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Disorder-induced chiral and helical Majorana edge modes in a two-dimensional
Ammann-Beenker quasicrystal
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Recent research on disorder effects in topological phases in quasicrystalline systems has received much atten-
tion. In this work, by numerically computing the (spin) Bott index and the thermal conductance, we reveal the
effects of disorder on a class D chiral topological superconductor and a class DIII time-reversal-invariant topo-
logical superconductor in a two-dimensional Ammann-Beenker tiling quasicrystalline lattice. We demonstrate
that both the topologically protected chiral and helical Majorana edge modes are robust against weak disorder
in the quasicrystalline lattice. More fascinating is the discovery of disorder-induced topologically nontrivial
phases exhibiting chiral and helical Majorana edge modes in class D and DIII topological superconductor
systems, respectively. Our findings open the door for the research on disorder-induced Majorana edge modes
in quasicrystalline systems.
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I. INTRODUCTION

The topological superconductor (TSC), which holds Majo-
rana fermions [1–5] and provides a platform for topological
quantum computation [6–10], is one of the recent impor-
tant and highly explored research topics in condensed-matter
physics [11–17]. And the TSC, a fermionic system described
by the fully gapped bulk Hamiltonian, can be classified into
the tenfold Altland-Zirnbauer (AZ) symmetry classes based
on the three fundamental symmetries containing particle-hole
symmetry (PHS), time-reversal symmetry (TRS), and chi-
ral symmetry [18–22]. For instance, two-dimensional (2D)
TSCs can be classified into two different categories, includ-
ing the chiral TSC and time-reversal-invariant (TRI) TSC,
according to the three fundamental symmetries. The chiral
TSC [11,23], which possesses only PHS, is classified into
class D of the AZ tenfold classification table and character-
ized by the Z topological index (such as the integer Chern
number). And the chiral TSC, the superconductor analog of
the quantum anomalous Hall insulator, holds chiral Majorana
edge modes (MEMs) at its boundary, which is guaranteed
by the bulk topological invariant. This is the manifestation
of the bulk-boundary correspondence, a guiding principle in
the topological phase of matter. Another well-known example
is the TRI TSC [24] in class DIII of the AZ tenfold classi-
fication table, in which the system possesses PHS, TRS, and
chiral symmetry. The TRI TSC, a superconductor analog of
the quantum spin Hall insulator, is characterized by the Z2

topological index (such as the spin Chern number). At the
boundary of the TRI TSC, the helical MEMs emerge, which
are a Kramers pair of time-reversal-related chiral MEMs.

*binzhou@hubu.edu.cn

Recently, seeking the MEMs in TSCs has received more
attention. Actually, the realization of natural TSCs remains
a decade-old outstanding question. Fortunately, the discov-
ery of topological insulators provides a good platform for
searching TSCs. In 2008, Fu and Kane proposed that a strong
topological insulator proximity coupled with an s-wave su-
perconductor can be used to realize TSCs [25]. Therefore,
an implementation scheme of the chiral MEMs is a hybrid
system consisting of a quantum anomalous Hall insulator and
an s-wave superconductor [23]. A collection of studies on
this scheme has reported theoretical and experimental aspects
[26–32]. Moreover, the helical MEMs in TSCs have also been
extensively researched in theory and experiment [33–38],
including a typical theoretical proposal for the heterostruc-
ture composed of a quantum spin Hall insulator sandwiched
by two s-wave superconductors with a π phase difference
[35] and the experimental signature of helical MEMs re-
vealed in the domain walls of the iron-based superconductor
FeSe0.45Te0.55 [38].

Until now, the great majority of studies on TSCs have
been implemented in crystalline systems, which can be solved
by the topological band theory. It is interesting to note that
the TSCs were also recently investigated in quasicrystalline
systems [39–49], which lack the translational symmetry and
cannot be explained by the topological band theory. For ex-
ample, Fulga et al. [39] proposed that the chiral TSC can
be realized on an eightfold Ammann-Beenker (AB) tiling
quasicrystalline lattice (QL), in which the chiral MEMs
are characterized by the nonzero pseudospectrum Z index
[50] and the quantized thermal conductance. Furthermore,
Ghadimi et al. [42] showed that both the fivefold Penrose
tiling and the eightfold AB tiling QLs can be used as a
platform to achieve the TSC with chiral MEMs, where the
bulk topology is characterized by the unity Bott index. But
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as we know, the investigation of the TRI TSCs with helical
MEMs in quasicrystalline systems is still lacking. Besides the
TSCs, multiple topological phases of matter have also been
proposed for quasicrystalline systems in recent years [51–77],
such as quantum Hall insulators [51–53], quantum spin Hall
insulators [54–58], and higher-order topological insulators
[59–61]. Experimentally, the photonic quasicrystals [78] and
the quasiperiodic acoustic waveguides [79] can be employed
as platforms to realize the topological phase of matter in QLs.

