
PHYSICAL REVIEW B 104, 155402 (2021)

Impact of nitrogen doping on the linear and nonlinear terahertz response of graphene
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It is well known that impurities play a central role in the linear and nonlinear response of graphene at
optical and terahertz frequencies. In this work, we calculate the bands and intraband dipole connection elements
for nitrogen-doped monolayer graphene using a density functional tight-binding approach. Employing these
results, we calculate the linear and nonlinear response of the doped graphene to terahertz pulses using a
density-matrix approach in the length gauge. We present the results for the linear and nonlinear mobility as well
as third-harmonic generation in graphene for adsorbed and substitutional nitrogen doping for a variety of doping
densities. We show that the conduction bands are more parabolic in graphene structures with substitutional
nitrogen doping than for those with adsorbed nitrogen. As a result, substitutional doping has a greater impact on
the terahertz mobility and nonlinear response of graphene than adsorbed nitrogen does.
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I. INTRODUCTION

Graphene, a monolayer of sp2-bonded carbon atoms, has
attracted much interest due to its extraordinary character-
istics. The high mobility of graphene makes it a perfect
platform for realizing high-speed devices, such as graphene-
based terahertz-frequency switches [1,2]. Linear dispersion
near the Dirac points and the tunability of the chemical po-
tential through an applied gate voltage [3,4] are a few of the
remarkable features that make graphene an attractive material
system for nonlinear optics and harmonic generation [5,6].
Both chemical vapor deposition [7] and epitaxial graphene
growth [8] techniques have matured since graphene’s emer-
gence in 2004 [4]. Although there are many theoretical papers
on the linear and nonlinear optical and terahertz response of
pristine graphene [9–12], to our knowledge a comprehensive
theoretical examination of carrier dynamics in nonpristine
graphene [13–15] has not yet been carried out. In this work,
we examine the impact of nitrogen doping on the linear and
nonlinear response of graphene to terahertz (THz) radiation.

Various theoretical and experimental studies have been
performed to gain a better understanding of carrier relaxation
dynamics in graphene [16–19]. However, the effect of defects
on carrier dynamics, in particular in the terahertz regime, is
not yet well understood. It is known that short-range scat-
terers (e.g., lattice defects) and long-range scatterers (e.g.,
ionized impurities or ripples) cause intervalley and intraval-
ley scattering [15,20,21], which emphasizes the significant
role of disorder in graphene. In addition to intrinsic defects,
oxygen, nitrogen, and water are among the important impuri-
ties that are often intentionally or unintentionally introduced
to graphene [13,14,22]. Nitrogen-doped graphene has found
applications in biosensors [23], field-effect transistors [24],
batteries [25], and supercapacitors [26]. Nitrogen can also
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appear as a contaminant in processes such as chemical va-
por deposition of methane in the presence of ammonia [27],
thermal annealing of graphene oxide in ammonia [28], and
nitrogen plasma treatment of graphene [23]. In addition, it can
arise simply due to exposure to air [13].

Theoretical and experimental studies have shown that dop-
ing graphene can significantly alter its physical and chemical
properties [13,14]. It is also known that nitrogen doping can
cause a band gap to open and thereby introduce semiconduct-
ing properties to graphene [29–33]. More generally, nitrogen
doping alters the electronic structure, carrier density, and
linear and nonlinear conductivity of graphene. Pump-probe
experiments of Docherty et al. [13] showed that exposure of
graphene to oxygen and nitrogen gases significantly changes
the differential terahertz response of graphene. They also
found that exposure of graphene to air causes a differential
response that is similar to that of graphene being exposed to a
mixture of oxygen and nitrogen gases, and that the adsorption
of either of these gases is molecular and reversible when the
system is reevacuated. However, the microscopic origin of
these experimentally observed effects is not well understood.

Various models of the effects of impurities on carrier dy-
namics in graphene driven by terahertz radiation can be found
in the literature. Some include impurities phenomenologically
via scattering times but retain the linear energy dispersion
curves of pristine graphene [11,18,34,35]. Such approaches
neglect the effect of defects on the band structure, such as
the opening of a band gap. On the other hand ab initio stud-
ies have mainly focused on the band structure [36], material
characteristics at optical frequencies [37–39], or carrier dy-
namics for low-intensity incident fields [40]. Previous work
in our group focused on the linear and nonlinear response of
monolayer and bilayer graphene to terahertz radiation, and
the interplay between carrier dynamics, phonon scattering,
and neutral impurity scattering using a microscopic scattering
model, but it neglected impurity-induced changes in the elec-
tronic structure [9–11,22]. In the present work, we combine a
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density functional tight-binding method along with a density
matrix treatment of carrier dynamics and phenomenological
scattering to study the effects of nitrogen doping on the linear
and nonlinear THz response of graphene.

The paper is organized as follows. In Sec. II, we present
our density matrix formulation of carrier dynamics for a single
band. In Sec. III A, we present a detailed analysis of the effects
of nitrogen doping on the atomic coordinates and energetics of
the nitrogen-doped structures we have studied. Corresponding
band structures, velocities, connection elements, and Berry
curvatures are discussed in Sec. III B. In Sec. III C, we use our
model to simulate carrier dynamics, and we present results for
intraband currents, the transmitted field, linear and nonlinear
mobility, and harmonic generation in different nitrogen-doped
graphene systems as a function of the incident field, chemical
potential, and defect density. Finally, we conclude in Sec. IV.

II. THEORETICAL MODEL

We use a density functional tight-binding (DFTB) code to
calculate the relaxed atomic coordinates, energy dispersion
curves, and the corresponding Bloch states for a number of
different periodic, nitrogen-doped graphene structures. We
employ DFTB because it is a very efficient method by which
one can obtain analytic expressions for the Bloch states. This
is critical, as it gives a computationally efficient way to obtain
the band structure and the interband and intraband connection
elements. All the calculated parameters are then used in the
dynamic equations to calculate the time evolution of charged
carriers in the conduction band in response to pulsed THz
fields. From these calculations, we extract the linear and non-
linear mobility as well as the generated third-harmonic field.

To model the effects of N-doping on the response of
graphene, we construct (5×5) graphene supercells with one,
two, or three N defects per unit cell, which allows us to model
different doping densities. We then use self-consistent-charge
DFTB (SCC-DFTB) to calculate the Bloch states and energy
bands for each of these supercells. We start by discussing the
Bloch states and their use in calculating the parameters needed
in our dynamic calculations.

