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Cavity-mediated electron hopping in disordered quantum Hall systems
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We investigate the emergence of long-range electron hopping mediated by cavity vacuum fields in disordered
quantum Hall systems. We show that the counter-rotating (antiresonant) light-matter interaction produces an
effective hopping between disordered eigenstates within the last occupied Landau band. The process involves a
number of intermediate states equal to the Landau degeneracy: each of these states consists of a virtual cavity
photon and an electron excited in the next Landau band with the same spin. We study such a cavity-mediated
hopping mechanism in the dual presence of a random disordered potential and a wall potential near the edges,
accounting for both paramagnetic coupling and diamagnetic renormalization. We determine the cavity-mediated
scattering rates, showing the impact on both bulk and edge states. The effect for edge states is shown to
increase when their energy approaches the disordered bulk band, while for higher energy, the edge states
become asymptotically free. We determine the scaling properties while increasing the Landau band degeneracy.
Consequences on the quantum Hall physics and future perspectives are discussed.
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I. INTRODUCTION

The quantum Hall physics of a 2D electron gas immersed
in a perpendicular magnetic field is one of the most fascinating
chapters in the history of modern condensed matter physics
[1]. By tuning the magnetic field or the density of electrons,
both of which control the filling factor of the single-particle
Landau levels, a remarkable variety of electronic quantum
phases can be obtained. In particular, a topologically robust
quantization of the Hall charge trasverse conductance pro-
vides the most stable resistance standard known in metrology
[2,3].

Another prominent branch of quantum physics is quan-
tum electrodynamics (QED). In low-energy physics, QED
is at the heart of celebrated vacuum effects such as the
atomic Lamb spectral shift as well as the Casimir and van
der Waals forces [4]. Cavity QED [5] can enhance vacuum
effects by increasing light-matter interaction via tight spatial
field confinement of quantum modes in properly engineered
electromagnetic resonators. Originally born in the context of
atomic physics, cavity QED has become an exciting research
field in solid-state systems [6] and superconducting quantum
circuits (circuit QED) [7].

In recent years, there has been a growing interest in the
regime of ultrastrong light-matter interaction [8,9], which is
achieved when the coupling between a photon and an elemen-
tary electronic transition becomes comparable to the photon
and transition frequencies [10]. In particular, such a regime
was predicted for the coupling of the cyclotron transition of
a 2D electron gas to a cavity mode [11] and experimentally
demonstrated by using deeply subwavelength THz split-ring
resonators [12]. Interesting linear and nonlinear optical prop-
erties of the related Landau polaritons have been investigated
in a recent series of experimental spectroscopy works [13–18].

Other investigations have instead exploited optics as a probe
of electronic quantum Hall physical properties [19–22], or
optical pumping as a way to manipulate electronic quantum
Hall states [23]. We also wish to highlight a third optical
research direction aimed at the realization of quantum Hall
states of light in purely photonic systems [24,25].

In the broader context, an emerging field is currently fo-
cused on the manipulation of matter by vacuum fields in
physics and chemistry [26]. The modification of electron
transport by a passive cavity (no illumination) has been stud-
ied for organic disordered materials [27–32] and for 2D
electron gases in the semiclassical Shubnikov-de Haas magne-
totransport regime [33,34], as well as for the vertical transport
in semiconductor heterostructures [35]. A recent study has
also proposed cavity-mediated superconductivity of a 2D
electron gas [36], where the electron pairing mechanism is
based on the exchange of virtual cavity photons. Remark-
ably, recent pioneering experiments [37] on high-mobility 2D
electron gases have shown that the quantum Hall transport
can be dramatically affected by a cavity resonator without
illumination with a breakdown of the topological protection
and a nontrivial modification of both transverse and longi-
tudinal resistance in the integer quantum Hall regime. The
physics of cavity-controlled quantum Hall systems is in its
very infancy and provides an intriguing platform for exploring
the manipulation of electronic properties by vacuum fields.

In this paper, we present a microscopic theory revealing
how the electromagnetic vacuum fields of a cavity mode can
mediate long-range electron hopping processes between dis-
ordered eigenstates in a quantum Hall system. We show that
these processes are due to the counter-rotating (antiresonant)
light-matter interaction via the exchange of a virtual cavity
photon. This paper is organized as follows. In Sec. II, we
present the general theoretical framework, describing Landau

2469-9950/2021/104(15)/155307(11) 155307-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1134-7013
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.155307&domain=pdf&date_stamp=2021-10-26
https://doi.org/10.1103/PhysRevB.104.155307


CRISTIANO CIUTI PHYSICAL REVIEW B 104, 155307 (2021)

