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Coherent current correlations in a double-dot Cooper pair splitter
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Exact analytical formulas are derived, by means of Keldysh Green functions, for currents and current
correlation functions in a Cooper pair splitter modeled on a double quantum dot system coherently coupled
to a superconductor and two normal metallic electrodes. Confining to the subspace with the interdot singlet we
show perfect entanglement of split electrons in two separated crossed Andreev reflection processes. The studies
are focused on the noise power spectrum in a whole bias voltage range. In particular, in the large voltage limit
shot noise dominates and its spectrum exhibits two extraordinary side dips related to resonant interlevel current
correlations caused by coherent electron-hole recombination processes accompanied by emission and absorption
of photons. In the linear response limit we derived the frequency-dependent admittance which shows different
interference patterns for the cross and the auto current correlations.
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I. INTRODUCTION

Electronic transport through a nanoscopic system is
stochastic in nature, and therefore, in investigations one needs
to measure and analyze the currents, the second-order current
correlation functions (noise power), and all other high-order
cumulants to get the full counting statistics (FCS) [1–3]. In
particular, the current-current correlations give insight into
quantum noise in nanoscopic electrical circuits [4], shot noise
and dynamics of charge transfers in the presence of inter-
actions [5], entanglement of scattered particles [6–10], their
fermionic or bosonic nature [11], as well as the effective
charge in the fractional quantum Hall effect [12–14].

Ubbelhode et al. [15] used a quantum point contact as
a highly sensitive counter of charge transport in a single-
electron transistor. This setup allowed them to determine
directly the current statistics and timescales of the current
fluctuations (up to tens of μs) as well as the frequency-
dependent third-order correlation function (the skewness). An
active quantum detector system was proposed [16–18] to mea-
sure quantum noise and observe zero-point fluctuations. Such
a device was fabricated [19] on a double quantum dot as a
tunable two-level system and showed current fluctuations in
the capacitive coupled conductor over a very wide frequency
range (up to hundreds of GHz). An alternative quantum detec-
tor was based on a superconductor-insulator-superconductor
tunnel junction as an on-chip spectrum analyzer [20], which
allowed one to measure the nonsymmetrized current noise
arising from coherent charge oscillations in a superconducting
charge qubit [21,22] or generated by the tunneling of quasi-
particles across a Josephson junction polarized in the vicinity
of the superconducting gap [23,24]. A similar experimental
setup was used to investigate the nonequilibrium dynamics of
many-body phenomena on the nanoscale, namely to measure
the high-frequency current fluctuations of a carbon nanotube
quantum dot in the Kondo regime [25].

In electronic transport one can distinguish two regimes:
sequential tunneling and coherent (ballistic) transport. In the
sequential regime following tunneling events are independent
and the transport is described within the Markov approach,
using the quantum master equation [26]. In particular, the
current correlation functions can be derived [27–29], one
can get easily FCS [30–33] with all order cumulants for the
zero-frequency case, as well as, with some effort, frequency-
dependent cumulants [34]. Using the spectral decomposition
of the noise power spectrum one can distinguish various
relaxation processes [27], related to local charge and spin
fluctuations, as well as see interchannel current correlations,
which can lead to the sub- or super-Poissonian type of
shot noise (showing antibunching or bunching of transferred
particles) [35,36].

Noise power in the coherent regime was investigated by
means of the scattering approach by Büttiker and co-workers
(in many seminal papers; see the review [5]). The nonequi-
librium Green function technique [37] is very efficient; it
can be used to determine zero-frequency cumulants within
FCS [38–40]. The spectral analysis of the current correlations
plays a key role in electron quantum optics, a new branch of
nanoelectronics, where single electron packets (the levitons)
can propagate ballistically along the edge channels of the
quantum Hall effect and can be guided in optics-like setups
[41]. In particular, the first- and second-order correlation func-
tions are used in descriptions of two-particle interferences in
the Hanbury-Brown and Twiss (HBT) geometry [42,43] and
in the electron analog, the Hong, Ou, and Mandel (HOM)
experiment [44] (see also [43]).

We are interested in quantum coherence processes in the
noise power spectrum, and the Cooper pair splitter (CPS)
seems appropriate for this issue. Such system consists of
three electrodes in a Y geometry, where the central elec-
trode is a superconductor and serves as a reservoir of Cooper
pairs which are injected into two normal metallic electrodes
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[6–8,45,46]. This is the fermionic analog of two photon inter-
ference experiments: HBT and HOM, where spin-entangled
electrons, as Einstein-Podolsky-Rosen (EPR) pairs, are spa-
tially coherently separated into their entangled constituents.
The device allows one to test Bell inequalities in terms of
current-current correlations and to show their violation as
evidence of entanglement of electrons [47–49]. Therefore,
the CPS is considered as the solid state setup for quantum
communications [50].

The efficiency of CPS can increase when the superconduc-
tor is coupled by two quantum dots (QDs) with two normal
metallic electrodes [8,46]. If the intradot charging energy is
large, then two electrons of the Cooper pair are forced to split
into separate channels. Such devices with tunable QDs were
fabricated and shown to control the Cooper pair splitting with
a very high efficiency [51–55], recently also with graphene
QDs [56] and two topologically nontrivial semiconducting
nanowires [57].

Chevallier et al. [58] modeled the double-dot Cooper pair
splitter (2QD-CPS) and calculated the current as well as the
current correlations by means of nonequilibrium Green func-
tions. Crossed Andreev reflections (CARs) are relevant for
operation of CPS. In the CAR process an electron ejected from
the normal metallic electrode to the superconductor forms a
Cooper pair and simultaneously a hole of opposite spin is in-
jected to the other metallic electrode. Their excitation energies
are less than the superconducting energy gap. There are two
other processes: direct Andreev reflection (DAR), when the
electron and the hole propagate to the same electrode, and
electron cotunneling (EC) related to electron transfers from
one metallic electrode to the other one through the supercon-
ductor. However, these processes spoil the splitting efficiency.
The anomalous electron-hole current correlations (for CAR
and DAR) are positive [59], which is related to bunching of
tunneling events [6]. This is in contrast to the EC processes
which result in negative cross correlations [59], as in the
normal metallic Y splitter [5,60]. The interplay between these
processes was demonstrated in the 2QD-CPS model with two
ferromagnetic electrodes [61].

