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Nodal-line semimetal HMTSF-TCNQ: Anomalous orbital diamagnetism and charge density wave
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This study investigates the electronic states and physical quantities of an organic charge-transfer complex
HMTSF-TCNQ, which undergoes a charge-density-wave (CDW) phase transition at temperature Tc � 30 K.
A first-principles calculation is utilized to determine that the normal state is a topological semimetal with
open nodal lines. Based on the first-principles calculation, we develop a tight-binding model to investigate
the electronic state in detail. Below Tc, the CDW phase is examined in the tight-binding scheme using the
mean-field approximation. It is shown that the open nodal lines are deformed into closed ones, and their shapes
are sensitive to the order parameter. Using this tight-binding model, we theoretically evaluate the temperature
dependencies of two physical quantities: the spin-lattice relaxation time T1 and the orbital magnetic susceptibility.
In particular, an anomalous plateau is obtained at low temperatures in the orbital diamagnetism. We conclude that
this anomalous plateau originates owing to the conflict between the interband diamagnetism, impurity scattering,
and the nodal-line deformation. We also conduct an experiment to investigate the orbital magnetism, and the
results are in excellent quantitative agreement with the theory.
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I. INTRODUCTION

A charge density wave (CDW) in topological bands in-
duces fascinating phenomena, such as the three-dimensional
Hall effect [1] and axionic CDW phase [2], which have re-
cently generated considerable research interest. A CDW is a
quantum phase that is typical of quasi-one-dimensional or-
ganic conductors, and the topological properties of organic
materials have become more extensively researched in the
last two decades [3–11]. Organic materials that possess topo-
logical properties have the potential for novel phenomena
that originate from the interplay between their topological
bands and the CDW. Such materials require both one di-
mensionality for the CDW and two or three dimensionality
for the topological nature. One example of these materi-
als is HMTSF-TCNQ (hexamethylene-tetraselena-fulvalene-
tetracyanoquindimethane) [12–15].

HMTSF-TCNQ is a classical quasi-one-dimensional
charge-transfer complex that was discovered in the 1970s,
and it has attracted considerable attention in contemporary
research, owing to the possibility of field-induced CDW
[16–18]. HMTSF-TCNQ has components that are similar to
those of the well-known organic complexes TTF-TCNQ and
TMTSF2PF6, which are known as a typical organic conductor
that has a CDW and the first organic superconductor iden-
tified, respectively [19,20]. These two materials have been
studied extensively; however, HMTSF-TCNQ has not.

HMTSF-TCNQ undergoes a CDW transition at approx-
imately 30 K under ambient pressure; however, the tem-
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perature dependence of the resistivity is different from that
of TTF-TCNQ in that a clear metal-insulator transition is
not observed. According to Refs. [15,19], the Fermi surface
of HMTSF-TCNQ is two dimensional, owing to the rela-
tively large interchain hoppings, which causes incomplete
CDW nesting. In this material, unconventional temperature
dependencies of physical quantities, such as the magnetic
susceptibility [14], Seebeck coefficient [12], and the electric
conductivity are known and are expected to be attributed to
the incomplete CDW nesting.

Despite these intriguing properties, there are no reliable
theoretical models for the electronic states of the normal phase
or the CDW phase. The electronic state of the normal phase
is typically discussed in terms of Weger’s model [15], which
is a four-band tight-binding model that consists of HOMOs
(highest occupied molecular orbitals) and LUMOs (lowest
unoccupied molecular orbitals) for each molecule on the basis
of the crystal structure known at that time with the estimated
hopping parameters. This model was able to explain some ex-
perimental results; however, a subsequent experimental study
suggested the crystal structure of a different space group [21].
Furthermore, the first-principles calculation based on the new
crystal structure, which is presented in this study, suggests
Fermi surfaces of different shapes and locations from those
calculated by Weger. Therefore, we need to modify the exist-
ing model on the basis of these results.

The physical quantities of HMTSF-TCNQ are of interest
as well as its electronic states. In particular, HMTSF-TCNQ
shows a large diamagnetism at low temperatures, and it
reaches an anomalous plateau below Tc [14]. Weger tried
to explain this behavior via his model and concluded that
the diamagnetism was attributed to Landau diamagnetism.
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FIG. 1. (a) Molecular structures of HMTSF and TCNQ. (b) Conventional and (c) primitive cell of HMTSF-TCNQ. Brown, green, blue,
and white circles represent C, Se, N, and H atoms, respectively. The black lines represent the boundary of each unit cell. The primitive cell is
half the size of the conventional cell.

