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Electron transport in ultraclean two-dimensional materials has received much attention. However, the sign of
the magnetoresistance effect in various electron flow regimes remains controversial. In this work, the complete
electron Boltzmann transport equation is numerically solved with the discrete ordinate method in the real space
to clarify the condition of the negative magnetoresistance effect under a weak magnetic field. It turns out from
the numerical results that this effect occurs only within the ballistic regime under a low electric field rather than
the hydrodynamic regime. It is noteworthy that the existence of momentum-conserving scattering dramatically
reverses the sign of magnetoresistance in the ballistic regime. When the electric field becomes strong enough
compared to the magnetic field, its effect on the deflection of the electrons is not negligible and will lead to
positive magnetoresistance in the whole parameter domain. The possible influence of boundary conditions and
internal electric field models on the sign of magnetoresistance is also discussed. Our work provides insight into
electron fluid transport under electromagnetic fields.
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I. INTRODUCTION

In classical theory, the electric resistivity of solids increases
with the rise of temperature, originating from the dominated
scattering between electrons and the lattice (including defects
and phonons). However, recent experiments have shown that
the resistance decreases in some two-dimensional impurity-
free materials at low temperatures and under confinement,
such as GaAs heterostructure and graphene [1–3]. This phe-
nomenon is called the “Gurzhi minimum”, which was first
predicted by Gurzhi in the 1960s [4,5]. A macroscopic hy-
drodynamic description with a novel property called “electron
viscosity” was used to evaluate the electric resistivity by anal-
ogy with classical viscous fluid mechanics and accounted for
this abnormal phenomenon successfully, which suggests the
emergence of the hydrodynamic regime for electron trans-
port [6–9]. Within the mesoscopic picture, the hydrodynamic
analogy requires the dominance of momentum-conserving
scattering among the bulk scatterings, which indicates that
the electron-electron normal scattering may play an essential
role in the electron transport in these materials. Considering
that the momentum-conserving scatterings will not directly
contribute to the electron transport resistance, the “real re-
sistance” is provided by diffusive scattering at the system
boundary ensuring the local equilibrium, which leads to the
no-slip boundary condition in the macroscopic description.
The momentum-conserving scatterings give rise to the elec-
tron viscosity, which exchanges and tends to homogenize the
momentum between contiguous electron fluid elements from
the macroscopic point of view. Massive studies have been
implemented on this viscous electron transport, and impres-
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sive experimental evidence has arisen in succession in recent
years benefiting from the improvement of experimental tech-
niques. The research interests have been extended to negative
nonlocal resistance [10–15], enhanced electron conduction
[2,16–18], microscale electron turbulence [19,20], hydrody-
namic magnetoresistance [21–45], electron flow field visual-
ization [15,46–52], and significant analogy in electron flow
with classical fluid mechanics such as the Bernoulli effect
[53], boundary layer [54], and nonlinear density waves [55].

Electron hydrodynamics focuses on the evolution of sev-
eral conservative macroscopic quantities in the electron
transport (such as the momentum within the hydrodynamic
regime), ignores the redundant high-order microscopic infor-
mation, and describes the property of the electronic system
with several transport coefficients, especially the viscosity
and thermal conductivity. While the controlling equation in
viscous fluid mechanics is named the “Navier-Stokes equa-
tion”, we will call the macroscopic hydrodynamic equation
for electron the “electron Navier-Stokes equation” (eNSE).
Though sharing the same notion of “hydrodynamics”, electron
transport has many distinct properties from the classical fluid,
such as its quantum wave nature dependent on the material’s
concrete property, the spin/charge-induced effect resulting in
the response to the external electromagnetic field, and the ex-
istence of momentum-relaxing bulk scattering leading to the
bulk resistivity. Besides the “classical giant magnetoresistiv-
ity” as a spin effect, experiments have shown the giant nega-
tive magnetoresistance of the two-dimensional electron gas in
nonmagnetic materials [22,24,25,36,56], and similar phenom-
ena are found in other particle systems such as electron-hole
fluid [37,38,40,57,58], which indicates a much simpler
and more efficient way to regulate the electric resistance.
Based on macroscopic eNSE without surplus parameters, the
main result in GaAs heterostructure narrow channel is later
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successfully reproduced, which is considered as new evidence
of viscous electron transport [26,28].

Numerous theoretical and numerical studies have tried to
show that the negative magnetoresistance originates from the
electron viscosity and marks the existence of the hydrody-
namic regime of the electron transport. However, whether
the negative magnetoresistance always comes from the hy-
drodynamic effect of electron fluid transport remains an open
problem. First, the previous work mostly focused on the lin-
ear response of the electron transport to the external electric
field, based on the Stokes-like eNSE [11,12,15,28,59–61].
It should be noticed that the commonly used macroscopic
equations lack the consideration of the nonlinear effect of
the external electric field on the electric current, which may
strongly influence the sign of the magnetoresistance according
to the mesoscopic analysis, as shown in Sec. V B. As well,
these equations are usually obtained through phenomenolog-
ical deduction or upscaling from the mesoscopic equations
without a rigid evaluation of their applicability. Second, it
is deduced from the study on the magnetoresistance effect
based on the macroscopic eNSE that the sign of magnetore-
sistance dramatically reverses when the normal current flow
at boundary becomes nonzero [43,62]. These studies indicate
the importance of the assumed certain boundary condition
and elicit another shortfall of the hydrodynamic description
that it cannot reflect the mesoscopic mechanisms and detailed
information, which may lead to totally different results as
above.