In addition, one of the most significant properties of
the topological phases of matter is the robustness of the
edge states against weak disorder, which is protected by the
bulk topology. When the energy gap is closed by strong
disorder, a topological phase transition appears, and the
topology disappears. The more intriguing finding is that
disorder can encourage the emergence of a topologically
nontrivial phase in an initially clean and normal system
[56,57,80–114]. Disorder-induced topological phases have
been achieved in various experiment platforms [115–118],
such as one-dimensional disordered atomic wires [115] and
photonic lattices [116]. The pioneering work is the pro-
posal of topological Anderson insulators in HgTe quantum
wells by Li et al. in 2009 [80]. Subsequently, this physi-
cal phenomenon of a disorder-induced topological phase has
been extensively studied, including, but not limited to, Chern
insulators [81–85], topological insulators [86–93], topolog-
ical superconductors [94–99], and higher-order topological
insulators [100,101,118]. For instance, in crystalline sys-
tems, disorder-induced chiral MEMs in 2D TSCs [94–96]
and disorder-induced MEMs in one-dimensional (1D) Ki-
taev superconductor chains [97–99] have been reported in
previous works. Meanwhile, it is important to note that the
topological Anderson insulators can also be implemented in
quasicrystalline systems, such as the disorder-induced 2D
quantum spin Hall insulators in the Penrose tiling [56] and
AB tiling [57] QLs, in which the topologically nontrivial
phase is characterized by the nonzero spin Bott index and the
quantized two-terminal conductance. However, the disorder-
induced topological phases in QLs have still not been revealed
in other topological classification systems, such as the TSCs
in classes D and DIII. In view of the recent research on
TSCs in QLs and the significant progress on disorder-induced
topological phases in various systems, an intriguing question
is whether disorder-induced MEMs can also emerge in the 2D
quasicrystalline TSCs.

In this work, we systematically investigate the effects of
Anderson-type disorder on the 2D AB tiling quasicrystalline
TSCs, covering a chiral TSC in class D and a TRI TSC
in class DIII. The AB tiling quasicrystal [119–121] is tiled
using squares and rhombuses at a small angle of 45◦ (see
Fig. 1). The construction process for the AB tiling quasicrystal
through the inflation method was shown in Ref. [39]. The
Bott index (a real-space Z index for class D systems) and the
spin Bott index (a real-space Z2 index for class DIII systems)
are involved in evincing the topologically nontrivial phases
with the MEMs in the class D chiral and class DIII TRI TSC
systems. Meanwhile, to verify the results of the topological
invariants, we bring in the recursive Green’s function method
for calculating the thermal conductance to test the existence
of the MEMs in the two quasicrystalline TSC systems. We

FIG. 1. Schematic illustration of the Ammann-Beenker tiling
quasicrystal. The quasicrystal consists of two types of primitive
tiles: square tiles and rhombus tiles at a small angle of 45◦. The
black vertices represent the quasicrystal lattice sites. The lattice
site connections of the short diagonal of the rhombus represent the
nearest-neighbor bond, and the site connections of the sides of the
two primitive tiles (red lines) represent the next-nearest-neighbor
bond.

reveal rich phase diagrams of the two TSC systems when the
disorder is turned on, and we find that the chiral and helical
MEMs are stable for weak disorder, while strong disorder
takes the MEMs away. We also show that a disorder-induced
topologically nontrivial phase at certain parameter values in
the class D chiral TSC system appears, accompanied by the
disorder-induced chiral MEMs located at the square edge of
the finite QL sample. Similarly, the disorder-induced helical
MEMs can also be found in the class DIII quasicrystalline
TSC.

The rest of this paper is organized as follows. In Sec. II,
we introduce two lattice tight-binding models with disorder
on the AB tiling QL. Then, we give the details of numerical
methods in Sec. III and reveal the chiral and helical MEMs
of the two TSC systems in Sec. IV. Subsequently, in Sec. V,
we provide numerical results to study the topological phase
transitions of the two TSC systems with disorder, and we end
with a summary in Sec. VI.