FIG. 1. (Left) Scheme of the considered 2D electron system in
a rectangular geometry with a perpendicular static magnetic field B.
The electronic system is coupled to a quantum electromagnetic mode
with photon energy h̄ωcav and with a vacuum vector potential Avac

linearly polarized along the x direction. Counter-propagating Landau
edge states are pictorially represented by skipping orbits. (Right)
Sketch of the bare (no disorder) energy of the Landau single-particle
eigenstates |nκσ 〉 including the Zeeman spin splitting and a smooth
wall potential at the edges along the x direction. In the chosen Landau
gauge, the orbit center position xκ is proportional to the orbital
quantum number κ ∈ {1, 2, . . . , Ndeg}, where Ndeg is the Landau level
orbital degeneracy.

electronic states in the presence of a disordered electronic
potential, an edge wall potential and a spatially homoge-
neous quantum electromagnetic cavity mode. We consider
the microscopic Hamiltonian including the paramagnetic and
diamagnetic contributions, expressing it in a compact form
in terms of the disordered eigenstates and the photon mode
renormalized by the diamagnetic interaction. In Sec. III, we
derive the cavity-mediated electron hopping in terms of the
disordered eigenstates and the corresponding cavity-mediated
scattering rates. In Sec. IV, we report finite-size numerical
calculations and find the scaling properties in the limit of large
number of electrons. In Sec. V, we discuss consequences on
quantum Hall physics. In Sec. VI, we draw the conclusions
and perspectives of this work.

II. THEORETICAL FRAMEWORK

Let us consider a 2D electron gas that is subject to a
perpendicular magnetic field B in a rectangular geometry, as
depicted in Fig. 1. We will consider a wall potential W (x)
near the edges [38]. In the second quantization formalism,
the bare electronic energy of the Landau levels including the
wall potential and the Zeeman contribution is described by the
Hamiltonian:

Ĥel =
∑
n,κ,σ

(En,σ + Wn,κ )ĉ†
n,κ,σ ĉn,κ,σ , (1)

where the Landau energies are En,σ = En − 1
2σ geμBB with

En = nh̄ωcyc. The cyclotron frequency is given by ωcyc =
eB/m (m is the effective electron mass) and the electron
Zeeman splitting is geμBB, where ge is the effective gyro-
magnetic factor and μB the Bohr magneton. The operator
ĉ†

n,κ,σ creates an electron in the state with orbital quantum
numbers n ∈ {0, 1, 2, . . . }, κ ∈ {1, 2, . . . , Ndeg} and with σ ∈
{↑,↓} the spin projection along the z direction. Each Landau
band has an orbital degeneracy equal to Ndeg = LxLy/(2π l2

cyc),

where the cyclotron length is lcyc =
√

h̄
mωcyc

. In the chosen
Landau gauge, the classical vector potential generating the
static magnetic field bias is A = Bx ey, where ey is the unit
vector pointing in the y direction. The Landau states in the
presence of the wall potential have wave functions �n,κ (r) =
〈r|nκ〉 = NnFn( x−x̃κ

lcyc
)ei 2πκy

Ly , where the normalization factor is

Nn = 1√√
π 2nn! lcycLy

and the function Fn(ξ ) = Hn(ξ )e−ξ 2/2 de-

pends on the Hermite polynomial Hn of order n. The Landau
orbit center positions are given by the expression x̃κ = xκ +
δxκ where xκ = 2π

l2
cyc

Ly
κ . For a smooth wall potential, we

have δxκ � −W ′(xκ )/(mω2
cyc) and Wn,κ � W (xκ ). The Lan-

dau states in presence of the wall potential acquire a finite
velocity along the y direction, namely v

(y)
κ = W ′(xκ )/(mωcyc).

In the following, we will assume that the system has some
moderate static disorder coupling Landau states with the same
orbital quantum number n (we will neglect Landau level mix-
ing):

Ĥdis =
∑

n,κ,κ ′
V (n)

κ,κ ′ ĉ†
n,κ,σ ĉn,κ ′,σ . (2)

Now, let the 2D electron gas be coupled to the quantum
field of an electromagnetic resonator mode with frequency
ωcav, spatially homogeneous and polarized along the x di-
rection, represented by the vector potential operator Âvac =
Avac ex (â + â†). This is a configuration close to what achieved
in the capacitive spatial gap of split-ring resonators [33].
The bare cavity Hamiltonian is Ĥcav = h̄ωcavâ†â , where â†

is the photon creation operator. Using the Coulomb gauge
and the minimal coupling Hamiltonian for the electrons, the
light-matter interaction has the following paramagnetic con-
tribution [34]:

Ĥpara =
∑
n,κ,σ

(−i)h̄g
√

n + 1 (â + â†)ĉ†
n+1,κ,σ ĉn,κ,σ + H.c.,

(3)
where the vacuum Rabi frequency is defined by the relation

g = eAvac

h̄

√
h̄ωcyc

2m
. (4)

In addition, there is a diamagnetic contribution

Ĥdia = Nel
e2A2

vac

2m
(â + â†)2 = h̄	2

ωcyc
(â + â†)2, (5)

where we have introduced the collective Rabi frequency

	 = g
√

Nel (6)

with Nel the total number of electrons. The additional Hamil-
tonian term is the Coulomb interaction. The integer quantum
Hall effect, which is the focus of the experiments in Ref. [37],
depends on the topological properties of single-electron states
and does not require electron-electron interactions, unlike the
fractional quantum Hall effect. In this work, we consider the
renormalization of the single-particle properties due to cavity-
mediated electron hopping that is relevant for the integer
quantum Hall effect. The role of electron-electron interactions
will be addressed in a future work.