Compared to the macroscopic eNSE, the electron Boltz-
mann transport equation (eBTE) presents more mesoscopic
statistical details. An impressive study by Molenkamp et al.
developed a landmark theoretical formulation based on the
Boltzmann approach, and the calculation is quantitatively in
agreement with their experiment within the hydrodynamic
regime of electron transport in GaAs heterostructure [1].
However, the complexity of the eBTE makes the theoretical
calculation rather difficult, and the solution can be obtained
only under considerable simplifications in this way. For ex-
ample, in previous theoretical studies, the displaced eBTE
is often utilized for analysis, which focuses on the evolu-
tion of the nonequilibrium part of the distribution function,
i.e., the original distribution function subtracted by the local
Fermi-Dirac equilibrium distribution. In particular, in many
treatments of displaced eBTE, the electric field in the angular
derivative term is usually omitted for it adds complexity for
the theoretical calculation and is often much smaller than the
magnetic field, i.e., E � vFB with vF the Fermi velocity of the
material, which limits these studies within the cases of linear
response of the electric current to the external electric field
[12,42,63–66]. Moreover, even if the simplified linearized
displaced eBTE is used, it is preferred to evaluate the qual-
itative pattern under assumptions on the range of determinant
parameters such as the dimensionless magnetic field B̃ � 1 or
B̃ � 1, which leaves the intermediate regime in the parameter
domain a kind of “virgin land” [63]. In addition, it is quite
intractable for the theoretical method to deal with electron
transport when it comes to complex geometry and nontrivial
materials.

The present work studies the sign of magnetoresistance
of electron transport in different regimes based on the dis-

crete ordinate method (DOM), which numerically solves the
eBTE in the real space. The essential mesoscopic details are
fully considered in our approach with a short revisit of the
eNSE, and the advantage of the upwind scheme for the evo-
lution equation is taken to extend the parameter range when
solving the stationary eBTE. The remainder of this paper is
organized as follows. In Sec. II the system setup and the
two-dimensional electron Boltzmann formulation are given.
In Sec. III we present the numerical algorithm, followed by the
verification benchmark in Sec. IV. Section V gives the results
of the magnetoresistance phase diagram and representative
magnetoresistance curves and discusses the nonlinear effect
of the external electric field on the electric current. Details of
the construction of the DOM algorithm and the derivation of
the macroscopic eNSE solution are given in Appendixes A
and B, respectively.

II. BOLTZMANN FORMULATION

A. Two-dimensional electron Boltzmann equation

Under the quasiclassical approximation, the nonequilib-
rium transport of electrons is described by the following
mesoscopic original eBTE:

∂ f

∂t
+ v · ∂ f

∂r
+ F

h̄
· ∂ f

∂k
= C( f ), (1)

where f (r, k) is the average occupation number; v = ∇kεk/h̄
the group velocity of the Bloch electron; F = (−e)(E + v ×
B) the total force applying to a single electron with charge
−e, including the external electromagnetic field and the elec-
trostatic force between the electrons; and C( f ) the scattering
term, whose explicit form will be presented in Sec. II B. In this
work, we focus only on the two-dimensional materials whose
energy dispersion is approximate of the parabolic form, i.e.,
εk = Ebottom + h̄2k2/(2m∗), which results in h̄k = m∗v. Here
Ebottom is the energy level at the bottom of the conductive
band, and m∗ is the effective mass of the band electron.

The nonequilibrium distribution function is first written in
two parts, f (r, k) = f eq(r, εk) − (∂ f eq/∂ε)χ (r, k), in which
f eq ≡ f eq

εk (r) = 1/(exp{β[εk − μ(r)]} + 1) is the local equi-
librium distribution of electron in the Fermi-Dirac form with
β = 1/kBT (r), and χ is the approximate energy displacement
of the distribution function. Substituting the above decompo-
sition into Eq. (1), we obtain the displaced eBTE,

∂χ

∂t
+ v · ∂χ

∂r
+ F

h̄
· ∂χ

∂k
+ SE,T + Sε = Cδ (χ ), (2)

where Cδ (χ ) is the scattering term whose explicit form will
also be provided in Sec. II B; the source terms SE,T for the
macroscopic nonequilibrium potential gradient and Sε for the
high-order effect of energy displacement are defined by

SE,T =
{

[(−e)E − ∇rμ] − εk − μ

T
∇rT

}
· v,

Sε = (−e)E · v

(
−βχ tanh

β(εk − μ)

2

)
. (3)

Since the electrostatic force is considered to be greater
than the pressure from the concentration gradient and the
temperature effect in this work, the chemical potential and
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temperature gradient terms in SE,T and the high-order effect
Sε are neglected. Thus, Eq. (2) can be simplified as follows:

∂χ

∂t
+ vFeρ · ∂χ

∂r
+ F · eϕ

m∗vF

∂χ

∂ϕ
+ evFE · eρ = Cδ (χ ), (4)

where eρ = (cos ϕ, sin ϕ), eϕ = (− sin ϕ, cos ϕ). It is seen
from Eq. (4) that the electric field serves as the external source
term which drives the other terms on the l.h.s. to drift in the
phase space, while the scattering term on the r.h.s. tends to
make local equilibrium. The original form Eq. (1) and the
displaced form Eq. (4) of the Boltzmann equation lay the
foundation of the following sections.

B. Bulk scattering model and the boundary condition

In order to make a complete Boltzmann equation problem,
the bulk scattering term and the boundary condition will be
discussed in this section, which respectively correspond to the
electron’s bulk and boundary scattering.

