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Resonant and nonresonant spin filtering in bismuthene-silicon cowrie shell-like nanostructures
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We predict that two distinct strong spin filtering mechanisms in two-terminal geometries at zero magnetic
field should be exhibited by bismuthene-silicon nanostructures with cowrie shell-like geometries. One of these
is resonant spin filtering where a peak in resonant transmission of one spin species through the nanostructure
coincides with an antiresonant transmission dip for the other spin species. The second is strong nonresonant spin
filtering where nonresonant transmission of one spin species is much weaker than that of the other spin species.
These mechanisms arise from localized electronic states associated with strong disorder and strong spin-orbit
coupling in the bismuthene and differ fundamentally from edge state-related spin filtering and from the spin Hall
effect. Our density functional theory (DFT)-based simulations suggest that such cowrie shell-like nanostructures
can form by spontaneous folding of bismuthene-silicon bilayer domes with armchair edges.
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I. INTRODUCTION

Two-dimensional topological insulators (2DTIs) exhibit a
quantum spin Hall (QSH) effect when the Fermi level is
located in the bulk band gap [1–10]. In the QSH effect, the
electric current is carried by spin-polarized electrons with
opposite spin orientations at the opposite edges of the sample.
While the 2D QSH systems considered previously had been
planar [7–10], we have recently proposed [11] that curved 2D
QSH systems are possible and that the spatial orientations of
the spin polarizations of their edge states can be controlled
by appropriately tailoring the curved sample geometry. As
an example, we considered an approximately hemispherical
bismuthene dome, stabilized by an adsorbed silicon mono-
layer and hydrogen atoms [11]. Our density functional theory
(DFT) and tight-binding calculations showed [11] that (unlike
for planar 2D QSH devices) it is possible to bring the spin
polarizations of electron edge states traveling along opposite
edges of this dome into parallel alignment and thus to realize a
nearly perfect two-terminal spin filter operating in the absence
of magnetic fields.

In the bismuthene dome studied in Ref. [11], the bismuth
atoms formed hexagons and pentagons, each bismuth atom
having three nearest neighbors. The edge of the dome had a
well-ordered zigzag structure. These qualitative features were
retained when the geometry of the structure was relaxed,
optimizing its energy within DFT.

Here we shall consider spin filtering by curved bismuthene
nanostructures that are much less regular. They were formed
by starting with a spherical dome of bismuthene, coated on
its concave side with a monolayer of silicon atoms whose
edge was passivated with hydrogen, as shown in Fig. 1(a).
Notice that the edge of the dome in Fig. 1(a) has an armchair
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structure. Domes with such initial geometries were relaxed by
means of density functional theory (DFT) computer simula-
tions. The DFT calculations reported throughout this paper
were carried out with the GAUSSIAN 16 package using the
B3PW91 functional and Lanl2DZ effective core potential and
basis sets [12]. The electronic energy and ionic forces of our
optimized geometries were converged within 10−5 eV and
0.0008 eV/Å, respectively. Unlike the dome with the zigzag
edge in Ref. [11], the geometries of domes with armchair
edges changed qualitatively upon relaxation as shown for the

FIG. 1. [(b)–(d)] Three views of a Bi90Si90H18 nanostructure pro-
duced by relaxing a spherical bismuthene dome (a) with 90 bismuth
atoms (blue), a silicon atom (red) bound to each bismuth atom and a
hydrogen atom (black) passivating each silicon edge atom. The edge
of the starting structure (a) was of the armchair type. Image prepared
using Macmolplt software [34].
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Bi90Si90H18 nanostructure in Figs. 1(b)–1(d). As shown in
Fig. 1(b), after relaxation the upper and lower edges of the
dome of Fig. 1(a) have pulled together to produce a cowrie
shell-like structure. The surface of the nanostructure that is
furthest from these edges is shown in Fig. 1(d). There the
bismuth atoms have retained three bismuth nearest neigh-
bors and somewhat distorted bismuthene hexagons remain
visible. However, closer to the edges the atomic structure is
qualitatively different as shown in Fig. 1(c). Strong structural
disorder is present there in the form of variations of the Bi-Bi
bond lengths and variable Bi atomic coordination numbers,
many of the bismuth atoms having four nearest neighbors
instead of three. Nevertheless, exactly one silicon atom re-
mains bound to each bismuth atom and all of the silicon atoms
remain in the interior of the cowrie shell-like structure.

