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It is shown that potential barriers in bilayer graphene (BLG) and monolayer transition metal dichalcogenides
(TMDs) can split a valley unpolarized incident current into reflected and transmitted currents with opposite
valley polarization. Valley asymmetric transmission inevitably occurs because of the low symmetry of the total
Hamiltonian and when total external reflection occurs the transmission is 100% valley polarized in BLG and
100% spin and valley polarized in TMDs, except for exponentially small corrections. By adjusting the potential,
100% polarization can be obtained regardless of the crystallographic orientation of the barrier. A valley polarizer
can be realized by arranging for a collimated beam of carriers to be incident on a barrier within the range of
angles for total external reflection. The transmission coefficients of barriers with a relative rotation of ±π/3 are
related by symmetry. This allows two barriers to be used to demonstrate that the current is valley polarized. A
soft-walled potential is used to model the barrier and the method used to find the transmission coefficients is
explained. In the case of monolayer TMDs, a four-band k · p Hamiltonian is used and the k · p parameters are
obtained by fitting to ab initio band structures.
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I. INTRODUCTION

One of the important objectives of valleytronics [1–8] is to
generate and detect valley polarized currents, that is currents
restricted to one valley of a two-valley material. There are
many proposals for electrical control of valley polarization
in 2D materials [9–22] but fabrication of the necessary de-
vices remains a challenge. This work is about an alternative
approach which may be easy to realize as it only depends on
components that have already been demonstrated. The idea is
to arrange for carriers in one valley to be completely reflected
from a potential barrier while carriers in the other valley are
transmitted. This can be used to realize a valley polarizer in
bilayer graphene (BLG) and a spin and valley polarizer in
transition metal dichalcogenides (TMDs).

Existing proposals for valley polarizers are difficult to
realize because they require structures with precise crystal-
lographic orientation and in some cases very small size. In
addition, the proposed designs typically separate the current
into two streams whose direction is valley dependent. How-
ever, a polarizer should produce one output stream and it is
necessary to find a way of collecting the desired one. This
is complicated by the strong trigonal warping of the constant
energy contours in many 2D materials.

The difficulty is that the outgoing current streams typi-
cally emerge from a system of gates and because of trigonal
warping the stream directions depend on the crystallographic
orientation of the gates [23]. However, existing fabrication
methods for 2D material based devices do not allow the crys-
tallographic orientation of the 2D material to be controlled.
Hence the gate orientation is unknown and in effect random.

This means the desired current stream is difficult to collect
because its direction is also unknown.

This difficulty does not arise in our approach because there
is only one current stream on the output side of the device.
The main idea is to use total external reflection to ensure that
carriers in the undesired valley are reflected from the incident
side of a potential barrier. This results in one current stream
of practically 100% polarization in the desired valley on the
transmitted side of the barrier.

Total external reflection occurs when there are propagating
waves on one side of an interface but only evanescent waves
occur on the other side. This situation occurs only in a certain
range of incidence angles and when the energy contours are
warped, this range is different in the two valleys. This results
in a large angular region where the reflection is practically
100% in one of the valleys. When valley unpolarized carriers
are incident within this region, the transmitted current is 100%
valley polarized except for an exponentially small correction
due to quantum tunneling. The valley polarization is insensi-
tive to the barrier orientation because the barrier potential can
be adjusted to optimize the region width.

These effects enable a valley polarizer to be realized by
using an electron collimator to produce an incident current
stream centered on the angular region required for total exter-
nal reflection. The necessary collimator has been fabricated in
monolayer graphene (MLG) [24] and its beamwidth is sim-
ilar to the angular widths of total external reflection regions
in BLG and TMDs. In addition, the barrier can be realized
with a structure similar to a FET. Hence the polarizer can be
assembled from existing components.

2469-9950/2021/104(15)/155401(19) 155401-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7795-5417
https://orcid.org/0000-0002-7332-9355
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.155401&domain=pdf&date_stamp=2021-10-01
https://doi.org/10.1103/PhysRevB.104.155401


P. A. MAKSYM AND H. AOKI PHYSICAL REVIEW B 104, 155401 (2021)

In monolayer semiconducting TMDs, strong spin-orbit
(SO) coupling ensures that states of the same energy in
opposite valleys have opposite spin. Consequently a valley
polarizer made from a monolayer semiconducting TMD is
also a spin polarizer.

While this work is centered on the large valley asymmetry
that results from total external reflection, valley asymmetric
transmission itself is inevitable because of the low symme-
try of the Hamiltonian. For most barrier orientations, time
reversal is the only symmetry of the total Hamiltonian of
the barrier and 2D material. This has the consequence that
the barrier transmission coefficient is valley asymmetric but
special conditions, for example, total external reflection, are
needed to make the asymmetry large.

The symmetry properties of the transmission coefficient
are also relevant to detection of valley polarization. Although
the Hamiltonian at an arbitrary barrier orientation has low
symmetry, the trigonal symmetry of the constant energy con-
tours leads to symmetry relations between the transmission
coefficients for barriers of different orientation. The most im-
portant one is that the transmitted valley swaps when a barrier
is rotated by ±π/3. This means two valley polarizers may be
used to demonstrate valley polarization in the same way that
crossed Polaroid filters are used to demonstrate polarization
of light.

In summary, the objectives of this work are first, to show
that valley asymmetric transmission is a consequence of the
low symmetry of the total Hamiltonian. Secondly, to show
that the barrier transmission coefficient in the regime of total
external reflection exhibits large valley asymmetry in both
BLG and TMDs. Thirdly, to show that it should be feasible to
use this effect to realize a valley polarizer and finally to show
that it should be feasible to demonstrate valley polarization
with a crossed pair of valley polarizers.

Existing work on valley polarization in 2D materials
started with pioneering theoretical studies of valleytronics
in MLG [9,10]. Subsequently, ways of realizing a valley
polarizer were explored theoretically in a wide range of
geometries in BLG and MLG, Refs. [11–22] for example.
Other valley dependent effects are also known [25–27]. In
addition experimental studies of valley polarization in BLG
have been published recently [28,29] and steps have been
taken towards realizing a valley polarizer [30]. In TMDs,
optically induced valley polarization has been achieved in
MoS2 [31] and valley-sensitive photocurrents have been
observed [32]. In addition, there are theoretical predictions
of spin-dependent refraction at domain boundaries [33] and
small valley polarization in crystallographically oriented
potential barriers [34]. However, total external reflection in
graphene and TMDs has not been investigated. The present
work centers on BLG and TMDs where the predicted effects
should be easy to observe. Higher energies and potentials
would be needed in the case of MLG [13,17].

This paper begins with an outline of the physics (Sec. II)
where we explain why total external reflection is valley
asymmetric and give examples of valley asymmetric trans-
mission in BLG and TMDs. Next we show that the valley
asymmetric transmission is a consequence of the low symme-
try of the total Hamiltonian (Sec. III). This requires a careful
discussion because the velocity and momentum of the carriers

are not parallel when trigonal warping occurs. We consider
incident carriers selected by both velocity and momentum
and show that valley asymmetric transmission occurs in both
cases. Symmetry relations between the transmission coeffi-
cients of barriers of different orientation are also derived in
this section. This is followed by an outline of the numerical
methods used in this work (Sec. IV). Valley asymmetric trans-
mission is detailed in Secs. V (BLG) and VI (TMDs). In the
BLG section we first explain the device model used to obtain
a realistic barrier potential, then show that potential can be
adjusted to make the width of the single-valley region large
for all barrier orientations and finally discuss experimental
feasibility. The TMD section begins with an explanation of
the fitting procedure used to obtain a k · p Hamiltonian that
reproduces the trigonal warping in ab initio band structures.
The remaining discussion parallels that for BLG. The feasibil-
ity of realizing a valley polarizer is examined in Sec. VII with
the conclusion that it should be possible provided that trigonal
warping is strong enough and the device can be operated
in the ballistic transport regime. An example of polarization
detection with two crossed polarizers is given in Sec. VIII and
our results are summarized and discussed in Sec. IX.

II. VALLEY POLARIZATION BY TOTAL
EXTERNAL REFLECTION

Figure 1 illustrates how total external reflection and trig-
onal warping lead to valley polarized transmission through a

FIG. 1. (Top) Plan view of bilayer graphene and top gate
(schematic). Bold lines (blue): gate edges; medium lines: unit cell;
feint lines: bonds; open and filled circles: carbon atoms. In-plane
current (j) is incident at angle φc. The axis rotation angle, θ = 17◦.
(Bottom) Scale drawing of energy contours and critical angles. Light
outer line: contact contour (green); dark inner line: barrier contour
(magenta). States on the bold part of each contact contour are trans-
mitted. Arrows normal to the contours: critical current directions.
The KK ′ distance is reduced so all the contours fit into one figure.
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FIG. 2. Transmission coefficient for a potential barrier in BLG.
The electron energy is 56 meV and the top gate width is
300 nm. (Left) Same-valley case, Vi + Ui = 47.61 meV in layer
1, 5.586 meV in layer 2, θ = 17◦. (Right) Different-valley case,
Vi + Ui = 53.51 meV in layer 1, 9.124 meV in layer 2, θ = 31◦. See
Sec. V for details of potential.

potential barrier. The top part of the figure shows a potential
barrier that is generated by a uniform bottom gate and a finite-
width top gate. The top gate is rotated by an angle θ relative to
the crystallographic coordinates, x, y. The external potential is
expressed in coordinates, x′, y′, fixed to the gate and is taken
to be independent of y′. The crystal structure is that of BLG;
the geometry is similar in the case of TMDs.

The bottom part of the figure shows constant energy con-
tours inside the barrier and the contact regions outside the
barrier. The barrier contours are inside the contact contours
because the potential in the barrier is higher than in the con-
tacts so the band energy there is lower and so is the wave
number, k. However, ky′ , the component of k parallel to the
barrier, is a conserved quantity that is identical in the contacts
and barrier.

The states in the barrier may be propagating or evanescent.
Propagating states occur only in the ky′ range delimited by the
lines that are tangential to the barrier contour and parallel to
the kx′ axis. In this range there are two real kx′ values at each
ky′ but outside the range all the kx′ values are complex and all
the barrier states are evanescent. Then the current through the
barrier is limited by tunneling and can be made exponentially
small by making the barrier width sufficiently large. This is
the regime of total external reflection.