The tight-binding expression for the Bloch state, ψnk(r) ≡
〈r|n, k〉, for band n and wave vector k is given by

ψnk(r) =
∑

R

nB∑
j=1

Cn
j (k)φ j (r − r j − R)eik·R, (1)

where R are the two-dimensional Bravais lattice vectors, and
the sum over j runs over all nB outer-shell s and p orbitals
φ j (r) of all carbon and nitrogen atoms at positions r j in the
supercell. The Cn

j (k) are the sublattice expansion coefficients.
We use the DFTB+ code [41–43] to self-consistently solve

the general eigenproblem,∑
j′

Hj j′ (k)Cn
j′ (k) = En(k)

∑
j′

S j j′ (k)Cn
j′ (k), (2)

for the fully relaxed supercell to obtain the expansion coeffi-
cients Cn

j (k) and band energies En(k). Here

S j j′ (k) ≡
∑

R

eik·R
∫

V
d3rφ∗

j (r − r j )φ j′ (r − r j′ − R) (3)

are overlap integrals between Bloch states formed from dif-
ferent orbitals, and Hj j′ (k) are the matrix elements of the
electron Hamiltonian between Bloch states formed from dif-
ferent atomic orbitals. The latter can be broken up into two
terms as

Hj j′ (k) = H0
j j′ (k) + h1

j j′ (k)S j j′ (k), (4)

where H0
j j′ (k) are the matrix elements of the non-self-

consistent Hamiltonian H0, which depends on the interatomic
distances and reference densities of neutral atoms in their
geometry inside the lattice [44]:

H0
j j′ (k) ≡

∑
R

eik·R
∫

V
d3rφ∗

j (r − r j )H
0φ j′ (r − r j′ − R),

(5)
and the matrix elements h1

j j′ (k) add a correction to Hj j′ (k)
arising from the averaged self-consistently calculated electro-
static potential around orbitals j and j′ [41,42]. The integrals
found in the expressions for H0

j j′ (k) and S j j′ (k) are obtained
from DFTB parametrization files [45], and Slater-Koster ori-
entation rules are applied for the actual orientation of the j- j′
pair of orbitals [46].

For the Bloch states, we apply the normalization condition∫
�0

d3r u∗
nk(r)umk(r) = �

(2π )2
δnm, (6)

where

umk(r) = e−ik·rψmk(r) (7)

is the periodic part of the Bloch state, � is the 2D supercell
area, and �0 is the volume of a supercell (i.e., the 2D supercell
extended above and below the plane of the graphene). The
above equation results in the following normalization condi-
tion for the expansion coefficients (see Appendix A):

∑
j j′

Cn∗
j (k)Cm

j′ (k)S j j′ (k) = �

(2π )2
δnm. (8)

The field-carrier interaction is treated in the length gauge
so that divergences at low frequencies are avoided [47,48].
In this gauge, the full Hamiltonian is given by H ′ = H − er ·
Et (t ), where e = −|e| is the charge on an electron, r is the
position operator of the electron, and Et (t ) is the transmitted
THz electric field in the plane of the graphene.

The carrier dynamics can be calculated by solving the
equations of motion for the reduced density matrix in the
Bloch-state basis, in which the matrix elements of the Hamil-
tonian are

〈nk|H |mk′〉 = En(k)δnmδ(k − k′) − e〈nk|r|mk′〉 · Et (t ),
(9)

where the matrix elements of r between Bloch states are given
by [48]

〈nk|r|mk′〉 = δ(k − k′)ξnm(k) + iδnm∇kδ(k − k′). (10)

Here, the connection elements ξnm(k) are defined as

ξnm(k) = i(2π )2

�

∫
�0

d3ru∗
nk(r)∇kumk(r). (11)

In our previous work, we employed a nearest-neighbor
tight-binding (NNTB) model in which the overlap of atomic
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wave functions was neglected [9–11]. However, in this work
we go beyond nearest neighbors. As is shown in Appendix B,
accounting for atomic overlaps results in the following expres-
sion for the connection elements:

ξnm(k) = i(2π )2

�

∑
j j′

Cn∗
j (k)

[∇kCm
j′ (k)

]
S j j′ (k). (12)

The dynamic equations for the matrix elements ρnm(k) =
〈n, k|ρ̂|m, k〉 of the density operator ρ̂(t ) for carriers in the
nth band are [48]

dρnn(k)

dt
= −2eEt (t )

h̄
·

∑
m,m �=n

Im[ξnm(k)ρmn(k)]

− e
Et (t )

h̄
· ∇kρnn(k) − [ρnn(k) − f (En(k))]

τn
.

(13)

Here, f (E ) is the Fermi-Dirac distribution and τn is a
phenomenological scattering time that arises from various
scattering mechanisms such as neutral impurities, acoustic
and optical phonons, and substrate charged impurities [11].
At room temperature, scattering times in graphene are on
the order of tens of femtoseconds [47,49], which necessi-
tates the inclusion of scattering processes in carrier dynamics
equations. Although N-doping will in principle increase the
scattering rate, we assume that the scattering is dominated by
phonons and other impurities so that the scattering times τn

are independent of the doping density.
There is a similar equation of motion for the off-diagonal

elements of the density operator. However, in all of our simu-
lations, we take the chemical potential (μc) to be sufficiently
high (100 meV and above) such that the terahertz pulses
do not excite interband transitions, and so the only contri-
bution to the current density comes from intraband motion.
Thus, Eq. (13) need only be solved for the conduction band,
with ρmc(k) = 0 for m �= c. A finite-difference approximation
to the gradients is applied, and a fourth-order Runge-Kutta
method is used to solve the above equations on a hexagonal
grid uniformly sampled in k-space about the K and K ′ points
[9].

Following the formalism of Aversa and Sipe [48], the cur-
rent density is given by

J(t ) = e

mA
Tr{pρ̂(t )} = e

ih̄A
Tr{[r, H]ρ̂(t )}, (14)

where the trace is over single-electron states, A is the area of
the graphene sheet, and p is the electron momentum operator.
It can be shown that using our expression for the matrix
elements of the Hamiltonian and position operator, the current
density is given by [9]

J(t ) = 2e

Ah̄

∑
k

ρcc(k){∇kEc(k) − eEt (t ) × �B(k)} (15)

where �B(k) ≡ ∇k×ξcc(k) is the Berry curvature for the
conduction band, which points perpendicular to the plane of
the graphene. In our numerical simulations, the sums over k
are restricted to the areas close to the two Dirac points, K and
K ′, where Ec(k) − Emin � 700 meV. As will be discussed in
Sec. III, due to the asymmetry of the bands near K and K ′

in defected structures, the integration is performed over both
the K and K ′ valleys (unlike our previous work on pristine
graphene). The factor of 2 is included to account for spin
degeneracy. We note that in pristine graphene, the Berry cur-
vature is zero at all points in k-space, except right at K and K ′
where it is not defined. Thus, the “anomalous” current arising
from the second term in Eq. (15) is absent in pristine graphene.
However, as we shall show, in N-doped graphene there can be
significant regions in k-space near K and K ′ over which the
Berry curvature is non-negligible. As a result, the second term
in Eq. (15) can result in significant anomalous currents in the
K and K ′ valleys, which are equal in magnitude but opposite
in sign. These are the so-called “valley-Hall” currents [50,51].

