In addition to exceptional points, the network model also
shows a non-Hermitian skin effect. By solving det[S (k) −
eiε(k)] = 0, we obtain

eiε(kx,ky ) = e−iε∗(kx,−ky ), (11)

eiε(kx,ky ) = eiε(−kx,ky ). (12)

When γ �= 0, such that eigenphases are complex, the above
equations suggest that for each fixed kx the eigenphase bands
ε wind in the complex plane as a function of ky. When an open
boundary condition (OBC) is imposed along the y direction,
thus forming a ribbon, we find that eigenphases form arcs
located inside the winding contours of the infinite system
spectrum, as shown in Fig. 3(a). For an infinite system, the
eigenphase bands at fixed kx have a winding number W = 1
as a function of ky. As a consequence [64], the eigenvectors
with OBC are localized at the bottom boundary, giving rise to
the non-Hermitian skin effect [see Fig. 3(b)].

Interestingly, while all bulk states become localized on the
bottom boundary, the chiral edge modes remain unaffected.
This can be seen when looking at the mode localized on the
top boundary [see Fig. 3(b)], which retains its position despite
the non-Hermitian skin effect. The immunity of this mode is
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due to the fact that it is present at eigenphases outside of the
winding contours of the bands of the infinite system, for which
the winding number vanishes. This difference in edge versus
bulk mode behavior is similar to the one found in Ref. [65],
which examined a non-Hermitian Hamiltonian realizing the
quantum Hall effect.

We find that it is possible to control if the top edge mode is
influenced by the non-Hermitian skin effect or not, depending
on the existence of the bulk exceptional points. If γ is in-
creased until the EPs appear at kx = 0, the connectivity of the
winding eigenphase bands changes, and the the edge modes
now reside in a region of winding number W = 1. In this case,
the top boundary mode is pushed to the bottom edge together
with all other states (see Appendix D).

Note that the non-Hermitian skin effect is only present in
the y direction. As can be seen in Fig. 3(a), the eigenphases
of the infinite system do not wind as a function of kx when
ky is fixed. Therefore, if considering a ribbon which is finite
in the x direction and infinite along y, no accumulation of
states would occur on the system boundaries. In this case, the
probability distribution of states (not shown) resembles that
of a conventional, Hermitian Chern insulator. There is one
chiral edge mode on each boundary of the system, and the
other states are spread uniformly throughout the system bulk.
The presence of the skin effect only along one direction can
be understood from the structure of the gain and loss terms
in real space, as shown in Fig. 1(a). For γ > 0, downward-
moving modes are amplified, eγ , and upward-moving modes
are attenuated, e−γ , consistent with the accumulation of bulk
states on the bottom boundary, shown in Fig. 3(b). As such, it
is possible to have bulk states accumulate on the top boundary
by changing the sign of γ . In contrast, left-moving or right-
moving modes experience equal amounts of gain and loss on
average, regardless of the sign of γ .

It is, however, possible to modify the system such that it
shows a skin effect in both the x and y directions. This leads
to so-called skin corner modes [66–68]: all of the bulk states
are pushed to a corner of the system. However, one needs to
slightly change the unit cell (see Appendix E).

VI. TWO-TERMINAL GEOMETRY

To build the connection between the non-Hermitian band
topology and transport, we study the two-terminal transmis-
sion by attaching two leads to the boundary of the network
model along the horizontal (h) or the vertical (v) direction.
The leads are formed from incoming and outgoing chiral
modes that have the same structure as those present on the
links of the network model. They are attached to the boundary
nodes of the system in such a way as to preserve the shape of
the node scattering matrices S1,2 at those boundaries.

In general, the two-terminal scattering matrix takes the
form

Sh,v(γ ) =
(
rh,v(γ ) t′h,v(γ )
th,v(γ ) r′h,v(γ )

)
, (13)

where r(′) and t(′) are blocks containing the probability ampli-
tudes for modes that are reflected back into the same lead, or
transmitted between the leads, respectively.

FIG. 4. (a) The horizontal transmission Gh with OBC as a func-
tion of α and γ . The system size is Lx = 3000 and Ly = 60. (b) Gh

for different Ly with open boundary condition as a function of Lx .
This plot is with α = 0.3π and γ = 0.5.

If the system is Hermitian, the transmission is given
by Gh,v(0) = tr[t′h,v(0)t′†h,v(0)] = tr[th,v(0)t†h,v(0)], where tr de-

notes the trace. When Hermiticity is broken, tr[t′h,v(γ )t′†h,v(γ )]

could be different from tr[th,v(γ )t†h,v(γ )]. See Appendix A
for a derivation of the constraints imposed on the scattering
matrix in different non-Hermitian symmetry classes.

A. Contact effect

First, we focus on the horizontal transmission Gh with
OBC along the y direction, for which the system shows a
non-Hermitian skin effect. Since the eigenphase spectrum is
real with OBC [all OBC eigenvalues are located on the unit
circle in the complex plane in Fig. 3(a)], we would expect the
transmission to be consistent with that found in the Hermitian
limit, in which Gh = 0 for the trivial phase and Gh = 1 for the
strong topological phase with chiral edge states. Surprisingly,
we find the non-Hermitian network shows a very different
behavior. While the transmission is zero for the trivial phase, it
is not quantized when chiral edge states are present [Fig. 4(a)].
Gh can reach beyond 5 even for small |γ | when α approaches
the phase transition points (π/4 or 3π/4) and returns back to
around 1 if α is far away from the phase transition points.

These phenomena point to the presence of a contact effect
when attaching leads. The width of the chiral edge states along
the y direction is not exactly 0 [as shown in Fig. 3(b)], except
in the decoupled limit with α = π/2, so amplification or loss
can occur inside the wave packet of the chiral edge states. The
reason for this amplification and attenuation is the structure of
the network model itself, in which downward-moving modes
acquire a factor eγ and all upward-moving modes acquire a
factor e−γ , as shown in Fig. 1(a).