II. MODELS

We start with two lattice tight-binding models which
respectively describe a chiral TSC and a TRI TSC, with
Anderson-type disorder on the AB tiling QL; a diagrammatic
sketch of the QL is shown in Fig. 1. Here, we discuss only the
first two nearest-neighbor hopping and pairing terms (namely,
only the nearest-neighbor and next-nearest-neighbor bonds in
the QL are considered) and ignore the other long-range terms.
In addition, we assume that the lattice site number is N , and
the lattice site distance of the next-nearest-neighbor bond is
used as the length unit. The class D Hamiltonian of the chiral
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TSC is given by

HD =
∑

j

μ jψ
†
j τzψ j +

∑
j �=k

u(d jk )

2

× ψ
†
j {−tτz + i�[cos(θ jk )τx + sin(θ jk )τy]}ψk, (1)

where the basis is ψ
†
j = (ϕ†

j , ϕ j ) and j and k denote lattice
sites running from 1 to N . τx,y,z are the Pauli matrices acting
on the particle-hole degree of freedom. t is the hopping am-
plitude, and � is the strength of the p-wave superconducting
pairing. θ jk is the polar angle of bond connecting sites j and k
with respect to the horizontal direction. u(d jk ) = e−(d jk−d0 )/ξ

is the spatial decay factor of the hopping and pairing terms,
where ξ is the decay length, d jk is the lattice site distance,
and d0 is the lattice site distance of the next-nearest-neighbor
bond. The lattice site distance is d jk = |d j − dk|, where d j

and dk are the coordinates of the lattice sites. The Anderson-
type disorder term is μ j = μ + W ω j , where μ is the chemical
potential, ω j is the uniform random variable chosen from
[−0.5, 0.5], and W is the disorder strength. The class D
Hamiltonian (1) obeys only the PHS and satisfies the relation
P1HDP−1

1 = −HD. P1 = τxIK is the PHS operator, where K
is the complex conjugate operator and I is the N × N identity
matrix.

The class DIII Hamiltonian of the TRI TSC is written as

HDIII =
∑

j

μ jψ
†
j τzσ0ψ j +

∑
j �=k

u(r jk )

2
ψ

†
j {−tτzσ0

+ i�[cos(θ jk )τxσz + sin(θ jk )τyσ0]}ψk, (2)

where the basis is ψ
†
j = (ϕ†

j,↑, ϕ j,↑, ϕ
†
j,↓, ϕ j,↓). σ0 and τ0 are

the 2 × 2 identity matrices. σx,y,z and τx,y,z are the Pauli ma-
trices acting on the spin and particle-hole degrees of freedom,
respectively. Other physical quantities have the same physical
meaning as for the class D Hamiltonian HD. The class DIII
Hamiltonian (2) satisfies

P2HDIIIP
−1
2 = −HDIII,

T HDIIIT
−1 = HDIII,

CHDIIIC
−1 = −HDIII. (3)

Here, P2, T , and C are the PHS, TRS, and chiral symmetry
operators, respectively, and they are expressed by

P2 = τxσ0IK, T = τ0σyIK, C = P2T . (4)

Herein, the energy units are regulated as t , and the spatial
decay length ξ and the lattice site distance d0 are set as 1.

III. NUMERICAL METHODS

A. Bott index and spin Bott index

The topologically nontrivial phase with edge states is char-
acterized by the bulk topological invariant. Here, we briefly
introduce the two real-space topological invariants, which are
employed in characterizing the topological phases of the two
TSCs in the AB tiling QL because the QL lacks translational
symmetry and cannot be handled by the momentum-space
topological invariants. The two real-space topological invari-
ants are the Bott index [42,50,55,66,122,123], a Z topological

index to characterize the 2D chiral TSC system with chiral
MEMs in class D, and the spin Bott index [54–57,124], a Z2

topological index to characterize the 2D TRI TSC system with
helical MEMs in class DIII. It is noted that the Bott index
and the spin Bott index are both numerically calculated in real
space with the approximate periodic boundary condition, in
which a square-shaped AB tiling QL is transformed to a torus
geometry.