When dealing with the bulk scattering in the electron
hydrodynamics problem, it is essential whether the certain
scattering conserves the total momentum of electrons.
The scattering events can be divided into two types: the
momentum-conserving scattering and the momentum-
relaxing ones. The former refers to electron-electron
normal scattering, while the latter include electron-impurity
scattering, electron-phonon scattering, and Umklapp
electron-electron scattering. By analogy with Steinberg’s
momentum-conserving single-relaxation-time approximation
model for electron transport [67] and Callaway-BGK’s
double-relaxation-time approximation model for phonon
hydrodynamics [68–71], here we present the double-
relaxation-time model for electron hydrodynamics,

C( f ) = CMR( f ) + CMC( f )

≡ − f − f eq
εk (r)

τMR
− f − f eq

εk−h̄k·u(r)

τMC
, (5)

in which the first r.h.s. term corresponds to the momentum-
relaxing scattering that conserves the local number density,
while the second r.h.s. term corresponds to the momentum-
conserving scattering that conserves both the local number
density and the local momentum; u is the macroscopic lo-
cal drift velocity of the electron fluid element; and τMR(MC)

is the relaxation time of momentum-relaxing (momentum-
conserving) scattering. With the definition of χ , we obtain the
displaced form of the scattering term in Eq. (4) from Eq. (5),

Cδ (χ ) = Cδ,MR(χ ) + Cδ,MC(χ )

≡ −χ − P0[χ ]

τMR
− χ − P0,±1[χ ]

τMC
, (6)

where P0,±1[χ ] = P0[χ ] + P1[χ ] cos ϕ + P−1[χ ] sin ϕ and
Pi[χ ] (i = 0, ± 1) are the projectors that project the
displaced distribution function χ (r, ϕ) onto the bases
{1, cos ϕ, sin ϕ} respectively [see Eq. (7)].

P0[χ ] =
∫ 2π

0

dϕ

2π
χ,

P1[χ ] =
∫ 2π

0

dϕ

π
χ cos ϕ, P−1[χ ] =

∫ 2π

0

dϕ

π
χ sin ϕ. (7)

The boundary scattering is modeled by two components,
i.e., specular scattering and diffusive scattering. The specular
scattering coefficient ps is defined as the ratio of the elec-
trons that experience the specular scattering to all the incident
electrons onto the boundary. In Fuchs model ps is constant,
while in the Fuchs-Soffer model ps(ϕi ) = exp[−(αbd sin ϕi )2],
where ps is dependent on the incident angle between the
incident direction and the boundary and αbd is the parameter
derived from the microscopic model [72,73]. The generalized
boundary scattering model is written as follows:

χ (r0, θ ) =
∫ π

0
dθ ′r(θ, θ ′)χ (r0, θ

′), θ ′ ∈ (−π, 0), (8)

where r0 is the boundary point, and r(θ, θ ′) is called “the
scattering kernel”, which represents the probability of the
electrons incoming from θ ′ ∈ (0, π ) and reflecting along θ ∈
(−π, 0). In this work, the angle is the direction angle in
the local right-handed boundary coordinate system (et, en),
which is defined by the tangential direction et and outer
normal direction en. Now the scattering kernel of Fuchs and
Fuchs-Soffer boundary model can be written in the following
compact form:

rF(−S) = ps(θ
′)δ(θ + θ ′) + 1 − ps(θ ′)

π
. (9)

Note that the boundary condition with scattering kernel
above conserves the particle number at the boundary, i.e.,
the number of incident electrons equals the outcoming ones,
which can be expressed as

∫ −π

π
r(θ, θ ′)dθ = 1.

III. DISCRETE ORDINATE METHOD

Many numerical methods have been developed to obtain
the quantitative results of eBTE efficiently, including the
method of characteristics, finite volume method, DOM in
wave vector space, lattice Boltzmann method, and test particle
method [19,21,31,33,74–85]. These methods could be divided
into two categories: discrete approach and direct simulation.
The former ones discretize and solve the eBTE in differ-
ent ways, while the latter track and simulate the motions of
electrons directly, which makes the eBTE solved but is more
time-consuming. Since we focus only on the steady electron
flow in the two-dimensional straight channel with infinite
length and streamwise translational symmetry, a rather simple
discrete method is established to numerically solve the eBTE,
i.e., DOM in the real space, by analogy with the DOM to solve
phonon Boltzmann transport equation [86,87]. Note that it is
pretty similar to deal with the transient electron flow in the
finite-length straight channel, which will not be covered in this
work.

As shown in Fig. 1, we focus on the two-dimensional elec-
tronic system with the current flows along the x-axis, a width
W in the transverse direction, and an approximate infinite
length, where the length of the system in the direction x is
much larger than W . With the reference quantities including
the absolute value of single-electron charge e, the Fermi en-
ergy EF, the Fermi velocity vF, the channel width W , and other
derived quantities B0 = EF/(evFW ) and E0 = EF/(evF), the
displaced eBTE (4) with double-relaxation-time approxima-
tion (6) is nondimensionalized. For the sake of convenience,
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FIG. 1. System configuration.

the original notations are retained to denote the respective
dimensionless quantities. With the condition of streamwise
translational symmetry and steady flow, we obtain the dimen-
sionless eBTE as follows:

sin ϕ
∂χ

∂y
+ Fext

∂χ

∂ϕ
+ E · eϕ = Cδ (χ ). (10)

Here Fext = −(1/2)(E + eρ × B) · eϕ and the external
field is supposed to be uniform and stationary.