To quantify the presence of the contact effect in the lan-
guage of scattering matrices, we label incoming and outgoing
modes of both the left and right leads by their real-space posi-
tion along the y direction. Then, the transmission probability
from the incoming mode i in the left lead to the outgoing mode
j in the right lead lead is multiplied by e(i− j)γ , which can be
understood as a result of the skin effect with suppression and
magnification in opposite directions. In fact, it can be verified
that the total transmission matrix th(γ ) can be related to the
transmission matrix of the Hermitian model th(0) as

th(γ ) = Uath(0)Ul , (14)
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FIG. 5. The transmission between top two leads as a function of
α. Gi j corresponds to the transmission from j to i. All plots are with
γ = 0.3 and a total system size 76 × 76 unit cells. The inset is a
sketch of the three-terminal geometry for OBC (left) and PBC (right)
along the x direction. The arrows indicate the chiral edge mode. Here,
leads 1 and 2 have a width of 19 unit cells, and the separation between
them is 20 unit cells. Lead 3 extends over the entire bottom boundary
(or circumference of the cylinder, with PBC). Thus, G12 (or G21)
between lead 1 and lead 2 provides the transmission of the chiral
edge state along the top boundary of the system.

with Ua = diag[1, eγ , e2γ , . . . , e(Ly−1)γ ] being the amplifica-
tion matrix and Ul = diag[1, e−γ , e−2γ , . . . , e−(Ly−1)γ ] being
the loss matrix (assuming γ > 0). In a similar fashion,
t′h(γ ) = Ul t

′
h(0)Ua. Thus, more amplifications occur when the

chiral edge state has a large width (α closer to π/4 or 3π/4)
than when it has a small width (α closer to π/2 or 0). We
emphasize that at the decoupled point of α = π/2, the chiral
edge states have a vanishing wave-packet width, which leads
to a quantized transmission 1.

As a further check that this is indeed a contact effect,
we show how the transmission depends on the length of the
system Lx, as well as on its width Ly [see Fig. 4(b)]. In the
topological phase, only the edge modes contribute to trans-
mission, and since they do not backscatter we indeed observe
that the transmission is independent of Lx (apart from very
small Lx, which is due to finite-size effects). However, the
transmission increases monotonically with the system width
Ly even for system widths which are much larger than the
width of the edge states. This is because changing the width
of the system also means changing the width of the two leads
(or contacts).

Finally, we show that the contact effect disappears when
changing the lead orientation. We attach two vertical leads
(labeled as 1 and 2) to the top edge and one wide vertical
lead (labeled as 3) to the bottom edge, while in the horizontal
direction we consider both OBC as well as periodic boundary
conditions (PBC), as shown in Fig. 5. Here, the lead 3 is
used to eliminate the influence of the bottom boundary mode,
such that the transmission between lead 1 (top left) and lead
2 (top right) is only due to the top boundary mode. How-
ever, now there is no amplification and loss process described
by Eq. (14). Thus, the transmission due to the chiral edge
mode is quantized (see Fig. 5). With OBC, the unidirectional
mode contributes to transmission only from lead 1 to lead 2
(G21), while the transmission in the opposite direction (G12)
vanishes, as expected. With PBC in the horizontal direction,
however, G12 = G21 = 1, since the chiral edge state is now
allowed to propagate also across the periodic boundary.

Due to the counterpropagating nature of boundary modes
in the weak topological phase (|α| > 3π/4), in the OBC sys-
tem there exists a transmitting channel from lead 1 to lead 2
and vice versa. This leads to a quantized transmission with
OBC, G12 = G21 = 1, in the weak topological phase. With
PBC in the horizontal direction, we instead observe G12 =
G21 = 2, consistent with the presence of an extra transmitting
channel that connects the leads 1 and 2 across the periodic
boundary.

B. Numerical instability

When PBC is applied in the y direction, the horizontal
transmission Gh would be divergent due to the singular be-
haviors of EPs:

lim
k→kEP

Im(ε) → 0, lim
k→kEP

∂ Re(ε)

∂kx
→ ∞. (15)

Such an infinite group velocity implies a numerical instability
appearing in the calculation of the Landauer-Büttiker formula,
which corresponds to an ill-defined scattering matrix. This
instability can be understood when expressing the overall
scattering matrix Sh of the network model by a Redheffer star
product [69]

rh = rL + t′LrR(1 − r′LrR)−1tL,

th = tR(1 − r′LrR)−1tL,

t′h = t′L(1 − rRr
′
L )−1t′R,

r′h = r′R + tRr
′
L(1 − rRr

′
L )−1t′R. (16)

Here r(′)
L,R and t

(′)
L,R are the reflection and transmission matrices

of the left and right halves of the network model, respectively.
The inverse matrix (1 − r′LrR)−1 represents an infinite series
of backscattering process between two halves, given by

∞∑
i=0

(r′LrR)i = (1 − r′LrR)−1, (17)

where the spectral radius r(r′LrR) is always smaller than 1 in
the unitary limit. However, the existence of the non-Hermitian
terms allows r(r′LrR) to be larger than 1, due to the amplifica-
tion loops introduced by the eγ terms. Thus, the left-hand side
of Eq. (17) becomes a divergent matrix series, which causes
Gh under PBC to be numerically unstable (see Fig. 6).

VII. TRANSPORT PROPERTIES OF THE DIRAC CONE
AND BULK FERMI ARC

Here we turn to the vertical transmission Gv. Since there
is no skin effect when open boundaries are introduced along
the horizontal direction, the system shows a similar ribbon
spectrum both in OBC and PBC, except of course for the
additional chiral edge states occurring with OBC. Near the
EPs, both ∂ Re(ε)/∂ky and Im(ε) are finite and thus there are
no numerical instabilities. Although the vertical transmission
Gv comes with no infinite amplification loops, a directional
amplification (suppression) from top (bottom) to bottom (top)
implies Gt→b

v �= Gb→t
v .

To understand the behavior of the vertical transmission
Gv, we first consider the unitary limit γ = 0, in which the
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FIG. 6. ln[Gh] and ln[r(rRr
′
L )] as a function of system size Lx . All

plots are for Ly = 50, α = π/4, and γ = 0.05.

Dirac points occur at α = ±π/4 and ±3π/4 and have a quan-
tized transmission 1. As γ is increased, however, the network
enters nonunitary regimes and is characterized by gapless
phases containing EPs and the bulk Fermi arc. The existence
of the EPs and of the bulk Fermi arc Re(ε) = 0 leads to a
nonzero Gv.

In Fig. 7 we show the vertical transmission as a function
of α and γ , for both PBC as well as OBC. The green dashed-
dotted line and the cyan dashed line determined by Eqs. (8)
and (7) indicate the Dirac points appearing at k = (0, π )
and (π, 0), respectively. Between these lines, we observe
a large transmission characterizing the gapless phase with

FIG. 7. The vertical transmission as a function of α and γ both
with periodic boundary conditions (a), (c) and with open boundary
conditions (b), (d). (a), (b) Represent the transmission from top to
bottom, (c), (d) Represent the transmission from bottom to top. All
plots are obtained for a system size 60 × 60 unit cells.