Because of this more complex atomic geometry, the edge-
state mechanism responsible for spin filtering in the simpler
structure discussed in Ref. [11] does not apply to nanostruc-
tures of the kind shown in Figs. 1(b)–1(d). However, it will
be shown below that spin filtering with drain current spin po-
larizations greater than 95% can be achieved in two-terminal
geometries in these systems at zero magnetic field due to
spin-selective resonant and nonresonant scattering processes.

In this article we shall present our results for the
Bi90Si90H18 structure shown in Figs. 1(b)–1(d). However, we
have also studied a somewhat larger Bi108Si108H18 cowrie
shell-like structure, also obtained by relaxing an armchair-
edged dome, and found qualitatively similar results.

While nanotubes and fullerene-like nanoparticles based
on graphene and on many inorganic compounds with lamel-
lar two-dimensional structure have been synthesized [13],
whether curved bismuthene-silicon bilayers such as those
proposed above can be realized experimentally is unknown
at present. In this regard, it is encouraging that bismuth
nanotubes have already been synthesized [14–21]. One poten-
tial approach to realizing curved bismuthene-silicon bilayers
might be to deposit a monolayer of bismuth atoms on a silicon
fullerene. However, at the present time silicon fullerenes have
yet to be made in the laboratory, although a Si20 silafullerane
with an endohedral chloride ion has been synthesized [22].
Another possibility may be to deposit a bismuth monolayer on
a silicon nanoparticle; silicon nanoparticles with crystalline
cores but amorphous outer shells and ranging in size from 2
to 64 nm have been synthesized [23,24].

The remainder of this paper is organized as follows: Our
optimized tight-binding model of the cowrie shell-like nanos-
tructure is described in Sec. II; the model parameters are
presented in Tables I–V. The Landauer theory used in our
transport calculations is described in Sec. III. The results of
our spin transport calculations and their interpretation are
presented in Sec. IV. Our conclusions are summarized in
Sec. V.

II. OPTIMIZED TIGHT-BINDING MODEL

The tight-binding model that we employ here is an exten-
sion of the model of curved bismuthene with an adsorbed
silicon monolayer that was proposed in Ref. [11]. The latter
model was itself based on a previously developed tight-
binding model of planar bismuthene on SiC [25].

TABLE I. The onsite orbital matrix elements H0
α,α′ for atom i in

Eq. (2). Here r̂ = (a, b, c) is the unit vector in direction from the
nucleus of Si atom bound to Bi atom i towards the nucleus of Bi atom
i. The parameter values are Es = −10.22 eV and Er = −6.0 eV.

H 0
α,α′ 6s′ 6p′

x 6p′
y 6p′

z

6s Es 0 0 0
6px 0 a2Er abEr acEr

6py 0 baEr b2Er bcEr

6pz 0 caEr cbEr c2Er

Planar bismuthene on SiC is believed to be a wide gap
2DTI [25–33]. Several tight-binding models of bismuthene on
SiC have been proposed, employing basis sets consisting only
of the valence orbitals of the bismuth atoms but parameterized
to take into account the influence of the SiC substrate on
the bismuthene [25,27–32]. For bismuthene on SiC, if the
bismuthene lies in the x-y plane, the main contributions to
the low energy electronic states are those of the Bi 6px, 6py,
and 6s atomic valence orbitals [27]; the Bi 6pz valence or-
bital is shifted away from the Fermi level because of the
interaction with the SiC substrate [27]. For this reason most
tight-binding models of bismuthene on SiC have employed
basis sets consisting of only the Bi 6px, 6py, and 6s atomic
orbitals. However, in order to treat the nonplanar bismuthene
geometry in Fig. 1(b)–1(d), it is necessary to also include the
Bi 6pz orbital in the basis.

Thus our basic tight-binding model Hamiltonian is of
the form

Hiαs,i′α′s′ = Horb
iα,i′α′δs,s′ + H spin

αs,α′s′δi,i′ , (1)

where α and α′ denote the Bi 6px, 6py, 6pz, and 6s valence
orbitals of atoms i and i′, s and s′ are spin indices.