We assume that the graphene sheet is at the interface be-
tween air and a substrate with refractive index n. Then it can
be shown that satisfying the boundary conditions for the fields
gives the transmitted field at the position of the graphene:

Et (t ) = 2Ei(t ) − Z◦J[Et (t )]

1 + n
, (16)

where Ei(t ) is the incident terahertz field, Z◦ is the impedance
of free space, and J[Et (t )] is the graphene current density
calculated using the transmitted field as the driving field.
This equation is used to iteratively calculate the transmitted
terahertz field at each time step [9].

III. RESULTS

In this section, we present the results of SCC-DFTB calcu-
lations of the atomic structures, band structures, and the THz
response of a number of different N-doped graphene systems.
The structures considered are those we believe to be the most
likely to occur. The atomic coordinates and energetics of these
structures are summarized in Sec. III A. The calculated band
structures, electron velocities, connection elements, and Berry
curvatures are discussed in Sec. III B. Finally, the linear and
nonlinear terahertz response of these structures is discussed in
Sec. III C.

A. Atomic structure

The DFTB+ package is used to determine the relaxed
atomic coordinates with a k-mesh of 20×20×1. For geom-
etry optimization, a conjugate-gradient algorithm was used,
imposing a maximum force difference of 1.0×10−4 eV/Å and
a maximum self-consistent charge tolerance of 1.0×10−5 |e|
[41]. Nitrogen and carbon interactions are described using the
parametrization (Slater-Koster tables) developed by Elstner
et al. [45]. The fully relaxed lattice parameters of the undoped
(5×5) supercell are a/5 = 2.471 36 Å, b/5 = 2.471 34 Å,
γ = 120◦, and the graphene sheet is separated from its pe-
riodic image by a 15 Å vacuum gap. When calculating the
THz response of the graphene in later sections, we assume
that the graphene is on a substrate with the index of refraction
of SiC. However, to keep the results general, we assume that
the underlying substrate has a minimal effect on the atomic
coordinates and electronic structure of doped graphene, and
so we perform our SSC-DFTB calculations for freestanding
graphene.
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FIG. 1. Atomic configurations for various impurity types. (a) Top
and (b) side view of atomic adsorption, (c) top view of atomic
substitution, and (d) top and (e) side view of molecular adsorption
of nitrogen.

Experiments have shown that there are predominantly
three types of N-graphene bonding, namely substitutional
(graphitic), atomic adsorption (pyridinic and/or pyrrolic), and
molecular adsorption [15]. Figure 1 shows the structures we
explore in this work. Figures 1(a) and 1(b) show the top
and side views, respectively, of an adsorbed nitrogen atom in
structures we denote by XN50C, where X is the number of ad-
sorbed nitrogen atoms per (5×5) supercell. In these structures,
there is essentially no distortion of the lattice structure in the
x-y plane, but there is a significant movement of the carbon
atoms towards the adsorbate in the direction perpendicular
to the graphene sheet. Figure 1(c) shows the top view of
the atomic structure for the substitutional configuration. We
denote such structures by XN (50 − X )C. These structures
exhibit essentially no displacement in the perpendicular di-
rection relative to the structures with atomic adsorption. This

is consistent with the previous DFT calculations of Mombrú
et al. [52]. Figures 1(d) and 1(e) show the top and side views,
respectively, of the atomic structure for molecular nitrogen
adsorbed on top of the graphene surface. This configuration
is denoted by 1N250C. For structures with more than one
nitrogen atom per supercell, the positions of nitrogen atoms
are chosen such that the adsorbates or substitutional atoms
are located as far apart as possible while maximizing the
symmetry of the structure. For example, for the 2N50C struc-
ture, one nitrogen atom is located above a C-C bond that is
oriented along the x axis, while the other is above a bond
that is oriented at 30◦ to the x-axis. In what follows, we use
50C to denote results for pristine graphene obtained using
SCC-DFTB for a relaxed 5×5 unit cell, and 2C to denote
results for pristine graphene obtained using NNTB with a phe-
nomenological Fermi velocity (and a two-carbon unit cell).

In Table I, we present a number of the key structural
parameters obtained from our SCC-DFTB calculations. First,
we present the equilibrium distance of the adsorbed species to
the graphene plane (distN ) and to the first (distC1) and second
(distC2) neighboring carbon atoms. While substitutional and
molecular adsorption of nitrogen causes negligible distortion,
atomic adsorption of nitrogen causes a large disturbance in the
lattice structure, such that after full relaxation, the nitrogen
atom, and the first and second-nearest-neighbor carbon atoms
to the adsorbed nitrogen, are located 1.72, 0.535, and 0.2 Å
above the plane of graphene, respectively. These distances are
slightly reduced for higher surface coverage, as summarized
in Table I. Our results are consistent with the previous experi-
mental results that show that substitutional nitrogen doping of
graphene preserves the structure of the lattice, while atomic
adsorption of nitrogen leads to significant lattice distortion
[15,26,53].

As shown in Table I, we find that the nitrogen dopants
are charged, such that an adsorbed nitrogen atom always
receives some electronic charge from the surface, while a
substitutional nitrogen atom donates some electronic charge
to the neighboring carbon atoms. Effective Mulliken charge
differences (σN ) are summarized in Table I, where the charge
difference is defined as the difference between the charge on
a nitrogen atom in an isolated N2 molecule and the charge on
the nitrogen atoms bonded to the graphene. A negative sign

TABLE I. Atomic positions, band gaps, Mulliken charge differences, and carrier densities for the six different dopant structures. The first
three rows of the table give the equilibrium distances to the plane of graphene for the adsorbed species and out-of-plane displacement for the
first and second neighboring carbon atoms. The fourth and fifth rows give the band gap and induced effective Mulliken charge difference for the
impurity atom, respectively. Note that a negative sign for effective Mulliken charge corresponds to a gain of electronic charge on the nitrogen
atoms. The final two rows give the ratio of the electron density at room temperature to that of the pristine graphene for two different chemical
potentials (relative to the conduction-band minimum). Each single defect per unit cell corresponds to a defect density of 7.56×1013 cm−2.