The above-mentioned studies focused solely on the zero-
frequency coherent current correlations. Our aim is to
study the noise power spectrum in 2QD-CPS to get insight
into quantum coherence processes in transport, a relevant
timescale for Cooper pair splitting, local charge dynamics,
and relaxation processes. Recently, Droste et al. [62] studied
the frequency-dependent noise power in a two-terminal hybrid
system, composed of a single-level quantum dot coherently
coupled to a superconductor and a normal conducting elec-
trode (N-QD-S). They found that the noise power spectrum
reflects the internal spectrum of the proximized dot and shows
extraordinary resonance dips at frequencies corresponding
to transitions between the Andreev bound state (ABS). Our
goal is to investigate a role of quantum interference in the
second-order current correlation functions, in particular, the
origin of the dips in the noise power spectrum. We predict that
interference processes in the noise power exhibit themselves
in a different way than Young’s interference patterns observed
in the first-order correlations.

The paper is organized as follows. In Sec. II we present
the model and the Keldysh Green function method, following

FIG. 1. Schematic presentation of the Cooper pair splitter with
two quantum dots (1,2) coupled to the normal (L, R) electrodes and
strongly coupled to the superconductor (S) as a reservoir of Cooper
pairs. Transport is due to perfect crossed Andreev reflections when
an electron (e) is injected to the normal electrode and a hole (h) with
an opposite spin is simultaneously ejected from the second metallic
electrode.

Chevallier et al. [58] with some modifications which make the
presentation more transparent. The considerations are focused
on the subgap energy region with the ABS reflections only.
In Sec. III we derive analytical formulas for the current and
the frequency-dependent (cross and auto) current correlation
functions. The analysis of the results is presented in Sec. IV:
first the zero-frequency case (Sec. IV A) and next the main
results of the paper on the frequency dependence of the noise
power (Sec. IV B). The results are presented for a whole range
of the bias voltage: the shot noise spectrum in the large voltage
limit, down to the linear response limit with the frequency-
dependent admittance. Supplemental materials are placed in
Appendixces A and B.

II. MODEL DESCRIPTION AND GREEN
FUNCTION CALCULATIONS

We consider a Cooper pair splitter with two quantum dots
(2QD), where each QD is coupled to the normal L or R elec-
trode and both are coupled the superconducting BCS reservoir
of Cooper pairs; see Fig. 1. Moreover, we assume the case
of strong coupling to the S electrode when due to proximity
effect the QDs behave like superconducting grains and entan-
gled electrons can be transported through the QDs. The model
is described by the Hamiltonian

H =
∑

i=1,2;σ=↑,↓
εia

†
iσ aiσ +

∑
α=L,R,S

Hα + HT , (1)

where the first term corresponds to the 2QD system with
a single level εi available at the ith QD. The electrode
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Hamiltonians,

Hα =
∑

k

�
†
αk (εαkσz + �ασx )�αk, (2)

are expressed in Nambu notation �
†
αk = [c†

αk↑, cαk̄↓], k̄ = −k,
σz, σx are the Pauli matrices, εαk and �α denote the electron
energy and the superconducting gap, which in the normal
electrodes is taken as zero. The transfer Hamiltonian is given
by

HT =
∑

k

(�†
LktL1σzd1 + �

†
RktR2σzd2

+�
†
SktS1σzd1 + �

†
SktS2σzd2 + H.c.), (3)

where d†
i = [a†

i↑, ai↓] and tαi describes electron hopping be-
tween the α electrode and the ith QD.

The charge current operator from the α electrode to the ith
dot is

Îαi ≡
(

Îαie

Îαih

)
= ıe

∑
α,k

(�†
αktαiσzdi − d†

i tiασz�αk ), (4)

where Îαie and Îαih denote contributions by electrons and holes,
respectively.

To calculate the average of the currents and their corre-
lation functions we use the Keldysh Green function method
[58,63–65]. Since the considered model is for noninteracting
particles one can easily write the equation of motion for the

Keldysh Green functions. In derivations the interdot singlet,
with 〈a†

1↑a†
2↓ − a†

1↓a†
2↑〉 �= 0, is only taken into account. We

assume that intradot Coulomb interactions are large and dou-
ble occupancy of the dots is neglected, 〈a†

i↑a†
i↓〉 = 0; thus, the

transfer of the Cooper pair through a single QD as a high-
energy process is forbidden. In the first step the self-energy
�̂S (in the Keldysh-Nambu space) describing the Cooper pair
transfer from the S electrode is derived according to Eq. (26)
in Ref. [58]; see Appendix A for more details. Our derivations
are confined to the subgap regime |E | < � and in the limit
� → ∞ in which the self-energy becomes

�̂S = γS

2

⎡
⎢⎣

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎤
⎥⎦, (5)

where γS = πρStS1tS2 and ρS is the density of states in the
S electrode in the normal state. Notice that γS describes the
exchange electron-hole coupling between the quantum dots.
In this way the S electrode is integrated out and the Keldysh
Green function matrix, for the system with two normal elec-
trodes and two proximized QDs, is expressed as a product of
two components

ĜL2QDR = Ĝe↑,h↓ ⊗ Ĝh↓,e↑, (6)

where

Ĝe↑,h↓ ≡

⎡
⎢⎢⎣

ĜLe↑,Le↑ ĜLe↑,1e↑ ĜLe↑,2h↓ ĜLe↑,Rh↓
Ĝ1e↑,Le↑ Ĝ1e↑,1e↑ Ĝ1e↑,2h↓ Ĝ1e↑,Rh↓
Ĝ2h↓,Le↑ Ĝ2h↓,1e↑ Ĝ2h↓,2h↓ Ĝ2h↓,Rh↓
ĜRh↓,Le↑ ĜRh↓,1e↑ ĜRh↓,2h↓ ĜRh↓,Rh↓