The cavity Hamiltonian Ĥcav and the diamagnetic term Ĥdia

depend only on the photon operators and are quadratic with
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respect to them. Hence, via a Bogoliubov transformation, we
get the diagonal form:

Ĥmode = Ĥcav + Ĥdia = h̄ω̃cavα̂
†α̂ + const., (7)

describing a boson mode with renormalized frequency

ω̃cav =
√

ω2
cav + 4

	2

ωcyc
ωcav. (8)

The dressed bosonic photon operator reads

α̂ = 1

2
√

ω̃cavωcav
[(ω̃cav + ωcav)â + (ω̃cav − ωcav)â†]. (9)

The bare Landau single-particle Hamiltonian with the dis-
order potential and the wall potential can be diagonalized in
the form:

Ĥsp = Ĥel + Ĥdis =
∑
n,κ,σ

(
εn,λ − 1

2
σ geμBB

)
d̂†

n,λ,σ d̂n,λ,σ ,

(10)

where εn,λ are the energies of the single-particle orbital eigen-
states of the Landau band with orbital quantum number n,
namely,

|φ(n)
λ 〉 =

∑
κ

〈nκ|φ(n)
λ 〉|nκ〉. (11)

The corresponding fermionic operators are given by the rela-
tion ĉn,κ,σ = ∑

λ〈nκ|φ(n)
λ 〉 d̂n,λ,σ .

Since â + â† = √
ωcav/ω̃cav(α̂ + α̂†), the paramagnetic

coupling can be rewritten in terms of renormalized photon
mode operators and disordered eigenstates as

Ĥpara =
∑

n,λ,μ,σ

(−i)h̄g̃(n,n+1)
λ,μ (α̂ + α̂†) d̂†

n+1,μ,σ d̂n,λ,σ + H.c.,

(12)

where the coupling constant is

g̃(n,n+1)
λ,μ = g̃

√
n + 1

∑
κ

〈
φ(n+1)

μ

∣∣n + 1 κ
〉〈

nκ
∣∣φ(n)

λ

〉
, (13)

with

g̃ = g
√

ωcav/ω̃cav. (14)

In conclusion, we have recast the total Hamiltonian in a
much simpler form, namely,

Ĥ = Ĥsp + Ĥmode + Ĥpara, (15)

where the single-particle Hamiltonian Ĥsp is reported in
Eq. (10) and the diamagnetically-renormalized mode Hamil-
tonian Ĥmode is given by Eq. (7). Finally, the paramagnetic
coupling Ĥpara, expressed in terms of the renormalized boson
mode and disordered eigenstates, is given by Eq. (12). Note
that the single-electron vacuum Rabi frequency g̃(n,n+1)

λ,μ de-
pends on the disorder eigenstates and is renormalized by the
diamagnetic interaction.

III. CAVITY-MEDIATED HOPPING

As expressed in Eq. (3), in the absence of disorder the
paramagnetic interaction conserves both the spin σ and the

FIG. 2. (Top, left) Diagram represents an electron initially in a
bare (no disorder) Landau state |nκσ 〉 of the last occupied Landau
band. The intermediate state consists of a virtual cavity photon and
the electron promoted to the (n + 1) band. This process is due to
the antiresonant light-matter interaction. Due to the selection rules
of the cavity coupling, both the Landau quantum number κ (hence
the orbit center position xκ ) and the spin are conserved. The final
state of the process can be only the initial one. On the right, the
same process depicted on the plot of the energy vs the average x
position. (Bottom) Analogous propagation process for an electron
initially in a disordered single-particle eigenstate |φ (n)

λ σ 〉 where λ

is the quantum number labeling the disordered eigenstate. Via the
intermediate state involving a virtual cavity photon, the initial state
is coupled to a different final state |φ (n)

λ′ σ 〉. Indeed, in presence of
disorder, the quantum number λ is not conserved by the light-matter
interaction. This cavity-mediated process is an effective hopping
between the disordered state |φ (n)

λ σ 〉 and the state |φ (n)
λ′ σ 〉. Note that

the number of intermediate states |φ (n+1)
μ σ 〉 is equal to the Landau

orbital degeneracy Ndeg. On the right, the same process depicted on
the plot of the electronic energy vs the average position.

orbital quantum number κ . With disorder, spin is still con-
served, but, as shown in Eqs. (12) and (13), the situation is
radically different. As depicted in Fig. 2, the key point is that
the counter-rotating (antiresonant) terms of the paramagnetic
interaction can couple a generic disorder eigenstate |φ(n)