TABLE I. Finite-size scaling fit for the bulk transmission Gt→b
v

of the clean system. The size ratio is Lx/Ly = 10 and Lx ∈ [60, 120].

Parameter ν γc γEP ln(Gt→b
v )c

α = 0.15π 1 0.937 0.937 1.296(1)
α = 0.25π 1 0 0 0
α = 0.3π 1 0.4499 0.4499 1.384
α = 0.375π 1 1.212 1.212 1.220(1)

EPs. In addition, the OBC plots show transmitting regions
which do not appear in the PBC plots. These correspond to
nonzero transmission through the topological edge modes of
the system. Notice that the transmission plots are asymmetric
with respect to changing the sign of γ , which is consistent
with the directional nature of amplification and attenuation,
Gt→b

v �= Gb→t
v .

When the system transitions from a gapped phase to a
gapless phase characterized by EPs (green and cyan lines in
Fig. 7), we notice that the transmission changes from decreas-
ing exponentially with system size to increasing exponentially
with system size. We apply a finite-size scaling analysis to
Gt→b

v with PBC and Ly/Lx = 10. Our code, numerical data,
and the scripts used for fitting are available as part of the
Supplemental Material [70]. Denoting the system size at fixed
aspect ratio by L, we have

lnGt→b
v ≈ f0 + b0(γ − γc)L1/ν . (18)

We obtain b0 ≈ 20, ν = 1, and γc = γEP even for different α

(see Table I). Here γEP corresponds to the analytically deter-
mined value at which the Dirac points appear, meaning the
point at which the EPs are overlapping in momentum space,
just after they were created pairwise, or just before annihilat-
ing pairwise. For instance, in Fig. 8(a), we find that below
γc � 0.4499, Gt→b

v decreases exponentially with increasing
L, characteristic of a gapped phase. Above γc, Gt→b

v ∝ e2L.
This is in contrast to the behavior characteristic of Hermitian
gapless systems, in which the transmission grows at most
linearly with system size (ballistic regime).

FIG. 8. (a) The logarithm of transmission Gt→b
v of different sys-

tem sizes with periodic boundary conditions as a function of γ for
α = 0.3π and system size 10L × L (Lx × Ly). The solid lines are
the fit using Eq. (18). (b) The critical transmission for different α

as a function of system size Ly. This plot is obtained for Lx = 20.
When α = π/4, the Dirac point occurs for γ = 0, and thus shows the
critical transmission characteristic of Hermitian Dirac cones G = 1.
For all other values of α, the transmission is 4.
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The scattering matrix characterizing the finite-sized net-
work model with leads attached to its top and bottom
boundaries can be expressed as

Sv(γ ) =
(

rv e−γ Ly t′v
eγ Ly tv r′v

)
. (19)

Here Sv(γ = 0) represents the scattering matrix of the unitary
CC network. For gapped phases, we have tr(tt†) = tr(t′t′†) ∝
e−�Ly , with � proportional to the bulk gap of the Hermitian
model. Since the gain (loss) introduces an amplification (a
reduction) e2γ Ly (e−2γ Ly ) to Gt→b

v (Gb→t
v ), the gapped-gapless

transition occurs due to the competition between � and γ

Gt→b
v ∝ e−(�−2γ )Ly . (20)

Thus, if γ > �/2, the system enters a gapless phase.
In the unitary limit the Dirac point has a quantized

transmission G = 1. Quite surprisingly, we find that in the
nonunitary network this is no longer the case (see Table I).
Instead, there is a new critical transmission(

Gt→b
v

)
c = 4,

(
Gb→t

v

)
c = 0, (21)

as shown in Fig. 8(b). These values can be understood analyt-
ically from the behavior of slices having Lx → ∞, such that
kx is a good quantum number (see Appendix F). Note that in
Fig. 8(b) the quantized transmission is reached in the limit
of large system sizes. For the smaller network models used
in the scaling fit of Fig. 8(a), finite-size effects prevent the
observation of (Gt→b

v )c = 4, meaning ln(Gt→b
v )c � 1.386, as

can be seen in Table I. The closest fit value is 1.384, obtained
for α = 0.3π , which shows smaller finite-size effects than
α = 0.15π or 0.375π , as can be seen in Fig. 8(b).

VIII. DISORDER AND CRITICAL EXPONENT

We now turn to the effects of disorder. The latter is modeled
as a random variation of the mixing angle α → α + δα, with
δα drawn independently for each node of the network model
from the uniform distribution [−W,W ], with W the disorder
strength. Due to the numerical instability discussed earlier,
we focus mainly on the vertical transmission for a network
with PBC. For the same reason, we keep γ constant and only
consider disorder in α.

In the unitary CC network model, the random angle dis-
order δα preserves PHS and leads to an insulator-metal
transition [71,72]. The system supports a trivial phase, a
strong topological phase, and a weak topological phase with
weak disorder. With strong disorder, a metallic phase appears
for all α. At the phase boundaries, the localization length
diverges as ξ ≈ |x − xc|−ν . Here x is a control parameter, such
as α or the disorder strength W , xc is the critical point of x, and
ν is the critical exponent, which is equal to 1 for AZ class D
systems in two dimensions.

Since the nonunitary network has a bulk topological
semimetal phase in the clean limit, its disordered phase di-
agram also supports phase transitions from the delocalized
phase to an insulating one in the weak disorder limit [see
Fig. 9(a)]. This is in contrast to the unitary Cho-Fisher model,
in which only direct, insulator-to-insulator transitions are
present for small disorder strengths. In the strong disorder
regime, however, all the phases evolve into a delocalized

FIG. 9. (a) The average transmission 〈lnGt→b
v 〉 as a function of

disorder strength W and α. The system size is 30 × 30 and γ = 0.5.
(b), (c) Finite-size scaling fit of 〈lnGt→b

v 〉 for (γ , α) = (0.5, π/2) and
(0.2, 0.35π ), respectively. (d) Finite-size scaling fit of 〈lnGh〉 with
open boundary condition and (γ , α) = (0.5, 0).

phase, similar to the Cho-Fisher model. Here, however, the
transmission increases exponentially with system size, as can
also be deduced from Eq. (19), which is also valid for a
disordered system. This is in contrast to the Hermitian system,
in which the transmission grows logarithmically with system
size in the metallic phase. For this reason, we dub the delocal-
ized phase of the non-Hermitian network a “supermetal.”