1N50C 2N50C 1N49C 2N48C 3N47C 1N250C, top

distN (Å) 1.726 1.692 0 0 0 2.97
distC1 (Å) 0.535 0.510 1.427 1.427 1.427 3.04
distC2 (Å) 0.206 0.216 2.475 2.475 2.475 3.18
Eg (meV) 0.4 84.1 95.7 174.8 237.3 0.7
σN×|e| −0.38 −0.34×2 +0.125 +0.1170×2 +0.11638×3 −0.0007
ne/n2C, μc = 100 meV 1.21 2.65 1.89 2.69 3.36 1.01
ne/n2C, μc = 175 meV 1.22 2.26 1.61 2.15 2.59 1.01
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corresponds to gain of electronic charge for the impurity atom.
We also find that the charge difference per dopant decreases
as the dopant density increases. These differences indicate
the dependence on the limited size of the supercell. Recent
experiments indicate that with increasing doping concentra-
tion, N-doped graphene shifts from p-type to n-type, and
an increasing electron-hole transport asymmetry arises [15].
It is also known that graphene obtained by chemical vapor
deposition is intrinsically p-doped while epitaxial graphene is
intrinsically n-doped [22]. Our results show that substitutional
N-doped graphene is n-type. This is consistent with previous
studies [53,54]. Moreover, previous DFT studies show that
when nitrogen bonds with two carbons and interacts with
a neighboring carbon vacancy (pyridinic or pyrollic), then
the material is p-type [30,54,55]. In our study, we have just
simulated atomic N adsorbed to the surface and hybridizing
with two carbons but no vacancy. However, the result is still
p-type.

Molecular charge-transfer doping with different molecular
species (e.g., NH3 as electron donor, NO2 as electron ac-
ceptor) is an effective approach to realize an n- or p-type
material [56,57]. The experiments of Docherty et al. showed
that molecular nitrogen can physisorb on graphene. As ex-
pected from the large equilibrium distance to the surface, we
find (see Table I) that adsorption of a N2 molecule results
in the smallest induced gross charge (Mulliken charge). This
value is larger for the case when the N2 is at the middle
of the hexagon than when it is located on top of a surface
carbon atom. As we shall see, this small charge transfer is not
enough to significantly alter the band structure, and perhaps a
much higher concentration of molecular doping is required to
replicate the experimental findings of Docherty et al. that the
differential THz response of graphene changes significantly
after exposure to nitrogen gas due to molecular adsorption of
nitrogen.

Despite the differences in the intrinsic chemical potential
of these structures, in what follows we assume that gating has
been used to set the chemical potential without perturbing the
electronic band structure. In Table I, we show the calculated
carrier densities at room temperature (found using the calcu-
lated energy bands) for the two different chemical potentials
that we will consider in our dynamics calculations.

B. Energy bands, connection elements, and Berry curvatures

In this section, we calculate the electronic band structure
of graphene for different nitrogen dopant configurations and
densities. The band gaps that we have calculated are given in
Table I. Note that significant band gaps open in all defected
structures except the one with molecular adsorption of nitro-
gen. Although the transferred charge and lattice distortion are
both larger in structures with adsorbed rather than substitu-
tional nitrogen (for the same doping density), substitutional
nitrogen induces a larger band-gap opening. For molecular
adsorption, the N atoms are further from the surface and the
induced band gap is very small and is of the same order as that
found for the 50C pristine graphene structure. Some previous
DFTB and DFT work on the band structure of graphene with
defects reported a band-gap opening at the nominal K point of
pristine graphene [34]. DFT calculations of Nath et al. yield a

band-gap opening of approximately 300 meV for a nitrogen
doping concentration of 5% [29], which is comparable to
the band gap of 237 meV that we have calculated for 6%
substitutional coverage (3N47C structure).

Although we do find that impurities introduce a band gap,
our detailed study of the whole Brillouin zone also shows that
all defected structures show a shift of the conduction-band
minimum and valence-band maximum away from the K point
of pristine graphene, except in the case of molecular adsorp-
tion, which yields a band structure similar to pristine graphene
in all respects. As an example, in Fig. 2(a) we present a
contour plot of the conduction band near the K and K ′ points
for 2N50C, as a function of ka0 where a0 is the interatomic
distance in pristine graphene (1.42 Å). As an example, in
Fig. 2(a) we present a contour plot of the conduction band
near the K and K ′ points for 2N50C. For this structure, the
band minimum is shifted approximately along the kx = ky

direction (dashed line in Fig. 2). In addition, we see that unlike
pristine-graphene, the conduction band of defected structures
does not exhibit rotational symmetry near the band extrema.
This phenomenon is more evident in Fig. 2(b), where we
present the corresponding contour plot of the electron speed
[v = |∇kEc(k)/h̄|] of the 2N50C structure near the K and K ′
points. Note also that as a result, the bands close to the K
and K ′ points differ significantly. We must therefore account
for the carrier dynamics at both K and K ′ points simultane-
ously when solving the carrier dynamics equations. Among
the studied structures, atomic adsorption of nitrogen results
in the highest shift of the band extrema. We note that in
all our calculations, we enforce k-space inversion symmetry
of the bands that follows from time-reversal symmetry. This
symmetry can be seen in Fig. 2 by comparing the results at K
and K ′ (noting that K′ = −K).

In Fig. 3(a) we plot a cross section of the calculated con-
duction bands, and in Fig. 3(b) we plot the corresponding
electron speed for eight different structures. The energy is
relative to the band minimum for each structure, and, as in
Fig. 2, the origin is at the band minimum near the K-point.
The dashed line in Fig. 2 shows the direction in k-space used
for the cross section.

We first consider pristine graphene. We have plotted the
results from our SCC-DFTB calculation using a (5×5) cell
(50C) as well as the analytic result for a NNTB calculation
(2C) [9,10] in which we have used a Fermi velocity of v f =
8.0×105 m/s to best match our computational bands. The
slight relaxation of the (5×5) supercell has resulted in a devi-
ation of the SCC-DFTB band structure from that of a perfect
honeycomb structure. Consequently, our relaxed graphene has
bands that are not rotationally symmetric, and it has a band
gap of 1.34 meV. Note, however, that except very close to
the band minimum, the band structure still has the essentially
linear dispersion of a Dirac material.

We now consider the bands for the N-doped structures. We
first note that the molecular adsorption structure (1N250C)
has a conduction band that is almost indistinguishable from
that of pristine graphene. Figure 3 shows that the structure
with one adsorbed nitrogen (1N50C) exhibits characteristics
of a Dirac-type material except very close to the Dirac point.
The substitutional structure [xN (50 − x)C], however, has an
almost parabolic band, even relatively far from the Dirac
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FIG. 2. (a) Contour plot in k-space of the conduction band in the
vicinity of the K (blue) and K ′ (red) points for the 2N50C structure,
where the contour values are in units of eV. Both contour plots are
shifted such that the origin is at the position of the band minimum;
the location of the K-point is indicated by a +. The dashed line shows
the path in k-space (kx = ky) used for the plots presented in Fig. 3.
(b) Contour plot in k-space of the magnitude of the electron speed for
the same structure, where the contour values are in units of 105 m/s.
Note that the area of k-space examined in (b) is much smaller than
that of (a).

point. Note also that as the defect density increases for a given
defect type, the bands become more parabolic. As we shall
see, the degree of parabolicity plays a key role in the linear
and nonlinear response of doped graphene.