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w−−
L,11 w−+

L,11 tL1 0 0 0 0 0
w+−

L,11 w++
L,11 0 −tL1 0 0 0 0

tL1 0 z1e 0 γS/2 0 0 0
0 −tL1 0 −z1e 0 −γS/2 0 0
0 0 γS/2 0 z2h 0 −tR2 0
0 0 0 −γS/2 0 −z2h 0 tR1

0 0 0 0 −tR2 0 w−−
R,22 w−+

R,22
0 0 0 0 0 tR2 w+−

R,22 w++
R,22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. (7)

Here, we use the Keldysh-Nambu matrix notation. For exam-
ple the Green function for the L electrode decoupled from the
system is expressed as

ĝLe↑,Le↑ =
[

g−−
Le↑,Le↑ g−+

Le↑,Le↑
g+−

Le↑,Le↑ g++
Le↑,Le↑

]
, (8)

where its inverse elements derived in the wide-band ap-
proximation are w−−

L,11 = w++
L,11 = −2ıρL( fLe − 1/2), w−+

L,11 =
2ıρL fLe, w+−

L,11 = −2ıρL(1 − fLe). Similarly, the inverse el-
ements of ĝRh↓,Rh↓ are w−−

R,22 = w++
R,22 = −2ıρR( fRh − 1/2),

w−+
R,22 = 2ıρR fRh, w+−

R,22 = −2ıρR(1 − fRh). fαe = {exp[(E −
μα )/kBT ] + 1}−1 and fαh = {exp[(E + μα )/kBT ] + 1}−1 are
the Fermi distribution functions for electrons and holes in
the α electrode with the chemical potential μα . The chemical

potential in the superconductor is taken μS = 0. We also de-
note z1e = E − ε1 and z2h = E + ε2. Confining to the subgap
regime one gets the interdot coupling γS = πρStS1tS2, where
ρS is the density of states in the S electrode in the normal state.

Similarly one can express Ĝ−1
h↓,e↑ replacing the indexes

{L, 1,↑} ↔ {R, 2,↓} in Eq. (7).

III. CURRENTS AND THEIR CORRELATION FUNCTIONS

Using the Keldysh Green function (7) one can calculate the
currents as

ILe↑ = IRh↓ = − e

h̄

∫
dE

2π
( fLe − fRh)TAeh(E ), (9)

ILh↓ = IRe↑ = − e

h̄

∫
dE

2π
( fRe − fLh)TAhe(E ), (10)
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where the transmission probability is expressed as

TAeh(E ) = 16γLγRγ 2
S∣∣4(z1e − ıγL )(z2h − ıγR) − γ 2

S

∣∣2 , (11)

TAhe(E ) = 16γLγRγ 2
S∣∣4(z1h − ıγL )(z2e − ıγR) − γ 2

S

∣∣2 , (12)

and the couplings are γL = πρL|tL1|2, γR = πρR|tR2|2. It
is seen that TAeh(E ) and TAhe(E ) have a resonant shape
with two peaks, associated with the Andreev bound
states (ABSs), at the poles E± = {ε1 − ε2 ± ı(γL + γR) ±√

[ε1 + ε2 ± ı(γL − γR)]2 + γ 2
S }/2 and E± = {−ε1 +

ε2 ± ı(γL + γR) ±
√

[ε1 + ε2 ∓ ı(γL − γR)]2 + γ 2
S }/2,

respectively. Although TAeh(E ) and TAhe(E ) can be different,
they have the relative electron-hole symmetry, and therefore
the currents ILe↑ and ILh↓ are equal.

To study dynamical correlations of the currents we intro-
duce the operator �Îαi(t ) ≡ Îαi(t ) − 〈Iα〉 describing current
fluctuation from its average value, and next define the non-
symmetrized correlation function (following [32])

Sαi,α′i′ (ω) = 2
∫ ∞

−∞
dt e−iωt 〈�Îαi(0)�Îα′i′ (t )〉 (13)

for the current in the junction αi and the current in the junction
α′i′. To measure quantum noise, one needs a quantum detector
[4,16,19], which can absorb or emit energy from noise, for
positive and negative frequencies, respectively.

First we derive the cross current correlation function
SLe↑,Rh↓. Using the current operators, Eq. (4), one gets
the function as a sum of two-particle averages, which are
decoupled by means of Wick’s theorem to products of single-
particle averages, and next we express them by the Green
functions. The result is

SLe↑,Rh↓(ω) = 2e2

h̄
tL1tR2

∫ ∞

−∞

dE

2π
[G+−

Rh↓,Le↑(E )G−+
1e↑,2h↓(E + h̄ω) − G+−

2h↓,Le↑(E )G−+
1e↑,Rh↓(E + h̄ω)

− G+−
Rh↓,1e↑(E )G−+

Le↑,2h↓(E + h̄ω) + G+−
2h↓,1e↑(E )G−+

Le↑,Rh↓(E + h̄ω)]. (14)

Similarly, the autocorrelation function is expressed as

SLe↑,Le↑(ω) = 2e2

h̄
t2
L1

∫ ∞

−∞

dE

2π
[ G+−

Le↑,Le↑(E )G−+
1e↑,1e↑(E + h̄ω) − G+−

1e↑,Le↑(E )G−+
1e↑,Le↑(E + h̄ω)

− G+−
Le↑,1e↑(E )G−+

Le↑,1e↑(E + h̄ω) + G+−
1e↑,1e↑(E )G−+

Le↑,Le↑(E + h̄ω)]. (15)

This approach is equivalent to the one presented by Chevallier
et al. [58], but it is more transparent; one needs to determine
only the Keldysh Green function with the electrodes, as that
one (7).