Because of trigonal warping, the critical angles for total
external reflection are very different in the two valleys. Prop-
agating barrier states occur only when the contact states are
in the limited range indicated by the bold lines in Fig. 1. The
critical angles for total external reflection occur at the ends of
this range. The current carried by a contact state with wave
vector k is in the direction normal to the contact contour. The
normals are shown in the figure and it is clear that the critical
angles are very different in the two valleys.

The transmission coefficient as a function of current in-
cidence angle is shown in Fig. 2 for electrons in BLG and
Fig. 3 for holes in MoTe2. In both cases the transmission
coefficient approaches zero rapidly near the critical angles for
total external reflection. This results in wide angular regions
where the transmission coefficient is �1 in one valley and �0
in the other valley. If a collimated, valley unpolarized beam

FIG. 3. Transmission coefficient for a potential barrier in MoTe2.
The hole energy is 116.9 meV and the top gate width is 300 nm.
(Left) Same-valley case, V = 66.55 meV and θ = 17◦. (Right)
Different-valley case, V = 106.7 meV and θ = 31◦. See Sec. VI for
details of potential.

of carriers is incident on a barrier in one of these regions,
the carriers in one valley are fully reflected while those in the
other valley are transmitted. Hence a valley polarized current
emerges on the exit side of the barrier.

In general, there is one region of single-valley transmission
at positive angles of incidence and one at negative angles
of incidence. These regions may be in the same valley or
in different valleys. Figures 2 and 3 show examples of both
cases. No critical energy or potential is needed to observe
these regions. They occur over a wide range of potentials and
energies (Figs. 8, 13, 14, and 15) and the top gate voltage
can be adjusted so they are observable at all crystallographic
orientations of the barrier (Figs. 7 and 12).

III. THEORY

A. Overview

In this section, we show that valley asymmetric transmis-
sion is inevitable in the presence of trigonal warping and
low symmetry. The effect of trigonal warping on transmis-
sion has been investigated for some special cases [15,26]
but the properties we need, particularly the role of points
of inflection, have not been detailed and we derive them
from first principles. We then show how the low symmetry
of a potential barrier oriented at an arbitrary angle to the
crystallographic axes inevitably leads to valley asymmetric
transmission. Finally, we show that the trigonal symmetry
of the energy contours leads to useful symmetry relations
between the transmission coefficients of barriers at different
orientations.

To obtain the transmission coefficient theoretically, one
has to specify the direction of incidence. Experimentally, the
incident particles can be selected by velocity or momentum
but when the energy contours are warped, these vectors are
not parallel. Hence the theoretical direction of incidence must
be chosen to match the expected experimental conditions.
Throughout this work, the incident beam is taken to be colli-
mated, i.e., selected by velocity, and the direction of incidence
is specified by the polar angle of the incident current, φc

(Fig. 1). However, in this section, we show that valley asym-
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metric transmission is inevitable regardless of whether the
incident particles are selected by velocity or momentum.

This conclusion follows from straightforward but lengthy
analysis. We state the Hamiltonians for BLG and TMDs in
Sec. III B, then detail the symmetry properties of plane wave
states (Sec. III C) and currents (Sec. III D). Next (Sec. III E)
we show how to find all the plane wave states that contribute
to the incident current at angle φc (there may be more than one
when there are points of inflection on the energy contour). In
Sec. III F, we show that ky′ expressed as a function of φc is
not the same in each valley and hence that the transmission
coefficient expressed as a function of φc is valley asymmetric.
Then (Sec. III G) we prove that the transmission coefficient
expressed as a function of ky′ is valley asymmetric because of
the low symmetry of the total Hamiltonian. Finally we detail
the symmetry relations between the transmission coefficients
of barriers at different orientations (Sec. III H).

B. Hamiltonians

The total Hamiltonians in each valley are obtained from
band Hamiltonians in the literature by rotating coordinates
anticlockwise by an angle θ and applying a unitary transfor-
mation that reduces the θ dependence to factors of the form
exp(±3iθ ).

In the case of BLG and the K valley, the unitary trans-
formation is diag(e−iθ , 1, 1, eiθ ) and the band Hamiltonian in
Ref. [35] becomes

H0K =

⎛
⎜⎜⎝

U1 v0π
†
K −v4π

†
K v3πK e3iθ

v0πK U1 + �′ t −v4π
†
K

−v4πK t U2 + �′ v0π
†
K

v3π
†
K e−3iθ −v4πK v0πK U2

⎞
⎟⎟⎠,

(1)
where πK = px′ + ipy′ , px′ and py′ are momentum compo-
nents and the parameter values are detailed in Sec. V. The
spatially uniform potentials Ui in layer i result from the bottom
gate bias and the total Hamiltonian, HK = H0K + V , where
V = diag(V1(x′),V1(x′),V2(x′),V2(x′)) and Vi is the top gate
bias in layer i. In K ′, πK is replaced by πK ′ ≡ −px′ + ipy′ and
θ by −θ .

In the case of semiconducting TMDs, the band Hamilto-
nian for one monolayer is obtained by applying the unitary
transformation diag(1, eiθ , e−iθ , e−iθ ) to the Hamiltonian in
Ref. [36]. This gives

H0Ksz =

⎛
⎜⎜⎜⎜⎝

εv + λsz c3π
†
K c2πK c4πK

c3πK εc c5π
†
K e−3iθ c6π

†
K e−3iθ

c2π
†
K c5πK e3iθ εv−3 0

c4π
†
K c6πK e3iθ 0 εc+2 − λsz

⎞
⎟⎟⎟⎟⎠,

(2)
where the spin index, sz = ±1. The band edge energies are
εv in the valence band, εc in the conduction band, εv−3 three
bands below the valence band and εc+2 two bands above the
conduction band. ci = γi/h̄ and the γi are parameters defined
in Ref. [36]. The SO splitting of the valence band is 2|λ| and
the small SO splitting of the conduction band is neglected.
In K ′, −λ replaces λ. The parameter values are detailed in
Sec. VI.

The potential in the full TMD Hamiltonian is taken to be
a scalar function, V (x′) instead of the diagonal matrix that
appears in the BLG Hamiltonian. This is because hole states
are of interest and the effect of a perpendicular electric field
on the valence bands appears to be small [37]. However, it
is difficult to quantify this as there is no electrostatic model
similar to the one in Ref. [38] for BLG.

To analyze the symmetry of the transmission coefficients
it is only necessary to consider the Hamiltonian without SO
coupling. The reason is that SO coupling is negligible in BLG
while in TMDs spin-valley locking occurs [39,40]. That is, the
main effect of SO coupling in TMDs is to associate opposite
spins with opposite valleys. For example, if there is a spin up
state of energy E in the K valley, then there is a spin down
state of energy E in the K ′ valley. In the following, this spin
reversal will be taken as understood. This allows the notation
to be simplified and means the same analysis applies to BLG
and TMDs.

C. Plane wave states

Plane wave states of energy E and wave vector k in valley
α satisfy

H0αeα (k) exp(ik · r′) = Eeα (k) exp(ik · r′), (3)

where the band Hamiltonians, H0α , are defined in Eqs. (1)
(BLG) and (2) (TMDs) and eα (k) is a four-component po-
larization vector.

There are four distinct k vectors for each energy unless the
energy coincides with a band extremum. Other than in this
exceptional case, two of the plane wave states are propagating
and two are evanescent, in the energy range considered here
[41]. However, the evanescent part of the wave function van-
ishes at infinity. Therefore the symmetry of the transmission
coefficients depends only on how the propagating wave po-
larization vectors transform under the symmetry operations of
the full band Hamiltonian.

The full band Hamiltonian without SO coupling is the 8 ×
8 matrix

H0 =
(

H̃0K 0
0 H̃0K ′

)
, (4)

where H̃0α is the band Hamiltonian in valley α without SO
coupling. The symmetries used in the present work are time
reversal and x′ inversion. The relevant invariance operators are
the following.

Time reversal. For all θ , H0 is invariant under(
0 E4

E4 0

)

, (5)

where 
 is the complex conjugation operator and E4 is the
4 × 4 unit matrix.

x′ inversion, x′ → −x′. When θ ≡ 0 (mod 2π/3), the y′
axis is in a mirror plane of the atomic lattice and H0 is invari-
ant under (

0 E4

E4 0

)
Ix′ , (6)

where Ix′ is the x′ inversion operator. It follows that the polar-
ization vectors in K and K ′ are related as follows.
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Time reversal. For all θ ,

eK (kx′ , ky′ ) = e∗
K ′ (−kx′ ,−ky′ ). (7)

x′ inversion, x′ → −x′. When θ ≡ 0 (mod 2π/3),

eK (kx′ , ky′ ) = eK ′ (−kx′ , ky′ ). (8)

D. Currents carried by plane wave states

The current density jα = (1/A)〈vα〉 where 〈vα〉 is the ex-
pectation value of the velocity in valley α and A is the system
area. The velocity operators are given by the matrix coeffi-
cients of the momentum terms in the band Hamiltonians. In
the case of BLG,

vx′K =

⎛
⎜⎜⎝

0 v −v4 v3e3iθ

v 0 0 −v4

−v4 0 0 v

v3e−3iθ −v4 v 0

⎞
⎟⎟⎠,

vy′K =

⎛
⎜⎜⎝

0 −iv iv4 iv3e3iθ

iv 0 0 iv4

−iv4 0 0 −iv
−iv3e−3iθ −iv4 iv 0

⎞
⎟⎟⎠. (9)

In the case of TMDs,

vx′K =

⎛
⎜⎜⎝

0 c3 c2 c4

c3 0 c5e−3iθ c6e−3iθ

c2 c5e3iθ 0 0
c4 c6e3iθ 0 0

⎞
⎟⎟⎠,

vy′K =

⎛
⎜⎜⎝

0 −ic3 ic2 ic4

c3 0 −ic5e−3iθ −ic6e−3iθ

−ic2 ic5e3iθ 0 0
−ic4 ic6e3iθ 0 0

⎞
⎟⎟⎠. (10)

In the K ′ valley in both BLG and TMDs −θ replaces θ and
in vx′K ′ the sign of the velocity parameters changes. The full
velocity operator is an 8 × 8 matrix with the same block
structure as the full band Hamiltonian, Eq. (4).