λ 〉
to any other disordered eigenstate |φ(n)

λ′ 〉 via an intermediate
virtual excited state. Indeed, an electron occupying the state
|φ(n)

λ 〉 can be promoted to the state μ in the (n + 1) band
with the simultaneous creation of a photon with energy h̄ω̃cav.
The Hamiltonian matrix element for such a virtual process
is (−i)g̃(n,n+1)

λ,μ and the corresponding energy penalty is given
by εn,λ − εn+1,μ − h̄ω̃cav. Via the reverse counter-rotating pro-
cess, the photon can be re-absorbed and the electron demoted
back to the n band, but in a different and unoccupied dis-
ordered state λ′. The Hamiltonian matrix element for such
process is ig̃(n,n+1) �

λ′,μ . Using perturbation theory, the effective
coupling [39,40] of the state λ to the state λ′ in the n band can
be approximated by the expression:

�̃
(n)
λ,λ′ �

∑
μ

h̄2 g̃(n,n+1)
λ,μ g̃(n,n+1) �

λ′,μ

εn,λ − εn+1,μ − h̄ω̃cav
, (16)

which has been obtained by summing over all possible in-
termediate states μ. Importantly, the number of intermediate
states is exactly equal to the macroscopic Landau degeneracy
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Ndeg. This perturbative formula holds as long as εn+1,μ +
h̄ω̃cav 
 εn,λ, which is easily fulfilled when εn,λ < En+1.

Note that for a given pair of states λ and λ′ in the n band, the
dependence of �

(n)
λ,λ′ on the total number of electrons Nel and

hence on the filling factor ν = Nel/Ndeg is smooth and enters
only via the diamagnetic renormalization of the cavity mode
frequency ωcav (replaced by ω̃cav) and of the bare vacuum Rabi
frequency g (replaced by g̃).

Having determined the cavity-mediated hopping coupling,
we can evaluate the corresponding scattering rates with the
Fermi golden rule:

1

τ
(sc)
n,λ

= 2π

h̄

∑
λ′ �=λ

|�̃(n)
λ,λ′ |2δ(εn,λ − εn,λ′ ). (17)

Of course, this formula is applicable in the case when
the final states of the cavity-mediated scattering process are
unoccupied.

If we are interested in transport properties when the current
flows along the y direction, a relevant quantity is the velocity
v

(y)
n,λ of the disordered eigenstates. This is given by the follow-

ing expression:

v
(y)
n,λ ≡ sgn

(
v

(y)
n,λ

) Ly

τ
(tr)
n,λ

=
∑

κ

|〈φ(n)
λ |nκ〉|2v(y)

κ , (18)

where we have also introduced τ
(tr)
n,λ , which is the time for an

electron to transit the channel length Ly when populating the
state |φ(n)

λ 〉.

IV. FINITE-SIZE NUMERICAL RESULTS

In this section, we report numerical results for finite-size
systems, present a comprehensive study of the dependence
of the cavity-mediated hopping as a function of the relevant
physical quantities and determine the scaling properties. To
model single-particle electronic disorder, we have considered
the sum of Nimp 
 1 randomly distributed impurity potentials,
namely,

V (r) =
Nimp∑
j=1

V (imp)
j δ(r − r j ), (19)

where the jth impurity random position r j is uniformly dis-
tributed in the rectangular sample of size Lx × Ly. The random
impurity strength V (imp)

j of the 2D Dirac delta potential δ(r −
r j ) is uniformly distributed in the interval [−V (imp)

max ,V (imp)
max ].

The corresponding matrix elements for the n band are

V (n)
κ,κ ′ =

Nimp∑
j=1

V (imp)
j ��

n,κ (r j )�n,κ ′ (r j ). (20)

To model the wall edge potential, we have considered
the function W (x) = Ve tan2(r π

2
x−Le

Le
) for 0 < x < Le (with r

close to 1), W (x) = Ve tan2(r π
2

x−(Lx−Le )
Le

) for Lx − Le < x <

Lx and W (x) = 0 elsewhere in the bulk.
In Fig. 3, we report the exact diagonalization results for

the single-particle disordered energy eigenvalues εn,λ as a

FIG. 3. (Top) Energies εn,λ vs the average position x of the cor-
responding disordered eigenstates. The horizontal and vertical lines
indicate energy and average position for a bulk state λb. (Middle)
Vacuum Rabi coupling frequency |g̃(n,n+1)

λb,μ | between the considered
state and the states |φ (n+1)

μ 〉 vs their average position. (Bottom)