Horb
iα,i′α′ = (

H0
α,α′ + HC

i δα,α′
)
δi,i′ + Hhop

iα,i′α′ (2)

is the orbital part of the Hamiltonian. H0
α,α′ is the site-

independent part of the Bi atomic Hamiltonian matrix
omitting the spin-orbit and Rashba contributions. HC

i repre-
sents the site-dependence of the electron’s Coulomb potential
energy. Hhop

iα,i′α′ is the Hamiltonian matrix element between
orbital α′ on Bi atom i′ and orbital α on Bi atom i.

The on-site orbital matrix elements H0
α,α′ are given in

Table I. H0
α,α′ has energy eigenvalues Es and Er correspond-

ing to the orbital states |6s〉 and |6pr〉 = a|6px〉 + b|6py〉 +
c|6pz〉, respectively, where r̂ = (a, b, c) is the unit vector in
direction from the nucleus of the Si atom bound to Bi atom i
towards the nucleus of Bi atom i. The other two eigenvalues of
H0

α,α′ correspond to the 6p states that are orthogonal to |6pr〉
and are both zero. For bismuthene on SiC, r̂ is perpendicular
to the bismuthene plane and |6pr〉 is the |6pz〉 orbital. Thus
|6pr〉, the 6p orbital whose symmetry axis is approximately
parallel to the local normal to the surface of the cowrie shell-
like structure in Figs. 1(b)–1(d), is shifted in energy relative to
the other 6p orbitals by an amount Er , emulating the shift of
the 6pz orbital relative to 6px and 6py for planar bismuthene
on SiC [27].

The Hamiltonian matrix elements Hhop
iα,i′α′ that represent

electron hopping between orbital α of Bi atom i and orbital α′
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TABLE II. Hamiltonian hopping matrix elements Hhop
iα,i′α′ in Eq. (2) for interatomic separations d � 5.5 Å. In terms of the

coordinates of the primed and unprimed atoms d = ((x′ − x)2 + (y′ − y)2 + (z′ − z)2)
1
2 ; l = (x′ − x)/d; m = (y′ − y)/d; n = (z′ − z)/d .

Fitting parameter values are � = −0.81(1 − 1.532δ + 0.816δ2 − 0.148δ3) eV, �′ = −0.74(1 − 1.129δ + 0.442δ2 − 0.059δ3) eV, �′′ =
−1.635(1 − 0.612δ − 0.003δ2 + 0.040δ3) eV, � = 0.407(1 − 1.329δ + 0.637δ2 − 0.107δ3) eV, and δ = d − 3.089 Å.

H hop
iα,i′α′ 6s′ 6p′

x 6p′
y 6p′

z

6s � −�′l −�′m −�′n
6px �′l �′′l2 + �(1 − l2) (�′′ − �)lm (�′′ − �)ln
6py �′m (�′′ − �)lm �′′m2 + �(1 − m2) (�′′ − �)mn
6pz �′n (�′′ − �)ln (�′′ − �)mn �′′n2 + �(1 − n2)

of Bi atom i′ are given in Table II for interatomic separations
less than or equal to 5.5 Å. They have been fitted to the band
structure [27] of planar bismuthene on SiC including nearest-
neighbor and second-neighbor hopping. They are assumed to
depend on the Bi-Bi bond orientations as in the Slater-Koster
model [35] and to scale with the bond lengths as in extended
Hückel theory [36]. For interatomic separations greater than
5.5 Å, Hhop

iα,i′α′ = 0. In Eq. (1)

H spin
αs,α′s′ = HSO

αs,α′s′ + HR
αs,α′s′ , (3)

is the spin-dependent part of the Hamiltonian with HSO the
atomic spin-orbit interaction and HR the Rashba Hamiltonian.
Following the reasoning in Ref. [27] only the intra-atomic
matrix elements of HSO and HR are considered here.

The intra-atomic matrix elements of the spin-orbit Hamil-
tonian can be approximated as [37,38]

HSO
αs,α′s′ = ζl

〈Cαs|S · L|Cα′s′〉
h̄2 , (4)

where S and L are the spin and orbital angular momentum
operators, and Cα is the cubic harmonic that corresponds to
orbital state α. ζl is the spin-orbit interaction strength and l
is the orbital angular momentum quantum number [39]. The
matrix 〈Cαs|S · L|Cα′s′〉/h̄2 is given in Table III. ζl is regarded
here as a model fitting parameter with value ζ1 = 1.82 eV for
the Bi 6p valence orbitals. This value of ζ1 (obtained by fitting
to the band structure of bismuthene on SiC) is consistent
with the previous estimate [40] ζ1 ∼ 1 eV of the 6p-orbital
spin-orbit coupling strength for bulk 3D crystalline bismuth, if
we consider that in bismuthene on SiC the bismuth 6p valence
orbitals are strongly perturbed [27] due to bonding between
the bismuth atoms and the SiC substrate.