However, this claim is debatable because Landau diamag-
netism is derived from the electrons on the Fermi surface. In
the CDW state, the density of states (DOS) at the Fermi level
is expected to be small. Therefore, Landau diamagnetism does
not explain the large diamagnetism at low temperatures; thus,
the origin of the diamagnetism remains unknown.

To address these problems, the current study serves a
twofold purpose. One is to reveal the electronic states of the
normal and CDW phases of HMTSF-TCNQ under ambient
pressure. First, we perform a first-principles calculation. The
obtained results, in particular the symmetry indicator, indicate
that its normal phase is a topologically protected nodal-line
semimetal. On the basis of these results, we construct a tight-
binding model and discuss the nodal lines in detail. These
analyses clarify that the energy at the node points fluctuate
along the nodal lines, which results in electron and hole
pockets. As a result, we expect that the nodal lines influence
various physical quantities that are susceptible to the Fermi
surface. Furthermore, assuming a plausible CDW nesting, we
discuss how the CDW affects the nodal lines and the electron
and hole pockets. We theoretically evaluate the spin-lattice
relaxation time T1 for the experimental confirmation of the
existence of the nodal lines.

The other objective is to clarify the derivation of the
large diamagnetism and its temperature dependence. Since the
nodal lines are located near the Fermi level, a large diamag-
netism derived from the interband effect is strongly expected
from an analogy to the case of the Dirac electrons [22–28].
Note that the interband effect is insensitive to the DOS at
the Fermi level. Using the Fukuyama formula [29], which
properly describes the interband effect, we evaluate the mag-
netic susceptibility. An experiment is conducted to determine
the magnetic susceptibility using a superconducting quantum
interference device (SQUID) magnetometer. The proposed
theory is in excellent agreement with this experimental
result.

This paper is organized as follows. In Sec. II the correct
crystal structure of HMTSF-TCNQ is presented. In Sec. III
we investigate the electronic state of HMTSF-TCNQ using the
first-principles calculation, and we demonstrate the existence
of nodal lines. In Sec. IV we construct a tight-binding model
based on the results of the previous section and discuss the
nodal lines in detail. In Sec. V we introduce the CDW with
the mean-field approximation and examine the CDW phase.
In Sec. VI we evaluate the spin-lattice relaxation time T1 and
the orbital magnetic susceptibility. A comparison between the
theory and the magnetic susceptibility experimental results is
also conducted. Finally, we present the conclusion to the study
in Sec. VII.

II. CRYSTAL STRUCTURE OF HMTSF-TCNQ

HMTSF-TCNQ consists of two organic molecules,
HMTSF and TCNQ, the structure of which are shown in
Fig. 1(a). This material has a base-centered monoclinic lattice,
and for convenience, we introduce two different notations
of the unit cell: The conventional cell and the primitive
cell, which are shown in Figs. 1(b) and 1(c), respectively.
The crystal structures and wave functions in this study are
drawn using VESTA (JP minerals, Japan) [30]. Each molecule
forms a one-dimensional chain, and the HMTSF and TCNQ
chains are arranged in a checkerboard configuration, as can
be observed in Fig. 1(b). Throughout this study we use the
Cartesian coordinate system, as shown in Fig. 2(a) (the unique
axis b convention). The space group is C2/m (No. 12), the
generators of which are lattice translations, C2y rotation, and
inversion I [31]. In the following we will compare the the-
oretical calculation with experimental results obtained in a
recently synthesized sample [32]. The lattice constants for this
sample at room temperature are tabulated in Table I, which are
in good agreement with those obtained in a previous study
[21]. The experimental details will be presented elsewhere
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FIG. 2. (a) Basic lattice vectors for the primitive cell of HMTSF-
TCNQ. The rhombus and dashed rectangle represent the boundary of
the primitive and conventional cell, respectively. The lattice constants
a, b, c, and β are for the conventional cell. (b) First Brillouin zone
and TRIM. The TRIM are �, A, Y, M, two V, and two L points. The
path for the energy dispersion is also shown.

[33]. For comparison between theory and experiments, we use
the former lattice constants for theoretical analyses.