FIG. 3. Cross sections of (a) the calculated conduction-band
structures and (b) carrier velocities for the nitrogen-doped structures
summarized in Table I. The origin for each structure is set at the
band minimum, which is shifted relative to the K point. Note that
the dashed line in Fig. 2 shows the direction over which the 2D
cut is performed. For the analytic result (denoted by 2C), the Fermi
velocity is set to 8.0×105 m/s.

The relative parabolicity of the structures is more evident
in Fig. 3(b), where we plot the carrier speed, v(k) as a function
of k. We note first that the speed is noticeably lower for all of
the doped structures than for pristine graphene. The velocity
profile of the Dirac-type structures is almost flat apart from
a narrow dip at the symmetry point, while the velocity for
structures with more parabolic bands exhibits a much wider
dip and only flattens out when ka0 � 0.1. For the same defect
density, graphene with adsorption (xN50C) and substitution
[xN (50 − x)C] of atomic nitrogen exhibits the highest and the
lowest carrier velocities for k values close to the Dirac point,
while the carrier velocity for the structure with molecular
adsorption shows a velocity curve almost indistinguishable
from that of 50C pristine graphene. Figure 3(b) also shows
that the relative ordering of the carrier speeds in the different
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structures is not the same for k-points further away from the
Dirac point as it is for points close to the Dirac point. As
a result, changing the chemical potential can change which
structures have the highest mobility.

Using the Bloch states found from the SCC-DFTB calcu-
lation, we have calculated the intraband connection elements
for the conduction band. Previous work [9] has shown that
in a NNTB calculation, the conduction-band connection ele-
ments of pristine graphene near the Dirac K-point are given
by ξcc(K + k) = θ̂/(2k), where θ̂ is the angular unit vector
in cylindrical coordinates with the origin at the Dirac point.
Although the intraband connection elements are not gauge-
invariant (as they depend on the k-dependent phases chosen
for the Bloch functions), the way in which we have chosen
the phases when calculating the connection elements is the
same for all the structures presented in Fig. 4(a).

We find that the connection elements of the defected
structures are dependent on the defect type and density. The
absolute value of the calculated connection elements of the
conduction band is plotted in Fig. 4(a) for the 50C, 1N49C,
and 2N48C structures. The contours have been shifted in
k-space such that the origin is the location of the conduction-
band minimum. The connection elements of all the studied
defected structures show a shift of the peak value away from
the position of the band minimum, with the peak values and
widths of the same order of magnitude as that of pristine (50C)
graphene.

Although the connection elements depend on the choice
of the phases of the Bloch modes, the Berry curvature does
not. In addition, it is the Berry curvature that appears in the
expression for the conductivity [see Eq. (15)], and so the
Berry curvature is the more important quantity. It is easily
shown that the Berry curvature for pristine (2C) graphene is
zero everywhere, except at the Dirac points, where because
the states are degenerate and there is a divergence, it is not
uniquely defined [58]. Due to symmetry breaking, we find
that all of our structures have a nonzero Berry curvature near
the Dirac points. The cross section of the z-component of the
Berry curvature of the 50C and 2N50C structures about the K ′
point is presented in Fig. 4(b). For the pristine 50C structure,
the Berry curvature is essentially zero, except very close to the
Dirac point. It is nonzero due to the small lattice distortion that
breaks inversion symmetry. We find that the Berry curvatures
for the structures with substitutional nitrogen (not shown) are
similar to that of the 50C structure. In contrast, the Berry
curvature of the 2N50C structure is nonzero over a relatively
large region of k-space (up to values of k corresponding to
band energies of about 100 meV).

From Eq. (15), we see that the valley-Hall current around
a given Dirac point is proportional to the integral in k-space
of the Berry curvature multiplied by the occupation probabil-
ity. We find that the magnitude of the integral in k-space of
the Berry curvature over the regions close to the K and K ′
points for all structures is π (to within numerical precision).
However, because the Berry curvatures near the K ′ point are
the negative of those near the K point, the net anomalous cur-
rent density is always zero, as expected due to time-inversion
symmetry. We note, however, that for a given defect type, the
sign of the Berry curvature about each Dirac point is inde-
pendent of the spatial location of the defect. For example, we

FIG. 4. (a) Contour plot in k-space of the magnitude of the
connection element of the conduction band |ξcc(k)|, for the 50C,
1N49C, and 2N48C structures. The contours are shifted in k-space
such that the plot origin is at the position of the band minimum for
each structure. The numbers on the contour lines for the 2N48C
structure are in units of 10−8 m. The contour line values for the
1N49C structure are the same as that of the 2N48C structure, and
they are two times larger than the contour line values of the 50C
structure. (b) Cross section of the z-component of the calculated
Berry curvature about the K ′-point normalized to the peak value for
50C and 2N50C structures. See Fig. 2 for the direction over which
the 2D cut is performed.

find that the Berry curvature for the 2N50C structure is very
similar to that of the 1N50C structure. Thus, a relatively large
Berry curvature will certainly arise in structures in which there
is truly periodic adsorbed nitrogen doping. Moreover, for
structures with aperiodic adsorbed nitrogen, inversion sym-
metry is broken, even when one averages over all possible
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defect locations. Thus, one expects a valley-Hall current in
these defected structures that is absent in pristine graphene.
We plan to systematically study the effect of adsorbed nitro-
gen dopant location and density on the Berry curvature and
the generation of valley-Hall currents in future work.

If the carrier density is large enough such that all the states
for which the Berry curvature is non-negligible are occupied,
then the valley-Hall current due the to conduction-band carri-
ers in a given valley will have a magnitude of e2/(2π h̄). Of
course, a net anomalous current due to the Berry curvature
will only arise if the carrier density around the K point is dif-
ferent from that around the K ′ point, which would be difficult
to achieve in these structures, although schemes to accomplish
this have been devised for other graphene systems [50,59,60].