Similar to the results of Ref. [73], we find that the transmis-
sion of the network model varies exponentially for different
disorder configurations, leading to an exponentially broad dis-
tribution of transmissions, which is poorly characterized by its
average. We circumvent this problem by focusing instead on
the average of the “typical transmission” 〈lnGt→b

v 〉, which we
use as a scaling variable in the following. To obtain the critical
exponent ν, we apply a finite-size scaling fit to 〈lnGt→b

v 〉, at
fixed aspect ratio 1, with〈

lnGt→b
v

〉 = F (u0L1/ν, u1Ly)

=
n∑

k=0

(u1Ly)k
mk∑
j=0

(u0L1/v ) jFk j, (22)

where u1Ly represents the contribution of the irrelevant ex-
ponent y < 0, and goes to 0 if L → ∞. u0L1/v represents
the contribution of the relevant exponent ν. Here u0 =∑qr

i=1 ai(x − xc)i and u1 = ∑qi
p=0 bp(x − xc)p. In Tables II and

III, and Figs. 9(b) and 9(c), for different α and γ , ν is always
close to 1, which is consistent with the case of the AZ class
D system. However, the critical transmission appears to no
longer have a universal value. Given the system sizes we
can reach, we believe that this is a consequence of finite-size
effects.

We provide a heuristic justification for having a critical ex-
ponent ν = 1, as well as a critical transmission which should
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TABLE II. Fit results for the vertical bulk transmission of the disorder system with a system size L × L. N is the number of degrees of
freedom used in the fit, GOF is the goodness of fit, and reduced χ2 is the variance of residuals. The numerics has been averaged over more
than 7000 disorder realizations.

(α, γ ) (n, m0, qr ) L W Wc ν 〈lnGt→b
v 〉c χ 2 N GOF

(0.4π, 0.5) (0,1,2) [110, 160] [1.436, 1.478] 1.4566 [1.4562, 1.4568] 0.979 [0.955, 1.006] 4.707 [4.581, 4.785] 1.027 67 0.91
[110, 160] [1.412, 1.5] 1.4566 [1.4563, 1.4568] 0.974 [0.966, 0.984] 4.707 [4.629, 4.763] 1.041 151 0.80

(0.5π, 0.5) (0,1,1) [110, 160] [1.555,1.612] 1.5840 [1.5837, 1.5844] 0.990 [0.969, 1.013] 4.796 [4.689, 4.910] 0.962 86 0.84
[90, 160] [1.559,1.608] 1.5836 [1.5834, 1.5839] 0.989 [0.973, 1.007] 4.642 [4.575, 4.726] 0.994 100 0.97

(0.35π, 0.2) (0,1,1) [110,160] [1.473,1.534] 1.5029 [1.5025, 1.5032] 0.946 [0.926, 0.966] 1.427 [1.262, 1.573] 1.046 104 0.82
[80,160] [1.483,1.525] 1.5026 [1.5024, 1.5028] 0.928 [0.910, 0.947] 1.246 [1.155, 1.358] 0.980 104 0.92

be universal. In the presence of disorder in the mixing angle α,
Eq. (19) is still valid. When the unitary system is in the insu-
lating phase with 〈G〉 ∝ e−L/ξ (α,W ) (far away from the critical
point), the nonunitary system has ln〈Gt→b

v 〉 = const + [2γ −
1/ξ (α,W )]L, which suggests a localization-delocalization
transition at ξ (α,W ) = 1/2γ with ν = 1. When the unitary
network is in an insulating phase but close to the critical point,
ideally the average transmission would be 〈G〉 = Gc + (W −
Wc)L1/ν + O2(W − Wc), where O2(W − Wc) is the second-
order infinitesimal and Gc is the universal critical transmission
of two-dimensional class D systems. On the other hand, the
transmission of the nonunitary system would be 〈Gt→b

v 〉 ≈
[Gc + (W − Wc)L1/ν]e2γ L, which can be expanded as

ln
〈
Gt→b

v

〉 ≈ 2γ L + lnGc + W − Wc

Gc
L1/ν + · · · . (23)

Since Hermitian class D systems have ν = 1 in two dimen-
sions, the above equation becomes

ln
〈
Gt→b

v

〉 ≈ lnGc + W − (Wc − 2γ Gc)

Gc
L, (24)

where O2(W −Wc
Gc

) is neglected. According to Eq. (22), it cor-
responds to a linear dependence on L, implying a universal
exponent ν = 1 also in the non-Hermitian case. This is con-
sistent with our fit results.

Equation (24) suggests that the effect of a nonzero γ is
to renormalize the value of the critical disorder strength as
Wc → Wc − 2γ Gc. This behavior also matches our numerical
observations: increasing γ leads to a decrease of the critical
disorder strength at which the insulator-supermetal transition
happens. Finally, Eq. (24) indicates that the critical transmis-
sion takes a universal value equal to that of Hermitian systems
Gc. This is not the case for the scaling analysis presented in
Tables II and III, suggesting that the fitted values of 〈lnGt→b

v 〉c

are influenced by the finite size of the systems we are able
to simulate. Note, however, that the above discussion is only

qualitative in nature since we have used the logarithm of
the average ln〈Gt→b

v 〉 and not the average of the logarithm
〈lnGt→b

v 〉 as in the numerical fits.
As for the horizontal direction, due to the numerical in-

stability, we can only apply a finite-size scaling fit to 〈lnGh〉
with OBC, which induces an amount of finite-size effects
automatically. In Table IV, the fit results also give a critical
exponent ν ≈ 0.89, which seems close to the value 1.

IX. CONCLUSION AND OUTLOOK

We have shown that a network model can exhibit both
exceptional points as well as the non-Hermitian skin effect,
which lead to several unique phenomena. On the boundary,
the non-Hermitian skin effect results in the non-Hermitian
contact effect, which destroys the quantized conductance of
the chiral edge states. In the bulk, the existence of exceptional
points dominates the transport properties, which show a nu-
merical instability when the system can feel the branch point
singularity [∂kx Re(ε) → ∞]. In contrast, ∂ky Re(ε) is finite in
the perpendicular direction. However, the transmission still
experiences a directional amplification (or loss). This ampli-
fication results in an unconventional quantized transmission
G = 4 for the Dirac points, and drives the system into a
gapless phase. Such a gapless phase reshapes the disordered
phase diagram of systems with PHS†, leading to the formation
of a supermetal in which the transmission grows exponentially
with system size. Finally, the finite-size scaling analysis pro-
vides a critical exponent ν ≈ 1, which is same as the critical
exponent of the AZ class D system. However, the critical
transmission is no longer universal, at least as far as we are
able to determine, which is most probably due to finite-size
effects. We provide a heuristic argument for why this might
be so, based on an analytic connection between the scattering
matrix of the unitary and nonunitary network models.