The current densities in both BLG and TMDs satisfy
symmetry relations that result from the polarization vector
relations, Eqs. (7) and (8), and the facts that the velocity
changes sign under time reversal, its x′ component changes
sign under x′ inversion and both operations swap the blocks
of the full velocity operator. The resulting symmetry relations
are:

Time reversal. For all θ ,

jx′K (kx′ , ky′ ) = − jx′K ′ (−kx′ ,−ky′ ),

jy′K (kx′ , ky′ ) = − jy′K ′ (−kx′ ,−ky′ ). (11)

x′ inversion, x′ → −x′. When θ ≡ 0 (mod 2π/3),

jx′K (kx′ , ky′ ) = − jx′K ′ (−kx′ , ky′ )

jy′K (kx′ , ky′ ) = jy′K ′ (−kx′ , ky′ ). (12)

E. States that carry current at angle φc

To find the transmission coefficient for current incident at
angle φc one has to find all the incident states that carry current
at this angle. The current carried by a state with wave vector k
flows in the direction of the group velocity vg = (1/h̄)∇E (k).

FIG. 4. Polar angle of group velocity for the K valley (BLG) con-
tact contour in Fig. 1. Upper: −90◦ � φv � 90◦. Lower: expanded
view near φv = 43◦.

At constant energy, vg only depends on the polar angle, φk of
the k-vector. The state or states that carry current at angle φc,
are found from the solution of

φv (φk, E ) = φc, (13)

where φv is the polar angle of the group velocity. The group
velocity may be found either from the gradient of E (k) or
from the expectation value of the velocity operator.

The number of solutions of Eq. (13) depends on whether
there are points of inflection on the energy contour. In the case
of TMDs there are no points of inflection and there is only
one solution. However, points of inflection occur in the case
of BLG and three solutions occur in a small range of φc.

Figure 4 shows φv (φk ) for the case of BLG and the K valley
contact contour shown in Fig. 1. In most of the φk range,
φv increases monotonically and φv (φk, E ) = φc has only one
solution. However, multiple solutions occur near φv = 43◦
and −77◦. These parts of the curve correspond to the nearly
straight parts of the K valley contour. φv (φk ) near φv = 43◦ is
shown on an enlarged scale in the lower part of Fig. 4. Three
solutions occur between the maximum and minimum, for ex-
ample at φc = 43.15◦. Then three distinct states carry current
in the same direction and one has to sum over the currents
carried by these states to find the transmission coefficient. In
this work, each state is taken to contribute to the total current
with equal weight.

The existence of the maximum and minimum is necessary
for the multiple solutions to occur and the geometrical inter-
pretation of this condition is that there are points of inflection
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FIG. 5. Current directions (j) for all states with the same value of
|ky′ | in the K and K ′ valleys in BLG. The lines parallel to the kx′ axis
indicate |ky′ | and the states occur at the intersections of these lines
with the contact energy contours (green). (Right) Current directions
(black arrows) for incident (i) and reflected (r) states in K . The ±
subscripts indicate the sign of ky′ . (Left) Current directions in the
K ′ valley, obtained by time-reversing those in K . On time reversal,
reflected states ( jx′ < 0) in K become incident states ( jx′ > 0) in
K ′. Arrows (blue) labeled ±kr− and arcs (red) respectively show k
vectors and current angles of the states discussed in Sec. III F. The
axis rotation angle θ = 17◦ and contours are as in Fig. 1.

on the energy contour. The vector (−vgy′ , vgx′ ) is tangential to
the contour and by using this fact and taking the contour to
be parametrized by φk , the condition for a point of inflection
(vanishing curvature) can be reduced to dφv/dφk = 0. Hence
points of inflection on the contour are necessary for multiple
current carrying states to occur.

F. Valley asymmetry of Tα(φc)

The transmission coefficient Tα in valley α is the ratio
of the total transmitted current to the total incident current.
It can be obtained from the sum of the currents transmitted
by each state that contributes to current incident at angle
φc. The solution of the scattering problem for each incident
state gives the transmitted current as a function of ky′ , then
Tα (φc) is found by substituting ky′ (φc) for ky′ . Tα (φc) is valley
asymmetric because ky′ (φc) is not the same in each valley.

This is illustrated in Fig. 5 for a φc value for which there
is only one current carrying state. There are four states with
the same value of |ky′ | in each valley. The directions of the
currents carried by these states are indicated by the arrows
normal to the contours. The subscripts on the arrow labels
indicate the current direction (i, incident or r, reflected) and
sign of ky′ in the K valley. The currents in K ′ are obtained
by time-reversing those in K , see Eq. (11). For example, the
current carried by the state incident with ky′ > 0 in K ′ is
obtained by time reversing jr− in K . The polar angles of the
currents carried by states incident with ky′ > 0 are φcKi+ in the
K valley and φcK ′i+ in the K ′ valley. These angles are clearly
different and this demonstrates ky′ (φc) is not the same in each
valley.

The reason for this asymmetry is that the k-vectors and
currents in the K ′ valley are related to those in the K valley by
time reversal but the contours in each valley are not inversion
symmetric about the valley center. Because of time reversal
symmetry, the k vector of the incident state with ky′ > 0 in K ′
is −kr−, where kr− is the k vector of the reflected state with

ky′ < 0 in K . Hence the angle of incidence φcK ′i+ in the K ′
valley is related by symmetry to the angle of reflection φcKr−
in the K valley. Thus φcK ′i+ = π + φcKr−. However, the an-
gles φcKr− and φcKi+ in the K valley are not symmetry related
because the contour is not inversion symmetric. Consequently
there is in general no symmetry relation between the angles
of incidence, φcK ′i+ and φcKi+. However, the special case of
θ ≡ 0 (mod π/3) is an exception (Sec. III G).

It follows that ky′ (φc) is not the same function in each
valley. Hence the transmitted current as a function of φc is
valley asymmetric except for special incidence conditions
where the curves of TK (φc) and TK ′ (φc) cross. This remains
true in the case of multiple current-carrying states but in this
case additional asymmetry may occur because the number
of current-carrying states may be different in the two val-
leys. Hence Tα (φc) is valley asymmetric, except for possible
crossings.

G. Valley asymmetry of Tα(ky′ )

The transmission coefficient is also valley asymmetric
when it is expressed as a function of ky′ . Hence valley asym-
metric transmission occurs when particles are selected by
momentum as well as by velocity.

The origin of the valley asymmetry with respect to ky′ is
that the energy contours are not mirror symmetric about the
kx′ axis unless θ ≡ 0 (mod π/3). Hence Tα (ky′ ) in each valley
is not a symmetric function of ky′ . That is Tα (ky′ ) 
= Tα (−ky′ )
unless θ ≡ 0 (mod π/3). However, by using time reversal
symmetry, it can be proved that

TK (ky′ ) = TK ′ (−ky′ ).

Therefore TK (ky′ ) 
= TK ′ (ky′ ), except for special incidence con-
ditions where the curves of TK (ky′ ) and TK ′ (ky′ ) cross.

It remains to prove that TK (ky′ ) = TK ′ (−ky′ ). This is done
by using the S-matrix description of the asymptotic regime
where the evanescent wave amplitudes are negligible. When
x′ approaches −∞, the scattering states in the K valley have
the general form

ψK− = [i0eK (ki, ky′ )eikix′ + reK (kr, ky′ )eikr x′
]eiky′ y′

(14)

and when x′ approaches +∞, the form is

ψK+ = [teK (ki, ky′ )eikix′ + x0eK (kr, ky′ )eikr x′
]eiky′ y′

. (15)

Here the x′ component of the current is positive for the state
with kx′ = ki and negative for the state with kx′ = kr . i0 is
the amplitude of the incident wave, r is the amplitude of the
reflected wave, t is the amplitude of the transmitted wave and
x0 is the amplitude of a wave incident from the right.

The asymptotic wave amplitudes are related by the S ma-
trix defined by (

r
t

)
=

(
SKa SKb

SKc SKd

)(
i0
x0

)
. (16)

The S matrix is unitary provided the propagating state po-
larization vectors are normalized to unit current. If this
normalization is not used, current conservation still constrains
the form of the S matrix but does not constrain it to be unitary
because when the energy contours are warped, the currents
carried by the incident and reflected states are not of the same
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magnitude. For example, the normalization eα (k)†eα (k) = 1
is convenient for numerical calculations but with this normal-
ization, the S matrix satisfies the generalized unitarity relation
S†JS = J̃ , where J = diag(| jr |, | ji|) and J̃ = diag(| ji|, | jr |).

The proof of the relation TK (ky′ ) = TK ′ (−ky′ ) is simplest
when the S matrices are unitary. We detail this case then
state the change that is introduced by generalized unitarity.
To prove the relation the S matrix in the K valley is related
to the one in the K ′ valley. Application of the time reversal
operator to the asymptotic states in Eqs. (14) and (15) gives

ψK ′− = [i∗0eK ′ (−ki,−ky′ )e−ikix′+r∗eK ′ (−kr,−ky′ )e−ikr x′
]e−iky′ y′

(17)

when x′ approaches −∞ and

ψK ′+ = [t∗eK ′ (−ki,−ky′ )e−ikix′

+ x∗
0eK ′ (−kr,−ky′ )e−ikr x′

]e−iky′ y′
(18)

when x′ approaches +∞. However, because the sign of the
current changes under time reversal, Eq. (11), the state that
carries positive current in the x′ direction has kx′ = −kr and
the state that carries negative current has kx′ = −ki. Conse-
quently, the wave amplitudes in the time-reversed state are
related by (

i∗0
x∗

0

)
=

(
SK ′a SK ′b
SK ′c SK ′d

)(
r∗
t∗

)
. (19)

Then after using the unitarity of S and complex conjugating
the resulting equation, it can be seen that the S matrices in the
two valleys satisfy SK (ky′ ) = ST

K ′ (−ky′ ), where the sign change
results from time reversal.

Next, this relation is used to prove that TK (ky′ ) =
TK ′ (−ky′ ). The transmitted amplitude for a unit am-
plitude wave incident from the left is Sαc and the
transmitted amplitude for a unit amplitude wave inci-
dent from the right is Sαb. These amplitudes are re-
lated by SKc(ky′ ) = SK ′b(−ky′ ). In addition, |Sαc(ky′ )| =
|Sαb(ky′ )| because of unitarity. Hence TK (ky′ ) = |SKc(ky′ )|2 =
|SK ′b(−ky′ )|2 = |SK ′c(−ky′ )|2 = TK ′ (−ky′ ). These relations re-
main valid when the S matrices satisfy the generalized
unitarity relation but in this case the S matrices in the two
valleys are related by JK SK (ky′ )J̃−1

K = ST
K ′ (−ky′ ).