C. Linear and nonlinear response

In this section, we use the calculated band structures and
connection elements in our density matrix formalism to com-
pute the current density and transmitted electric field for an
incident THz pulse. From these, we also calculate the lin-
ear and nonlinear mobility and the generated third-harmonic
signals. We do not present the results for the structure with
adsorbed molecular nitrogen, as they are almost indistinguish-
able from those of pristine graphene. In all that follows, we
assume that the chemical potential can be altered through
gating without changing the equilibrium topology of the struc-
ture and the corresponding band structure. We run simulations
at a temperature of 300 K for chemical potentials (relative
to the conduction-band minima) of μF = 100 and 175 meV,
corresponding, respectively, to carrier densities of 1.39×1012

and 3.76×1012 cm−2, respectively, in pristine graphene. The
calculated carrier densities of the doped structures relative to
the analytical carrier density of graphene at these chemical
potentials are summarized in Table I. The input THz field is
a linearly polarized, sinusoidal Gaussian pulse, with a central
frequency of f◦ = 2 THz and a pulse width of 1 ps (FWHM)
[see Fig. 5(b)]. Except where explicitly stated, the field is
polarized in the x-direction. The phenomenological scattering
time is taken to be τc = 50 fs, independent of the impurity
density or type. This scattering time is used to account for
various scattering mechanisms, such as neutral impurities,
acoustic and optical phonons, and charged impurities in the
substrate, which we assume are dominant over N-induced
scattering [10,11]. We take the substrate to be silicon carbide,
which has a refractive index of n = 3 at terahertz frequencies
[61].

Current densities, J‖(t ) and J⊥(t ) in the directions parallel
and perpendicular to the incident field, are shown in Figs. 5(a)
and 5(b), respectively. The normalized incident field is also
plotted in Figs. 5(a) and 5(b) to highlight the phase of the
current density relative to the incident field. We only show
the time interval close to t = 0 for the parallel current so
as to more clearly display the differences in the transmitted
field amplitudes for the different doping configurations. From
Fig. 5(a), we see that all parallel current densities have essen-
tially the same phase shift relative to the incident field but that
the amplitudes differ considerably.

In a NNTB calculation of pristine graphene, due to symme-
try there is no current generated in the direction perpendicular

FIG. 5. Current densities in the directions (a) parallel and (b) per-
pendicular to the incident field. J⊥, J‖, Ei, and Et indicate the current
density in the perpendicular and parallel directions, and the normal-
ized incident and transmitted field for the 50C structure, respectively.
The incident and transmitted fields are plotted to highlight the phase
shift of the current densities. Note that the timescales are very differ-
ent in the two plots.

to the incident field. However, due to the band symmetry
breaking induced by the defects, this is not the case for N-
doped graphene. We see from Fig. 5(b) that both the amplitude
and the phase of the perpendicular current density relative
to the incident field depend strongly on the directions of the
nitrogen-carbon bonds relative to the electric field polariza-
tion. In all of our calculations, we have assumed particular
locations for the defects within the supercell. These can be
seen for the case of single defects in Fig. 1. In a real structure
(assuming that most defects are well spaced out), the defects
would be located with equal probability in the equivalent lo-
cations in the undisturbed lattice. If one calculates the average
of the current response for the different locations, then the
contribution to the linear part of the perpendicular current
from the first term in Eq. (15) can easily be seen to average to
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FIG. 6. (a) The effect of defect type and density on field trans-
mission for seven structures for f0 = 2 THz, μc = 100 meV, and
Ei = 0.5 kV/cm. (b) The transmission values at the central frequency
of f0 = 2 THz for seven structures for the two different chemical
potentials and incident field amplitudes indicated. The definition of
transmission is chosen such that it will be 1 if there is no graphene.
The tilde on the field indicates that it is the Fourier transform, while
the superscript indicates that it is parallel to the incident field.

zero; this is because this contribution to the linear conductivity
tensor is symmetric under exchange of indices x and y.

In Fig. 6(a) we plot the ratio of the transmitted field am-
plitude in the presence of graphene to the transmitted field
amplitude in the absence of the graphene as a function of
frequency for a chemical potential of 100 meV, for a low
(0.5 kV/cm) incident field amplitude. Here the tilde on the
field indicates that it is the Fourier transform of the time-
dependent field. As can be seen, the nitrogen doping has a
significant effect on the transmission, and, as expected, the
transmission decreases as the defect density increases for both
adsorbed and substitutional doping.

In Fig. 6(b) we present the transmission at the central
frequency of 2 THz for the same structures for chemical
potentials of 100 and 175 meV. When the chemical potential

is increased, the carrier density and thus current density
increase. As a result, the transmission decreases significantly.
The decrease in the transmission arises, of course, from an
increase in the conductivity. Given that the average electron
speed decreases when defects are added, it is surprising at first
glance that the conductivity increases when nitrogen defects
are introduced. However, as one can see from Fig. 3, because
the band shapes change significantly when defects are present,
the carrier density for a given chemical potential is sensitive
to both the defect type and density; this is seen clearly in
Table I. Thus, the decrease in the transmission when defects
are introduced is essentially due to an increase in carrier
density.

In Fig. 6(b), we have also plotted the transmitted field
amplitude at the central frequency for a higher incident field
amplitude of 40 kV/cm. Although much higher incident fields
of about 1MV/cm are now experimentally achievable [see e.g.
[62]], in this study we have chosen an incident field amplitude
of 40 kV/cm as it results in measurable third-harmonic gener-
ation but does not lead to interband and intervalley transitions,
the inclusion of which would require the inclusion of multiple
bands and a simulation over the entire Brillouin zone, which
would make the simulation much more computationally inten-
sive. As can be seen, the transmission increases when the field
is increased, indicating current saturation due to nonlinear
effects. This increase in transmission with increasing field
has been seen by experiments and theory by many authors
[11,19,63–65].

A better measure of the effect of defect type and density
on the response of graphene to THz fields is the mobility,
which we now examine. The mobility is defined generally by
μ(ω) = σ (ω)/(e ne), where σ (ω) is the surface conductivity
and ne is the carrier density. Although the mobility in materi-
als with parabolic bands is independent of the carrier density,
this is not true for general band structures. In particular, the
conductivity of pristine graphene in the NNTB approximation
at temperature T is given by [3,66]

σ (ω) = 2e2 ln
[
2 cosh

(
βμc

2

)]
πβ h̄2(1/τ − iω)

(17)

and the carrier density is given by

ne = − 2

π (β h̄vF )2 Li2(−eβμc ), (18)

where β ≡ 1/kBT , and Li2(z) is the dilogarithm function.
From these equations, one finds that at zero temperature, the
conductivity is proportional to the square root of the density
and thus the mobility is proportional to n−1/2

e . As we shall see,
for the N-doped structures, the mobility also decreases with
density, but not in exactly the same way.

In Fig. 7, we plot the absolute value of the calculated
mobility at the central frequency as a function of carrier
density for different defect types and densities. For reference,
we have also plotted the curve for pristine graphene in the
NNTB approximation. Note first that the analytic NNTB re-
sults agree with our 50C pristine graphene results to better
than 0.5%. Note also that for all densities, the mobility for
the N-doped structures is lower than that of pristine graphene.
In particular, we find that for the lower chemical potential of
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FIG. 7. Mobility vs carrier density for Ei = 0.5 kV/cm and
μc = 100 meV (empty symbols) and 175 meV (symbols with dots),
at the central frequency f0 = 2 THz. Filled symbols represent the
calculated mobility for Ei = 40 kV/cm, μc = 100 meV. The solid
line represents the experimental results of graphene being exposed to
various inert gases [14], while the dashed line shows the calculated
Drude-mobility for pristine graphene from Eqs. (17) and (18).