TABLE III. Matrix elements of S·L
h̄2 that enter the intra-atomic

spin-orbit Hamiltonian matrix, Eq. (4). All matrix elements involving
the atomic s orbital are zero.

〈Cα s|S·L|Cα′ s′〉
h̄2 6p′

x ↑′ 6p′
x ↓′ 6p′

y ↑′ 6p′
y ↓′ 6p′

z ↑′ 6p′
z ↓′

6px ↑ 0 0 −i/2 0 0 1/2
6px ↓ 0 0 0 i/2 −1/2 0
6py ↑ i/2 0 0 0 0 −i/2
6py ↓ 0 −i/2 0 0 −i/2 0
6pz ↑ 0 −1/2 0 i/2 0 0
6pz ↓ 1/2 0 i/2 0 0 0

Rashba phenomena [41,42] are due to spin-orbit coupling
in systems whose symmetry is broken by the presence of
a surface or interface. The form of the intra-atomic Rashba
Hamiltonian matrix elements HR

αs,α′s′ for the present system
can be deduced by considering a contribution to ∇V (r) in the
general spin-orbit Hamiltonian [43] h̄

(2mc)2 σ · ∇V (r) × p that
we assume to point along the line connecting the nucleus of
the Si atom bound to Bi atom i and the nucleus of Bi atom i.
The resulting matrix elements are given in Table IV.

For a monolayer of bismuth atoms arranged on the pla-
nar honeycomb lattice of bismuthene, the model described
by Eq. (1) (with the electron Coulomb potential energy HC

i
assumed to be the same for all Bi atoms) provides a good
approximation to the known low energy electronic structure
of the planar topological insulator monolayer bismuthene on
SiC described in Ref. [27]. Specifically, it yields a band struc-
ture with a 0.86 eV indirect band gap, the conduction band
minimum at the � point, the valence band maximum at K , a
0.46 eV Rashba splitting of the valence band maximum and a
direct band gap of 1.22 eV at the K point.

In order to tailor our tight-binding model to the cowrie
shell-like nanostructure in Figs. 1(b)–1(d) we begin by set-
ting the electron Coulomb potential energy HC

i in Eq. (2) to
its values calculated for this system within DFT and com-
pare the electron density of states calculated for the orbital
Hamiltonian Horb with the corresponding partial density of
states on the bismuth atoms calculated within DFT in the
absence of spin-orbit and Rashba effects. The comparison is
shown in Fig. 2(a) where the partial density of states (DOS)
predicted by DFT is shown in black and the DOS obtained
from Horb is in orange. In Fig. 2(a), the 0.325 eV gap be-
tween the highest occupied molecular orbital (HOMO) of
the cowrie shell-like nanostructure and its lowest unoccupied
molecular orbital (LUMO) calculated for the Horb Hamilto-
nian agrees reasonably well with the 0.36 eV HOMO-LUMO
gap predicted by DFT. This is encouraging. However, the
gaps between the LUMO and higher energy states, and those
between the HOMO and lower energy states, are significantly
smaller for the Horb Hamiltonian than those predicted by DFT.
We address this discrepancy as follows.

We calculate numerically the eigenvalues εn and eigen-
vectors |n〉 of Horb such that Horb|n〉 = εn|n〉 and define a
modified orbital Hamiltonian H̃orb by its matrix elements in
the basis of valence orbitals of the Bi atoms as

H̃orb
iα,i′α′ =

∑

n

〈iα|n〉(εn + γn)〈n|i′α′〉, (5)
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TABLE IV. Matrix elements of the intra-atomic Rashba Hamiltonian HR, Eq. (3). Here r̂ = (a, b, c) is the unit vector in direction from the
nucleus of the Si atom bound to Bi atom i towards the nucleus of Bi atom i. The fitting parameter value is R = 0.56 eV.