TABLE III. Fit results for the vertical bulk transmission of the disorder system with a system size L × 4L. N is the number of degrees of
freedom used in the fit. The numerics has been averaged over 2000 disorder realizations.

(α, γ ) (n, m0, qr ) L W Wc ν 〈lnGt→b
v 〉c χ 2 N GOF

(0.5π, 0.5) (0,1,2) [80, 160] [1.545,1.636] 1.5918 [1.5916, 1.5919] 0.988 [0.980, 0.995] 0.932 [0.716, 1.112] 0.987 112 0.93
(0,2,1) [80, 160] [1.55,1.631] 1.5920 [1.5917, 1.5922] 0.985 [0.974, 0.998] 1.224 [0.944, 1.410] 1.014 94 0.93

(0.35π, 0.2) (0,1,2) [90,160] [1.46,1.553] 1.5078 [1.5076, 1.5081] 0.946 [0.935, 0.956] −9.245 [−9.722, −8.776] 1.03 107 0.84
(0,2,1) [90,160] [1.46,1.553] 1.5082 [1.5079, 1.5084] 0.944 [0.932, 0.954] −8.531 [−8.992, −8.113] 0.969 107 0.86
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TABLE IV. Fit results for the horizontal transmission of the disorder open boundary system with a system size L × L. N is the number of
degrees of freedom used in the fit. The numerics has been averaged over 10 000 disorder realizations.

(α, γ ) (n, m0, qr ) L W Wc ν 〈lnGh〉c χ 2 N GOF

(0,0.5) (0,1,1) [80, 130] [1.695, 1.722] 1.7089 [1.7085, 1.7092] 0.889 [0.839, 0.941] −5.547 [−5.709, −5.382] 1.009 56 0.98
(0,1,2) [80, 130] [1.677, 1.74] 1.7087 [1.7086, 1.7090] 0.883 [0.869, 0.901] −5.659 [−5.753, −5.545] 0.965 133 0.93

Our work opens several directions for studying non-
Hermitian topology. As a prototypical model, the network
studied here is a powerful tool for exploring transport and for
revealing its relation to the non-Hermitian features like the
exceptional points and the skin effect. In addition, the relation
of scattering matrices between the unitary and nonunitary
network can also be extended to a variety of symmetry classes,
providing a way to study the universal behaviors of different
localization-delocalization transitions, such as the quantum
spin Hall transition. The non-Hermitian network model can
further be studied, e.g., in the presence of more generic types
of disorder, and by using various techniques known in the
context of Hermitian network models. In Appendix G, we
outline an application of the path-integral (supersymmetric
field theory) approach to the non-Hermitian network model.

Finally, our work opens the possibility of studying the
connection between transport and non-Hermitian phenomena
in experimental platforms realizing network models. In fact,
the network model we discussed has already been realized
in experiment: a small number of unit cells were produced
using microwave circuits in Ref. [50]. Beyond that, network
models can be realized experimentally also as arrays of cou-
pled ring resonators supporting photonic [74,75] or plasmonic
[76,77] modes. These systems allow to tune the properties of
the node scattering matrices, for instance, by adjusting the
separation between adjacent resonators, as well as the eigen-
phase at which the network model is probed, by changing
the wavelength of propagating excitations. Models obeying
particle-hole symmetry (which here means real scattering
matrices, up to a global phase factor) have already been ex-
perimentally realized [75,76]. Further, it has been recently
suggested that directional amplification and attenuation can
be introduced in coupled-ring resonator lattices [78,79].

Note added. Recently, Ref. [80] also considers the critical
exponents of non-Hermitian two-dimensional systems. They
work on a Hamiltonian level, examine other symmetry classes
than the one we consider, and propose a link between the
critical exponents of Hermitian and non-Hermitian systems
which is different from ours.
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APPENDIX A: SYMMETRY OF A
NONUNITARY OPERATOR

For a non-Hermitian system, the symmetry classifica-
tion of the Hamiltonian is based on time-reversal symmetry
(TRS), particle-hole symmetry (PHS), TRS†, PHS†, chiral
symmetry (CS), sublattice symmetry (SLS), and pseudo-
Hermiticity. Then, the Ho-Chalker operator (which behaves
like a time-evolution operator) S ∼ e−iHt obeys the corre-
sponding symmetry constraints in the following way:

(i) TRS: T H∗(k)T −1 = H (−k) with T T ∗ = ±1, which
means

T S∗(k)T −1 = S−1(−k). (A1)

(ii) TRS†: T HT (k)T −1 = H (−k) with T T ∗ = ±1, this
leads to

T ST (k)T −1 = S (−k). (A2)

(iii) PHS: PHT (k)P−1 = −H (−k) with PP∗ = ±1,
which means

PST (k)P−1 = S−1(−k). (A3)

(iv) PHS†: PH∗(k)P−1 = −H (−k) with PP∗ = ±1, this
leads to

PS∗(k)P−1 = S (−k). (A4)

(v) CS: CH†(k)C−1 = −H (k), which means

CS†(k)C−1 = S(k). (A5)

(vi) SLS: LH (k)L−1 = −H (k), which means

LS(k)L−1 = S−1(k). (A6)

(vii) Pseudo-Hermiticity: ηH†(k)η−1 = H (k), then

ηS†(k)η−1 = S−1(k). (A7)

Moreover, their corresponding nonunitary scattering ma-
trix will have the same symmetry constraint. For a given
Hamiltonian H , the Mahaux-Weidenmüller formula describes
the scattering matrix S as

S(E ) = 1 − iπK (E )

1 + iπK (E )
, K (E ) = W † 1

E − H
W. (A8)

Here W is the coupling matrix between the leads and the
system, which can be chosen such that it commutes with the
symmetry operators. Then the symmetry constraints for the
corresponding scattering matrix can be derived in the follow-
ing way:
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(i) TRS:

T K∗(E )T −1 = W † 1

E∗ − H
W = −K (E∗), (A9)

T S∗(E )T −1 = 1 + iπK (E∗)

1 − iπK (E∗)
= S−1(E∗). (A10)

If T = I , S(E∗)S∗(E ) = I .
(ii) TRS†:

T KT (E )T −1 = W † 1

E − H
W = K (E ), (A11)

T ST (E )T −1 = 1 − iπK (E )

1 + iπK (E )
= S(E ). (A12)

If T = I ,

rT (E ) = r(E ), r′T (E ) = r′(E ), tT (E ) = t′(E ). (A13)

Thus, the transmission GR→L = tr[t′(E )t′†(E )] =
tr[tT (E )t∗(E )] = tr[t(E )t†(E )] = GL→R.