100 meV, the mobility relative to the Drude model for pristine
graphene with the same carrier density is reduced by 8% in
structures with one defect per cell, by 15–22% for structures
with two defects per cell, and by 21% for the structure with
three defects per unit cell. For the higher chemical potential
of 175 meV, the decreases in mobility are somewhat less: the
mobility is reduced by 3% for structures with one defect per
cell, by 7–16% for structures with two defects per cell, and by
11% for the structure with three defects per unit cell.

The reduction in the defect-induced degradation in the mo-
bility with increasing chemical potential arises largely from
the dependence of the carrier velocity on energy. When the
chemical potential reaches an energy at which the carrier
velocities have reached their maximum, the effect of N-doping
on the mobility is modest [see Fig. 3(b)]. For example, at the
lower chemical potential, the 2N50C structure has a velocity
comparable to that of 2N48C structure, which results in its
mobility being close to that of 2N48C. However, as the chem-
ical potential increases, the velocity and hence the mobility of
the 2N50C becomes comparable to that of 3N47C.

Knight et al. [14] have performed in situ terahertz optical
Hall effect experiments to extract the mobility of N-doped
graphene as a function of carrier density. The experiments
were carried out for different exposure times to He, air, and N2

for a central frequency of 0.428 THz, and they yielded similar
results for the mobilities for the different gasses. In Fig. 7 we
have included the average of the experimental results (solid
blue line). As can be seen, our results are generally in good
agreement, falling only 13% below the experimental results.
A lower value for our results is expected because of the lower
frequency at which the experiments are done. However, a
direct comparison is not possible because the experimental de-
fect density is unknown, and it changes as the carrier density
changes.

We now turn to examine the effects of N-doping on the
dependence of the mobility on the field amplitude. In Fig. 7 we
have included calculated mobilities for pristine graphene. At
the lower field strength, our results match the Drude mobility
calculated in the NNTB approximation. At the higher THz
field amplitude of 40 kV/cm, the mobilities are reduced in
all cases, although the reduction is smaller in the nitrogen-
doped samples than in pristine graphene. Furthermore, the
field-induced reduction in the mobility is smallest in structures
whose bands are more parabolic. We obtain a reduction in the
mobility of about 13% in pristine graphene, about 8–12% in
structures with one defect per cell, about 6% for structures
with two defects per cell, and 4.5% for the structure with
three defects. The reduction in mobility with increasing field
amplitude arises from the nonlinear response of the material.
In pristine graphene, the relatively strong nonlinear response
is a result of the linear bands, which results in a large χ (3)

response [67,68]. Thus, again, the relatively smaller effect of
the field amplitude on the mobility for some of the structures
(particularly the 2N48C, 3N48C, and 2N50C structure) is due
to the fact that their bands are more parabolic and thus their
χ (3) is expected to be smaller.

Figure 8 shows the effect of the polarization of the incident
field on the mobility spectrum for a few different structures
for low and high incident THz fields. In the previous section it
was shown that defects remove the rotational symmetry near
the Dirac points, and this affects the carrier distribution, veloc-
ity, and connection elements, and thereby the current density.
The overall conductivity tensor is a function of the topology
of the introduced defects. The difference in the calculated
mobility of the same structure for fields that are polarized in
the x and y directions is due entirely to the asymmetry in the
band structure. As can be seen, the dependence on the field
polarization is relatively small, with at most a 5% change in
the mobility. In a real structure, this anisotropy would average
out and the final parallel mobility would be an average of the
mobilities found for the two different polarizations. We have
performed similar calculations for the higher incident field
amplitude of 40 kV/cm [Fig. 8(b)], and we found a similar
anisotropy.

We now turn to another result of the nonlinear response of
graphene: third-harmonic generation (THG). Harmonic gen-
eration in graphene at terahertz frequencies has been studied
theoretically [10,67–69] and experimentally [70,71]. Since the
electron velocity of pristine graphene is independent of the
crystal momentum near the Dirac points, a strong incident
electric field shifts the majority of electrons to one side of the
Dirac point in k-space, which causes current saturation and
odd harmonic generation in the transmitted electric field [10].
Because the carrier speed is no longer constant in N-doped
structures, we expect the nonlinear response to be different in
such structures. We observed this effect in the nonlinear trans-
mission; we now examine its effect on harmonic generation.

The calculated spectrum of the transmitted electric field
Ẽt (ω) normalized to the maximum amplitude of the incident
field Ẽi(ω0) is shown in Fig. 9 for three different structures
and for two different incident THz field amplitudes. The peak
at 2 THz is the fundamental, the peak seen at 4 THz for all but
2C graphene is the second harmonic, and the peak at 6 THz is
the third harmonic. For the lower incident field amplitude of
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FIG. 8. Effect of the polarization of the incident field on the
mobility spectrum for μc = 100 meV for (a) Ei = 0.5 kV/cm and
(b) Ei = 40 kV/cm for three different structures. Dashed and solid
lines correspond to the incident field polarized in the y and x direc-
tions, respectively.

0.5 kV/cm, the magnitude of the generated third harmonic
is approximately six orders of magnitude smaller than that
of the fundamental, thus it is negligible. On the other hand,
for the higher incident field of 40 kV/cm, the third-harmonic
signal is down by less than three orders of magnitude and
is thus experimentally observable [6,72]. For example, Hafez
et al. [6,72] obtained a third-harmonic amplitude that is about
70 V/cm for an input field amplitude of 40 kV/cm, a chemical
potential of 170 meV, and a central frequency of 0.68 THz.
This is comparable to our result of 20 V/m for pristine
graphene for the same input field (but we employ a much
shorter, higher-frequency pulse, and our substrate has a higher
refractive index). Interestingly, the spectrum of the defected
structures (and even the 50C structure) shows a peak at the
second harmonic that is above that of the third harmonic for
the lower incident field. Second-harmonic generation arises

FIG. 9. Effect of defect density, chemical potential, and incident
field on third-harmonic generation. (a) The normalized transmitted
field as a function of frequency for the six structures indicated for
μc = 100 meV, for incident field amplitudes of Ei = 0.5 kV/cm
(solid) and Ei = 40 kV/cm (dashed). (b) Third-harmonic field am-
plitude at 6 THz relative to the incident field at the fundamental
for seven structures for Ei = 40 kV/cm, for μc = 100 meV (left
column) and μc = 175 meV (right column). The tilde denotes the
Fourier transform of the field, while the superscript denotes the
component parallel to the incident field.

from the asymmetry of the relaxed supercell and is not seen
in the results for the 2C band structure. Note, however, that
the second harmonic is lower than the third harmonic for the
higher incident field. The randomized distribution of defects
in a macroscopic sample would be expected to restore inver-
sion symmetry on average, and thus a second-harmonic signal
would not be seen. These second-harmonic peaks should
therefore be viewed as artifacts of our particular choice for
defect locations.