Cavity-mediated hopping coupling between |φ (n)
λb

〉 and the states

|φ (n)
λ′ 〉 vs their average position. The coupling is normalized to �̃ de-

fined in Eq. (21). Parameters: Ndeg = 2400, n = 4, Lx = 10 μm, Le =
2.5 μm, r = 0.9, Ve = 0.03h̄ωcyc, V (imp)

max = 1.5 × 10−5 h̄ωcycLxLy,
Nimp = 2000, B = 0.795 T, and m = 0.067m0 (m0 is the electron
mass). For the bottom panel, Nel = 24 000, g = 0.0051 ωcyc, and
ωcav = 0.39 ωcyc. For these parameters, g̃ � 0.61g.
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function of 〈φ(n)
λ |x|φ(n)

λ 〉, which is the expectation value of
the position x on the corresponding disordered eigenstates
|φ(n)

λ 〉. The horizontal and vertical lines indicate respectively
the average x position and energy of a bulk state λb taken as
illustrative example. The absolute value |g̃(n)

λb,μ
| of the vacuum

Rabi frequencies between such state |φ(n)
λb

〉 and the states
|φ(n+1)

μ 〉 belonging to the (n + 1) band are reported in the
middle panel of Fig. 3. Such vacuum Rabi frequencies given
by Eq. (13), normalized to g̃

√
1 + n, are plotted as a function

of the average position 〈φ(n+1)
μ |x|φ(n+1)

μ 〉 along the x direction.

The vacuum Rabi frequency g̃(n)
λb,μ

exhibits large random fluc-
tuations around a mean value that is rather flat in the bulk.
The coupling of the considered bulk state to |φ(n+1)

μ 〉 instead
collapses when the average x position of |φ(n+1)

μ 〉 approaches
the edges of the sample. From the energies εn,λ and εn+1,μ of
the single-particle disordered eigenstates and the vacuum Rabi
frequencies g̃(n,n+1)

λ,μ , we can get the cavity-mediated hopping

coupling energy |�̃(n)
λb,λ′ | between states λb and λ′ in the same

Landau band, as shown in the bottom panel of Fig. 3. The
cavity-mediated hopping energy is normalized to the quantity

�̃ ≡ h̄g̃2(1 + n)

ωcyc + ω̃cav
. (21)

Again, we see that the bulk state λb is coupled by the cavity-
mediated hopping to all the other bulk states. Note that the
lone point that is much larger than the rest corresponds
to the diagonal term |�̃(n)

λb,λb
| � �̃, which is the absolute value

of the second-order energy shift due to the interaction with the
cavity mode.

In Fig. 4, we plot the same quantities as in Fig. 3, but
considering a given edge state labeled by the index λe1 and
energetically close to the bulk states. We see that such an edge
state is coupled by the cavity vacuum field to all the bulk
states, including the edge state with the same energy on the
other side of the sample, although the coupling diminishes
with distance. Note that the spatial range of the interaction
is much larger than the cyclotron length (for the considered
parameters lcyc = 0.0029 Lx).

In Fig. 5, we consider an edge state labeled by the index λe2

and at much higher energy (no energy overlap with the bulk
band). We see that the coupling is dramatically suppressed, in
particular that to the opposite edge state with the same energy
is suppressed by many orders of magnitude.

The dependence of |g̃(n,n+1)
λ,μ | and |�̃(n)

λ,λ′ | for every state
is reported in Fig. 6. On the left panel, a color plot (green
sequential scale) of the normalized vacuum Rabi frequency
is shown as a function of the average x position of the state
λ in the n band and the state μ in the (n + 1) band. On the
right panel, we display a color plot (blue sequential scale) of
the normalized cavity-mediated hopping as a function of the
x position of the λ and λ′ states in the n band. Note that the
data in the middle and lower panels of Figs. 3–5 are cuts of
the general color plots in Fig. 6 for three specific values of
the state index λ. These 2D plots show in a global way the
long-range nature of the cavity-mediated hopping.

The effect of the cavity-mediated hopping can be quan-
tified by the scattering times τ

(sc)
n,λ obtained via the Fermi

golden rule expression in Eq. (17). The results are reported

FIG. 4. Same as Fig. 3, but for an edge state λe1 energetically
close to the disordered bulk band. The energy and average position x
is indicated by the vertical and horizontal lines in the top panel.

in Fig. 7 for the same parameters as the previous figures.
In the top panel, the scattering rates 1/τ

(sc)
n,λ are plotted as

a function of the average position 〈φ(n)
λ |x|φ(n)

λ 〉, allowing to
directly distinguish between bulk and edge states. The bottom
panel instead shows the same quantity as a function of the
single-particle disordered energies εn,λ. The scattering time
1/τ

(sc)
n,λ is expressed in units of

1

τ̄
≡ 2π

h̄
�̃2 Ndeg

h̄ωcyc
, (22)
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FIG. 5. Same as Fig. 3, but for another edge state λe2, whose
energy and average position x is indicated by the vertical and hor-
izontal lines in the top panel. This edge state has a much higher
energy compared to that in Fig. 4 and the cavity-mediated hopping is
strongly suppressed (note the very different logarithmic scale for the
vertical axis in the middle and bottom panels).