(iii) PHS:

PKT (E )P−1 = W † 1

E + H
W = −K (−E ), (A14)

PST (E )P−1 = 1 + iπK (−E )

1 − iπK (−E )
= S−1(−E ). (A15)

If P = I , we have ST (E ) = S−1(−E ).
(iv) PHS†:

PK∗(E )P−1 = W † 1

E∗ + H
W = −K (−E∗), (A16)

PS∗(E )P−1 = 1 − iπK (−E∗)

1 + iπK (−E∗)
= S(−E∗). (A17)

If P = I , S∗(E ) = S(−E∗).
(v) CS:

CK†(E )C−1 = W † 1

E∗ + H
W = −K (−E∗), (A18)

CS†(E )C−1 = 1 − iπK (−E∗)

1 + iπK (−E∗)
= S(−E∗). (A19)

If C = I and E = 0,

t′ = t†, (A20)

so we have

GR→L = tr[t′t′†] = tr[t†t] = GL→R. (A21)

(vi) SLS:

LK (E )L−1 = W † 1

E + H
W = −K (−E ), (A22)

LS(E )L−1 = 1 + iπK (−E )

1 − iπK (−E )
= S−1(−E ). (A23)

If L = I , S(E ) = S−1(−E ).
(vii) Pseudo-Hermiticity:

ηK†(E )η−1 = W † 1

E∗ − H
W = K (E∗), (A24)

ηS†(E )η−1 = 1 + iπK (E∗)

1 − iπK (E∗)
= S−1(E∗). (A25)

If η = I and Im(E ) = 0, S(E ) is unitary, so GR→L = GL→R.

FIG. 10. arg(det[S(θ ) − I4×4]) as a function of θ (the parameter
of the closed loop s1), when encircling an EP (a) or not (b). Blue
dots and orange triangles correspond to two different closed loops.
The latter enclose one or the other EP in (a). All the plots are with
α = π/4 and γ = 0.5.

APPENDIX B: WINDING NUMBER
OF EXCEPTIONAL POINTS

We calculate the winding number W in the polar coordi-
nate with

W = 1

2π i

∫ 2π

0
dθ

d

dθ
ln(det[S (θ ) − I4×4]). (B1)

Here the reference point is εkEP = 0. Choosing a closed circle
s1 encircling an EP leads to W = 1 for one EP and −1 for
another EP [see Fig. 10(a)]. Thus, to gap out one of EPs, the
only way is to annihilate both of them simultaneously.

APPENDIX C: LONG-WAVELENGTH LIMIT

We rewrite the nonunitary Ho-Chalker operator as

S (k) =
(

0 M̃(kx )
Ñ (ky) 0

)
, (C1)

with

M̃(kx ) =
(

e−γ 0
0 1

)(
sin αe−ikx cos α

− cos α sin αeikx

)
, (C2)

Ñ (ky) =
(

eγ 0
0 1

)(
cos α sin αeiky

− sin αe−iky cos α

)
. (C3)

Then, to derive the long-wavelength model, we con-
sider a two-step time evolution that gives S2(k) =
diag[M̃(kx )Ñ (ky), Ñ (ky)M̃(kx )] [51]. Without loss of general-
ity, we focus on the block M̃(kx )Ñ (ky) with α = π/4 + m,
kx = px, and ky = py + π . Expanding it for small px, py, and
α will give M̃(kx )Ñ (ky) � 1 − iH with

H = px
σ−
2

+ (py − iγ )
σ+
2

+ mσy, (C4)

which is reminiscent of the low-energy continuum model of
the non-Hermitian Chern insulator [27,81,82].

APPENDIX D: SKIN EFFECT OF THE EDGE STATE

The edge state is not influenced by the non-Hermitian
skin effect, due to its eigenphases being outside the region
of winding number W = 1. In this sense, a possible way to
realize a skin effect for the boundary mode is to reshape such
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FIG. 11. (a) The probability distribution of the top edge state as a
function of γ with α = 0.35π (γEP ≈ 0.937) and a system size Ly =
20 unit cells. (b) The edge-mode probability distribution is summed
over half of the system, corresponding to unit cells with position n �
Ly/2. This sum is plotted as a function of α and γ , using Ly = 80.
The blue dashed-dotted line indicates the critical γ for EPs, showing
that the top edge mode is pushed to the bottom boundary as soon as
EPs appear in the spectrum of the infinite system. All plots are with
kx = 0.05.

a region by increasing γ . A criterion for this is the appearance
of the EPs at kx = 0, where all the eigenphases ε of the edge
state are circled by those of the infinite system. Therefore,
once γ > γEP, the top boundary mode would be pushed to
the bottom edge (see Fig. 11).

APPENDIX E: SKIN CORNER MODES

By adding gain eγ to ψ3 instead of ψ2 [see Fig. 12(a)],
the nonunitary network also supports skin corner modes, a
terminology used in Refs. [65,66]. Because of det[S (k)] = 1,
the condition for EPs is still e2iε = ±1, and the EPs for ε = 0
[shown in Figs. 12(b) and 12(c)] are at

kx = ± arccos

(
1

cos iγ sin 2α

)
, ky = π − kx. (E1)

In this sense, after the system becomes gapless at one high-
symmetry point (0, π ), these two EPs would move towards
another high-symmetry point (π, 0), but they can not be anni-
hilated anymore. An intuitive explanation is 1/| cos iγ sin 2α|
would be always larger than 0.