In the special case of θ ≡ 0 (mod π/3), the transmission
coefficient expressed as a function of ky′ has higher symmetry:
when the potential is symmetric under Ix′ , Tα (ky′ ) = Tα (−ky′ )
hence TK (ky′ ) = TK ′ (ky′ ). This can be proved by applying Ix′

to the asymptotic states in Eqs. (14) and (15) and then using
the definition of the S matrix.

When multiple current-carrying states occur, the transmis-
sion is valley asymmetric for each state, except when θ ≡ 0
(mod π/3). Hence Tα (ky′ ) is valley asymmetric except for
possible crossings and except when θ ≡ 0 (mod π/3).

H. Transmission coefficient relations

The transmission coefficients at different values of θ are re-
lated by symmetry and we have found two particularly useful
symmetry relations. The first is

TK (φc, θ ) = T̂K ′ (φc, θ ± π/3), (20)

where T̂ is the transmission coefficient for a barrier with the
spatially inverted potential, V (−x′). The second symmetry
relation is

TK (φc, θ ) = TK ′ (−φc,±π/3 − θ ). (21)

In both relations, it is understood that the spins are opposite in
the case of TMDs.

The symmetry relations occur because there are operators
that transform the band Hamiltonian H0K (θ ) into H0K ′ (θ ±
π/3) and H0K ′ (π/3 − θ ). To show this Tα is first taken to be a
function of ky′ .

Then the relation equivalent to Eq. (20) is

TK (ky′ , θ ) = T̂K ′ (ky′ , θ ± π/3). (22)

This is a consequence of the way the band Hamiltoni-
ans transform under the product of spatial inversion, Ix′y′ ,
and complex conjugation, 
. The momentum transforms as
Ix′y′
πK
Ix′y′ = −πK ′ and the Hamiltonians satisfy

DIx′y′
H0K (θ )
Ix′y′D = H0K ′ (θ ± π/3), (23)

where D = diag(1,−1,−1, 1) in the case of BLG and D =
diag(−1, 1, 1, 1) in the case of TMDs. Hence if ψ is an
eigenstate of H0K (θ ) + V (x′), then DIxy
ψ is an eigenstate of
H0K ′ (θ ± π/3) + V (−x′) and the symmetry relation, Eq. (22),
is proved. The relation holds for any y′-independent potential.

The second symmetry relation, Eq. (21), is equivalent to

TK (ky′ , θ ) = TK ′ (−ky′ ,±π/3 − θ ). (24)

This is a consequence of the transformation of the Hamil-
tonians under inversion of the y′ coordinate, I ′

y. In this case
Iy′πK Iy′ = −πK ′ and the Hamiltonians satisfy

DIy′H0K (θ )Iy′D = H0K ′ (±π/3 − θ ), (25)

which leads to Eqs. (24).
The symmetry relations expressed as a function

of φc, Eqs. (20) and (21), follow from relations
between the current components. By transforming the
polarization vectors with DIx′y′
, it can be shown that
jK (k, θ ) = jK ′ (k, θ ± π/3). Hence φcK (θ ) = φcK ′ (θ ± π/3)
and this together with Eq. (22) leads to Eq. (20).
Similarly jx′K (kx′ , ky′ , θ ) = jx′K ′ (kx′ ,−ky′ ,±π/3 − θ )
and jy′K (kx′, ky′ , θ ) = − jy′K ′ (kx′ ,−ky′ ,±π/3 − θ ). Hence
φcK (θ ) = −φcK ′ (±π/3 − θ ) and this together with Eq. (24)
leads to Eq. (21). These symmetry relations are valid for all
φc hence remain valid when there is more than one current
carrying state.

IV. NUMERICAL METHODS

A. Transmission coefficients

The transmission coefficients are found numerically be-
cause we need to consider soft-walled barriers (Sec. V B)
for which the transmission coefficient cannot be found an-
alytically. The numerical procedure is based on an S-matrix
method [42] that is used in surface science and is numerically
stable when evanescent waves are present. In brief, the system
is divided into short segments and the segment S matrices
are combined to find the system S matrix and transmission
coefficient. The segments must be short enough to allow the
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segment S matrix to be computed from the segment transfer
matrix to the required accuracy. The only difference between
the procedure used in surface science and the present one is
the method used to compute the transfer matrices.

The transfer matrices are obtained from the numerical so-
lution of

(H0α + Vc + �V )ψα = Eψα, (26)

where H0α is the band Hamiltonian in valley α and Vc is
the position independent potential in the contacts. �V (x′) =
V (x′) − Vc, where V (x′) is the total potential. The four-
component wave function is expressed in the form

ψα = exp(iky′y′)
4∑

j=1

Qj (x
′)eα (k j, ky′ ) exp(ik jx

′). (27)

The transfer matrix M, for a segment of length l with right
boundary at position, x′ is defined by

D(x′ − l )Q(x′ − l ) = M(x′ − l, x′)D(x′)Q(x′), (28)

where Q(x′) is a vector whose elements are Qj (x′) and D(x′)
is a diagonal matrix whose diagonal elements are exp(ik jx′).

M is found by solving a differential equation for Q(x′). By
substituting the form of ψα given by Eq. (27) into Eq. (26) and
using the fact that the polarization vectors are orthogonal with
respect to vx [43], it can be shown that

d

dx′ Q = −i

h̄c
D−1PL�V PRDQ, (29)

where PR is a matrix whose columns are eα (k j, ky′ ), PL is a
matrix whose rows are Aje†

α (k∗
j , ky′ ) and c = v0 in the case of

BLG and c = c3 in the case of TMDs. The constants Aj are
chosen so that Aje†

α (k∗
j , ky′ )vxeα (k j, ky′ ) = c.

The calculation of the segment S matrix requires half of
the transfer matrix and half of its inverse [42]. Each column
of both matrices is found by solving Eq. (29) numerically with
a fourth-order Runge-Kutta method and appropriate initial
conditions. The relative error in the transmission coefficients
is <10−6. The procedure defined by Eq. (29) is not the only
way of finding the transfer matrix but we have not investigated
the alternatives. The procedure can be generalized to deal with
the case of y′-dependent potentials.

B. Propagating region boundaries

To find the range of current angles where single-valley
transmission occurs, one has to find the range of current an-
gles, φc, on the propagating part of the energy contour in each
valley, see bold lines and vectors normal to the contours in
Fig. 1. The extrema of the current angle occur either at the end
points of the propagating range or at points of inflection in the
propagating range. Hence to find the range of current angles
in the propagating part of the contour, one has to compute the
current angles at the end points of the propagating part and at
the points of inflection, then choose the angles that give the
largest range. This method was used to find the propagating
part of each contact contour in Fig. 1 and the regions of single-
valley transmission detailed in Secs. V and VI. In the case of
Fig. 1, points of inflection occur within the propagating part
but the extrema of the current angle occur at the end points.

FIG. 6. Cross section of device used to find model potential
(schematic). The filled rectangles represent the top and bottom gates.

V. SINGLE-VALLEY TRANSMISSION IN BLG

A. Overview

In this section, we explain the device model used to find the
barrier potential in BLG, detail the valley asymmetric trans-
mission and show that the barrier potential can be adjusted so
that large valley asymmetry occurs for all barrier orientations.
We also give an extended discussion of the feasibility of
observing the predicted valley asymmetry.

The device model and potential are detailed in Sec. V B.
We then explain the valley asymmetric transmission section
(Sec. V C) and show that large valley asymmetry can be
obtained for all barrier orientations by adjusting the potential
(Sec. V D). Next we show that the valley asymmetry persists
over a range of Hamiltonian parameters (Sec. V E) and is
insensitive to substrate interactions (Sec. V F). The section
closes with a discussion of the requirements for observing the
predicted valley asymmetry (Sec. V G).

B. Model device and potential

The barrier is taken to be generated by a device that has a
narrow top gate and a wide bottom gate (Fig. 6). The bottom
gate is 16 nm below the BLG and the top gate is 4 nm above
it. The BLG is grounded and the space between the BLG and
the gates is occupied with hBN. The electrostatic potentials
in this device are estimated from a self-consistent solution of
the Laplace equation based on the theory in Ref. [38] and the
numerical method in Ref. [44]. This allows the potential to
be found for a realistic device structure but the potential is
approximate because of approximations made in the theory.

The self-consistent potential is constant underneath the
top gate and approaches a different constant in the contacts.
Near the top gate edges it has the form of a soft step that
varies monotonically between the two constant values. The
self-consistent calculation of the potential is expensive but we
only need potentials for a small range of device parameters.
We therefore fit a model potential to the self-consistent one.

The contact potentials, U1 = 14 meV, U2 = −14 meV, are
obtained with a bottom gate voltage ∼2000 mV. All calcu-
lations are done for these fixed values. The top gate voltage
is varied over a small range to optimize the widths of the
single-valley regions. Within this range, the total potential is
taken to vary linearly with top gate voltage, Vt ,

U1 + V1 = V01 + dV1

dVt
�Vt ,

U2 + V2 = V02 + dV2

dVt
�Vt ,
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TABLE I. Bilayer graphene Hamiltonian parameters in meV.
The velocity parameters are related to the γ parameters by vi =
aγi

√
3/2h̄, where a = 0.246 nm is the lattice constant. The parame-

ters are taken from Table 1 in Ref. [35]. In parameter set 3, �′ is not
given in Ref. [35] and is assumed to be 0.

Set 1 Set 2 Set 3

γ0 3160 3000 2900
γ3 380 300 100
γ4 140 150 120
t 381 400 300
�′ 22 18 0

where V01 = 37 meV, V02 = −0.78 meV are the total poten-
tials when Vt ∼ −200 mV and dV1/dVt = −0.12, dV2/dVt =
−0.072 are estimated by numerical differentiation of the self-
consistent potential.

The model step function is chosen to reproduce the self-
consistent potential. We have found that the self-consistent
potential varies rapidly near the gate edges and slowly far
from the gate edges. This variation cannot be reproduced well
with a function that depends only on one length parameter,
however a reasonable approximation is

F (x′) = 1

2
[1 + tanh(x′/a)], x′ > x0,

= α

(x′ − β )2 + γ
, x′ � x0, (30)

where two of the parameters are constrained by the require-
ments that F and dF/dx′ are continuous at x′ = x0. The
parameters a, x0 and γ are used to adjust the shape of F while
α and β are used to enforce continuity. The continuity require-
ment can be satisfied with two different values of α and β; the
values that give the best fit are chosen. The resulting parameter
set is a = 3 nm, x0 = 2.5 nm, γ = 20 nm2, α = 17.89 nm2,
and β = 3.626 nm. F (x′) defined in Eq. (30) gives an upward
step, the downward step is modeled with F (−x′) so the barrier
is symmetric.