The uniform grid and the Gauss points are used to discrete
the spatial coordinate and the angular coordinate, respec-
tively. The derivatives are discretized by applying the upwind
scheme, while the integrals are calculated using Gauss quadra-
ture. Then the iteration scheme is derived as follows:

χ (n+1) = 1

1 + α + β

(
D(n)

α + D(n)
β − leffE · eρ + I (n)

scat

)
, (11)

where the subscripts “n”/“n + 1” denote the quantities be-
fore/after the iteration, leff = (l−1

MR + l−1
MC)−1 the effective

relaxation path of electrons (which is approximately the
mean-free path) with lMR(MC) = vFτMR(MC), α, β the numer-
ical parameters, and D(n)

α , D(n)
β , I (n)

scat the discrete forms of the
spatial derivative term, the angular derivative term, and the
scattering term, respectively. See Appendix A for the details
of the definition of numerical parameters and the deduction of
the iteration scheme, as well as the comparative discussion of
the applied numerical method with others.

The macroscopic quantities with dimensions are calculated
from the following expressions:

nδ (r, t ) =
∫

( f − f cq )
2 d2k

(2π )2 = DP0[χ ],

j(r, t ) =
∫

(−e)v( f − f eq )
2 d2k

(2π )2

= (−e)
DvF

2
(P1[χ ], P−1[χ ])T ,

u(r, t ) = j(r, t )

(−e)n(r, t )
� vF

(P1[χ/EF], P−1[χ/EF])T

2
. (12)

Here n � DEF is the surface density of electron number
and D = m∗/(π h̄2) is the density of electron states. Notice
that the electrostatic field E in the iteration equation is the
superposition of the external electric field and the “internal”
self-consistent electric field under Hartree-Fock approxima-
tion, obtained from the Poisson equation ∇ · E = (−e)nδ/ε

with ε the electric permittivity. The electric resistance along
the flow direction, i.e., the x-axis, is calculated by R ≡ Rxx =
ρxxlx/W = (Exlx )/( jxW ), in which jx and lx = 1 m is the

electric current density and prescribed length along the x-axis.
Thus, the reference electric resistance is defined as

R0 = ρxx,0lx
W

= m∗lx
ne2τMRW

. (13)

Note that there is a distinct difference between the concept
of the resistance and the resistivity that the former is a bulk
concept, while the latter is for the whole system with certain
geometry effects, especially boundary effects. Therefore, we
will pay attention only to the electric resistance in this work.

To summarize, the DOM algorithm can be described as
follows:

(1) Set the environment including material properties and
characteristic length of the case and initialize the displaced
distribution function χ (y, ϕ).

(2) Calculate the macroscopic quantities corresponding to
the displaced distribution function χ (n) using Eq. (12) and
then compute the internal electric field.

(3) Utilize Eq. (11) and the respective boundary condition
(8) to obtain the new displaced distribution function χ (n+1).

(4) Calculate the new macroscopic quantities of the new
displaced distribution function. If the difference is less than
the prescribed precision, continue; otherwise, return to step 2.

(5) Calculate the macroscopic transport property using the
final result of the displaced distribution function. End.

IV. BALLISTIC-DIFFUSIVE EFFECT

In the bulk materials under a small potential gradient, the
macroscopic transport obeys the classical linear diffusion law
such as Ohm’s law j = −σ∂φele,chem/∂x for electrochemical
charge transport and Fourier’s law q = −k∂T/∂x for heat
transport. One mechanism that is not included in those equa-
tions is ballistic transport, which becomes important when the
sample size is smaller than the mean-free path of the particle.
Also, another new type of diffusion named “the viscous dif-
fusion” cannot be ignored when the momentum-conserving
scattering rate is larger than the momentum-relaxing scatter-
ing related to the classical diffusion, which cannot be captured
precisely by simply adding a viscous term into the original
form of classical diffusion law as shown in this section. In
essence, the ballistic-diffusive effect refers to the deviation
from the prediction of the classical diffusion law when the bal-
listic transport and/or viscous diffusion becomes important.
Under such conditions, it is required to use the mesoscopic
BTE to precisely describe the above phenomena in detail. In
this section, we will study the ballistic-diffusive effect numer-
ically and verify the DOM algorithm through the comparison
between the numerical DOM solution and the theoretical so-
lution from the literature [1].

The ballistic-diffusive effect is the result of the competi-
tion of the following three mechanisms: ballistic transport,
Ohmic diffusion, and viscous diffusion. When one of these
effects dominates, the electron transport is said to lie in the
respective regime. (1) The ballistic effect (W � lMR, lMC) in
electron transport is analogical to the Knudsen effect in gas
transport. Since the sample size is less than the mean-free
path of electrons, electron-boundary scattering will dominate
the transport and the electrons inside the bulk domain will
experience the strong nonequilibrium and nonlocal transport.
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FIG. 2. Influence of momentum-relaxing scattering on the di-
mensionless conductivity curve (ps = 0). The circles and lines are
the dimensionless conductivity obtained by the numerical simulation
from the present DOM algorithm and the theoretical calculation from
the original literature [1], respectively. The agreement between these
two series of results successfully verifies our DOM algorithm (also
seen from Figs. 3 and 4). It is shown that the conductivity minimum
only occurs when the momentum-relaxing scattering (∼l−1

MR) is weak
enough compared to the boundary scattering rate (∼W −1), which
indicates the mesoscopic mechanism of the Gurzhi effect as a kind
of ballistic-diffusive effect.