Notice that in Eq. (6) the Keldysh Green function matrix is
decoupled, which means that there are two uncorrelated An-
dreev scattering channels: (e ↑, h ↓) and (h ↓, e ↑), and the
corresponding currents are uncorrelated as well—similarly
to the case in the paramagnetic system where the cur-
rents for electrons with the spin ↑ and ↓ are uncorrelated
for a noninteracting case [35]. Thus, the cross correlations
from two different subspaces are Sαe↑,αe↓ = Sαh↑,αh↓ = 0 and
SLeσ,Reσ = SLhσ,Rhσ = 0. This means that the direct Andreev
reflections (DARs) as well as the single-particle transfers (EC)
are absent, and transport is only due to perfect crossed An-
dreev reflections (CARs). The situation would be different for
a large transport window, when high-energy processes (with
Cooper pair transfers through a single QD) should be taken
into account. Further, we will consider the (e ↑, h ↓) channel
only, and to simplify the notation we will omit the spin indices
σ =↑,↓, which are related to the electron (e) and the hole (h),
respectively.

Using the Green function, Eq. (7), one can derive the cur-
rent correlation function

Sα,α′ (ω) = 2e2

h̄

∑
ν,ν ′=Le,Rh

∫ ∞

−∞

dE

2π
Sν,ν ′

α,α′ (E , E + h̄ω)

× [1 − fν (E )] fν ′ (E + h̄ω), (16)

where its the density elements are

SLeLe
Le,Le(E , E + h̄ω)

= 1 − r(E )r∗(E + h̄ω) − r∗(E )r(E + h̄ω)

+R(E )R(E + h̄ω), (17)

SRhRh
Le,Le(E , E + h̄ω) = TAeh(E )TAeh(E + h̄ω), (18)

SRhLe
Le,Le(E , E + h̄ω) = TAeh(E )RAeh(E + h̄ω), (19)

SLeRh
Le,Le(E , E + h̄ω) = RAeh(E )TAeh(E + h̄ω), (20)

for the autocorrelation function, and

SLeLe
Le,Rh(E , E + h̄ω) = t∗(E )t (E + h̄ω)

× [1 − r∗
LL(E + h̄ω)rLL(E )], (21)

SRhRh
Le,Rh(E , E + h̄ω) = t (E )t∗(E + h̄ω)

× [1 − r∗
RR(E )rRR(E + h̄ω)], (22)

SLeRh
Le,Rh(E , E + h̄ω) = SRLeh

Le,Rh(E , E + h̄ω)

= t∗(E )rLL(E )t (E + h̄ω)r∗
LL(E + h̄ω),

(23)

for the cross-correlation function, respectively. One can check
that the formulas for Sα,α′ (ω) have the same structure as
those ones derived by means of the scattering matrix approach
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for the single quantum dot (1QD) attached to two normal
electrodes [66–68]. However, in our case the scattering matrix
is different and its elements are

t (E ) =
4ı

√
γLγRγ 2

S

4(z1e − ıγL )(z2h − ıγR) − γ 2
S

, (24)

rLL(E ) = 4(z1e + ıγL )(z2h − ıγR) − γ 2
S

4(z1e − ıγL )(z2h − ıγR) − γ 2
S

, (25)

rRR(E ) = 4(z1e + ıγL )(z2h − ıγR) − γ 2
S

4(z1e + ıγL )(z2h + ıγR) − γ 2
S

, (26)

and TAeh(E ) = t (E )t∗(E ), RAeh(E ) = rLL(E )r∗
LL(E ) =

rRR(E )r∗
RR(E ) = 1 − TAeh(E ).

IV. RESULTS

The preceding section has given the general analytical
formulas for the current and their correlation. Let us now
consider the results for special cases in detail.

A. Zero-frequency noise

First we present the zero-frequency current correlation
function

SLe,Le(0) = SLe,Rh(0)

= 2e2

h̄

∫ ∞

−∞

dE

2π

{
T 2

Aeh(E )[ fLe(1 − fLe) + fRh(1 − fRh)]

+ TAeh(E )[1 − TAeh(E )][ fLe(1 − fRh) + fRh(1 − fLe)]
}
.

(27)

The auto- and cross-correlations are equal due to charge
current conservation. Moreover, this means a lack of direct
Andreev reflections (DARs) and coherent crossed Andreev
reflections (CARs) are only responsible for transport through
the system—there is a perfect entanglement of Cooper pairs.
The formula (27) is similar to the noise power in a two-
terminal conductor [5,66,67,69,70], as well as in a hybrid
structure in the presence of the electron-hole Andreev scat-
tering [59,71] (see also the review [5,72]). Note that the sign
of the cross-correlation function is positive because we con-
sider the correlations between the electron and hole currents
[59,71]. This is in contrast to the case in the normal metallic
Y splitter, where the cross-correlation function corresponds to
the electron-electron current correlations and its sign is neg-
ative [5,60]. Our calculations give an exact analytical expres-
sion (11)–(12) for the transmission probabilities TAeh and TAhe.

In the linear response limit (eV → 0) one can easily find
the conductance and the spectral functions for the current cor-
relations [73,74]. Let us consider the large bias voltage regime
for the splitter bias configuration (with the chemical potentials
μL = μR = eV in both normal electrodes and μS = 0 in the
superconductor), i.e., for fLe = fRe = 0 and fLh = fRh = 1.
In this case transport is unidirectional through both Andreev
states; electrons are transmitted to the normal electrodes and
holes in the opposite direction. There is no backscattering. The
current can be determined as

ILe = e

h̄

∫ ∞

−∞

dE

2π
TAeh(E ) = e

h̄

γ γ 2
S

(ε1 + ε2)2 + 4γ 2 + γ 2
S

. (28)

We consider only the single-channel transport and there-
fore the coefficient e/h̄ appears. The zero-frequency cross-
correlation function is expressed as

SLe,Rh(0) = 2e2

h̄

∫ ∞

−∞

dE

2π
TAeh(E )[1 − TAeh(E )]

= 2eILe − 2e2

h̄

γ γ 4
S

[
(ε1 + ε2)2 + 20γ 2 + γ 2

S

]
2
[
(ε1 + ε2)2 + 4γ 2 + γ 2

S

]3 .