Figure 2(a) shows the basic lattice vectors for the
primitive cell, a1 = (a/2, b/2, 0), a2 = (−a/2, b/2, 0), and
a3 = (c cos β, 0, c sin β ). The orientation of the chains
are parallel to a3, and the corresponding reciprocal
lattice vectors are b1 = 2π (1/a, 1/b,−1/a tan β ), b2 =
2π (−1/a, 1/b, 1/a tan β ), and b3 = 2π (0, 0, 1/c sin β ). Note
that a3 is almost parallel to the z axis, but slightly inclined
towards the negative x direction and that b3 is parallel to the
kz axis. Figure 2(b) shows the first Brillouin zone, which is
a hexagonal column, and the time-reversal invariant momenta
(TRIM) are �, A, Y, M, two V, and two L points.

III. FIRST-PRINCIPLES CALCULATION OF HMTSF-TCNQ

In this section we present the electronic state of HMTSF-
TCNQ, obtained by a first-principles calculation. This cal-
culation is performed by QUANTUM ESPRESSO [34],
which uses the density functional theory [35,36]. We neglect
spin-orbit interaction (SOI) because in organic materials it
is typically negligible. For the exchange-correlation term,
the generalized gradient approximation with nonrelativistic
Perdew-Burke-Ernzerhof parametrization [37] is used. The
Kohn-Sham orbitals are expanded with plane waves and the
cutoff energies are 70 and 320 Ry for wave functions and
charge density, respectively. (The cutoff stability is discussed
in Appendix A.) The k-point grid on the Brillouin zone is

TABLE I. Lattice constants for the conventional cell.

a/Å b/Å c/Å β/deg

Present [32] 21.85(4) 12.48(2) 3.871(7) 90.25(3)
Ref. [21] 21.999(14) 12.573(8) 3.890(1) 90.29(4)
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FIG. 3. (a) Energy dispersion and DOS of HMTSF-TCNQ. Wave
functions for (b) valence and (c) conduction bands at the � point.
These wave functions consist of two Wannier functions, which are
the same for wave functions at other high-symmetry points, shown
in Appendix B.

taken as 8 × 8 × 40. The obtained energy dispersion and DOS
are shown in Fig. 3(a), and the corresponding path is shown
in Fig. 2(b). First, we find that the dispersion is almost flat
in the kx and ky directions, and the DOS has peaks at the
band edges. These properties are characteristic of quasi-one-
dimensional materials. Another important feature is that the
two bands near the Fermi level are very isolated from other
bands. This implies that the mixing of other orbitals is small
and that it is sufficient to consider these two bands to discuss
the low-energy properties of this material. An energy gap
is observed in the energy dispersion at the Fermi energy in
Fig. 3(a); however, the DOS does not show a clear gap. As
shown below, this is because there are nodal lines away from
the high-symmetry k points. This Dirac-type dispersion may
strongly affect physical quantities, such as the orbital diamag-
netism.

Next, we examine the spatial distribution of the wave func-
tions. Figures 3(b) and 3(c) show the wave functions at the
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FIG. 4. Eight largest hopping parameters used in the tight-
binding model [Eq. (6)]. The subscript and superscript represent the
related molecules and the direction of the hopping, respectively. The
hoppings t z

HH3 and t y
HH are shown for comparison and are not used

in the present study. The lower panel shows the configuration of
the molecules viewed from the z direction, and A–F indicate the
positions of atoms in the upper panel. The dashed line represents
the primitive unit cell.

� point for the valence and conduction bands, respectively.
We observe that the wave functions at other high-symmetry
points also consist of these two Wannier functions. (The
wave functions at other high-symmetry points are shown in
Appendix B.) Therefore, we can naturally assume that the
two bands at each k point are well described by the linear
combination of these two Wannier functions.

Third, we discuss the topological nature of the material
using the symmetry indicator. We can observe that there is no
band crossing on the high-symmetry lines or planes. However,
the space group No. 12 can have nodal lines at generic points
[38–41]. The existence of nodal lines is diagnosed by the
symmetry indicator (z2,2, z′

2), the components of which are
defined by

z2,2 =
∑

k=V,Y,M,L

n−(k) (mod 2), (1)

z′
2 = 1

2

∑
k=8TRIM

n−(k) (mod 2), (2)

where n−(k) is the number of occupied bands with odd parity
at k. This indicator is calculated by examining the parities
of the wave functions, and we obtain a nontrivial indicator
(z2,2, z′

2) = (1, 1). This value indicates the existence of open
nodal lines approximately along the kx direction [42]. (The
parities at TRIM are shown in Appendix B.)