which is a characteristic rate associated to the characteristic
hopping coupling �̃ defined earlier in Eq. (21) and to the den-
sity of states constructed in terms of the Landau degeneracy
Ndeg and cyclotron energy. Such a quantity can be rewritten as

1

τ̄
= 2π

g̃4(1 + n)2 Ndeg

(ωcyc + ω̃cav)2ωcyc
= 2π

Nel

	̃4(1 + n)2/ν

(ωcyc + ω̃cav)2ωcyc
. (23)

For a fixed number of electrons, the characteristic rate has
a nonlinear dependence on the vacuum Rabi frequency and
vanishes when the light-matter interaction tends to zero. In
Fig. 7, it is apparent that the cavity-mediated scattering rate is
maximum in the bulk, where it fluctuates considerably. Going
to the edges (see left and right side of the top panel of Fig. 7),
the scattering rate decreases as well as its fluctuations. From
this plot, we see that the edge states become asymptotically
free (i.e., vanishing scattering rate) when they approach the
sample boundaries in the x direction. Equivalently, as reported
in the bottom panel of Fig. 7, the scattering rate of the edge
states drastically collapses when their energy increases away
from the bulk band. Instead, the edge states that are energet-
ically closer to the bulk band undergo similar scattering rates
to the bulk states.

Figure 8 reports how the amplitude of disorder affects
the cavity-induced scattering rate 1/τ

(sc)
n,λ (normalized to 1/τ̄ )

versus the normalized energy difference (εn,λ − En)/h̄ωcyc,
this time represented in the logarithmic scale in the interval
[10−6, 1]. The disorder strength is quantified by the dimen-
sionless quantity

ζdis ≡ Nimp

LxLy

V (imp)
max

h̄ωcyc
, (24)

which is simply the number of impurities per unit area
weighted by the maximal strength of the delta potentials
normalized to the cyclotron energy. The red diamonds cor-
respond to the same disorder as in the previous figures, i.e.,
ζdis = 3 × 10−2. The orange circles correspond to a disorder
amplitude 10 times smaller (ζdis = 3 × 10−3), while the violet
squares represent a disorder 100 times smaller than for the red
diamonds. The black squares instead correspond to a disorder
strength 10 times larger (ζdis = 3 × 10−1). Here the number
of impurities has been fixed (Nimp = 2000), so the effect is
due to the increased amplitude of the delta potentials. Note
that in this figure and the following ones, for each parameter
in the legend, a different random configuration of impurity
positions is considered. As expected, the cavity-mediated
scattering rate increases while increasing such amplitude. For
energies around the center of the disordered Landau band
(εn,λ � En) and for the high-energy portion of the edge states,
for a given value of εn,λ − En the scattering increases approx-
imately quadratically with the disorder amplitude. Instead in
the intermediate region, there are larger fluctuations and scat-
tering rates with disorder strength ζdis differing by a factor
of 10 can significantly overlap, making the dependence on
disorder much weaker. Note that the form and statistical prop-
erties of the disorder certainly play a role from the quantitative
point of view. In particular, disordered potentials leading to
the same bandwidth of the disordered Landau band can give
different quantitative results for the cavity-mediated scattering
rates. A comprehensive study on different classes of disorder
potentials and the role of the disorder correlation length will
be interesting points to study in the future. It is worth noting
that different growth techniques of 2D electron gas samples
produce different types of disorder potentials, so this is a point
that will be interesting to be investigated moving forward.

The dependence on the distance between the edge walls
is displayed in Fig. 9, where Lx is varied between 5 and
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FIG. 6. (Left) Color plot of the normalized vacuum Rabi frequency (see title) as a function of the average position x of the disordered
eigenstates |φ (n)

λ 〉 and |φ (n+1)
μ 〉. (Right) Color plot of the normalized cavity-mediated hopping (see title) as a function of the average position x

of the states |φ (n)
λ 〉 and |φ (n)

λ′ 〉. Same parameters as in Fig. 3.

FIG. 7. (Top) Scattering rate 1/τ
(sc)
n,λ due to cavity-mediated hop-

ping for the disordered eigenstates |φ (n)
λ 〉 as a function of their

average position x, normalized by the characteristic scattering rate
1/τ̄ defined in Eq. (22) and that includes the dependence on the
vacuum Rabi coupling. (Bottom) Same quantity, but as a function of
the energy of the disordered eigenstates. In the numerical evaluation
of Eq. (17), the Dirac delta is represented by a Lorentzian with an
energy width equal to 10−5 h̄ωcyc. Other parameters are as in Fig. 3.

22.5 μm, while keeping all other parameters fixed, includ-
ing the length Le = 2.5 μm entering our model edge wall
potential. As expected, the scattering rate for the edge states
increases when Lx is decreased, in particular a shortening by a
factor 4.5 translates to a reduction of approximately one order
of magnitude. Of course, quantitatively this will be sensitive
on the details of the wall potential and of the disorder.