(29)

Here, to simplify the presentation we have assumed the sym-
metric coupling γL = γR = γ . The integration was performed
using the residue theorem with the poles in the upper half
plane: E± = ε± + ıγ , where ε± = {(ε1 − ε2) ± δ}/2 denotes

the position of ABS; δ = ε+ − ε− =
√

(ε1 + ε2)2 + γ 2
S is the

separation between them. One can also write the Fano factor

FLe,Rh ≡ SLe,Rh(0)

2|eILe| = 1 − γ 2
S

[
(ε1 + ε2)2 + 20γ + γ 2

S

]
2
[
(ε1 + ε2)2 + 4γ 2 + γ 2

S

]2 .

(30)

It is seen that its minimal value min[FLe,Rh] = 7/32 at γ =√
3/20γS and ε1 = −ε2.
All analytical results were verified for ω = 0 by the full

counting statistics (FCS) procedure [40,63], when counting
fields λ were introduced to the transfer Hamiltonian (3), to the
Keldysh Green function (7) and a proper adiabatic potential
U (λ) was derived and used to calculate currents and their
variances.

B. Frequency dependence of current correlations

1. Large bias

In the large bias voltage regime both ABSs are in the
voltage window and transport is unidirectional; backscattering
processes are absent. For the splitter voltage configuration
the Fermi distribution functions fLe(E ) = fRe(E ) = 0 and
fLh(E ) = fRh(E ) = 1. Moreover we assume moderate fre-
quencies, h̄|ω| � e|V |, for which fLe(E + h̄ω) = fRe(E +
h̄ω) = 0 and fLh(E + h̄ω) = fRh(E + h̄ω) = 1. In this case
the current correlation function is expressed only by the shot
noise term

SLe,Rh(ω) = 2e2

h̄

∫ ∞

−∞

dE

2π
SLeRh

Le,Rh(E , E + h̄ω) (31)

with the density function SLeRh
Le,Rh, given by Eq. (23). For

the symmetric coupling one can derive (using the residuum
theorem)

SLe,Rh(ω) = 2e2

h̄

γ γ 2
S

δ2 + 4γ 2

[
2γ 2

(
2δ2 − γ 2

S

)
δ2(4γ 2 + h̄2ω2)

− γ 2γ 2
S

δ2(δ2 + 4γ 2)

δ2 − 4γ 2 + 2δ(δ − h̄ω)

(δ − h̄ω)2 + 4γ 2

− γ 2γ 2
S

δ2(δ2 + 4γ 2)

δ2 − 4γ 2 + 2δ(δ + h̄ω)

(δ + h̄ω)2 + 4γ 2

]
.

(32)
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We have performed the spectral decomposition, which allows
insight into local charge fluctuations, and find their charac-
teristic frequencies related to relaxation processes [35,36].
Here, the method shows the interplay of the currents flow-
ing through the higher (+) and lower (−) ABSs and their
contribution to the correlation function (see Appendix B for
details). The first term is positive and represents the corre-
lation function, S++

Le,Rh and S−−
Le,Rh, for the currents flowing

through the same ABS. The other two terms correspond to
interlevel current correlations, S−+

Le,Rh and S+−
Le,Rh, respectively.

These functions are negative and are related to emission and
absorption of energy h̄ω by the system. For ω = 0 the result
obviously coincides with Eq. (29). Notice that SLe,Rh(ω) =
SLh,Re(ω) and they depend only on |ε1 + ε2|, which means that
fluctuations on both Andreev states are equivalent.

In a similar way we derive shot noise in the current auto-
correlation function:

SLe,Le(ω) = 2e2

h̄

γ γ 2
S

δ2 + 4γ 2

[
1 − 2γ 2γ 2

S

δ2(4γ 2 + h̄2ω2)

− γ 2γ 2
S

δ2(δ2 + 4γ 2)

δ2 − 4γ 2 + 2δ(δ − h̄ω)

(δ − h̄ω)2 + 4γ 2

− γ 2γ 2
S

δ2(δ2 + 4γ 2)

δ2 − 4γ 2 + 2δ(δ + h̄ω)

(δ + h̄ω)2 + 4γ 2

]
. (33)

The first term of SLe,Le(ω) corresponds to the Schottky noise,
which is frequency independent and describes uncorrelated
transfers of particles with a Poissonian distribution function of
time intervals between transfer events [5]. The Pauli principle
and the symmetry of electron wave functions result in the
negative current correlations, which is also a signature of
antibunching of the transfer events, as occurs in our case for
the second term in Eq. (33).

In contrast the first term in SLe,Rh(ω), Eq. (32), is positive,
which means that the electron and hole transfers, in the An-
dreev scattering, are bunched. The two last terms are the same
in SLe,Rh(ω) and SLe,Le(ω). They are related to correlation of
the currents flowing through the lower and the upper ABSs,
which is maximal at h̄ω = ±δ when the resonant peaks of
TAeh(E ) and TAeh(E ± δ) overlap with each other. The sign
of these correlations is negative which means that interlevel
transfers are antibunched. The similar situation can occur in
the multilevel quantum dot system, when a transmission co-
efficient has many resonant peaks, which can lead to negative
and sometimes positive current correlations.

The frequency dependencies of the Fano factors
FLe,Rh(ω) ≡ SLe,Rh(ω)/2eILe and FLe,Le(ω) ≡ SLe,Rh(ω)/2eILe

for the cross- and auto-correlations are shown in
Fig. 2. In this case normalization is given by 2eILe =
(2e2/h̄)γ γ 2

S /(δ2 + 4γ 2).
A similar frequency dependence was found by Droste et al.