First of all, we detail the concrete numerical calculation
steps for the Bott index [42,50,55,66,122,123]. Initially, we
establish the occupation projector operator as

Q =
L∑
j

|� j〉〈� j |, (5)

where � j is the jth eigenvector of the Hamiltonian and j runs
from 1 to L. L is the total number of negative eigenvalues,
where the negative energy states are the occupied states owing
to the PHS of the TSC systems. Then, we define the projected
position operators as

UX = Qei2πX Q + (I − Q), (6)

VY = Qei2πY Q + (I − Q), (7)

where I is the L × L identity matrix. X and Y are two diagonal
matrices, and the diagonal elements are Xj j = x j and Yj j = y j

with coordinates (x j, y j ) of the jth lattice site, where the
coordinates are rescaled to the interval [0,1). By means of
gauging the commutativity of the projected position operators
[55], the Bott index is defined as

B = 1

2π
ln{Tr[ln(VY UXV †

Y U †
X )]}. (8)

The case with B = 0 corresponds to the topologically trivial
phase with no MEMs, and B = 1 corresponds to the topolog-
ically nontrivial phase with chiral MEMs.

After explaining the numerical calculation method for the
Bott index, we next construct the concrete numerical calcula-
tion steps for the spin Bott index [54–57]. First, we formulate
the projected spin operator as

Qz = Qη̂zQ, (9)

where Q is the occupation projector operator and η̂z = h̄
2 σz is

the spin operator with the Pauli matrix σz. The eigenvalues
of Qz still remain two isolated parts divided by zero energy.
Then, we define a new projector operator as

Q± =
L/2∑

j

|±
j 〉〈±

j |, (10)

where +
j (−

j ) is the eigenvector corresponding to the jth
positive (negative) eigenvalue of Qz. Subsequently, we formu-
late the new projected position operators as

U± = Q±ei2πX Q± + (I − Q±), (11)

V± = Q±ei2πY Q± + (I − Q±). (12)

In numerical calculations, we adopt the singular value
decomposition method to calculate the projected position op-
erators U± and V± to improve the stability of the numerical
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results of the spin Bott index. The singular value decomposi-
tion of a matrix can be expressed as M = Z��†, where Z
and � are unitary and � is real and diagonal. We specify
the “unitary part” M̃ = Z�† as the new projected position
operator and replace the initial matrix M [55]. Finally, the spin
Bott index can be defined as

Bs = 1
2 (B+ − B−), (13)

with

B± = 1

2π
Im{Tr[ln(Ṽ±Ũ±Ṽ †

±Ũ †
±)]}, (14)

where B± are the Bott indexes of two spin sectors. The case
with Bs = 0 corresponds to the topologically trivial phase
with no MEMs, and Bs = 1 corresponds to the topologically
nontrivial phase with helical MEMs.

B. Thermal conductance

Meanwhile, we test the topological nature of the MEMs of
the chiral and TRI TSCs in the AB tiling QL by studying the
thermal transport properties of the systems. The setup, a two-
terminal normal-metal–superconductor–normal-metal (NSN)
junction, is constructed by attaching two semi-infinite normal
metal leads to the left and right ends of the superconductor
device. The normal-metal lead Hamiltonian is described by
the superconductor device Hamiltonian in a square lattice,
where W and � are set to zero. The connected Hamiltonian,
which represents the connection of the normal-metal lead and
the superconductor device, is described by the superconductor
device Hamiltonian by setting μ, W , and � to zero. Here,
the hopping amplitudes of the superconductor device Hamil-
tonian, the normal-metal lead Hamiltonian, and the connected
Hamiltonian are all set to be equal.

In order to compute the two-terminal thermal conductance,
we first calculate the Fermi level (E = 0) scattering matrix S
of the NSN junction with

S =
(

SLL SLR

SRL SRR

)
, (15)

where the block matrices SLL and SRR represent the reflection
amplitudes, the block matrices SLR and SRL represent the
transmission amplitudes, and the subscripts L and R represent
left and right leads, respectively. Each block of the scattering
matrix is

Smn =
(

See
mn Seh

mn
She

mn Shh
mn

)
, (16)

where m, n = L, R. The element Sαβ
mn indicates the scattering

amplitude of an outgoing β particle attributed to the incoming
α particle, where α and β denote the electron (e) or hole
(h). The scattering matrix is numerically calculated by utiliz-
ing the recursive Green’s function method [99,125–129]. The
scattering matrix S, related to the Green’s function, is given
by [130,131]

Sαβ
mn = −δm,nδα,β + i

[
�α

m

]1/2
Gr

[
�β

n

]1/2
. (17)

�α
m is the linewidth function of the α particle with �α

m =
i[(�α

m)r − (�α
m)a], where (�α

m)r/a is the retarded (advanced)
self-energy of the α particle for the m lead. Gr is the retarded

Green’s function of the superconductor device and can be
expressed as

Gr =
[

E + i0+ − H −
∑
m,α

(
�α

m

)r

]−1

, (18)

where H is the superconductor device Hamiltonian and E is
the Fermi level and is set to zero.