TABLE II. One-body levels and hopping parameteres between
Wannier functions. Hoppings whose absolute values are less than
|t y

TT| are neglected.

Parameters Energy / eV

εT 0.0542
εH −0.0316

t z
HH 0.269

t z
TT −0.184

t y
HT 0.0193

t z
TT2 0.0126

t z
HH2 0.0106

t x
HT1 −0.00689

t x
HT2 0.00446

t y
TT −0.00358

t z
HH3 0.00207

t y
HH −0.00202
...

...

IV. TIGHT-BINDING MODEL AND NODAL LINES

A. Tight-binding model

In the previous section the discussion based on the sym-
metry indicator suggests the existence of the nodal lines.
However, the symmetry indicator does not indicate their ex-
act locations or detailed properties. Therefore, we construct
a tight-binding model and analyze it to clarify the detailed
electronic properties.

As shown in the previous section, the wave functions near
the Fermi level consist of the two Wannier functions located
in HMTSF and TCNQ molecules. From these orbitals we con-
struct a two-band tight-binding model using Slater-Koster’s
method [43]. We fit the hopping parameters to reproduce the
band dispersion using WANNIER90 [44]. From this result
we consider the eight largest hopping parameters and neglect
the others. The chosen hoppings are shown in Fig. 4, and the
fitted parameters are summarized in Table II. We measure the
energies from the Fermi level (i.e., μ = 0) and denote the one-
body level for the HMTSF (TCNQ) orbital as εH (εT). Using
the Fourier transform, we obtain the two-band tight-binding
model in the k space as follows:

H0(k) =
(

tHH(k) t∗
HT(k)

tHT(k) tTT(k)

)
, (3)

where

tHH(k) = εH + 2t z
HH cos k̃zc + 2t z

HH2 cos 2k̃zc, (4)

tTT(k) = εT + 2t z
TT cos k̃zc + 2t z

TT2 cos 2k̃zc + 2t y
TT cos kyb,

(5)

tHT(k) = 4it y
HT cos

kyb

2
sin

k̃zc

2
+ 2it x

HT1 sin

(
−kxa

2
+ k̃zc

2

)

+ 2it x
HT2 sin

(
kxa

2
+ k̃zc

2

)
, (6)

with k̃z = kx cos β + kz sin β.
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FIG. 5. (a) Energy dispersion and (b) the total DOS of the proposed tight-binding model. (c) Partial DOS for HMTSF and TCNQ.

Diagonalizing the Hamiltonian in Eq. (3), we obtain the
energy dispersion:

E± = tHH(k) + tTT(k)

2
±

√
|tHT(k)|2 + 1

4
[tHH(k) − tTT(k)]2,

(7)
which is shown in Fig. 5(a). The total DOS is shown in
Fig. 5(b). These results accurately reproduce those by the
first-principles calculation shown in Fig. 3(a). In the DOS we
observe a linear behavior near the Fermi level, which is typical
for two-dimensional Dirac electrons. Figure 5(c) shows the
partial DOS for HMTSF and TCNQ molecules. While these
wave functions decouple at the band edge, they contribute
almost equally to the DOS at the Fermi level. This result
supports the existence of the Dirac-type dispersion, because
it always consists of at least two orbitals. The shape of the
Dirac cone calculated from the proposed tight-binding model
is shown in Appendix C.

B. Nodal lines

This subsection discusses the locations of the nodal lines
in the k space. From the energy dispersion Eq. (7), we can
identify the nodal lines by the following condition:

tHT(k) = 0, tHH(k) = tTT(k). (8)

Solving Eq. (8) numerically, we obtain the configuration of
the nodal lines as shown in Figs. 6(a) and 6(b). The bird’s
eye view [Fig. 6(a)] indicates that the nodal lines are ap-
proximately along the kx direction, as discussed in Sec. III,
and are almost located on the planes perpendicular to the kz

axis. Because the crystal has C2y rotation, inversion, and σy

symmetries, the nodal lines have the same symmetries. In
particular, owing to the C2y rotation symmetry, the projection
of the nodal lines onto the kx-ky plane [Fig. 6(b)] intersect
on the kx = 0 line. Figure 6(c) shows the Fermi surface of
the proposed tight-binding model, where the purple and green
surfaces represent the electron and hole pockets, respectively.
The energy at the Dirac node point fluctuates along the nodal
lines, which results in alternating thin tube-shaped electron
and hole pockets.