[62] for the correlation function in the two-terminal hybrid
system, with one quantum dot (N-QD-S), which was derived
by means of a real-time diagrammatic perturbation expansion
in the tunnel coupling to the normal electrode. The authors
argue [62] that the dips arise from a coherent destructive
interference between ABS. However, our studies show that
the origin of the dips is different. The transport in both the
models is coherent, but there is no evidence for destructive

FIG. 2. Frequency dependence of the Fano factor: FLe,Rh (blue)
and FLe,Le (red) for the cross and auto current correlation function,
calculated for the large voltage limit. The solid curves represent the
weak coupling γ = 0.05, while the dashed curves are for the strong
coupling γ = 0.2. The other parameters are γS = 1, ε1 = ε2 = 0, for
which the separation between ABSs is δ = 1 and it is taken as the
unit for the energy scale.

interference in the transmission coefficient TAeh(E ) and in the
differential conductance. The spectral decomposition analysis
shows that the side dips are due to the negative current corre-
lations related with photon-assisted electron transfers through
the different ABSs. Such structure of the noise power spec-
trum can occur also for coherent transport through multilevel
quantum dots [75–77]. In particular, Ref. [78] showed that
electron-hole recombination processes can result in resonant
interlevel current correlations with emission/absorption of
energy in the system of two quantum dots in a T geometry
coupled to the normal metallic electrodes.

Our results are in contrast to those in Ref. [79] where the
noise power spectrum in 2QD-CPS was determined in the
sequential tunneling regime based on a diagonalized master
equation (DME). The method gives reliably the voltage de-
pendence of the current, which reflects the internal spectrum
of the proximized 2QDs with ABSs. The spectral decompo-
sition analysis showed contributions of current correlations
through various ABSs and the interplay between different
local charge relaxation processes. However, the DME method
neglects coherent electron-hole recombination processes, and
therefore, any extraordinary side dips have not been found in
the noise power spectrum.

To have a better insight into the role of quantum interfer-
ence we analyze the density functions Sνν ′

Le,Rh and Sνν ′
Le,Le for the

cross and the auto current correlation, respectively. In the shot
noise regime the relevant components are

SLeRh
Le,Rh = t∗(E )rLL(E )t (E + h̄ω)r∗

LL(E + h̄ω) (34)

and

SLeRh
Le,Le = TAeh(E + h̄ω)[1 − TAeh(E )]. (35)

Figure 3 presents their plots as maps in the energy and fre-
quency space, (E , h̄ω). The function SLeRh

Le,Le has two peaks
shifted in energy by δ, which is related to the spectrum of
ABSs seen in TAeh(E + h̄ω) and [1 − TAeh(E )]. The density
function SLeRh

Le,Rh is more interesting, which can be positive or
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FIG. 3. Map of the density function: SLeRh
Le,Rh(E , E + h̄ω) (a) and

SLeRh
Le,Le(E , E + h̄ω) (c), plotted vs the energy E and the frequency h̄ω.

Panels (b) and (d) present the plots of the density functions vs E at
h̄ω = 0 and h̄ω = 1, the red and the blue curves, respectively. The
plots are performed for the weak coupling γL = γR = 0.05 and the
other parameters are the same as in Fig. 2.

negative. For example, it is positive for h̄ω = 0 and equal to
TAeh(1 − TAeh), while it is negative for whole energy range at
h̄ω = ±1; see Fig. 3(b).

2. Moderate bias voltage

For V → ∞ we have been able to derive the analytical
formulas, but for a finite voltage one should use the general
formula for the correlation functions, Eq. (16), taking into ac-
count all components of the density functions, Eqs. (17)–(23).

FIG. 4. Frequency dependence of the real part of the cross- and
the auto-correlation function (black thick curves) with their compo-
nents: SLeRh

Le,Rh and SLeRh
Le,Le (red), SRhLe

Le,Rh and SRhLe
Le,Le (blue), SLeLe

Le,Rh = SRhRh
Le,Rh

and SLeLe
Le,Le (green), SRhRh

Le,Le (orange), for eV = 0.7 [(a) and (b)] and
eV = 0.1 [(c) and (d)]. The plots are calculated at temperature T = 0
and normalized to 2e max[ILe] = (2e2/h̄)γ γ 2

S /(δ2 + 4γ 2). The other
parameter are the same as in Fig. 3.

The integrals have been calculated numerically for the tem-
perature T = 0 and the results for the frequency-dependent
current correlation functions are presented in Fig. 4. Compar-
ing with Fig. 2 (for V → ∞) one sees that the plots vanish
for the positive h̄ω when the voltage eV becomes smaller. As
expected with decreasing voltage less noise power is emitted
by the system. On the other hand the other components, those
related to thermal fluctuations on the same junctions, become
more relevant, and they result in an increase of the noise
power spectrum, in particular for h̄ω < 0. The plots show the
pronounced dips at h̄ω = −1 (in particular that for SLe,Rh),
which are related to negative interlevel current correlations
with energy absorption.

155410-7



BOGDAN R. BUŁKA PHYSICAL REVIEW B 104, 155410 (2021)

FIG. 5. Map of the real part of the admittance (a) G ′
Le,Rh and

(b) G ′
Le,Le (in units 2e2/h) plotted in the space (η, h̄ω), where η =

(ε1 − ε2)/2. We take ε ≡ (ε1 + ε2)/2 = 0, EF = 0, temperature T =
0, and the other parameters are the same as in Fig. 3.