Therefore, in the low-temperature linear response regime,
the thermal conductance is formulated as [132]

G = G0Tr(S†
LRSLR), (19)

with the quantum of thermal conductance G0 = π2k2
BT0/6h.

The quantized thermal conductance G/G0 = 1 is the signature
of a chiral MEM located at the edge of the superconductor
device, and G/G0 = 0 if there is no MEM. The thermal con-
ductance G/G0 = 2 indicates that there is a pair of MEMs,
the helical MEMs, located at the edge of the superconductor
device.

IV. CHIRAL AND HELICAL MEMS IN CLEAN LIMIT

In this section, to reveal the topologically nontrivial phase
with MEMs in the clean limit, we directly diagonalize the
class D Hamiltonian (1) and the class DIII Hamiltonian (2)
on the AB tiling QL with square geometry under an open
boundary condition (OBC) and a periodic boundary condition
(PBC), respectively. Here, we set the model parameters �/t =
1, μ/t = 1.6, W/t = 0, and lattice site number N = 1452.

Figure 2(a) shows the energy spectrum of the class D
Hamiltonian (1) under the OBC (black circles) and the PBC
(cyan dots) versus the eigenvalue index n. It is found that
an energy gap for the PBC system emerges in the energy
spectrum, while the gapless in-gap energy states for the OBC
system fill the bulk energy gap of the PBC system. In Fig. 2(b),
we plot the probability density of an in-gap eigenstate near
zero energy [marked by the red arrow in Fig. 2(a)] for a finite
QL sample with square boundary geometry under the OBC.
Interestingly enough, we find that the in-gap state is located at
the square edge of the finite QL sample. We further calculate
the Bott index to identify the topological origin of the edge
modes. In the case of the same parameters as in Fig. 2(a), the
numerical calculation result of the Bott index is B = 1, which
indicates that this phase is topologically nontrivial with chiral
MEMs. Meanwhile, the two-terminal thermal conductance,
where G/G0 = 1, is calculated to confirm the topological
nature of the edge modes.

Similarly, we show the energy spectrum of the class DIII
Hamiltonian (2) under the OBC (black circles) and the PBC
(cyan dots) versus the eigenvalue index n in Fig. 2(c). We
also find that the PBC system possesses an energy gap, while
the OBC system has gapless in-gap states occupying the bulk
energy gap of the PBC system. Note that all the in-gap states
are doubly degenerate states due to the TRS. Figure 2(d)
shows the probability density of an in-gap eigenstate near zero
energy [marked by the red arrow in Fig. 2(c)] for a finite
QL sample with square boundary geometry under the OBC.
The red dots (blue circles) represent an edge state with spin
up (down). It is found that the in-gap states are located at
the square edge of the finite QL sample. The topologically
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FIG. 2. (a) Energy spectrum of the class D Hamiltonian HD on
the AB tiling QL with a square shape under the OBC (black circles)
and the PBC (cyan dots) versus the eigenvalue index n. The inset
shows the enlarged section of eigenstates near zero energy for the
system under the OBC. The gray region shows the midgap states.
(b) The probability density of the in-gap eigenstates near zero energy
is marked by the red arrow in (a). The color map shows the values
of the probability density. (c) Energy spectrum of the class DIII
Hamiltonian HDIII on the AB tiling QL with a square shape under the
OBC (black circles) and the PBC (cyan dots) versus the eigenvalue
index n. (d) The probability density of doubly degenerate in-gap
eigenstates near zero energy is marked by the red arrow in (c). The
red dots (blue circles) represent an edge state with spin up (down).
We take the model parameters �/t = 1, μ/t = 1.6, W/t = 0, and
lattice site number N = 1452.

nontrivial phase of a TRI TSC with the helical MEMs is
confirmed by the numerical results of the spin Bott index
Bs = 1 and the two-terminal thermal conductance G/G0 = 2.

V. THE EFFECTS OF DISORDER

In this section, we numerically investigate the effects of the
Anderson-type disorder on the topological phase transitions
of the chiral and TRI quasicrystalline TSC systems. Based
on the calculation of the real-space topological invariants and
the two-terminal thermal conductance, topological phase dia-
grams with different parameters will be presented.