(2) The Ohmic diffusive effect (lMR � W ) will lead to the
Gurzhi effect at room temperatures [4]. Electron-phonon scat-
tering dominates, and the electrons will lose energy during
the transport, which is transmitted to the lattice through the
scattering and eventually dissipate into the environment. This
provides the classical dissipative mechanism of electric con-
duction in metal under room temperatures. (3) The viscous
diffusive effect (lMC � W � lMR) will result in the Gurzhi
effect at low temperatures [4,6]. The momentum-conserving
scattering dominates the transport and conserves the total
momentum of electrons, for which the electron flow behaves
like classical fluids.

The case is chosen from the milestone paper by
Molenkamp et al. [1]. Since the dimensionless quantities are
utilized in our numerical simulation, the specific values of
the material properties such as the effective mass of band
electron and Fermi energy will not influence the result. In
addition, considering that we concentrate only on the linear
response of electron transport to the external electric field in
this section, the dimensionless electric field is simply set to
10–6 to reduce the numerical errors. The results are shown in
Figs. 2–4, with the dimensionless electric conductivity Leff =
m∗vFσxx/(ne2) = m∗vF/(ne2ρxx ) and electron fluid velocity
leff = ux(mvF/eEx ) defined as in [1].

Comparing the DOM numerical solutions with the theoret-
ical solutions from literature in these figures, it is shown that
our DOM algorithm passes the verification test. To emphasize
the characteristics of the ballistic-diffusive effect, here we
take only Fig. 4 as an example, which presents the velocity

FIG. 3. Influence of the specular coefficient p ≡ ps and α ≡ αbd

on the dimensionless conductivity curve under Fuchs model [lMR =
5.0W , in (a)] and F-S model [lMR = 5.5W , in (b)]. The comparison
between the two subfigures shows that the nonuniform boundary
scattering condition [ps(ϕi ) = exp[−(αbd sin ϕi )2] in (9)] acts as a
necessity for the remarkable conductivity minimum, as discussed in
[1].

profile in different flow regimes. As seen in the figure, in the
ballistic regime (lMC/W � 1), the flow is almost uniform, and
there exists the velocity slip at the boundary, originating from
the specular component in the electron-boundary scattering
model (9). As lMC/W becomes smaller, the flow profile is
more and more parabolic similar to the Poiseuille flow due
to the dominated momentum-conserving scattering. Electron
viscosity emerges from the frequent random scatterings be-
tween the electrons. When lMC/W becomes much smaller than
lMR/W , the flow reaches the Ohmic regime, in which the ve-
locity inside the channel is limited by the momentum-relaxing
scattering and becomes uniform. Note that the velocity nearly
vanishes at the boundary due to the decreased slip length (also
see Appendix B).

The comparison between the DOM results of meso-
scopic eBTE and the macroscopic theoretical solution is then
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FIG. 4. Influence of momentum-conserving scattering on the di-
mensionless flow profile under F-S model (lMR = 5.5W, αbd = 0.7).
leff/W is the dimensionless local velocity of the electron fluid along
the flow direction. In the ballistic regime where the momentum-
conserving and momentum-relaxing scattering are both infrequent,
the electron transport is dominated by the boundary scattering and
presents the uniform flow profile. As the momentum-conserving
scattering rate becomes large enough, when the momentum-relaxing
scattering is not strong (lMC � W � lMR), the momentum exchange
between the electrons is enhanced and nonzero viscosity emerges
under the double-relaxation-time model of eBTE. As a result, the
electrons act as the viscous fluid and lead to the Poiseuille-like
parabolic flow profile if the sample is “impurity-free”. Otherwise,
the velocity inside the channel will be limited by the so-called Drude
velocity induced by the strong momentum-relaxing scattering.

implemented, taking the electron two-dimensional parallel
shear flow as an example. The deduction of macroscopic solu-
tions to eNSE is given in Appendix B. The conductivity curves
under different specular boundary scattering coefficients and
momentum-relaxing scattering rates are shown in Figs. 5(a)
and 5(b), respectively. It is indicated that when ps � 1 and
lMC/W � 0.01, the macroscopic solution matches well with
the mesoscopic numerical solution. The reason for the ineffec-
tiveness of eNSE beyond that scope (a larger ps or a smaller
sample) is that the nonequilibrium of electron transport will
become stronger so that the macroscopic equation cannot
describe the ballistic effect very well, with the relative errors
of more than 20% compared to the DOM results [Fig. 5(b)].
Even for the cases with ps = 0 and lMC/W � 1, the macro-
scopic theoretical solution is still about 10% larger than the
DOM results when lMR/W � 1 [Fig. 5(a)]. This results from
the approximations in the macroscopic equation, such as the
ignorance of high-order Fourier coefficients in the deduction
[12]. Therefore, we can obtain the adequacy of the macro-
scopic Eq. (A4), i.e., ps � 1 and Kneff ≡ leff/W � 0.01. This
also implies that eNSE is not always accurate even for the case
without magnetic fields, especially when the nonequilibrium
effect is strong due to the specular boundary scattering and
weak momentum-relaxing scattering.

FIG. 5. Comparison between macroscopic theoretical solution
(the solid lines) and mesoscopic numerical solution (the circles).
Here the specular scattering coefficient ps denotes the ratio of the
electrons that experience the specular scattering to all the incident
electrons onto the boundary. In particular, ps = 1 corresponds to the
specular reflection, while ps = 0 means the uniform backscattering
at the boundary. (a) ps = 0; (b) lMR/W = 5. It turns out that only
when the momentum-conserving scattering rate is large and the
specular boundary scattering is weak enough can the macroscopic
eNSE describe the electron transport without magnetic field quite
accurately.