V. CDW PHASE

HMTSF-TCNQ exhibits a CDW phase transition at Tc �
30 K. Theoretically, the nesting vector of this CDW state is
presumed to be the vector between Dirac points on the nodal
lines at the Fermi level, as shown in Fig. 6(a). In the proposed
model, the nesting vector is q � (0, 0, 0.937π/c cos β ). Al-
though the obtained nesting vector is slightly different from
the experimental value [45] q � (0, 0, 0.74π/c cos β ), we use
the former in the following analyses.

Considering the nesting in the mean-field approximation
[46–48], the effective model becomes

HCDW(k) =

⎛
⎜⎝

tHH(k) t∗
HT(k) � 0

tHT(k) tTT(k) 0 �

� 0 tHH(k − q) t∗
HT(k − q)

0 � tHT(k − q) tTT(k − q)

⎞
⎟⎠,

(9)
where � is the order parameter of the CDW state, which is
assumed to be common in the HMTSF and TCNQ chain for
simplicity. Note that the periodicity in the kz direction is lost
and that kz is only allowed in the vicinity of the nodal lines
in the kz > 0 region (kz � 0.38 Å−1). However, the nodal
lines are located on almost the same plane as in the case of
� = 0; therefore, we can still discuss the nodal lines using
the effective Hamiltonian in Eq. (9).

Diagonalizing the effective model of Eq. (9), we obtain
the � dependence of the nodal lines, as shown in Fig. 7(a).
The blue, orange, and green lines represent the nodal lines
with � = 5, 10, and 15 meV, respectively. For the case of
� = 0 meV [Fig. 6(b)], the nodal lines touch each other at a
point. However, with finite �, a band gap opens at this point,
which is connected by the nesting vector. As a result, closed
nodal lines are formed. As � increases, the closed nodal lines
become small and vanish when � � 18 meV. Figures 7(b) and
7(c) show the Fermi surfaces for the cases with � = 5 meV
and � = 10 meV, respectively. They consist of alternating
electron and hole pockets along the nodal lines, as in the case
of � = 0 meV, and these CDW states are still semimetallic.

VI. PHYSICAL QUANTITIES

In this section we evaluate two physical quantities that are
important to the experiments: the spin-lattice relaxation time
T1 and orbital magnetic susceptibility.
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FIG. 6. (a) Configuration of the nodal lines in the k space. The nodal lines in (out of) the first Brillouin zone are indicated by thick (thin)
lines. The nodal lines have C2y rotation, inversion, and σy mirror symmetry. The vector q represents the CDW nesting vector to be considered
in Sec. V, which is on the kx = 0 plane. (b) Nodal lines projected onto the kx-ky plane. They intersect on the kx = 0 line, owing to the C2y

rotational symmetry. (c) Fermi surface of HMTSF-TCNQ. Purple and green surfaces represent the electron and hole pockets, respectively. The
Fermi surface consists of the alternating electron and hole pockets along the nodal lines.

A. Spin-lattice relaxation time T1

The spin-lattice relaxation time T1 reflects the electronic
state near the Fermi level. To experimentally confirm the
existence of nodal lines, we theoretically evaluate T1 for the
normal phase. Although there are several types of the origins

of spin-lattice relaxation, in this analysis we focus on the
Fermi contact term between the conduction electron and the
nucleus in each molecule, which is given by [49–51]

1

(T1)α
∝ T

∫ ∞

−∞
[Dα (ε)]2[− f ′(ε)]dε, (10)

electron pocket
hole pocket

electron pocket
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FIG. 7. (a) Projection of nodal lines onto the kx-ky plane for the CDW phase. The blue, orange, and green lines correspond to � = 5, 10,
and 15 meV, respectively. Electron and hole pockets for (b) � = 5 meV and (c) � = 10 meV. The purple and green surfaces represent the
electron and hole pockets, respectively.
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where α indicates HMTSF or TCNQ, Dα (ε) is the DOS for
the orbital α, and f ′(ε) is the derivative of the Fermi distri-
bution function f (ε) = [1 + eβ(ε−μ)]−1. We assume that the
chemical potential does not change with temperature above
Tc. Figure 8 shows the temperature dependence of 1/T1 in
the logscale without the CDW order parameter. The blue
(orange) solid line represents the theoretical values evaluated
by Eq. (10) for the HMTSF (TCNQ) molecule. The power
T 3 is also shown for reference. We observe that (T1)HMTSF

and (T1)TCNQ follow the power law 1/T1 ∝ T 3.1, which is very
close to the expected law 1/T1 ∝ T 3 for pure two-dimensional
Dirac electrons.