A. Class D

First, we reveal the disorder-induced topological phase
transitions in the class D chiral TSC system. First of all, based
on the computation of the Bott index B and the two-terminal
thermal conductance G/G0, we study the effects of disorder
on the topological phase transitions for two sets of system
parameters. For the case of (�/t, μ/t ) = (2, 2.5), the phase is
topologically nontrivial with nonzero Bott index B = 1 in the
clean limit. Figure 3(a) shows the Bott index B and the thermal
conductance G/G0 in this case as a function of the disorder
strength W/t . We find that the topologically nontrivial phase

FIG. 3. The Bott index B and the thermal conductance G/G0 for
the class D TSC system as a function of the disorder strength W/t for
(a) μ/t = 2.5 and (b) μ/t = 3. We take the parameter �/t = 2. In
calculating the Bott index (the thermal conductance), the lattice site
number of the QL is taken to be N = 1452 (8260), and the error bar
indicates a standard deviation of 500 (1000) samples.

remains stable when the disorder strength is small, which is
characterized by the nonzero Bott index B = 1 and the quan-
tized thermal conductance G/G0 = 1 in a certain range of
disorder strength (0 � W/t � 11). However, with the disorder
strength W/t increasing, a topological phase transition occurs
at W/t = 11, beyond which both the Bott index B and the
thermal conductance G/G0 decay to zero, and the class D
chiral TSC system is converted to a topologically trivial phase.

For the case of (�/t, μ/t ) = (2, 3), the phase is topolog-
ically trivial with zero Bott index, B = 0, in the clean limit.
The Bott index B and the thermal conductance G/G0 in this
case as a function of the disorder strength W/t are plotted
in Fig. 3(b). With the increase in W/t , it is found that two
topological phase transitions arise, accompanied by the Bott
index changing from B = 0 to B = 1 at W/t = 5 and returning
to B = 0 at W/t = 11. Here, plateau of the nonzero Bott
index, B = 1, exists in a certain range of disorder strength
(5 � W/t � 11), which indicates a topologically nontrivial
phase induced by disorder. Meanwhile, the numerical result
of the thermal conductance is obtained, and we find that it can
match well the numerical result of the Bott index. The value of
the thermal conductance jumps from G/G0 = 0 to G/G0 = 1
at W/t = 5.5 and goes back to G/G0 = 0 at W/t = 11. Thus,
the chiral MEMs can be induced by disorder when the disor-
der strength is in the region of 5.5 � W/t � 11 in the class
D chiral TSC system (with model parameters �/t = 2 and
μ/t = 3).

Additionally, the topological phase diagram for the class
D system with disorder in the (W/t , μ/t) space is plotted in
Fig. 4, where �/t = 2. The color map shows the values of
the Bott index B. The yellow region denotes the topologically
nontrivial phase with B = 1, and the blue region denotes the
topologically trivial phase with B = 0. It is found that the
maximum disorder strength, below which the topologically
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FIG. 4. Phase diagram in (W/t , μ/t) space for the class D TSC
system with disorder obtained by calculating the Bott index B with
100 disorder configurations. The yellow region denotes the topo-
logically nontrivial phase (B = 1), and the blue region denotes the
topologically trivial phase (B = 0). We take the parameters �/t = 2
and N = 264.

nontrivial phase remains stable, increases with increasing
the chemical potential μ/t . The largest maximum disorder
strength is about W/t ≈ 12, beyond which the topologically
nontrivial phase vanishes. We also find the disorder-induced
topologically nontrivial phase region in a range of parameter
(W/t , μ/t) space is distinctly presented in the topological
phase diagram, as shown in Fig. 4.

In order to show the disorder-induced MEMs in the class
D TSC system clearly, we directly diagonalize the class D
Hamiltonian (1) on the QL with square geometry under the
OBC and PBC. Here, we set the model parameters �/t = 2,
μ/t = 3, W/t = 8, and lattice site number N = 1452. Fig-
ure 5(a) shows the energy spectrum of the class D Hamiltonian
(1) under the OBC (black circles) and the PBC (cyan dots)
versus the eigenvalue index n. It is found that an energy gap
for the PBC system emerges in the energy spectrum, while
the gapless in-gap energy states for the OBC system fill the
bulk energy gap of the PBC system. In Fig. 5(b), we plot the
probability density of an in-gap eigenstate near zero energy
[marked by the red arrow in Fig. 5(a)] for a finite QL sample
with square boundary geometry under the OBC. Interestingly
enough, we find that the in-gap state is located at the square
edge of the finite QL sample.

B. Class DIII

Next, we reveal the disorder-induced topological phase
transitions in the class DIII TRI TSC system. Like for the
class D case, we first study the effects of disorder on the
topological phase transitions at two sets of system parameters
based on the computation of the spin Bott index Bs and the
two-terminal thermal conductance G/G0. Figure 6 shows the
spin Bott index Bs and the thermal conductance G/G0 as a
function of the disorder strength W/t .