HR
αs,α′s′ 6s′ ↑′ 6s′ ↓′ 6p′

x ↑′ 6p′
x ↓′ 6p′

y ↑′ 6p′
y ↓′ 6p′

z ↑′ 6p′
z ↓′

6s ↑ 0 0 −iRb Rc iRa −iRc 0 iR(b + ia)
6s ↓ 0 0 −Rc iRb −iRc −iRa iR(b − ia) 0
6px ↑ iRb −Rc 0 0 0 0 0 0
6px ↓ Rc −iRb 0 0 0 0 0 0
6py ↑ −iRa iRc 0 0 0 0 0 0
6py ↓ iRc iRa 0 0 0 0 0 0
6pz ↑ 0 −iR(b + ia) 0 0 0 0 0 0
6pz ↓ −iR(b − ia) 0 0 0 0 0 0 0

where α and α′ denote the Bi 6px, 6py, 6pz, and 6s valence
orbitals of atoms i and i′. If γn = 0 for all n, H̃orb reduces to
Horb. However, by choosing the values of γn appropriately we
are able to bring the density of states calculated for the mod-
ified orbital Hamiltonian H̃orb [shown in orange in Fig. 2(b)]
into excellent agreement at low and moderate energies with
the density of states calculated within DFT [shown in black

FIG. 2. (a) Partial density of states (DOS) projected on the bis-
muth atoms of the structure in Fig. 1(b)–1(d) that is predicted by DFT
is shown in black and the DOS obtained from the orbital Hamiltonian
H orb is in orange. (b) DOS predicted by DFT is shown in black and
the DOS obtained from the modified orbital Hamiltonian H̃ orb is in
orange.

in Fig. 2(b)]. The values of γn that yield this agreement are
shown in Table V. Our optimized tight-binding model is then

H̃iαs,i′α′s′ = H̃orb
iα,i′α′δs,s′ + H spin

αs,α′s′δi,i′ , (6)

where H spin is given by Eq. (3).

III. SPIN FILTERING FORMALISM

Within the Landauer formalism [44,45] the two-terminal
source-drain conductance G of a nanostructure at zero tem-
perature in the linear response regime is given by

G = e2

h
T (EF), (7)

where the electron transmission probability through the
nanostructure at energy E is

T (E ) =
∑

α,s,i,β,s′, j

|tβ,s′, j,α,s,i(E )|2 vβ,s′, j

vα,s,i
. (8)

Here tβ,s′, j,α,s,i is the amplitude for electron scattering at the
Fermi energy from state α with spin s of 1D lead i connected
to the electron source to state β with spin s′ of 1D lead j
connected to the electron drain reservoir. vα,s,i and vβ,s′, j are
the corresponding subband Fermi velocities.

Here we shall apply this formalism to study spin filtering
by the cowrie shell-like nanostructure shown in Figs. 1(b)–
1(d), described by the optimized model Hamiltonian H̃ given
by Eq. (6). We consider spin-unpolarized electrons entering
the device through the electron source contact and calculate
the spin resolved probabilities T↑ and T↓ of spin-up and spin-
down electrons exiting through the drain contact at energy E .
T↑ and T↓ are obtained by restricting the sum over s′ in Eq. (8)
to spin-up and spin-down states, respectively, while including
both the spin-up and spin-down states in the sum over s. We
then define the spin polarization of the electrons entering the
drain electrode as

P = T↑/(T↑ + T↓). (9)

TABLE V. Values of γn in Eq. (5) that yield the DOS shown in orange in Fig. 2(b). States numbered n are counted from the HOMO level
(n = 0). The LUMO is n = 1. Spin up and down are not counted separately.

n �–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 �7

γn (eV) –0.370 –0.3774 –0.4596 –0.450 –0.4346 –0.5204 –0.376 0.00 0.04 0.30 0.367 0.30 0.26 0.26 0.30
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Importantly, in order for this definition to represent the
physical spin polarization that is the figure of merit for spin
filters, we choose the direction of the axis of quantization for
electron spin states in the drain electrode to be the direction
of the expectation value of the spin vector of the electrons
carrying the the electric current in the drain. Within Landauer
theory, this direction is the direction of the vector

S = 1

N

∑

α,s,i,β,s′, j

|tβ,s′, j,α,s,i(E )|2〈β, s′, j|Ŝ|β, s′, j〉vβ,s′, j

vα,s,i
,

(10)
where Ŝ = h̄

2 	σ , 	σ = (σx, σy, σz ) are the Pauli matrices, N is a
normalization factor, and the remaining symbols in Eq. (10)
are as in Eq. (8).