C. Valley asymmetric transmission

The valley asymmetric transmission is shown in Fig. 2.
The transmission coefficients are computed as described in
Sec. IV A and with Hamiltonian parameter set 1 in Table I.
Multiple current carrying states occur only in a narrow φc

range, ∼0.4◦. The sensitivity to the parameter values is dis-
cussed in Sec. V E.

Two types of valley asymmetry occur. When θ is not
close to π/6 (mod 2π/3) and not close to π/2 (mod 2π/3)
(Fig. 2, left) single valley transmission occurs in the same
valley at both positive and negative φc. However, when θ

is close to π/6 (mod 2π/3) or close to π/2 (mod 2π/3)
(Fig. 2, right) the single-valley transmission at positive and
negative φc is in different valleys.

In both cases, the transmission coefficient is large in a
central region and goes to zero abruptly at two critical an-
gles. In the central region, the barrier states are propagating
and transmission resonances occur. The resonances are sharp
because the barrier is wide. Beyond the two critical angles,

FIG. 7. Optimized single-valley regions for 56 meV electrons
in BLG. Solid red lines: K transmission boundaries, dashed blue
lines: K ′ boundaries. Light fill: single-valley transmission, dark fill:
two valley transmission. (Left) Same valley at ± incidence. (Right)
Different valleys at ± incidence; in this case sharp cutoffs occur and,
for clarity, some tiny regions are not shown; see Sec. V D and Fig. 9.

the barrier states are evanescent. Then tunneling occurs in the
barrier and when the barrier width is large, the transmission
coefficient is exponentially small. With the 300 nm gate width
assumed in this work, the transmission coefficient is typically
between 10−4–10−3 at about 0.1◦ into the tunneling regime
and several orders of magnitude smaller a few degrees into
it. Then the transmission coefficient is practically zero and
valley asymmetric total external reflection occurs as explained
in Sec. II. In addition, Fig. 1 shows that the range of incident
current angles is larger in K than in K ′. This explains why the
width of TK in Fig. 2 (left) is larger than the width of TK ′ .

D. Optimized single-valley transmission

Figure 2 shows that single-valley transmission occurs in
two regions that are bounded by critical angles for total exter-
nal reflection. It is desirable to maximize the angular width of
the single-valley regions. We do this by varying the top gate
voltage: the region boundaries are computed as described in
Sec. IV B and the gate voltage is adjusted to maximize the
region widths.

Figure 7 shows this leads to large angular widths. By
choosing the case when the valleys are the same on both sides
of 0◦ (left) or different (right), single-valley regions of width
∼17.3–53.0◦ can be obtained for all θ . The θ dependence of
the single valley regions is quite different in the same-valley
and different-valley cases. The explanation is as follows.

In the same-valley case, single-valley regions of finite
width are found for all θ except θ = π/6 and θ = π/2.
When θ = π/6, it follows from Eq. (21) that TK (φc, π/6) =
TK ′ (−φc, π/6). Hence if single-valley transmission occurs in
one valley α for φc > 0, it must occur in the other valley
when φc < 0. Therefore the same-valley case cannot occur at
θ = π/6 for any value of the potential. In the case of θ = π/2,
the fact that the barrier is symmetric gives T̂α = Tα and it
then follows from Eq. (20) that TK (φc, π/6) = TK ′ (φc, π/2)
and TK ′ (−φc, π/6) = TK (−φc, π/2). These relations to-
gether with the relation TK (φc, π/6) = TK ′ (−φc, π/6) lead
to TK (φc, π/2) = TK ′ (−φc, π/2). Again, the same-valley case
cannot occur for any value of the potential. These arguments
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FIG. 8. Optimal barrier potentials in BLG. The corresponding
single-valley regions are shown in Fig. 7. (Left) Same-valley case.
(Right) Different-valley case.

explain why the single-valley regions widths in the same-
valley case shrink to zero at θ = π/6 and θ = π/2.

In the different-valley case, single-valley regions of large
width occur near θ = π/6 and θ = π/2 but sharp cutoffs
occur as θ departs from these values. Beyond the cutoffs
it is difficult or even impossible to find potentials that lead
to different-valley behavior. This is a consequence of the θ

dependence of the propagating part of each energy contour.
When θ changes, one end point of a propagating part may go
around a corner of a contour. When this happens, φc changes
rapidly with θ and the propagating range broadens rapidly. If
the propagating range in the other valley remains narrow, a
crossover from different-valley to same-valley behavior may
occur.

For example, consider the cutoff near θ = 12◦ in Fig. 7.
If θ decreases from ∼30◦, the end point of the propagating
range in the K valley moves around the right hand corner of
the contour. Then a crossover to same-valley behavior occurs
but the different-valley behavior can be restored by raising the
barrier height. This shrinks the barrier contour (Fig. 1) hence
shrinks the propagating part of the contact contours in both
valleys and restores the different-valley behavior. However,
the barrier height cannot be raised above E as the transmission
becomes exponentially small. This condition corresponds to
the cutoff near θ = 12◦ and all the other cutoffs.

Beyond the cutoffs tiny regions of different-valley behavior
can be found by changing the potential drastically. These
regions correspond to θ and φc ranges of only a few degrees
which is too small to be of practical use. For this reason and
for clarity they are not shown in Fig. 7 but are detailed in
Sec. V E.

The rapid variation of φc when the end point of a prop-
agating part goes around a corner of an energy contour also
affects the same-valley behavior. This is why small peaks and
dips occur in the same-valley boundary lines near θ = 0, 60,
and 120◦.

Figure 8 shows the optimal barrier potentials used to com-
pute the single-valley region boundaries shown in Fig. 7. The
range of potentials needed for two single-valley regions in
the same valley does not overlap with the range needed for
two single-valley regions in different valleys. In addition, if
the region widths are calculated with a θ -independent poten-
tial, equal to the mid-range optimal potential, they shrink by

FIG. 9. Optimized single-valley regions in BLG. Solid red lines:
K and K ′ region boundaries computed with parameter set 1 as in
Fig. 7; dashed blue lines: K and K ′ boundaries computed with pa-
rameter set 2. (Left) Same-valley case. (Right) Different-valley case.
See Table I for parameter values.

∼10%–20%. These observations confirm it is necessary to
adjust the top gate voltage to get single-valley regions of large
width for all θ .

The required bias is modest and outside the range needed
for a Lifshitz transition. A Lifshitz transition occurs in BLG
when the interlayer bias is either very low [35] or very high
[45]. This does not affect the valley asymmetry but causes
the energy contours to become disconnected and may be in-
convenient because the transmitted current may be reduced.
However, the bias values in Fig. 8 are not in the range where
disconnected contours occur.

E. Sensitivity to Hamiltonian parameters

A wide range of Hamiltonian parameters appears in the
literature so it is important to check the sensitivity of the
single-valley region widths to the parameter values (Table I).
This is done by repeating the calculations with parameter sets
2 and 3.

Figure 9 shows region boundaries computed with param-
eter sets 1 and 2. The boundaries computed with parameter
set 1 are identical to those in Fig. 7 and the tiny regions of
different-valley behavior, which are omitted from Fig. 7 also
shown. When parameter set 2 is used the range of single-
valley region widths becomes ∼17.4◦–47.0◦ which is similar
to the range found with parameter set 1. If parameter set
3 is used, the single-valley range is smaller, ∼7.5◦–18.3◦
(Fig. 10). However, the range width depends on energy and
when the energy is decreased to 19 meV, the range width
becomes ∼9.6◦–29.0◦.

F. Sensitivity to substrate

There are reports that a small band gap occurs in MLG on
an hBN substrate [46]. If a similar gap occurred in BLG on
hBN it could affect the single-valley regions, however there is
experimental and theoretical evidence that this effect is either
small or experimentally controllable. In particular, the authors
of Ref. [47] were able to explain their data on Fabry-Perot
resonances in a BLG potential barrier without considering
interactions with the substrate. This is consistent with the ab
initio density functional calculations in ref. [48]. The authors
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FIG. 10. Optimized single-valley regions in BLG. Solid red
lines: region boundaries computed with parameter set 3 and E =
56 meV; dashed blue lines: boundaries computed with E = 19 meV.
(Left) Same-valley case. (Right) Different-valley case. See Table I
for parameter values.

of this reference computed the band structure of 3 different
BLG-hBN heterostructures and found that a substrate-induced
gap occurs only in one case where the heterostructure is asym-
metric. The gap in this case is about 40 meV.

If a gap of this magnitude occurs, its effect can be com-
pensated for by adjusting the gate voltage. To show this, the
optimization calculations leading to Fig. 7 are repeated with
substrate interactions included. In Ref. [48], the 40 meV gap
results from an ∼+13 meV shift of the conduction band
edge and an ∼−27 meV shift of the valence band edge.
The gap and shifts are modeled by adding the mass terms
diag(13,−13, 27,−27) to the Hamiltonian. These terms are
similar to the mass terms given by other authors [35,49] but
are made asymmetric to model the asymmetric shifts of the
band edges in Ref. [48].

The optimized region boundaries with the gap included
(Fig. 11) are almost identical to those computed without in-
cluding the gap. The only differences are that the tiny regions
of single valley transmission in the different-valley case are
absent and the main regions shrink down to the cutoffs which
occur within about 0.2◦ of 0◦, 60◦, and 120◦. These differ-
ences are too small to be of practical significance and are
probably caused by minor changes to the energy contours. The

FIG. 11. Effect of gap on optimized single-valley regions in
BLG. Solid red lines: K and K ′ region boundaries computed with
parameter set 1 as in Fig. 7; dashed blue lines: K and K ′ bound-
aries computed with gap included. (Left) Same-valley case. (Right)
Different-valley case.

optimal potentials with the gap are shifted by about 5–13 meV
from those shown in Fig. 8.

G. Experimental feasibility

There are three important questions about the feasibility
of observing the predicted valley asymmetric transmission: is
the necessary bias in the experimentally feasible range? Is the
system in the ballistic transport regime? and Is the trigonal
warping strong enough?