V. MAGNETORESISTANCE EFFECT

A. Simplified case: Linearized eBTE

Now we turn to the magnetoresistance effect, i.e., the addi-
tive resistance after the magnetic field applying to the electron
system under electric fields. Based on Eq. (10), the electric
field in the force term Fext is omitted to make comparisons
with previous studies in this subsection. Under this condition,
the electric current response will be linear to the external
electric field, i.e., the eBTE is “linearized” and the mag-
netoresistance is irrelevant to the electric field itself, which
has been verified by our DOM simulation. Therefore, the
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FIG. 6. Phase diagram (a) and exemplars (b) for the magnetore-
sistance curves under weak magnetic field, within the context of the
linearized eBTE. Dots are the DOM results, while the lines are guides
for the eye. It is shown from the phase diagram that the negative
magnetoresistance occurs only in the ballistic regime. The typical
results for lMC = W are shown in (b), and note that the blue curve
is slightly decreasing when the dimensionless magnetic field is less
than 0.1.

dimensionless electric field is set to 10–6 to minimize inaccu-
racy. The Poisson equation and Fuchs model with ps = 0 are
utilized to calculate the internal electric field and to maintain
the particle number conservation at the boundary, respectively.

As shown in the phase diagram in Fig. 6, it is found
that under a weak magnetic field, negative magnetoresistance
occurs only within the ballistic regime. This is a quite sur-
prising result, especially when compared with the previous
studies on electron hydrodynamic magnetoresistance through
the macroscopic hydrodynamic approach based on the eNSE
[28], which demonstrates that the magnetoresistance in the
hydrodynamic regime should be negative. Considering the
hydrodynamic eNSE is usually obtained through phenomeno-
logical deduction with physical intuition or upscaling from
the mesoscopic equations with significant simplification, its
applicability has been verified with the mesoscopic eBTE in
Sec. III, and it is shown the eNSE is not always accurate even

in the case without magnetic fields, which leaves an open
question whether the hydrodynamic eNSE in the present form
can describe the electron magnetotransport reasonably. While
some mesoscopic numerical method based on the eBTE also
gives the negative hydrodynamic magnetoresistance [81], the
numerical algorithm has not been clarified in detail, and the
ballistic results in the literature also have several discrepancies
with previous studies [88].

The exemplars for lMC = W are shown in Fig. 6(b).
It is qualitatively consistent with the theoretical evaluation
in [63] within the so-called ballistic-hydrodynamic regime
(lMR/W > lMC/W � 1) and under a relatively weak mag-
netic field (B̃ � (lMC/W )2). From a classical microscopic
view, the negative ballistic magnetoresistance is due to an
increase of the mean length of the electron trajectories by
which electrons move from one edge to another. One may ex-
pect that the Lorentz force will bend the particle trajectories,
which enhances the electron-boundary scattering, decreases
the mean-free path, and then results in a positive mag-
netoresistance. However, when the momentum-conserving
scattering exists, part of the electrons will first collide with
other electrons, which leads to a nonlocal effect and sup-
presses the backscattering at the boundary, as shown in
[63]. Combined with the positive magnetoresistance results
in the hydrodynamic regime, it is again indicated that the
negative magnetoresistance under weak magnetic fields in
the experiments could also be originated from the ballistic-
hydrodynamic effect rather than merely the hydrodynamic
transport.

The magnetoresistance curves under different regimes are
further considered in detail, as shown in Fig. 7. Notice that
the y-axis is the resistance along the channel, with R0 defined
in Eq. (13). Considering the resistance around zero magnetic
fields, when lMR is smaller than the channel width, i.e., in the
Ohmic regime as shown in Fig. 7(a), it is not sensitive to lMC

when lMC is larger than the channel width, which agrees with
the property of the Ohmic flow. On the contrary, when lMR is
getting larger as shown in Figs. 7(b) and 7(c), the resistance
behaves nonmonotonically with the increase of lMC.

It is noteworthy to point out that there are several discrep-
ancies between our results and the previous studies in the
ballistic regimes. First, slightly negative magnetoresistance is
found in the ballistic regime, while this value was thought
to be positive under weak magnetic fields [81,89]. Since this
local minimum occurs around B̃ � 1, few numerical stud-
ies have focused on this parameter range, so this remains
an open problem. Second, the maximum point has been be-
lieved to occur at B/B0 � 1.1 [81,88] or B/B0 � 2 [89,90],
which remains controversial, while our results indicate that
this value occurs at about B/B0 � 100 [see Fig. 7(c)]. For
technical details, a random and direct simulation technique
was used to make the eBTE solved in [88], which, however,
brings about considerable inaccuracies for an intermediate
strength magnetic field compared to our deterministic DOM
simulation. Also, it is essential to keep the term P0[χ ] consid-
ering the symmetry breaking under a magnetic field as in this
work, while it is omitted in the theoretical calculation of [89].
One may suggest the following conjecture on the mechanism
side for the discrepancies above. As the previous paragraph
shows, the existence of momentum-conserving scattering
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FIG. 7. Detailed magnetoresistance curves with different lMR and
lMC values. (a) lMR = 0.01, i.e., the Ohmic regime. (b) lMR = 1.
(c) lMR = 100, the hydrodynamic and/or ballistic regime. Dots are
the DOM results, while the lines are guides for the eye.

enhances the bulk “nonlocal” scattering and reduces the ef-
fect of boundary scattering, which dramatically influences the
sign of magnetoresistance as well and the occurrence of its
maximum, which needs further detailed theoretical studies.

FIG. 8. Phase diagram for the magnetoresistance curves under
weak magnetic field and low electric field (E/E0 = 10−6), within
the context of complete eBTE. It is shown from the phase dia-
gram that the negative magnetoresistance occurs only in the ballistic
regime with a low electric field. When the electric field becomes
larger, the whole parameter domain of (lMR, lMC) shows positive
magnetoresistance.