We calculate S numerically and then set the direction of the
spin quantization axis for the drain to be the direction of S for
each configuration of source and drain electrodes and for each
value of the electron energy under consideration.

The scattering amplitudes tβ,s′, j,α,s,i are obtained by solving
numerically the Lippmann-Schwinger equation

|ψ〉 = |φα,s,i
◦ 〉 + G◦(E )V |ψ〉. (11)

Here |φα,s,i
◦ 〉 is an eigenstate of the ith ideal 1D lead that is

decoupled from the nanostructure consisting of the quantum
dot and conducting contacts (if those are present), G◦(E ) is
the sum of the Green’s functions of the nanostructure and
1D leads if they are decoupled from the nanostructure, and
|ψ〉 is the corresponding exact scattering eigenstate of the
coupled system. V is the coupling Hamiltonian between the
nanostructure and the ideal 1D leads. A methodology for
numerically solving Lippmann-Schwinger equations such as
Eq. (11) within a tight-binding framework is described in
Appendix A of Ref. [46].

In the present paper the ideal leads are represented by 1D
tight-binding chains. Each site of each chain is assumed to
have 6 orbitals, including spin. The on-site energies of these
chain orbitals are the same as the corresponding atomic orbital
energies H̃iαs,iαs of the 6px, 6py, and 6pz orbitals of the Bi
atoms described by the Hamiltonian Eq. (6). Only nearest-
neighbor Hamiltonian matrix elements between like orbitals
of the 1D chains and between the chains and adjacent Bi
atoms of the nanostructure are assumed to be nonzero. For
simplicity, all of these nearest-neighbor Hamiltonian matrix
elements are assumed to have the same value t = −2.0 eV.

IV. RESONANT AND NONRESONANT SPIN FILTERING

The spin filtering that we find (including both its effec-
tiveness and the underlying mechanism) depends strongly on
which atoms of the cowrie shell-like nanostructure serve as
contacts for the source and drain leads, as is demonstrated
in Fig. 3. (We note in passing that making electrical contact
to individual atoms is feasible at the present time with the
help of scanning tunneling microscope tips [47] or nanoscale
mechanical break junctions [48].)

The black curve in Fig. 3(a) shows the spin polarization
P = T↑/(T↑ + T↓) of electrons entering the drain (connected
to the Bi atom colored pale blue in the inset) after spin-
unpolarized electrons enter the nanostructure at energy E
from the source that is connected to the chartreuse Bi atom

FIG. 3. [(a), (b)] Spin filtering by the nanostructure shown in
Figs. 1(b)–1(d) for two different arrangements of the source and
drain contacts. The graphs present the calculated spin-resolved Lan-
dauer transmission probabilities T↑ (red) and T↓ (blue) of spin-up
and spin-down electrons exiting from the nanostructure into the
drain contact at energy E and the corresponding spin polarization
P = T↑/(T↑ + T↓) (black). The electron energy is measured from
the Fermi level. The green vertical lines indicate the energy eigen-
values of the optimized tight-binding Hamiltonian H̃ , Eq. (6). It
is assumed that spin-unpolarized electrons enter the nanostructure
from the electron source. Insets show only the bismuth atoms of
the nanostructure and indicate the atoms (colored chartreuse and
pale blue, respectively) to which the source and drain contacts are
attached in parts (a) and (b).

in the inset. The spin-resolved Landauer transmission prob-
abilities T↑ and T↓ of spin-up and spin-down electrons are
shown in red and blue, respectively. The peaks of the spin
polarization in Fig. 3(a) closely match the energy eigenvalues
of the optimized tight-binding Hamiltonian H̃ , Eq. (6), that
are indicated by green vertical lines. Consequently the spin
filtering mechanism in Fig. 3(a) is spin-dependent resonant
scattering of electrons through the nanostructure.