The bias opens up a gap and to check whether the nec-
essary bias is feasible the predicted gaps are compared with
experimentally observed gaps. Figure 8 shows that the gap is
at most ∼45 meV. This is significantly smaller than the largest
reported transport gaps in bilayer graphene which are up to
80–130 meV [50–52]. So it is likely that the required bias can
be achieved.

Ballistic transport in BLG occurs at sufficiently high car-
rier density [53,54] and there are reports of operation of
potential barrier [47] and antidot lattice [55] devices in the
ballistic regime. The electron density and temperature are
1.9–2.7 × 1012 cm−2 and 1.6 K for the barrier device and
1–3 × 1012 cm−2 and 4.2 K for the antidot device. These
densities can be compared with the density for the barrier
device described in Sec. V B. It is difficult to determine the
density accurately because of the uncertainty in the BLG
Hamiltonian parameters however with the parameters in Ta-
ble I the densities are in the range ∼1.4–1.7 × 1012 cm−2

while without trigonal warping the density for the same en-
ergy is ∼2.1 × 1012 cm−2. These densities are similar to the
experimental ones and this suggests that the barrier device
described in Sec. V B would operate in the ballistic regime at
low temperature. In addition, the device described in Ref. [47]
was used to observe Fabry-Perot interference and this clearly
shows that experiments on barrier transmission in the ballistic
regime are feasible.

There is less clarity about the trigonal warping. Table I
shows that the value of the trigonal warping parameter, γ3, is
not known accurately. If the actual value lies between 380 and
300 meV as in parameter sets 1 and 2, the trigonal warping
is strong enough. If γ3 is significantly smaller, the predicted
effects would be more difficult to observe but it is possible
to work at a lower energy to compensate for reduced trigonal
warping (Sec. V E). In addition it may be possible to make a
collimator of narrower beam width.

VI. SINGLE-VALLEY TRANSMISSION IN TMDS

A. Overview

In this section, we show that valley asymmetric transmis-
sion occurs in all the semiconducting monolayer TMDs and
in the most favorable case, MoTe2, the single-valley region
widths are similar to those in BLG. However, there are two
important differences between BLG and TMDs. First, the
most favorable carriers are holes as trigonal warping in TMDs
is strongest in the valence band. Secondly, spin-valley locking
[39] ensures that the valence bands at K and K ′ are of definite
and opposite spin. Consequently, valley polarized currents are
also spin polarized provided that the Fermi level is above the
top of the lower spin-split valence band.
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TABLE II. TMD Hamiltonian parameters. k ranges are in nm−1,
band and SO energies are in meV, and the γ parameters are in
meV nm.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

k range ± 0.06 ± 0.06 ± 0.05 ± 0.03 ± 0.03 ± 0.03
εv 0.0 0.0 0.0 0.0 0.0 0.0
εc 1657.9 1429.3 1071.7 1806.2 1541.2 1066.8
εv−3 −3500.0 −2897.0 −3670.0 −3370.0 −3220.0 −3180.0
εc+2 3512.6 3003.4 2483.8 3990.6 3419.1 2805.9
γ2 185.3 179.1 88.2 154.3 157.3 3.1
γ3 309.2 274.9 243.5 322.2 342.7 269.7
γ4 −275.1 −250.9 −189.4 −436.9 −294.3 −352.5
γ5 −401.9 −333.8 −470.0 −608.3 −469.9 −592.4
γ6 44.6 52.6 −97.2 52.3 61.2 −74.1
λ 74.0 92.0 107.5 215.0 233.0 243.0

We start by explaining the TMD Hamiltonian (Sec. VI B).
To ensure the trigonal warping is described to sufficient
accuracy we calculate the transmission coefficients with a
four-band k · p Hamiltonian [36]. However, the parameters of
this Hamiltonian are not in the literature and we have obtained
them by fitting to ab initio band structures (Sec. VI C). The
valley asymmetric transmission and single valley regions for
MoTe2 are detailed in Sec. VI D. Single-valley regions for all
the semiconducting TMDs are compared in Sec. VI E and the
requirements for observing the predicted valley asymmetry
are discussed in Sec. VI F.

B. TMD Hamiltonians

The total Hamiltonian is the sum of the band Hamilto-
nian, the SO Hamiltonian and the external potential. A k · p
Hamiltonian is appropriate for computing transmission coef-
ficients because the potential barrier has a soft wall that varies
slowly on an atomic scale. A two-band k · p Hamiltonian is
available [36,56] but we have found it does not reproduce
trigonal warping well in the required energy range. Instead
we use the four-band k · p Hamiltonian given in the same
references. However, the parameters of this Hamiltonian are
not in the literature. We obtain them by fitting to ab initio
band structures (Table II and Sec. VI C).

The SO Hamiltonian is taken from Ref. [36] but only
the lowest order contributions are included as in Ref. [40].
This leads to the sum of band and SO Hamiltonians given in
Eq. (2). The λ parameter (Table II) is taken to be 1/2 of the
SO splitting reported in Ref. [40].

The external potential is taken to be a scalar function,
V (x′). As a function of lateral position, V (x′) is constant in
the barrier and at the barrier edges it decreases to zero with the
same wall function, F (x′), as used to model the BLG potential.
The parameters of F (x′) are also the same as for BLG.

The sum of the four-band k · p Hamiltonian and V (x′) is
used to compute transmission coefficients and single-valley
regions. In addition the single-valley regions are computed
with the tight binding Hamiltonian in Ref. [40] which includes
interactions up to third neighbors. This gives excellent agree-
ment with ab initio bands and is used to check the accuracy

TABLE III. Hole Fermi energies in meV corresponding to hole
densities of 3 × 1013 cm−2 in MoX2 and 1.5 × 1013 cm−2 in WX2.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

k · p 121.7 112.2 116.9 97.3 95.2 114.2
ab initio 125.3 116.9 117.7 108.3 108.1 129.2

of the single-valley regions computed with the four-band k · p
Hamiltonian.

C. Four-band k · p Hamiltonian parameters

The four-band k · p Hamiltonian is derived by symmetry
arguments in Ref. [36]. In the K valley, and without SO cou-
pling, the four-band Hamiltonian exactly as stated in Ref. [36]
is

H0K =

⎛
⎜⎝

εv γ3q− γ2q+ γ4q+
γ3q+ εc γ5q− γ6q−
γ2q− γ5q+ εv−3 0
γ4q− γ6q+ 0 εc+2

⎞
⎟⎠, (31)

where q± = qx ± iqy and q is the k-vector relative to the K
point. When crystallographic coordinates are chosen as in
Ref. [36], E (q) is a symmetric function of qy. Consequently,
the characteristic polynomial cannot contain any terms of odd
order in qy and this implies that all the γ parameters can be
taken to be real. To prove this, notice that a unitary transfor-
mation can be used to make γ2, γ3, and γ4 real. Then after
multiplying out the secular determinant it can be seen that the
characteristic polynomial contains no terms of odd order in qy

provided that γ5 and γ6 are also real.
We require the values of the parameters γi = h̄ci and obtain

them by fitting to ab initio band structures. The third neighbor
tight-binding Hamiltonian in Ref. [40] is used to generate ab
initio data for fitting and the tight binding parameters used are
the GGA parameters in Table III of this reference. However,
this Hamiltonian does not include the v − 3 band. The value
of εv−3 is taken from the Materials Project database [57].

The γi are fitted with nonlinear least squares. It is only
necessary to fit on the KM line because the four-band
Hamiltonian is based on symmetry and gives the correct inter-
polation of E (k) away from this line. This has been confirmed
with numerical tests. The fit is restricted to the valence and
conduction bands because the four-band Hamiltonian does
not reproduce the remote bands, v − 3 and c + 2, well. 100
k points on a uniform grid are sampled from each band. The
k range used for the fitting has to be chosen carefully. If
it is too small, E (k) is not reproduced well at the desired
energies. However, if it is too large, artifacts appear in the
form of extra peaks in E (k); presumably because the k · p
approximation breaks down far from the K point. To minimize
these difficulties the fitting range is made as a large as possible
without introducing artifacts.

The k ranges, band edge energies and fitted γ parameters
are given in Table II. The signs of the γ parameters are deter-
mined only to within a unitary transformation. For example,
the unitary transformation diag(1, 1, 1,−1) can be used to
change the signs of γ4 and γ6.
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FIG. 12. Optimized single-valley regions for 116.9 meV holes
in MoTe2. Solid red lines: K transmission boundaries, dashed blue
lines: K ′ boundaries. Light fill: single-valley transmission, dark fill:
two valley transmission. (Left) Same valley at ± incidence. (Right)
Different valleys at ± incidence; in this case cutoffs similar to those
in Fig. 7 occur very close to θ = 0◦, 60◦ and 120◦.

D. Valley asymmetry in MoTe2

Figure 3 shows single-valley transmission of holes in
MoTe2. K and K ′ are defined as in Ref. [36] and spin up holes
are transmitted in the K valley. The barrier width is 300 nm,
as for BLG, and the transmission coefficients are qualitatively
similar to those for BLG. However, the cutoffs at the critical
angles are much sharper than for BLG. The reason is that
the evanescent wave decay lengths in TMDs are typically an
order of magnitude smaller than in BLG. Consequently the
transmission coefficients in the total external reflection regime
are much smaller, typically <10−27 at 0.1◦ into this regime in
MoTe2.

MoTe2 is the most favorable TMD as it has the largest
single-valley region widths of all the TMDs. Figure 12 shows
that the optimized region widths, ∼16.0◦–30.6◦, are similar
to those in BLG. The region widths of all the semiconducting
TMDs are compared in the next section.

E. Comparison of single-valley regions in semiconducting TMDs

Region widths obtained from the k · p and ab initio tight
binding Hamiltonians are compared at constant hole density.
The reason for working at constant density is that the density
is proportional to the area enclosed by a constant energy
contour. So when the comparison is done at constant density,
differences in the region widths may be attributed to differ-
ences in the shape of the contour. This allows one to assess
whether the k · p Hamiltonian reproduces trigonal warping
accurately.

The hole density is taken to be 3 × 1013 cm−2 in the Mo
materials. However, E (k) varies more rapidly in the W ma-
terials so a significantly larger gate bias would be needed to
achieve the same hole density as in the Mo materials. For this
reason, the density is taken to be 1.5 × 1013 cm−2 in the W
materials. The hole Fermi energies at which these densities
occur are given in Table III, relative to the edge of the upper
spin split valence band.