Furthermore, with a ribbon geometry (along the x or y
direction), the propagating modes can feel the amplifica-
tion and suppression in opposite directions, which means a
first-order skin effect, as verified in Figs. 12(d) and 12(e):
the eigenphases of the ribbon are encircled by the eigen-
phase loops of the infinite system. Next, if further opening
another boundary, all first-order skin modes are pushed to
the left bottom corner [see Fig. 12(f)]. This effect is in-
duced by gain and loss, instead of crystalline symmetries
[83–85].

(a) (b) (c)

FIG. 12. (a) Illustration of the nonunitary network model with the second-order skin effect. (b), (c) The real and imaginary eigenphase
spectra. (d), (e) The ribbon geometry eigenphase spectra encircled by the bulk dispersion along the kx and ky directions, respectively. (f) The
probability distribution of all the eigenstates with a system size 20 × 20. All of the plots are obtained using α = π/4 and γ = 0.5.
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APPENDIX F: SCATTERING MATRIX
FOR THE DIRAC POINT

For a slice of the network model which has Ly = 1 but is
infinite along the x direction, such that kx is a good quantum
number, the scattering matrix reads as

Sv, slice =
(

cos α−sin αe−ikx

1−cos α sin αe−ikx − sin α cos αe−γ

1−cos α sin αe−ikx

− sin α cos αeγ

1−cos α sin αe−ikx
sin αeikx −cos α

1−cos α sin αe−ikx

)
. (F1)

Taking α ∈ (0, π/2), the Dirac point appears at momenta
(kx, ky) = (0, π ), and values (α, γ ) that are obtained using
Eq. (8). For these values, Eq. (F1) reveals a conservation

tv + t′v = −2. (F2)

The latter can be proven by the transfer matrix of the slice,
which reads as

Mv, slice = eγ

(
eikx − 2

sin α cos α
1

sin α
− eikx

cos α

1
sin α

− e−ikx

cos α
e−ikx − 2

sin α cos α

)
. (F3)

Then, the total transfer matrix can be obtained by the eigen-
value decomposition,

Mv = Uevecdiag
[
E

Ly

1 , E
Ly

2

]
U −1

evec, (F4)

where Uevec is 2 × 2 matrix composed of the eigenvectors of
Eq. (F3). E1 and E2 are their corresponding eigenvalues,

Ei = eγ [μ + (−1)i
√

μ2 − 1], (F5)

with μ = cos kx − 2
sin 2α

. It is obvious that there is also a
conservation E1E2 = e2γ . In Eq. (F3), if (φ1, φ2)T is an eigen-
vector for Ei (i = 1, 2), then (φ∗

2 , φ∗
1 )T is also a solution for

the same eigenvalue. Thus, it can be written as 1√
2
(eiϕ, 1)T .

Since there is no degeneracy, another orthogonal eigenvector
should be 1√

2
(−eiϕ, 1)T . Thus, Eq. (F4) now becomes

Mv = 1

2

(
E

Ly

1 + E
Ly

2 eiϕ
(
E

Ly

1 − E
Ly

2

)
e−iϕ

(
E

Ly

1 − E
Ly

2

)
E

Ly

1 + E
Ly

2

)
, (F6)

which leads to

tv = 2(E1E2)Ly

E
Ly

1 + E
Ly

2

, t′v = 2

E
Ly

1 + E
Ly

2

. (F7)

At the Dirac point kx = 0, μ = − cosh γ leads to E1 = −e2γ

and E2 = −1, which indicates

tv + t′v = 2 · (−1)Ly . (F8)

And when Ly goes to infinity,

lim
Ly→∞

|tv| = lim
Ly→∞

2e2γ Ly

e2γ Ly + 1
= 2, (F9)

lim
Ly→∞

|t′v| = lim
Ly→∞

2

e2γ Ly + 1
= 0. (F10)

When kx �= 0, |μ| > cosh γ leads to

|E1| > eγ (
√

cosh2 γ − 1 − μ) > e2γ . (F11)

Correspondingly, |E2| < 1. Then, we have

lim
Ly→∞

|tv| = 0, lim
Ly→∞

|t′v| = 0. (F12)

Thus, the non-Hermitian Dirac point has a quantized trans-
mission 4 at kx = 0 and 0 transmission at kx �= 0.

APPENDIX G: PATH-INTEGRAL APPROACH

In this Appendix, we provide an analysis of the network
model using the functional integral representation of the
(product of) resolvents (Green’s functions). The technique has
been widely used in (disordered) Hermitian systems [86].

We start with the following non-Hermitian Dirac Hamilto-
nian:

H(p) = (px + iAx )σz + (py + iAy)σx + mσy + iV σ0. (G1)

Here, Ax,y, m,V are arbitrary real function in space. The
Hamiltonian is the member of class D† and satisfies

H∗(p) = −H(−p). (G2)

When Ax = V = 0, Ay = const = −γ , and m = const the
non-Hermitian Dirac Hamiltonian (G1) reduces to the contin-
uum limit of the non-Hermitian Chern insulator model (10).
In general, all these terms Ax,y,V, m can have both uniform
and inhomogeneous parts. For example, if we consider non-
Hermitian terms (gain or loss) for all four types of links in
the network model (Fig. 1), eγ1 , eγ2 , eγ3 , eγ4 , the continuum
limit of the Ho-Chalker time-evolution operator is given by
(G1) with Ax ∝ γ1 + γ3, Ay ∝ γ2 − γ4, and V ∝ γ1 + γ2 −
γ3 + γ4, while the mass term m is still controlled by α en-
tering in the vertex term. These types of non-Hermitian Dirac
Hamiltonians have been discussed, e.g., in [27,82,87,88].

We are interested in the Green’s function G(z) = (z −
H)−1 (z ∈ C), and products thereof. With the class D† sym-
metry, the Green’s function satisfies G(ε + iη)∗ = −G(−ε +
iη), where ε and η are the real and imaginary parts of z, z =
ε + iη. Hence, this symmetry relates the Green’s functions at
z = ε + iη and −ε + iη. In contrast, in Hermitian symmetry
class D, the particle-hole symmetry relates the retarded and
advanced Green’s functions at ε = 0. This symmetry of the
Green’s functions can be used to reduce the number of func-
tional integral variables; it suffices to introduce a path integral
only for the retarded sector, say, but not for the advanced one.
We should also note that in non-Hermitian systems the notion
of retarded and advanced Green’s function, distinguished by
the small imaginary part of z, may not be sharply defined
since the energy spectrum itself may be complex. In the net-
work model calculations of our interest, we have ideal leads
attached to the non-Hermitian system, which may serve a role
in selecting retarded and advanced Green’s functions.