The physics of the resonant spin filtering is as follows:
When the energy of electrons transmitted through the cowrie
shell-like nanostructure is close to an energy eigenvalue that
corresponds to an eigenstate of the Hamiltonian H̃ of the iso-
lated nanostructure, both electron forward scattering through
the nanostructure and electron backscattering from the nanos-
tructure occur partly via that eigenstate. This can result in a
peak or dip (known as a resonance or antiresonance, respec-
tively) in the electron transmission probability through the
nanostructure as a function of the electron energy. In a system
with strong spin-orbit coupling (such as the present one) the
electron transmission probabilities via the Hamiltonian eigen-
states can differ for spin-up and spin-down electrons and can
also depend strongly on the details of how the electron source
and drain leads couple to eigenstates of the nanostructure’s
Hamiltonian. At electron energies where the transmission of
one spin species is enhanced and that of the other spin species
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is suppressed due to scattering via an eigenstate or eigenstates
of the nanostructure’s Hamiltonian resonant spin filtering
occurs.

Notice that while the spin-up transmission probability T↑
[the red curve in Fig. 3(a)] displays either a peak (or no
discernible feature) at every energy eigenvalue of H̃ , T↓ (the
blue curve) displays a resonant peak at some eigenvalues of H̃
and an antiresonant dip at others. [The origin of this apparent
asymmetry between spin up and spin down is our choice of
the direction of the axis of spin quantization being the same as
the direction of the expectation value of the spin vector of the
electrons transmitted into the drain electrode at each energy;
see Eq. (10).] Where the resonant peak in T↑ coincides with a
particularly strong antiresonant dip in T↓ the value of the spin
polarization P = T↑/(T↑ + T↓) is enhanced and spin filtering
is especially effective. Thus near E = 0.3 eV in Fig. 3(a) the
maximum spin-polarization value (P = 0.861) exceeds that of
the other spin-polarization maxima, even where T↑ is larger
than near E = 0.3 eV, because T↓ has its deepest minimum
near E = 0.3 eV.

In Fig. 3(b) we show the results of our spin transport cal-
culations for a different choice of the bismuth atoms to which
the source and drain leads are attached, as depicted in the inset
of Fig. 3(b). The spin filtering behavior in Fig. 3(b) differs
markedly from that in Fig. 3(a): In Fig. 3(b) the coupling
of the leads to the resonant states of the nanostructure is
very different than in Fig. 3(a). Because of this, T↓ displays
only resonant peaks (no antiresonant dips). Also the reso-
nances near E = 0, 0.3 and 0.54 eV are much broader than
in Fig. 3(a) and the values of T↑ and T↓ are almost equal for
those resonances. This results in much weaker resonant spin
filtering than in Fig. 3(a) at most resonant energies.

However, a very strong spin filtering peak (spin polar-
ization P as large as 0.956) can be seen in Fig. 3(b) near
E = 0.8eV, in between two adjacent energy eigenvalues of
H̃ . This peak coincides with minima of both T↑ and T↓. It is
clearly not a resonant phenomenon since it occurs between
two energy eigenvalues H̃ . Instead it is due to especially weak
nonresonant down-spin transmission with T↓ as low as 0.018.
This nonresonant spin scattering asymmetry is also due to the
strong spin-orbit coupling in the present system.

Finally, we note that in both Figs. 3(a) and 3(b) the source
and drain leads are attached to bismuth atoms that each have
more than three nearest neighbors, and in each case one or
both of these atoms is not located at a residual edge of the
bismuthene that can be discerned in Fig. 1(b). Thus we be-
lieve that the spin filtering mechanisms described above differ
fundamentally from edge-state phenomena.

This conclusion is supported by the results shown in Fig. 4,
where the electron populations induced in linear response on
the Bi atoms of the cowrie shell-like nanostructure by the
electron source to drain current are shown in gray scale. The
highest (lowest) induced populations are black (palest gray).
The source and drain contacts are attached to the Bi atoms
colored chartreuse and pale blue, respectively. The source
and drain atoms in Figs. 4(a) and 4(b) are the same as in
Figs. 3(a) and 3(b), respectively. In Fig. 4(a) the Fermi level is
at 0.303 eV where the strongest resonant spin filtering is seen
in Fig. 3(a). In Fig. 4(b) the Fermi level is at 0.807 eV where
the strongest nonresonant spin filtering is seen in Fig. 3(b).