Figure 13 (left two columns) shows single-valley region
boundaries for all six semiconducting TMD monolayers. The
boundaries computed with the k · p and ab initio tight binding

Hamiltonians typically agree to within 1.0–2.7◦ for all mate-
rials except WTe2. This suggests that the k · p Hamiltonian is
reliable except in the case of WTe2 so the transmission coef-
ficients for MoTe2 shown in Fig. 3 should also be reliable. In
addition, Fig. 13 shows that the single-valley region widths are
largest in MoTe2 so, as stated in Sec. VI D, MoTe2 is the most
favorable TMD. This is consistent with Ref. [33] in which the
authors suggest the use of MoTe2 to observe spin-dependent
refraction, an effect that also depends on trigonal warping.

In the different-valley case, cutoffs occur as for BLG but
only within about 1◦ of θ = 0◦, 60◦, and 120◦. Hence single-
valley transmission in different valleys occurs in a much wider
θ range than in BLG. The reason for this difference is that in
TMDs the typical radial size of the barrier contour relative
to the size of the contact contour is much smaller than in
BLG. (For example, near the cutoff closest to θ = 0◦, the ratio
of the barrier contour size to the contact contour size on the
positive kx axis is 0.017 in MoTe2 and 0.27 in BLG.) Hence, in
TMDs, a larger rotation away from θ = 30◦ or 90◦ is needed
to take the end point of a propagating part around a corner of a
contour. Thus the different-valley regions persist over a wider
θ range in TMDs, for the energies considered here.

Figure 13 (right two columns) shows the optimal poten-
tial barrier heights used to compute the single-valley region
boundaries shown in Fig. 13. As in BLG, the potentials needed
for single-valley regions in same and different valleys do not
overlap and the potential has to be adjusted to get single-valley
regions of large width for all θ . In addition, and as in BLG, the
region widths calculated with a fixed θ -independent potential,
equal to the mid-range optimal potential are up to ∼20%
smaller than the optimized regions.

F. Experimental feasibility

The necessary experimental conditions are the same as for
BLG: the material must be in the ballistic regime, the incident
hole beam must be collimated and gates are needed to set
the hole density and provide a barrier potential. The ballistic
regime in monolayer TMDs has not yet been reached; the
current experimental situation is detailed in Sec. VII B 1.
The other two conditions are probably close to being satisfied.
The MLG collimator [24] simply consists of suitably shaped
gates deposited on hBN encapsulated graphene. There seems
to be no reason why similar gates should not be deposited on
insulated TMDs, although two top gates or two collimators
may be needed as the same-valley and different-valley cases
occur at different angles of incidence. The bottom and top
gates, that are needed to control the hole density and provide
the barrier, resemble the gates used to make FETs and TMD
FETs have been fabricated. For example, n-FETs have been
made from monolayer MoS2 [58,59], p-FETs from monolayer
WSe2 [60], and ambipolar FETs from monolayer MoTe2 [61].

However, the question of whether the hole density of
3 × 1013 cm−2 used here can be achieved in MoTe2 is open
as the hole density in the ambipolar MoTe2 FET has not been
reported. Typical carrier densities in TMD FETs exceed about
1012–1013 cm−2 and the hole density used here is slightly
less than the maximum electron density reported in mono-
layer MoS2 (3.6 × 1013 cm−2 [59]). If this density cannot
be achieved it would be possible to use a lower hole density
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FIG. 13. (Left two columns) Single-valley regions in the semiconducting TMDs (left side, same valley; right side, different valleys).
Transmission of holes occurs between the K and K ′ boundary lines in the indicated valleys. (Right two columns) Corresponding optimal
barrier potentials (left side, same valley; right side, different valleys).
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which would require a lower hole Fermi level. However, this
would lead to reduced trigonal warping and narrower single
valley region widths and hence require an incident hole beam
of narrower width.

VII. POSSIBLE REALIZATION OF A VALLEY POLARIZER

In Secs. V and VI, we have shown that transmission of
carriers through potential barriers in BLG and TMDs is valley
asymmetric and single-valley transmission occurs over a wide
range of incidence angles. In this section, we suggest these
effects can be used to realize a valley polarizer.

We detail the minimum requirements for this device in
Sec. VII A. Then in Sec. VII B, we examine factors which may
affect the operating temperature and the accuracy of valley
polarization. The maximum operating temperature is likely
to be the maximum temperature at which ballistic transport
occurs (Sec. VII B 1). Thermally excited minority carriers
could affect the polarization accuracy but only in BLG and
their effect can be suppressed by raising the back gate voltage
(Sec. VII B 2). Because of the thermal spread of energies in
the incident beam, the same-valley regime is most favorable
for higher temperature operation (Sec. VII B 3). The effect of
in-plane electric fields is likely to be small (Sec. VII B 4).

A. Minimum requirements for a valley polarizer

The main requirement is a collimated beam of carriers in
the ballistic regime. If a macroscopic contact was used instead
of a collimator, it would probably supply carriers with valley
symmetric and equal probability at each point on each en-
ergy contour. Then time reversal symmetry would ensure that
the conductance is valley symmetric. However, a collimator
operating in the ballistic regime can be arranged to supply
carriers only in the range of velocities where single-valley
transmission occurs and thus make a valley polarizer. The nec-
essary collimator has been demonstrated in graphene [24] and
its beamwidth is 18◦, similar to the minimum range widths
in Figs. 7 and 12. Another requirement is to dispose of the
reflected carriers which are in the undesired valley and could
be backscattered from the edges of the 2D material and pass
through the barrier. This can be done by putting grounded
electrodes at the edges to absorb the undesired carriers. A
similar absorber has been demonstrated as a key part of the
collimator in Ref. [24]. The ballistic regime has been reached
in BLG [47,53–55] hence a BLG valley polarizer can be real-
ized from components that have been demonstrated. In TMDs,
the hole regime is experimentally accessible in monolayer
MoTe2 [61] but ballistic transport in this material has not yet
been investigated.

B. Factors affecting temperature of operation and polarization
accuracy

1. Ballistic transport

Ballistic transport in BLG at low temperature is well
established experimentally [47,53–55] but the maximum tem-
perature for ballistic transport is not known. The authors of
Ref. [53] investigated the temperature dependence of transport
in hBN encapsulated BLG and found that ballistic transport

occurs above a temperature-independent critical carrier den-
sity of 2.5 × 1011cm−2 up to 50 K, the maximum temperature
used in the experiment. The authors of Ref. [54] investigated
transport in suspended BLG and found that ballistic trans-
port occurs above a temperature-dependent critical density.
The maximum experimental temperature was 70 K and the
corresponding critical density is ∼2 × 1011 cm−2. Hence the
available experimental evidence suggests that ballistic trans-
port in BLG occurs at least up to ∼50–70 K but further work
is needed to determine the upper limit.

In the case of TMDs, ballistic transport has been inves-
tigated only for electrons in MoS2 [62]. The authors of this
work observed the onset of ballistic transport at a device
temperature of 175 K and suggested that the ballistic limit
can be achieved. As the electron and hole masses are similar
(∼0.5) in all the semiconducting TMDs [56], it is possible that
ballistic transport of holes can be achieved. However, there is
no relevant data and further experimental investigations are
needed.

In summary, the temperature dependence of ballistic trans-
port may limit the maximum operating temperature of a valley
polarizer but there is insufficient experimental evidence to
estimate this temperature.

2. Minority carriers

Thermally excited minority carriers in the contacts could
affect the valley polarization but the physics is different in
BLG and TMDs.

In the case of BLG and the device model in Sec. V B, the
electron Fermi level is 56 meV and the layer potentials in the
contacts are ±14 meV. The physics depends on the alignment
of the bands in the contacts and underneath the top gate. From
Fig. 8, it can be seen that for almost all θ , the layer 1 potential
under the top gate is >14 meV and the layer 2 potential is >

−14 meV. Hence the top gate generates a barrier for electrons
and a well for holes. This means that thermally excited holes
in both valleys could flow underneath the top gate, leading to
a reduction in valley polarization.

The magnitude of this effect depends on the thermal dis-
tribution of the holes. The Fermi function is equal to 0.01
when E − EF ∼ 4.6kBT , where EF is the Fermi level, T is
the absolute temperature and kB is Boltzmann’s constant. This
condition should give a rough approximation to the temper-
ature at which the valley polarization is affected by a few
percent. For the device model in Sec. V B, the energy needed
to create a hole is 70 meV and the corresponding temperature
is ∼177 K.

It should be possible to reduce the effect of the holes by
increasing the back gate voltage. In the device model detailed
in Sec. V B, the electron Fermi level becomes 105 meV if
the back gate voltage is raised to 4000 mV, and the layer
potentials in the contact become ±31 meV. Then the hole
creation energy increases to 136 meV and the corresponding
temperature is ∼343 K. This shows it should be possible to
overcome the effects of holes in BLG with a suitable device
design.

In the case of TMDs, the band gap exceeds 1 eV so thermal
excitation of carriers across the gap is unlikely to be signif-
icant at room temperature and beyond. However, the effect
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FIG. 14. Energy dependence of single-valley regions in BLG.
The potentials and top gate width are as for Fig. 2. Solid red
lines: K transmission boundaries, dashed blue lines: K ′ boundaries.
Horizontal lines indicate the beam extent. Light fill: single-valley
transmission, dark fill: two valley transmission. (Left) θ = 17◦

(same-valley case at E = 56 meV). (Right) θ = 31◦ (different-valley
case at E = 56 meV).

of excitation across the spin split valence bands needs to be
considered.

The holes in both of the spin split bands are subjected to
the same potential barrier. In addition, E (k) is similar for
both spins. Hence the single-valley regions for both spins are
similar. Consequently the valley polarization should not be af-
fected by minority spin holes. However, the spin polarization
could be affected.

Minority spin holes can be transmitted through the barrier
only if their energy relative to the bottom of the minority
spin band exceeds the barrier height. Creation of holes of this
energy requires a thermal excitation of energy 2|λ| − EF + V
where EF is the hole Fermi energy in the majority spin band
and V is the barrier height. With EF = 116.9 meV and V =
66.55 meV as for Fig. 3, this gives an energy of 164.65 meV
and the corresponding temperature, obtained with the same
criterion as for BLG, is 415 K.

In summary, minority carriers are unlikely to affect the spin
and valley polarizations in TMDs and their effect on the valley
polarization in BLG can be suppressed by increasing the back
gate voltage.