B. Full formulation: Complete eBTE

As elaborated in the introduction part, the electric field
in Fext is usually ignored to simplify the calculation [see
Eq. (10)], which, of course, has already been able to cover
many of the present experiment setups. However, when the
electric field is compared to the magnetic field, especially for
the cases when the magnetic field is weak enough, it is not
reasonable to ignore its effect on magnetoresistance, and this
nonlinear effect has not been discussed by previous studies
to our best knowledge. In this subsection, we will retain the
electric field in Fext and utilize the full formulation of eBTE to
study the influence of this effect on the sign of magnetoresis-
tance under a weak magnetic field.

With qualitative evaluations in the classical view, this
nonlinear effect is originated from the multiplier of the an-
gular derivative of velocity, which represents the influence
of electric field on the velocity direction. This will reduce
the frequency of the electrons scattering off the boundary, so
the electric resistance and the negative magnetoresistance will
be decreased as well. Figure 8 shows the phase diagram of
the magnetoresistance curve for complete eBTE with a low
electric field, which is quite similar to the linearized cases;
however, when the electric field becomes larger whose dimen-
sionless value is compared to the magnetic field (E ∼ vFB),
there will be no negative regimes from our numerical simula-
tion results in this circumstance. Detailed examples are shown
in Fig. 9.

Two points remain to be discussed here. First, the bound-
ary condition is considered as an essential factor to account
for the difference of the sign of magnetoresistance under
different system setups [43]. Considering that the zero cur-
rent condition requires that jy|y=0 = ∫

χ (r0, θ ) sin θdθ = 0
for any χ (r0, θ ), i.e.,

∫ −π

π
r(θ, θ ′) sin θ dθ = 0, the Fuchs
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FIG. 9. Comparisons of the magnetoresistance curves between
linearized eBTE and complete eBTE with different electric field
strengths. Dots are the DOM results, while the lines are guides for
the eye. It shows that the external electric field has a large impact on
the monotonicity of the magnetoresistance curve.

boundary model utilized in this section satisfies this re-
quirement. Through the analysis based on the macroscopic
equations, it is believed that whether the electric current across
the channel boundary is zero can dramatically impact the sign
of magnetoresistance in the hydrodynamic regime, i.e., neg-
ative for zero current while positive for nonzero current [43].
However, our results show that even for the zero current cases,
the magnetoresistance under weak magnetic fields is still pos-
itive. Thus it is indicated that the hydrodynamic description
is not enough even for this simple case, with the ignorance of
the contributions from the higher-order moments of the distri-
bution function such as M3 = ∫

vvv( f − f eq ) 2 d2k
(2π )2 which has

not been completely considered in the present macroscopic
equations [12], and higher-order moment equations are re-
quired [71,91,92].

Second, there are various choices of models when deal-
ing with the internal electric field. In our simulation, the

ordinary Poisson equation ∇ · E = (−e)nδ/ε with uniform
electrostatic potential in the out-of-plane direction is utilized,
instead of the commonly used approximation called “local
capacitance approximation” [19,93–98] φ � (−e)nδ/C due to
the nonconvergence of the latter in some cases. Note that
C is the local approximation of total capacitance including
the geometrical capacitance of the device of interest Cg and
the quantum capacitance from the pressure gradient CQ. For
the limited cases that local capacitance approximation can
work out, quite different results including the precise value of
magnetoresistance and the convexity of the electron current
profile are obtained. Considering that the electric current and
internal electric field profile have been used to distinguish
the flow regime of electron transport in the narrow channels
[47–49], it is crucial to provide detailed explanations of the
applicability of different internal electric models according
to the experiment setup. In other words, the ballistic and/or
hydrodynamic effect is not the only essential factor in the
magnetoresistance effect, which also may be influenced by the
internal electric field model chosen for compatibility with the
experimental condition.

VI. CONCLUSIONS

In this paper, we have studied the magnetoresistance ef-
fect under a weak magnetic field and demonstrated that the
negative magnetoresistance effect under a weak magnetic
field occurs within the ballistic regime rather than the hy-
drodynamic regime, which also requires the external electric
field to be low enough (E � vFB). It is noteworthy that the
existence of momentum-conserving scattering dramatically
reverses the sign of magnetoresistance in the ballistic regime.
When the external electric field becomes larger (E ∼ vFB),
there will be only positive magnetoresistance for all lMR and
lMC, which also addresses the necessity of incorporating the
external electric field into the angular derivative term of elec-
tron Boltzmann transport equation. Our work sheds light on
the influence of momentum-conserving scattering as well as
the external electric field on the sign of magnetoresistance
under a weak magnetic field.
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APPENDIX A: DEDUCTION OF THE ITERATION
SCHEME IN DOM ALGORITHM

As an integrodifferential equation with two derivative
terms on the left and one integral term on the right, it is
required to discretize both the two coordinates in the dimen-
sionless displaced eBTE [Eq. (10)], i.e., the spatial coordinate
in the real space (l.h.s.) and the angular coordinate for ve-
locity (l.h.s. and r.h.s.). The spatial grid is uniform for the
sake of simplicity, while the velocity angular grid is Gaus-
sian to improve the accuracy and efficiency of the integration

155408-9



YUNFAN HUANG AND MORAN WANG PHYSICAL REVIEW B 104, 155408 (2021)

procedure. The local real spatial and velocity angular grid size
are denoted by dy and �±, j = ±(ϕ j±1 − ϕ j ), respectively.