It is now important to study the scaling with respect to the
Landau degeneracy Ndeg, in particular in the “thermodynami-
cal” limit Ndeg → +∞. In Figs. 10–12, we have investigated
the dependence on Ndeg by keeping constant all the parameters
except the vacuum Rabi frequency g, the number of electrons
Nel and the number of impurities Nimp. These three quantities
have been rescaled in such a way to maintain the constancy
of the following quantities: g

√
Ndeg, Nel/Ndeg and ζdis. In other

words, we consider the thermodynamic limit of the system
when we keep constant the collective vacuum Rabi frequency

FIG. 8. Normalized scattering rate due to cavity-mediated hop-
ping as a function of the energy difference εn,σ − En (logarithmic
scale) for four different amplitudes of disorder, quantified by the di-
mensionless quantity ζdis = NimpV (imp)

max /(h̄ωcycLxLy ): ζdis = 3 × 10−1

for the black squares, ζdis = 3 × 10−2 (as in previous figures) for
red diamonds, ζdis = 3 × 10−3 for orange circles, ζdis = 3 × 10−4

for violet squares. Other parameters are as in Fig. 3, including the
number of impurities Nimp = 2000 that is fixed.
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FIG. 9. Normalized scattering rate due to cavity-mediated hop-
ping as a function of the energy difference εn,σ − En for five different
values of the transverse length: Lx = 5 μm for the yellow squares,
Lx = 6.66 μm for the brown triangles, Lx = 10 μm for the red
diamonds (as in previous figures), Lx = 15 μm for the green flipped
triangles, and Lx = 22.5 μm for the violet circles. Other parameters
are as in Fig. 3, including the edge region width Le = 2.5 μm.

	̃, the filling factor ν and the bandwidth of the disorder Lan-
dau band normalized to the cyclotron energy. Note also that
in this limit since Lx is fixed, the channel length Ly increases
linearly with Ndeg. In Fig. 10, we report the cavity-mediated
scattering rates 1/τ

(sc)
n,λ normalized to the characteristic scat-

tering rate 1/τ̄ defined in Eq. (22) and (23). Figure 10 shows
that such a quantity versus energy converges with increasing
value of Ndeg, confirming the fact that 1/τ̄ , which crucially

FIG. 10. Normalized scattering rate due to cavity-mediated hop-
ping as a function of the energy difference εn,σ − En for five different
values of the Landau degeneracy Ndeg. Note that for each value of
Ndeg, the single-electron vacuum Rabi coupling g, the number of
electrons Nel and the number of impurities Nimp are rescaled in such
a way that 	 = g

√
Nel, ν = Nel/Ne and the dimensionless disorder

strength ζdis are kept constant. All other parameters are those of
Fig. 3.

FIG. 11. Absolute value |v(y)
n,λ| = Ly/τ

(tr)
n,λ of the velocity along

the y-direction for the disordered eigenstates vs the energy difference
εn,σ − En (logarithmic scale) for five different values of the Landau
degeneracy Ndeg. Same parameters as in Fig. 10.

contains the dependence on the vacuum Rabi frequency, is the
relevant scattering rate.

The absolute value |v(y)
n,λ| of the velocity of the disordered

eigenstates is reported in Fig. 11 as a function of energy, show-
ing an analogous convergence by increasing enough Ndeg.
Such a quantity is the ratio between the channel length Ly and
the transit time τ

(tr)
n,λ . Since in the considered limit Ly ∝ Ndeg,

then also τ
(tr)
n,λ ∝ Ndeg. The high-speed edge states are easily

recognizable at high energies. Their speed decreases by many
orders of magnitude when their energy difference with respect
to En (the central energy of the Landau band) tends to 0.
A second branch of slow states corresponds to the localized
states in the lower and higher energy tails of the disordered
bulk Landau band.

Finally, Fig. 12 reports crucial results with the dependence
of the ratio between the transit time τ

(tr)
n,λ and the cavity-

FIG. 12. Ratio between the transit time τ
(tr)
n,λ and the cavity-

mediated scattering time τ
(sc)
n,λ vs εn,σ − En for five different values

of the Landau degeneracy Ndeg. Same parameters as in Fig. 10.
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mediated scattering time τ
(sc)
n,λ versus energy. Again, we see

clearly that for increasing Ndeg the points superimpose, show-
ing that the thermodynamic limit is already well approached
when Ndeg is of the order of one thousand. Importantly, when
the scattering time becomes comparable or smaller than the
transit time, the transport properties of the Landau band are
expected to be affected. We see that the effect is most signifi-
cant for the slow edge states and for the localized bulk states
in the energy tails of the Landau band.

V. DISCUSSION AND RELATION TO QUANTUM
HALL TRANSPORT

The scattering created by cavity-mediated hopping can be
relevant for quantum Hall transport [37] due to the long-range
nature of the effect (i.e., occurring on a scale much larger
than the cyclotron length lcyc). Indeed, the cavity introduces an
additional scattering mechanism for the bulk states, but most
importantly it creates a coupling between the edge states and
the bulk. For edge states energetically close to the bulk, we
have just seen above that there can be also a direct coupling
to the opposite edge state, as observed in Ref. [37]. Note that
this interedge coupling can also be enhanced via incoherent
multiple scattering processes occurring in the bulk.