3. Thermal spread of energies in the incident beam

The single-valley regions depend significantly on en-
ergy. Therefore, at finite temperature, the spread of energies
in the incident beam could affect the valley polarization.
To investigate this, the single-valley region boundaries are
computed as a function of energy at θ = 17◦ and 31◦. Fig-
ures 2 and 3 show that same-valley transmission occurs at
θ = 17◦ when E = 56 meV in BLG and E = 116.9 meV
in MoTe2 while different-valley transmission occurs at the
same energies when θ = 31◦. However, Figs. 14 (BLG)
and 15 (MoTe2) confirm that the form of the transmission
is energy-dependent.

In both materials, there is a threshold energy equal to the
barrier height. If φc is fixed and only the energy is varied, then
in BLG at both angles and MoTe2 at 31◦, there is a critical
energy where single-valley transmission changes to trans-
mission in both valleys (light fill changes to dark fill when

FIG. 15. Energy dependence of single-valley regions in MoTe2.
The potentials and top gate width are as for Fig. 3. Solid red
lines: K transmission boundaries, dashed blue lines: K ′ boundaries.
Horizontal lines indicate the beam width. Light fill: single-valley
transmission, dark fill: two valley transmission. (Left) θ = 17◦

(same-valley case at E = 116.9 meV). (Right) θ = 31◦ (different-
valley case at E = 116.9 meV).

the energy increases). This limits the maximum operating
temperature.

To quantify this, a beam of width 18◦ is indicated by the
parallel, horizontal lines in the figures. Each pair of lines is
centered on the angle that makes the threshold energy approx-
imately equal to the Fermi energy, 56 meV for electrons in
BLG and 116.9 meV for holes in MoTe2. With this choice,
carriers whose energy is significantly less than the Fermi
energy are below the first threshold and are not transmitted.
Then the maximum operating temperature is determined by
the carrier population above the critical energy.

For example, in BLG at 31◦, the critical energy at φc =
−13.2◦ is 61.7 meV and with the criterion used in Sec. VII
B 2 this corresponds to a temperature of 14.4 K. For the
φc = 11.2◦ line, the temperature is 8.8 K. In MoTe2, the
equivalent temperatures are 86.8 and 64.6 K. This suggests
that the regime where single-valley transmission occurs in
different valleys at positive and negative incidence is not very
suitable for high-temperature operation.

The regime where the single-valley transmission occurs in
the same valley is much more suitable. In BLG at θ = 17◦,
the critical energy at φc = −49◦ corresponds to a temper-
ature of 190 K. However, the critical energy at φc = 25.2◦
corresponds to 27.5 K and generally in BLG the second
threshold only occurs at high energy in one of the single-
valley regions. In MoTe2 at θ = 17◦, there is no crossover
to transmission in both valleys up to an energy of at least
377.5 meV. This is very favorable for high-temperature oper-
ation. The physical reason for the different behavior of BLG
and MoTe2 is that in the energy range considered here, trigo-
nal warping weakens with energy in BLG but strengthens with
energy in TMDs.

In summary, the regime where single-valley transmission
occurs in the same valley at both positive and negative angles
of incidence is very favorable for high-temperature operation.
However, in BLG this is the case for only one of the single-
valley regions. Which one it is depends on θ as consequence
of Eq. (21).
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4. In-plane electric fields

In-plane electric fields should deflect a collimated carrier
beam and change the angle of incidence. This could cause
loss of polarization if the incident beam is shifted away from
a single-valley region into a two valley region. However, we
estimate that this effect is likely to be small.

The magnitude of the effect depends on the experimental
voltages and device dimensions. The Fabry-Perot interference
experiments described in Ref. [47] were done with a source-
drain bias of around 1 mV over a distance of around 1–3
μm, while the collimation experiments described in Ref. [24]
probably involved smaller fields. Hence 1000 V m−1 is taken
to be an upper limit to the in-plane field.

To estimate the deflection, the field is taken to be normal to
the barrier and classical trajectories for a charged particle with
energy-momentum relation E (p/h̄) are computed for each
valley, where E (k) is the band energy. The results show that
the incident beam can undergo a small deflection towards the
two valley region. The deflection angle depends on θ but is
only ∼0.1◦–0.2◦ for BLG and only ∼0.05◦–0.14◦ for MoTe2.
This is small compared to single-valley region widths and
suggests the effect of in-plane electric fields will be small
under typical experimental conditions.

VIII. DETECTION OF VALLEY POLARIZATION

Valley polarization can be detected via the valley Hall
effect [10,63,64] and it has been suggested that two valley
polarizers of opposite polarity can block current [9]. When
the polarizers are made from barriers, the blockage is exact
because of the symmetry relation, Eq. (20), between the trans-
mission coefficients of two barriers with a relative rotation
angle of π/3.

This relation allows a polarization detector to be made
from two identical and inversion symmetric barriers in series,
with a relative rotation of ±π/3 (Fig. 16). When the two
single-valley regions are in the same valley at positive and

FIG. 16. Example of current blocking by two barriers. Sloping
lines indicate barrier edges, the horizontal feint line is the optic
axis and the short parallel lines (green) represent the collimator.
Other lines show the current directions at the center and edges of
each electron beam. Short dashed lines (purple): unpolarized incident
current; solid lines (red): K polarized; long dashed lines (blue): K ′

polarized. For clarity, current paths that enter the collimator from
the left are not shown. Beam center reflection coefficients at the first
barrier: 100% in K ′ and 5.5% in K .

negative φc, as in Fig. 2 (left), Eq. (20) guarantees that the
second barrier transmits in the opposite valley to the first bar-
rier. Hence the barrier pair blocks current and can be used like
a pair of Polaroid filters to demonstrate valley polarization.

In practice, this requires that two more conditions are sat-
isfied. The first is that the current that is transmitted through
the first barrier should be incident on the second barrier at an
angle within the single-valley range for that barrier. As the
two barriers must have a relative rotation of ±60◦ to swap the
valleys, the angles of incidence on the two barriers differ by
∓60◦. To satisfy this condition, the angles of incidence in the
two single-valley regions should differ by about 60◦. This is
the case only in part of the θ range.

The second condition is that the reflected current from the
front edge of the second barrier is not incident on the back
edge of the first barrier. If this condition is not satisfied, multi-
ple reflection between the two barriers could occur and this
could change the transmission characteristics of the barrier
combination. This can be prevented by adjusting the barrier
lengths and separation so that the current reflected from the
second barrier does not reenter the first barrier.

To demonstrate that the two conditions can be satisfied,
ray tracing is used to compute the current paths through the
two barriers for the case of BLG and θ = 17◦. The angles
of reflection and refraction are obtained from the BLG band
structure and the incident beam width is taken to be 18◦. The
current paths are shown in Fig. 16 and it is clear that the
two conditions are satisfied. The angles of incidence on each
barrier fall within the single-valley ranges as can be checked
by looking at Figs. 2 and 7. In addition, the current reflected
from the second barrier clearly passes out of the region be-
tween the barriers. This suggests that the current blocking is
experimentally observable, at least at one value of θ .

The full θ range in which current blocking should be ob-
servable is probably somewhat smaller than the θ range of
the same valley regions (Fig. 7, left). These regions become
narrower and vanish as θ approaches 30◦ (mod 120◦) and 90◦
(mod 120◦). A significant fraction of the θ range should still
be available but how much depends on the experimental con-
ditions and extensive ray tracing calculations for the full range
of θ angles and beam widths would be needed to determine
this.

The current paths in Fig. 16 differ qualitatively from the
paths of optical rays passing through a refractive medium. In
particular, the order of the paths reverses at the first barrier, for
example the top path on the entrance side becomes the bottom
path on the exit side. The reason is that the k vectors of the
states involved are by chance close to points of inflection on
the barrier energy contour. Between the points of inflection, φv

increases when φk decreases [ Fig. 4 (lower) for an example]
and this leads to the reversed order. Another difference is that
the angle of reflection is not equal to the angle of incidence
when the energy contours are warped. This has a significant
effect on the current paths reflected from the second barrier.

IX. DISCUSSION

Valley asymmetric transmission through a potential barrier
in BLG and TMDs inevitably occurs because of the low sym-
metry of the total Hamiltonian. However, it may be necessary
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to use additional physics to make the valley asymmetry large.
We have suggested the use of total external reflection but this
is not the only approach. For example, the valley asymmetry
is enhanced in barriers with broken inversion symmetry [43].

The large valley asymmetry found in this work occurs
because trigonal warping leads to a large difference in the
critical angles for total external reflection in the two valleys.
This results in single-valley transmission over a wide range
of incidence angles and enables a valley polarized incident
current to be split into reflected and transmitted currents with
opposite valley polarization. A valley polarizer can be realized
in BLG by arranging for a collimated beam of carriers to
be incident in one of the single-valley regions. The same
arrangement in TMDs forms a spin and valley polarizer. The
barrier potential can be adjusted to ensure that single-valley
region widths are similar to or exceed the beam width of
a MLG electron collimator that has already been fabricated
[24]. In addition, we have shown that the transmitted valley
swaps when a barrier is rotated by ±π/3◦ with respect to
the crystallographic axes. This allows two barriers with a
relative rotation of ±π/3◦ to be used like Polaroid filters to
demonstrate valley polarization.

Our investigations show that the proposed valley polarizer
appears to be experimentally feasible and should have some
advantages. First, the polarizer is relatively immune to the
crystallographic orientation of the barrier because the top
gate voltage can be adjusted to optimize the single valley
region widths. Secondly, the current on the exit side flows
only in the desired valley so there is no need for additional
components to collect the desired current stream. However,
some uncertainty about the feasibility remains because the
trigonal warping parameters in BLG are not known reliably

and accurate experimental values are desirable. Experimental
studies to determine the conditions for ballistic transport in
BLG and TMDs, particularly the temperature range, are also
needed. Further theoretical work should await these experi-
mental developments.

The inevitability of valley asymmetry is expected to be
relevant to other applications and materials. It may be possible
to use switchable pairs of spin filters to inject spin-polarized
holes into a TMD pn-junction and hence make a polar-
ized light emitting diode with electrically controllable photon
polarization. In addition, the strong θ dependence of the trans-
mission may be useful for determining the crystallographic
orientation of the 2D material. Beyond BLG and TMDs, the
total Hamiltonian of any 2D material in the presence of a
gate should have low symmetry and transmission through a
gate-induced barrier should be strongly θ -dependent when the
constant energy contours are not circular. Further afield, the
present work may be relevant to valley photonic metamaterials
[11,65].
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