The Green’s functions can be represented by using func-
tional integrals either over bosonic or fermionic fields defined
on the two-dimensional space [86]. We shall consider the
Gaussian functional integrals

Z±
F =

∫
D[χ̄±, χ±]e−S±

F ,

S±
F = −i

∫
d2x χ̄±(ε ± i0+ − H)χ±,

Z±
B =

∫
D[φ̄±, φ±]e−S±

B ,

S±
B = −i

∫
d2x φ̄±(ε ± i0+ − H)φ±, (G3)
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where χ± (φ±) are fermionic (bosonic) functional integral
variables. The two-point correlation functions computed using
either S±

F or S±
B reproduce the Green’s functions G(ε ± i0+).

The products of Green’s functions can be represented simi-
larly by introducing flavors (multiple copies) of the functional
integral variables. Because of the identity Z±

F Z±
B = 1, valid for

any configurations of Ax,y, m,V , the fermionic and bosonic
integrals can be combined when we perform quenched dis-
order averaging (the supersymmetry technique [86]). We will
focus below on the product of one retarded and one advanced
Green’s function, and consider SF = S+

F + S−
F and SB = S+

B +
S−

B , with the total action S = SF + SB.
For convenience, we will work with the rotated basis:

(σz, σx, σy) → (σy, σx,−σz ). In this basis, we can write

H = (−2i)σy

[(
∂ + A M

M̄ ∂̄ + Ā

)]
, (G4)

where we have introduced (∂x ∓ i∂y)/2 ≡ ∂ (∂̄ ), (Ax ∓
iAy)/2 ≡ −A(Ā), (m ± iV )/2 = M(M̄ ). Introducing the left
and right movers as

χ̄ (−σyτz ) = (ψ†
R, ψ

†
L )a=1,2, χ = (ψR, ψL )T

a=1,2,

φ̄(−σyτz ) = (β†
R, β

†
L )a=1,2, φ = (βR, βL )T

a=1,2, (G5)

where τz acts on the retarded and advanced indices ±, and
rescaling ψ† → ψ†/

√
2, ψ → ψ/

√
2, etc., we obtain

SF =
∫

d2x
2∑

a=1

[ψ†
aR(∂ + A)ψaR + ψ

†
aL(∂̄ + Ā)ψaL

+ Mψ
†
aRψaL + M̄ψ

†
aLψaR]

+
∫

d2x
∑

a

[ε − (−1)ai0+][ψ†
RψL − ψ

†
LψR],

SB =
∫

d2x
2∑

a=1

[β†
aR(∂ + A)βaR + β

†
aL(∂̄ + Ā)βaL

+ Mβ
†
aRβaL + M̄ψ

†
aLβaR]

+
∫

d2x
∑

a

[ε − (−1)ai0+][β†
RβL − β

†
LβR]. (G6)

When we set 0+ = 0, the total action S = SF + SB enjoys
GL(2|2) symmetry. Up to the term proportional to 0+, the
action (G6) is identical to the action used to study an Anderson
localization problem for Hermitian symmetry class BDI (see,
e.g., Ref. [89] and (2.28) in Ref. [90]). In these papers, the
Anderson localization problem of fermions hopping on a two-
dimensional square lattice in the presence of background π

flux per plaquette and real random bipartite hopping elements
was studied [91]. The relation between the non-Hermitian and
Hermitian problems comes from the doubling or Hermitiza-
tion [49,80,89,91–93]. While the actions are identical, in the
Hermitian class BDI problem, the flavor degrees of freedom
(labeled by the index a) come from the valley degrees of

freedom on the square lattice that arise due to the fermion
doubling. On the other hand, in the non-Hermitian class D†

problem, the flavor degrees of freedom arise as we consider
the product of two Green’s functions.

Reintroducing now the term proportional to 0+, this term
breaks the GL(2|2) symmetry down to GL(1|1). In the
Hermitian class BDI problem, there is a similar term that
again breaks GL(2|2) symmetry, and also the U(1) sym-
metry ψAa → eiθψAa, ψ

†
Aa → e−iθψ

†
Aa, βAa → eiθβAa, β

†
Aa →

e−iθβ
†
Aa where A = R/L. The scaling of this term under the

renormalization group (RG) flow leads the Gade singularity
in the density of states at the band center. On the other hand,
since in the non-Hermitian class D† problem the terms pro-
portional to 0+ and ε are invariant under U(1), it is not clear
if we should expect the Gade singularity or alike. [Note that
in order to discuss the density of states, we do not have to
introduce the retarded and advanced indices, and we get the
field theory with GL(1|1) symmetry.]

Assuming white-noise distribution with zero mean for
all disorder potentials, and setting ε = 0+ = 0, the weak
coupling RG flow has been computed [89,90]. The gauge
randomness is marginally relevant and decouples from the
other coupling constants. In particular, in the Hermitian class
BDI problem, it does not affect the conductance. When only
Re M or Im M is nonzero, the system reduces to two copies
of a Dirac fermion in Hermitian symmetry class D, perturbed
by random mass perturbation. The system flows to a clean
critical point. On the other hand, when both Re M and Im M
are present, and their disorder strengths are the same, a line of
critical points is realized. Along the critical line, for the case
of Hermitian symmetry class BDI, the conductance changes
continuously.

Finally, the functional integral approach formulated above
can be used to derive the corresponding (super)quantum spin-
chain problem in one spatial dimension [see, for example,
Refs. [94–96] to see how this mapping works for the origi-
nal Chalker-Coddington network model (the integer quantum
Hall plateau transition)]. In this mapping, one of the spatial
directions is regarded as a fictitious time direction. Being
anisotropic, taking the vertical and horizontal directions as
the time direction maps our non-Hermitian network model
to different quantum spin-chain problems. If the horizontal
direction is regarded as a time direction, the resulting one-
dimensional quantum system is non-Hermitian and nothing
but the Hatano-Nelson model (in the presence of disorder).
This is consistent with the fact that the non-Hermitian skin
effect is present in the y direction in the non-Hermitian net-
work problem. On the other hand, if the vertical direction is
regarded as a time direction, the resulting one-dimensional
quantum system is Hermitian and the non-Hermiticity
(≡ γ ) in the original network model language is mapped to
a finite chemical potential, i.e., the system is tuned away
from half-filling. This is consistent with the extended gap-
less phase with the EPs in the non-Hermitian network model
language.
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