3. Linear response limit

For a small bias voltage one can use the Kubo theory of
linear response and establish the relation

Sαα′ (ω) − Sα′α (−ω) = −4h̄ωG ′
αα′ (ω) =

4e2

h

∫
dE S

eq
αα′ (E , E + h̄ω)[ f (E ) − f (E + h̄ω)] (36)

between the noise power spectrum and the real part of the
admittance Gαα′ (ω) (responsible for dissipation) [32]. Here,
we denote S

eq
αα′ ≡ ∑

η,η′=L,R S
ηη′
αα′ , which can be explicitly ex-

pressed as

S
eq
LL = 2 − r∗

LL(E )rLL(E + h̄ω) − rLL(E )r∗
LL(E + h̄ω), (37)

S
eq
LR = t (E )t∗(E + h̄ω) + t∗(E )t (E + h̄ω) (38)

for the auto- and cross-correlations, respectively. [The coeffi-
cients t (E ) and rLL(E ) are given by Eqs. (24) and (25).] For
T = 0 one gets

4h̄|ω|G ′
αα′ (ω) = 4e2

h

∫ EF +h̄|ω|

EF

dE S
eq
αα′ (E , E + h̄ω), (39)

where the Fermi energy EF = 0. Notice that in this limit
the noise is purely quantum: Sαα′ (ω) = −4h̄ωG ′

αα′ (ω)θ (−ω),
where θ denotes the Heaviside step function. Figure 5 presents
the admittance, G ′

Le,Rh (a) and G ′
Le,Le (b), plotted in the

space (η, h̄ω), where η ≡ (ε1 − ε2)/2 and ε ≡ (ε1 + ε2)/2 =
0. Although for h̄ω = 0 one gets G ′

Le,Rh(0) = G ′
Le,Le(0) =

(2e2/h)TAeh(EF ), but for finite frequencies these admittances
exhibit different interference patterns. It is seen that the
crossed admittance, G ′

Le,Rh, decreases with h̄|ω| and becomes
negative, while the auto admittance, G ′

Le,Le, is always positive
and can be larger than 2e2/h due to current fluctuations on the
same tunnel junction. These results show that displacement
currents play a different role in the cross- and the auto-
correlations.

V. SUMMARY

Let us summarize the main results. We analyzed a Cooper
pair splitter model, where two entangled electrons were trans-
ferred through the interdot singlet state on two proximized
QDs into two normal electrodes. Since the derivations were
confined to the subspace with the interdot singlet, where high-
energy processes were forbidden, we were able to show the
separation of the crossed Andreev reflections: for an electron-
hole (e ↑, h ↓) and a hole-electron (h ↓, e ↑) scattering [see
Eq. (6)]. This means that the transfer of an electron with the
spin ↑ from the first QD to the left electrode is coherently cou-
pled (fully entangled) with the transfer of a hole with the spin
↓ from the right electrode to the second QD, and this process
is independent from the (h ↓, e ↑) transfer. Consequently, the
zero-frequency cross- and auto-correlation functions are equal
and positive, SLe,Rh(0) = SLe,Le(0) > 0.

The other important result is the derivation of the an-
alytical formulas for the frequency-dependent cross- and
auto-correlation functions, SLe,Rh(ω) and SLe,Le(ω), in the
large bias limit, Eqs. (32) and (33). Here, quantum coherence
manifests itself in the negative interlevel current correlations
as the dips at h̄ω = ±δ, when the system absorbs or emits
the energy. The intralevel current correlations are seen at the
low-frequency limit and they are responsible for the central
dip in SLe,Le(ω) as well as the central peak in SLe,Rh(ω). These
low-frequency features are well known in sequential and co-
herent transport through quantum dots [5,28,35,66,67].

We also considered the admittance (derived by means
of the linear response theory) for the cross- and the auto-
correlation case, GLe,Le and GLe,Rh, respectively. Although at
ω = 0 they are equal and coincide with the conductance, for
the finite ω they have different interference patterns. Our
results show that quantum interference manifests itself in
the second-order current correlation functions in a differ-
ent way than Young’s interference patterns in the first-order
correlations.

We studied the noise power spectrum in the nonsym-
metrized form to get a direct relation with a quantum noise
measurement. To verify our predictions one can use the ex-
perimental setup as in Refs. [19–25], with a quantum detector
sensitive in a large frequency range to detect interlevel tran-
sitions between ABSs. This seems to be an experimental
challenge.
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APPENDIX A: SELF-ENERGIES FOR N AND S ELECTRODES

We use the equation of motion to derive the Green functions in the Keldysh and Nambu spaces. In this method important
quantities are the self-energies which describe coupling of the system with the normal and superconducting electrodes. For the
normal electrode coupling one simply gets the self-energy

�̂αi = ıγαi

2

⎡
⎢⎣

2 fαe − 1 2 fαe 0 0
2( fαe − 1) 2 fαe − 1 0 0

0 0 2 fαh − 1 2 fαh

0 0 2( fαh − 1) 2 fαh − 1

⎤
⎥⎦, (A1)

where the wide flat-band approximation is used, and γαi = πρα|tαi|2, where ρα denotes the density of states in the electrode;
fαe = {exp[(E − μα )/kBT ] + 1}−1 and fαh = {exp[(E + μα )/kBT ] + 1}−1 are the distribution functions for electrons and holes,
respectively. For the coupling of the S electrode with the 1 and 2 QDs the self-energy is expressed as (following [58,63–65])

�̂S = ıγS

2

×

⎡
⎢⎣

(2 fSe − 1)β ′
S + ıβ ′′

S 2 fSeβ
′
S −[(2 fSe − 1)β ′

S + ıβ ′′
S ]�/E −2 fSeβ

′
S�/E

2( fSe − 1)β ′
S (2 fSe − 1)β ′

S + ıβ ′′
S 2 fSeβ

′
S�/E [(2 fSe − 1)β ′

S + ıβ ′′
S ]�/E

[(2 fSh − 1)β ′
S − ıβ ′′

S ]�/E 2( fSh − 1)β ′
S�/E (2 fSh − 1)β ′

S − ıβ ′′
S 2 fShβ

′
S−2( fSh − 1)β ′

S�/E −[(2 fSh − 1)β ′
S − ıβ ′′

S ]�/E 2( fSh − 1)β ′
S (2 fSh − 1)β ′

S − ıβ ′′
S

⎤
⎥⎦,

(A2)

where γS = πρStL1t2R, β ′
S and β ′′

S are the real and the imaginary part of the function

βS = |E |θ (|E | − �)√
E2 − �2

− ı
Eθ (� − |E |)√

�2 − E2
. (A3)

Notice that in the limit � → 0 one gets �̂S as for the normal electrode, Eq. (A1). For the subgap regime |E | < � the function
βS = −ıE/

√
�2 − E2 and in the limit � → ∞ Eq. (A2) reduces itself to Eq. (5) in Sec. II.