For the case of (�/t, μ/t ) = (2, 2.5), the phase is topo-
logically nontrivial with the nonzero spin Bott index, Bs = 1,
in the clean limit. Figure 6(a) shows that the topologically
nontrivial phase remains stable when the disorder strength is
small, which is characterized by the nonzero spin Bott index

FIG. 5. (a) Energy spectrum of the class D Hamiltonian HD on
the AB tiling QL with a square shape under the OBC (black circles)
and the PBC (cyan dots) versus the eigenvalue index n. The inset
shows the enlarged section of eigenstates near zero energy for the
system under the OBC. The gray region shows the midgap states.
(b) The probability density of the in-gap eigenstates near zero energy
is marked by the red arrow in (a). The color map shows the values of
the probability density. (c) Energy spectrum of the class DIII Hamil-
tonian HDIII on the AB tiling QL with a square shape under the OBC
(black circles) and the PBC (cyan dots) versus the eigenvalue index n.
(d) The probability density of doubly degenerate in-gap eigenstates
near zero energy is marked by the red arrow in (c). The red dots
(blue circles) represent an edge state with spin up (down). We take
the model parameters �/t = 2, μ/t = 3, W/t = 8, and lattice site
number N = 1452.

FIG. 6. The spin Bott index Bs and the thermal conductance
G/G0 for the class DIII TSC system as a function of the disorder
strength W/t for (a) μ/t = 2.5 and (b) μ/t = 3. We take the pa-
rameter �/t = 2. In calculating the spin Bott index (the thermal
conductance), the lattice site number of the QL is taken to be N =
264 (8260), and the error bar indicates a standard deviation of 500
(1000) samples.
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FIG. 7. Phase diagram in (W/t , μ/t) space for the class DIII
TSC system with disorder obtained by calculating the spin Bott
index Bs with 100 disorder configurations. The yellow region denotes
the topologically nontrivial phase (Bs = 1), and the blue region de-
notes the topologically trivial phase (Bs = 0). We take the parameter
�/t = 2 and N = 264.

Bs = 1 and the quantized thermal conductance G/G0 = 2 in
a certain range of disorder strength (0 � W/t � 9.5). Then, a
topological phase transition occurs at W/t = 9.5 with further
increasing W/t , beyond which both the spin Bott index Bs and
the thermal conductance G/G0 decay to zero, and the class
DIII TRI TSC system is converted to a topologically trivial
phase. For the case of (�/t, μ/t ) = (2, 3), the phase is topo-
logically trivial with zero spin Bott index, Bs = 0, in the clean
limit. Figure 6(b) shows that two topological phase transitions
arise with increasing W/t , accompanied by the spin Bott in-
dex changing from Bs = 0 to 1 at W/t = 6 and returning to
zero at W/t = 10 and the thermal conductance jumping from
G/G0 = 0 to 2 at W/t = 6 and returning to zero at W/t = 10.
The plateaus of the nonzero spin Bott index Bs = 1 and the
quantized thermal conductance G/G0 = 2 exist in a certain
range of disorder strength (6 � W/t � 10), which indicates
that a topologically nontrivial phase is induced by disorder.
Thus, the helical MEMs can be induced by disorder when the
disorder strength is in the region of 6 � W/t � 10 in the class
DIII TRI TSC system (with model parameters �/t = 2 and
μ/t = 3).

Additionally, the topological phase diagram for the class
DIII TRI TSC system with disorder in the (W/t , μ/t) space
is plotted in Fig. 7, where �/t = 2. The color map shows the
values of the spin Bott index Bs. The yellow region denotes
the topologically nontrivial phase with Bs = 1, and the blue
region denotes the topologically trivial phase with Bs = 0. It
is found that the largest maximum disorder strength is about
W/t ≈ 12, beyond which the topologically nontrivial phase
vanishes. We also find that the disorder-induced topologically
nontrivial phase region, in a range of parameter (W/t , μ/t)
space, is distinctly presented in the topological phase diagram,
as shown in Fig. 7. It is noted that the disorder-averaged
topological phase diagrams (Fig. 7) of class DIII are obviously
identical to those (Fig. 4) of class D. The reason is that the
Hamiltonian (2) of class DIII comprises the two time-reversal
partner Hamiltonian (1) of class D, and moreover, here, the

on-site disorders introduced do not break the time-reversal
symmetry of the Hamiltonian (2).