In Fig. 9(b) we plot the third-harmonic amplitude for the
different structures for the two different chemical potentials.
As expected, we find that the third-harmonic signal is re-
duced as the defect density is increased. Moreover, for the
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same defect density, the structures with a more parabolic band
have lower THG. In other words, as expected, the bands that
are most Dirac-like have higher THG. Interestingly, when
the chemical potential is raised, the third-harmonic signal
decreases for all structures except for the 3N47C structure.
In a previous work [10], we showed that for pristine graphene
there is an optimal chemical potential that maximizes the THG
for a given scattering time. For a 1 THz pulse, we found that
the optimal chemical potential was approximately 165 meV.
Thus, it is not unexpected that the third-harmonic signal will
decrease when we increase the chemical potential from 100
to 175 meV for structures that have similar bands to pristine
graphene, which is what we observe. However, for the 3N47C
structure, we see an increase in the THG signal when the
doping is increased. For this structure, as we have seen, the
conduction band is essentially parabolic at low energies and
only becomes essentially linear at higher energies. This tran-
sition occurs in the energy range between 120 and 200 meV.
Thus for the lower chemical potential of 100 meV, the nonlin-
earity is very low, as the electrons are largely in the parabolic
band regime, while when the chemical potential is raised to
175 meV, many of the electrons are in the linear-dispersion
regime, which yields a stronger nonlinearity.

IV. CONCLUSION

In this work, we have presented a detailed description of
the band structure and linear and nonlinear THz response
of nitrogen-doped graphene. Our calculations are in general
agreement with the previous experimental and computational
results that indicated that nitrogen doping causes band-gap
opening and semiconducting characteristics, and alters carrier
density and carrier mobility.

Detailed study of the whole Brillouin zone showed that
all defected structures exhibit a shift of Dirac points from
their nominal points in pristine graphene, and that there is
an induced asymmetry between the K and K ′ points. Our
results also show that in general, N-doping transforms pristine
graphene from a Dirac-type to a more parabolic-type material
(near band minimum), and that the bands generally become
more parabolic as the defect density increases. For the stud-

ied defect types and topologies, the calculated band structure
and the associated linear and nonlinear terahertz response are
sensitive both to defect density and defect type. We found
that for the same defect density, the substitutional structure
has the most parabolic band of all. In addition, as the defect
density increases for a given defect type, the bands become
more parabolic.

We used our model to calculate the mobility of the N-
doped structures for frequencies close to 2 THz, with the
largest changes occurring for structures that have bands that
are more parabolic. We find qualitative agreement with recent
experiments [14]. We also found that the mobility of all of
the doped systems decreased with increasing incident THz
field amplitude, but that the change was smallest when the
conduction bands were more parabolic. This is due to the
fact that the intrinsic nonlinearity in graphene arises from
the band nonparabolicity. Consistent with this, we found that
the generated third harmonic is reduced due to doping; for
substitutional doping at the higher doping levels, the reduction
is almost a factor of 2.

Finally, we found that Berry curvatures of the defected
structures are nonzero and highly dependent on the defect
type and density. Although the macroscopic isotropy of the
structures ensures that the conductivity tensor is diagonal,
our study predicts a valley-Hall effect in the structures with
adsorbed atomic nitrogen that is absent in pristine graphene.
We plan to systematically explore the valley-Hall effect for a
wide range of defect locations and densities in future work.

In summary, we have found that the linear and nonlinear
mobilities of graphene depend significantly on the type and
density of nitrogen doping, with the key predictor of the
mobility being the degree of parabolicity of the conduction
band near the Dirac points. In future work, we plan to model
linear and nonlinear carrier dynamics in systems with other
dopants, specifically water and oxygen.
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APPENDIX A: BLOCH STATE NORMALIZATION

In this Appendix, we derive the conditions on the Bloch state expansion parameters to ensure that the states are normalized.
From Eq. (6) we know that normalization requires∫

�0

d3r u∗
nk(r)umk(r) = �

(2π )2
δnm, (A1)

where �0 is the cell volume at R = 0, and � is the 2D cell area. Now applying Eqs. (1) and (2) results in∫
�0

d3r u∗
nk(r)umk(r) =

∑
R,R′

∑
j j′

Cn∗
j (k)Cm

j′ (k)eik·(R′−R)
∫

�0

d3rφ∗
j (r − r j − R)φ j′ (r − r j′ − R′)

=
∑
R,R′′

∑
j j′

Cn∗
j (k)Cm

j′ (k)eik·R′′
∫

�R

d3rφ∗
j (r − r j )φ j′ (r − r j′ − R′′)

=
∑

R

∑
j j′

Cn∗
j (k)Cm

j′ (k)S( j, j′, R)eik·R, (A2)
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where �R is the unit cell centered at r = R, and the overlap integral S is defined as

S( j, j′, R) =
∫

V
d3rφ∗

j (r − r j )φ j′ (r − r j′ − R), (A3)

where V is the volume of all space. Therefore, Eq. (A1) can be written as
∑

j j′
Cn∗

j (k)Cm
j′ (k)S j j′ (k) = �

(2π )2
δnm, (A4)

where

S j j′ (k) =
∑

R

S( j, j′, R)eik.R. (A5)

APPENDIX B: CONNECTION ELEMENTS

In this Appendix we derive an analytic expression for connection elements when the overlaps are not zero. Calculating the
approximate gradient of Eq. (7), by neglecting the gradient of the exponential term (which can be shown to be negligible [9]),
and using Eq. (1) in Eq. (11), we obtain

ξnm(k) = i(2π )2

�

∫
�0

d3ru∗
nk(r)∇kumk(r)

≈ i(2π )2

�

∑
j, j′

Cn∗
j (k)

[∇kCm
j′ (k)

] ∑
R,R′

e−ik·(R−R′ )
∫

�0

d3rφ∗
j (r − r j − R)φ j′ (r − r j′ − R′)

= i(2π )2

�

∑
j, j′

Cn∗
j (k)

[∇kCm
j′ (k)

] ∑
R,R′′

eik·R′′
∫

�R

d3rφ∗
j (r − r j )φ j′ (r − r j′ − R′′)

= i(2π )2

�

∑
j j′

Cn∗
j (k)

[∇kCm
j′ (k)

]
S j j′ (k), (B1)

which is the expression we have in Eq. (12).
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