Let us stress that in a similar way one can derive the self-energy �̂S1 and �̂S2 related to the intradot pairing. However, in our
considerations the intradot Coulomb interactions are assumed to be large and these terms are neglected as they correspond to
high-energy tunneling processes.

APPENDIX B: SPECTRAL DECOMPOSITION

Let us present the spectral decomposition approach which allows to separate various contributions of currents flowing through
ABSs and their components in noise power. Our derivations are performed in the large voltage regime, in which the current

ILe = − e

h̄

∫ ∞

−∞

dE

2π
TAeh(E ), (B1)

and we want to express it as ILe = I+
Le + I−

Le, separating the current flowing through the upper (+) and the lower (−) ABSs. To
this end the transmission coefficient TAeh, Eq. (11), is decomposed into partial fractions and the terms are grouped into those
corresponding to transmission through the upper and the lower state:

T ±
Aeh(E ) = ∓ ıγ γ 2

S

2δ(δ2 + 4γ 2)

[ −2ıγ ± δ

E − ε± − ıγ
− 2ıγ ± δ

E − ε± + ıγ

]

= ∓ 2γ 2γ 2
S (E − ε± ∓ δ/2)

δ(4γ 2 + δ2)[(E − ε±)2 + γ 2]
, (B2)

where ε± denotes the position of the ABS. Thus, the current is I+
Le = I−

Le = (e/h̄)γ γ 2
S /[2(4γ 2 + δ)]. Here, we assume the

symmetric coupling, γL = γR = γ .
Similarly, we perform spectral decomposition of the cross-correlation function SLeRh

Le,Rh(ω), where the corresponding density
SLeRh

Le,Rh(E , ω) = t∗(E )rLL(E )t (E + h̄ω)r∗
LL(E + h̄ω) = g(E )g∗(E + h̄ω), Eq. (23). To this end the function g(E ) ≡ ıt∗(E )rLL(E )

is decomposed into partial fractions and next, the terms are grouped for those for transfers through ε+ and ε−. The result is

g±(E ) = ± γ γS

2δ(δ2 + 4γ 2)

[ (ε1 + ε2 ± δ)(−2ıγ ± δ)

E − ε± − ıγ
− (ε1 + ε2 ∓ δ)(2ıγ ± δ)

E − ε± + ıγ

]

= ∓ γ γS

δ(δ2 + 4γ 2)

(E − ε±)δ2 ± 2δγ 2 − 2ı(ε1 + ε2)(E − ε± ∓ δ/2)

(E − ε±)2 + γ 2
. (B3)
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Thus, the function

SLeRh
Le,Rh(E , ω) =

∑
ν,ν ′=±

SLeRh,νν ′
Le,Rh (E , ω), (B4)

where its density SLeRh,νν ′
Le,Rh (E , ω) = gν (E )g∗

ν ′ (E + h̄ω).
After integration one gets the spectral components of SLeRh

Le,Rh(ω):

SLeRh,++
Le,Rh (ω) = 2e2

h̄

γ 2γ 2
S

[(
2δ2 − γ 2

S

)
δ + ı(ε1 + ε2)δ

]
δ2(4γ 2 + δ2)(4γ 2 + h̄2ω2)

, (B5)

SLeRh,+−
Le,Rh (ω) = −2e2

h̄

γ 3γ 4
S [δ2 − 4γ 2 + 2δ(δ + h̄ω)]

δ2(4γ 2 + δ2)2[4γ 2 + (δ + h̄ω)2]
, (B6)

SLeRh,−+
Le,Rh (ω) = −2e2

h̄

γ 3γ 4
S [δ2 − 4γ 2 + 2δ(δ − h̄ω)]

δ2(4γ 2 + δ2)2[4γ 2 + (δ − h̄ω)2]
, (B7)

SLeRh,−−
Le,Rh (ω) = 2e2

h̄

γ 2γ 2
S

[(
2δ2 − γ 2

S

)
δ − ı(ε1 + ε2)δ

]
δ2(4γ 2 + δ2)(4γ 2 + h̄2ω2)

. (B8)

Let us perform spectral decomposition of SLeRh
Le,Le(ω), for which the density is expressed as SLeRh

Le,Le(E , ω) = TAeh(E + h̄ω) −
TAeh(E + h̄ω)TAeh(E ). Since TAeh(E + h̄ω) gives the frequency-independent Schottky term in the noise power, we focus on the
second term which can be written as TAeh(E + h̄ω)TAeh(E ) = ∑

ν,ν ′=± T ν
Aeh(E + h̄ω)T ν ′

Aeh(E ). Using Eq. (B2) and integrating
one can find the spectral components of the frequency-dependent part of SLeRh

Le,Le(ω):

2e2

h̄

{
− 2γ 3γ 4

S

δ2(4γ 2 + h̄2ω2)
− γ 3γ 4

S [δ2 − 4γ 2 + 2δ(δ + h̄ω)]

δ2(δ2 + 4γ 2)2[4γ 2 + (δ + h̄ω)2]
− γ 3γ 4

S [δ2 − 4γ 2 + 2δ(δ − h̄ω)]

δ2(δ2 + 4γ 2)2[4γ 2 + (δ − h̄ω)2]

}
. (B9)

Here, the first term comes from the (++) and (−−) components, while the second and third terms come from the interlevel
(+−) and (−+) correlations, and they are equal to SLeRh,+−

Le,Rh (ω) and SLeRh,−+
Le,Rh (ω), Eqs. (B6) and (B7), respectively.
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