As a consequence, the cavity-mediated long-range scat-
tering can be a source of deviation from the metrological
quantization of the integer quantum Hall plateaus. In the edge
picture of the integer quantum Hall effect [1,41], the bulk
states are insulating, while the current is carried by the chiral
edge states corresponding to the classical skipping orbits (see
sketch in Fig. 1). The quantization is due to the absence
of back-scattering for the chiral edge channels. The cavity-
mediated hopping can create an effective coupling between
opposite edges and threaten the topological protection of the
quantum Hall effect.

Note that, even if the cavity-mediated interaction con-
serves the spin, there must be a different impact on the
quantum Hall effect for different spin channels. Indeed, the
odd integer filling factor plateaus (around ν = 2n + 1) are
associated to the n band with spin σ =↑, while the even
integer plateaus (around ν = 2n + 2) are associated to the
n band with spin σ =↓ (see Fig. 1). For an odd integer
plateau, the corresponding edge states responsible for the
quantized Hall conductance have an energy E (odd)

edge which is
such that E (odd)

edge − En,↑ ∈ [0, geμBB]. Instead, for an even in-
teger plateau, the energy of the corresponding edge states is
such that E (even)

edge − En,↓ ∈ [0, h̄ωcyc − geμBB]. Since the edge
states become less affected by the cavity-mediated hopping
when the energy difference from the corresponding bulk states
increases (as shown in Fig. 7), the even integer plateaus must
be less affected than the odd ones when h̄ωcyc 
 geμBB,
which is the case in GaAs 2D electron gases [37].

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a detailed microscopic
theory showing how in a disordered quantum Hall system
the coupling to the vacuum fields of a cavity resonator can
mediate an effective long-range hopping between single-
particle disordered eigenstates. The mechanism is due to the

counter-rotating (antiresonant) terms of the quantum light-
matter interaction. For an electron in the last occupied Landau
band with orbital quantum number n and spin σ , it involves a
macroscopic number of intermediate states consisting of one
virtual cavity photon and one electron in the (n + 1) band with
the same spin σ . Due to its nonlocal and vacuum nature (no
illumination), this effect can intrinsically weaken the topo-
logical protection of the integer quantum Hall states, because
it can create a coupling between opposite edge states, which
are normally decoupled. By accounting both for paramagnetic
coupling and diamagnetic renormalization, we have deter-
mined the effective hopping in terms of the single-particle
eigenstates in presence of a random disorder potential and a
wall potential at the edges. Moreover, we have studied the
corresponding scattering rates for the disordered eigenstates,
obtained at the level of Fermi golden rule. We have also
individuated the scaling properties and the relevant intensive
quantities. The theory shows that the cavity-mediated hopping
affects both bulk and edge states. The effect for edge states
increases when their energy approaches that of the bulk band.
Instead, at high energy, the edge states become asymptotically
free.

From the theoretical point of view, future possible de-
velopments encompass the generalization to spatially nonho-
mogeneous photon modes and multimode cavities. Since the
considered mechanism is antiresonant, the presence of other
modes can enhance the cavity-mediated hopping, because
it introduces additional intermediate states. However, if the
fundamental mode of the split ring-resonator is much more
spatially confined than the excited modes, its contribution can
be the dominant one also for this antiresonant effect. Refer-
ence [37] reports experiments with different cavities having
the fundamental mode with the same frequency but different
high-excited modes: the experimental data show only moder-
ate quantitative differences for the cavity-mediated scattering,
suggesting that additional modes for the considered split-ring
resonators provide only a moderate quantitative correction.
Importantly, note that the spatial gradients of a mode field,
especially near the edges, can also produce a similar effect
to the electronic disorder. Indeed, a nonhomogeneous field
can actually produce hopping between different Landau states
even without electronic disorder. Indeed, the conservation of
the Landau quantum number κ (diagrammatically and pic-
torially described in the top panels of Fig. 2) holds only
for a mode that is spatially flat in the region where the 2D
electron gas is located. An other interesting development is
a microscopic description of transport by considering the
cavity-mediated scattering dynamics on the disordered eigen-
states including Pauli blocking, multiple scattering processes
and applied electrical biases in multiprobe geometries, as well
as the competition with other scattering mechanisms. More-
over, the role of cavity quantum fields on the quantum Hall
effects with 2D van der Waals materials [42] involving the
interplay with additional degrees of freedom (valley, layer) or
on other flat band systems are certainly intriguing directions
to investigate. With the recent experimental observation of
electron scattering by vacuum fields in quantum Hall systems
[37], the experimental and theoretical research on the control
of materials by cavity vacuum fields [26] is destined to con-
siderably accelerate and expand.
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