FIG. 4. Electron populations induced on the Bi atoms of the
cowrie shell-like nanostructure by the electron source to drain current
in linear response, represented in gray scale. The Bi atoms with the
largest (smallest) induced electron populations are shown in black
(palest gray). The source and drain contacts are attached to the
Bi atoms colored chartreuse and pale blue, respectively. In (a) and
(b) the leads are attached to the same atoms as in Figs. 3(a) and 3(b),
respectively. (a) Electron Fermi level at 0.303 eV, the center of the
strongest resonant spin polarization peak in Fig. 3(a). (b) Electron
Fermi level at 0.807 eV, the center of the strongest nonresonant
spin polarization peak shown in Fig. 3(b). Image prepared using
Macmolplt software [34].

The electron populations in Fig. 4 differ strikingly from those
of edge states of topological insulators: Topological insulator
edge states are localized near the edge of a sample and extend
along the entire edge since they propagate along the edge
without back scattering [10]. By contrast, in Fig. 4 the large
current-induced electron populations (shown in black) are
mainly localized to the vicinities of the (chartreuse) electron
source atoms; they do not extend far along the edge of the
cowrie shell. Thus the edge-state paradigm does not account
for the strong resonant and nonresonant spin filtering seen in
Fig. 3. Instead, the distributions of the current-induced elec-
tron populations over the cowrie shell in Fig. 4 are suggestive
of localized electronic states associated with strong disorder.
The electron populations are large in the vicinity of the elec-
tron source electrode (the chartreuse colored atom) and decay
at larger distances from the source electrode, reaching the
drain electrode (the pale blue atom) with a low amplitude.
Indeed, as we have discussed in Sec. I, strong structural dis-
order is present in the cowrie shell-like nanostructure in the
form of large variations of the Bi-Bi bond lengths and variable
Bi atomic coordination numbers, especially at and near the
the edge of the cowrie shell, lending credence to this physical
interpretation of Fig. 4 and also accounting for the breakdown
of the edge-state paradigm in this system. As a check, we
have also explicitly calculated the electron populations of
the eigenstates of the cowrie shell Hamiltonian [Eq. (6)] that
are closest in energy to the strongest spin filtering features
of Figs. 3(a) and 3(b) and found them to be localized near
the source electrode similarly to the electron populations in
Fig. 4. Thus we are led to propose that the strong resonant and
nonresonant spin filtering that we have found in the cowrie
shell-like nanostructure is due to the combination of local-
ization of electronic states associated with strong structural
disorder and strong spin-orbit coupling.

It follows from the above discussion that the details of
the structure of the eigenstates of the electronic Hamiltonian
of this strongly disordered system and of their coupling to
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the source and drain leads determine whether or not there is
strong spin filtering for leads connected to any particular pair
of Bi atoms. In this paper we have presented results for two
representative choices of the atoms connected to the source
and drain leads for which there is strong spin filtering. Our
simulations have shown that some other choices of the source
and drain lead atoms also result in strong spin filtering while
still other choices do not. Since the details of the electronic
quantum eigenstates of this disordered system and of their
coupling to the leads determine whether strong spin filtering
occurs or does not occur, only a quantum transport calculation
can predict whether any given choice of source and drain lead
atoms should support strong spin filtering.

V. SUMMARY

Previous work has predicted [11] that a hemispherical
bismuthene dome with an zigzag edge can be stabilized by
a silicon adsorbate and can be made into an effective two-
terminal spin filter by virtue of its spin-polarized edge states.
Here we have shown theoretically that similar bismuthene-
silicon domes, but with armchair edges, are, by contrast,

unstable and fold spontaneously into stable cowrie shell-
like nanostructures. The calculations that we have presented
predict that these nanostructures should display two distinct
strong spin filtering mechanisms at zero magnetic field. These
mechanisms should manifest for different arrangements of
source and drain leads attached to the nanostructure. One
of these mechanisms is resonant spin filtering where a peak
in resonant transmission of one spin species through the
nanostructure coincides with an antiresonant transmission dip
for the other spin species. The second mechanism is strong
nonresonant spin filtering where nonresonant transmission of
one spin species is much weaker than that of the other spin
species. These spin filtering mechanisms arise from localized
electronic states associated with strong disorder and strong
spin-orbit coupling in bismuthene and differ fundamentally
from edge state-related spin filtering mechanisms and the spin
Hall effect.
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