In detail, the derivative terms are discretized using a first-
order upwind scheme, a classical numerical scheme for the
evolution equations in computational fluid dynamics. Taking
the model equation ∂u/∂t = c ∂u/∂x as an example, con-
sidering its discretization at the spatial-temporal grid point
(xi, t (n) ), the discrete formulation of the r.h.s. is written as
follows:(

c
∂u

∂x

)
i

=
{

ci(ui+1 − ui )/(xi+1 − xi ), if ci � 0
ci(ui − ui−1)/(xi − xi−1), if ci > 0 (A1)

which can be written into a more compact form:(
c

∂u

∂x

)
i

= |ci|
(

H (−ci )
ui−ui+1

xi+1−xi
+H (ci )

ui−ui−1

xi − xi−1

)
. (A2)

Here H (x) is the Heaviside function with the value 1
for x > 0 and 0 for x � 0. Then the complete formulation
with uniform grid in space discretization and the first-order
forward difference in time discretization is written as

u(n+1)
i = u(n)

i + CFL
[
H (−ci )

(
u(n)

i − u(n)
i+1

)
+ H (ci )

(
u(n)

i − u(n)
i−1

)]
, (A3)

where CFL := |ci|(t (n+1) − t (n) )/(xi+1 − xi ) is called the
“Courant-Friedrichs-Lewy number”, which determines the
stability and convergence of the numerical scheme. Following
the model formulation, sin ϕ (Fext ) and leff in Eq. (10) serve
as c and t in the model equation, respectively, and the discrete
form can be similarly obtained. The integration term in the
scattering term [Eq. (6)] and the boundary condition [Eq. (8)
with Eq. (9)] are calculated using Gaussian quadrature,
which is a common technique in numerical analysis, and the
discretized form of Pi[χ ] (i = 1, 2, 3) is denoted by P̂i[χ ]
respectively.

As a result, the definition of numerical parameters in
Eq. (11) is given by

α = leff | sin ϕ|
dy

,

β = leff |Fext|
(

H (−Fext )

�+
+ H (Fext )

�−

)
,

D(n)
α = α

(
H (− sin ϕ)χ (n)

up + H (sinϕ)χ (n)
down

)
,

D(n)
β = β

(
H (−Fext )χ

(n)
a.w. + H (Fext )χ

(n)
c.w.

)
,

I (n)
scat = P̂0

[
χ

(n)
ctr

] + (
P̂1

[
χ

(n)
ctr

]
cos ϕ + P̂−1

[
χ

(n)
ctr

]
sinϕ

) leff

lMC
,

(A4)

where the subscripts “up/down” and “a.w./c.w.” are the rela-
tive positions of the grids to the center point “ctr” in real space
and velocity angular space, respectively.

In our numerical formulation, the dimensionless effective
mean-free path leff plays a similar role to the time step, which
indicates that the iteration is conducted with a time interval
close to the minimum mean-free time of the system. The
smaller leff is, the slower the convergence becomes, but with
the enhanced numerical stability. The number of grid points

in the real space and angular space for velocity is chosen
to be 2000 and 16, respectively, as a result of the grid size
independence verification.

With regard to the comparison with other studies using
discrete methods, one of the few papers we have found with
algorithm details so far is de Jong and Molenkamp’s [1].
They defined a local effective mean-free length which reduced
the number of unknown variables and simplified the origi-
nal displaced eBTE a great deal and then obtained the final
solution through iteration. The number of grid points was at
least 400 in their calculations for sufficient precision, and their
results are used to verify our method. Note that the method of
characteristics is utilized in the paper of Scaffidi et al. [81], but
few details of the algorithm itself are given. The results are be-
lieved to be partly verified through the comparison with [1,88–
90,99,100], which have been discussed in Sec. V A in detail.

APPENDIX B: DEDUCTION OF THE SOLUTION TO eNSE
FOR TWO-DIMENSIONAL PARALLEL STEADY FLOW

Following the method in [12], the eNSE could be simpli-
fied to

νxx
d2u

dy
+ (−e)

m∗ Ex − u

τMR
= 0. (B1)

The velocity slip condition derived from Fuchs boundary
model is written as [63]

u|y=0 = lb
du

dy

∣∣∣∣
y=0

, u|y=W = − lb
du

dy

∣∣∣∣
y=W

(B2)

in which the kinematic viscosity coefficient and boundary slip
length have the following form, and the coefficient error in the
original literature has been corrected:

νxx = 1

4
vFleff , lb = leff

A

3

1 + ps

1 − ps
(A

.= 0.995112). (B3)

The solution is easy to find,

u = V0K

[
λ + (eμỹ − 1)(eμ(1−ỹ) − 1)

eμ − 1

]
, (B4)

where ỹ = y/W , V0 is the Drude velocity determined by the
momentum-relaxing scattering rate τMR and K represents the
synergistic effect of bulk and boundary scattering

V0 = (−e)ExτMR

m∗ , K = eμ(1 + λ) + e−μ(1 − λ) − 2

eμ(1 + λ)2 − e−μ(1 − λ)2

(B5)
in which the parameters λ, μ are defined by

λ = lb√
νxxτMR

= 2A

3

1 + ps

1 − ps

√
l̃eff

l̃MR
,

μ = W√
νxxτMR

= 2√
l̃eff l̃MR

. (B6)

Notice that λ is proportional to the slip velocity and μ

is the shape parameter, l̃eff (MR) = leff (MR)/W . For example,
while μ � 1, i.e., τν ≡ W 2/νxx � τMR, the velocity profile
is almost parabolic, which is quite similar to the classical
viscous fluid.
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