In order to show the disorder-induced MEMs in the class
DIII TSC system clearly, we directly diagonalize the class
DIII Hamiltonian (2) on the QL with square geometry under
the OBC and PBC. Here, we set the model parameters �/t =
2, μ/t = 3, W/t = 8, and lattice site number N = 1452. We
show the energy spectrum of the class DIII Hamiltonian (2)
under the OBC (black circles) and the PBC (cyan dots) versus
the eigenvalue index n in Fig. 5(c). We also find that the PBC
system possesses an energy gap, while the OBC system has
gapless in-gap states occupying the bulk energy gap of the
PBC system. Note that all the in-gap states are doubly degen-
erate states due to the TRS. Figure 5(d) shows the probability
density of an in-gap eigenstate near zero energy [marked by
the red arrow in Fig. 5(c)] for a finite QL sample with square
boundary geometry under the OBC. The red dots (blue circles)
represent an edge state with spin up (down). It is found that
the in-gap states are located at the square edge of the finite
QL sample.

It is necessary to calculate the real Z2 invariant beyond the
spin Bott index for the class DIII TRI TSC. However, it is
hard work to calculate directly the generic Z2 invariant in a
quasicrystal. On the other hand, we can indirectly know the
value of the Z2 invariant based on the bulk-boundary corre-
spondence. Thus, we can perform numerical calculations of
the energy spectrum of the Hamiltonian (2) on the quasicrys-
talline lattice with a square shape under the OBC and PBC
to present helical edge states appearing in the bulk gap. The
indirect Z2 invariant can be obtained, and the phase with the
helical edge states corresponds to Z2 = −1 (the topologically
nontrivial phase), while the phase without the edge states
corresponds to Z2 = 1 (the topologically trivial phase). The
original Z2 invariant for the generic form of the class DIII
TSC Hamiltonian will be investigated in our future work.

VI. CONCLUSION AND DISCUSSION

In this work, we investigated the topological phase transi-
tions of a class D chiral TSC and a class DIII TRI TSC with
Anderson-type disorder in an AB tiling QL. We employed
real-space topological invariants, including the Bott index (a
Z index for the class D system) and the spin Bott index (a Z2

index for the class DIII system), and the two-terminal thermal
conductance to determine the topological phases of the two
quasicrystalline TSC systems. The class D chiral TSC in the
topologically nontrivial phase exhibits chiral MEMs located at
the square boundary of a finite QL sample, and the class DIII
TRI TSC has helical MEMs. Both the chiral MEMs in the
class D TSC system and the helical MEMs in the class DIII
TSC system are robust against weak disorder, while they are
destroyed when the disorder is strong. More striking is that we
discovered a topological phase transition from a topologically
trivial phase to a topologically nontrivial phase with chiral
MEMs located on the edge of the class D quasicrystalline
TSC at finite disorder strength. Similarly, disorder-induced
helical MEMs in the class DIII quasicrystalline TSC were
also found. We also presented the phase diagrams based on
the numerical calculation of the Bott index and the spin Bott
index as functions of the disorder strength and the chemical
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potential, and we showed that the interplay between the model
parameters and disorder has an interesting influence on the
existence of the topological phases in the quasicrystalline TSC
systems.

The theoretical interpretation of the disorder-induced topo-
logical phase is that the model parameters are renormalized
by the disorder, which is obtained with the effective-
medium theory (self-consistent Born approximation method)
in crystalline systems [87,94–96,99]. However, because the
translational symmetry is lacking in QLs, the self-consistent
Born approximation method is invalid. The disorder-induced
chiral and helical MEMs in the AB tiling QL cannot be prop-
erly explained by the effective-medium theory. Considering
the similarities of the disorder-induced topological phases in
crystalline and quasicrystalline lattices, we can conjecture that
the origin of the appearance of the disorder-induced MEMs in
the AB tiling QL is renormalization of the model parameters,
which is caused by disorder.

Furthermore, the subgap Yu-Shiba-Rusinov bound states,
which are induced by magnetic impurity atoms in a super-
conductor, can be employed in forming a TSC [133], such

as the 1D TSC chain [134,135] and the 2D amorphous TSC
[136]. Therefore, we propose the experimental setup of the
chiral TSC in the AB tiling QL is that the magnetic atoms,
which are located at the vertices of the QL, are placed on
a superconducting surface, while the TRI TSC in the AB
tiling QL is formed by a heterostructure, which consists of
a layer of atoms being placed between two superconduc-
tors, where the superconductors have a π phase difference
[25,137].
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