B. Orbital magnetic susceptibility

As mentioned in Sec. I, HMTSF-TCNQ shows a large
diamagnetic susceptibility at low temperatures. To understand
the origin and the temperature dependence, we evaluate the
orbital magnetic susceptibility in the proposed model with
nodal lines using the Fukuyama formula [29] given by

χorbit = e2

h̄2 kBT
∑

nk

Tr γxGγyGγxGγyG, (11)

where G represents the thermal Green’s function

G = [iεn − HCDW(k) + μ + i�sgn(εn)]−1, (12)

where εn = (2n + 1)πkBT , �, and μ are the Matsubara fre-
quency, the damping rate of the electron, and the chemical
potential, respectively. γi is the current operator in the i(=
x or y) direction, which is defined by γi = ∂HCDW(k)/∂ki,
and the n summation means the sum over the Matsubara
frequency εn. The chemical potential is determined by the
charge-neutrality condition∑

lk

f (εlk) =
∑

lk

[1 − f (εlk)], (13)

where εlk is the energy dispersion of the lth band.
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FIG. 9. (a) Orbital magnetic susceptibility for �0 = 10 meV as
a function of the temperature. The blue, orange, and green lines
correspond to � = 0, 3, and 6 meV, respectively. Inset: Absolute
value of the orbital magnetic susceptibility in the logscale. The power
T −1 is also shown for reference. (b) Orbital magnetic susceptibility
for � = 3 meV as a function of the temperature. The blue, orange,
and green lines correspond to �0 = 5, 10, and 15 meV, respectively.

For simplicity, we assume the temperature dependence of
the order parameter, as typically used for the Bardeen-Cooper-
Schrieffer superconductivity [52],

�(T ) = �0

√
1 − T

Tc
, (14)

where �0 is the order parameter at zero temperature. Tc is
set to 30 K, which is in accordance with the experiment [53].
In the following analysis we evaluate the chemical poten-
tial by only considering the temperature dependence through
Eq. (14) and setting β → ∞ in Eq. (13). This approximation
is justified when T � 0; however, we expect that it is still
valid at high temperatures because the thermal fluctuation
overpowers the error of this approximation.

Integrating Eq. (11) numerically, we obtain the temperature
dependence of the orbital magnetic susceptibility as shown in
Fig. 9(a) for �0 = 10 meV (� = 0, 3, and 6 meV). Above Tc
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we observe that the orbital magnetic susceptibility increases
negatively as the temperature decreases from the room tem-
perature for every �. The nodal lines are the ensembles of
Dirac electrons; therefore the Landau-Peierls contribution (the
extension of the Landau diamagnetism to periodic systems)
is expected to be very small [26,54], and the diamagnetism
is attributed to the interband effect [22,23,26,27]. Interband
diamagnetism in two-dimensional Dirac electrons has a tem-
perature dependence of T −1 in the clean limit [55]. The inset
of Fig. 9(a) indicates that the present numerical result for
the � = 0 meV case (shown in blue) asymptotically obeys
the power law for the low temperatures (∼30 K). For the
region Tc < T < 100 K, impurities affect the interband effect.
Although the orbital magnetism in massive Dirac electron
systems is not significantly sensitive to impurities [27], that
in massless Dirac electrons is rather sensitive [23,24].

Below Tc we experience the effect of the nodal-line defor-
mation as well as the interband effect and impurity scattering.
The inflection at Tc is due to the order parameter. As the tem-
perature decreases, the order parameter increases, the nodal
lines shrink, and the diamagnetism is suppressed. We presume
that the origins of this suppression to be decrease in the num-
ber and the reduction of velocities of the Dirac electrons. The
relation between the magnitude of diamagnetism and detailed
structure of nodal lines is discussed intensively in Ref. [56].
Note that a gap does not open in the DOS as long as �0 <

18 meV, and massless Dirac electrons are present for the cases
shown in Fig. 9(a). Therefore, the diamagnetism diverges at
zero temperature for the case of � = 0 meV, whereas the
divergence is suppressed with a finite �.

Figure 9(b) shows the orbital magnetic susceptibility for
the cases of �0 = 5, 10,and 15 meV, where we set � =
3 meV as a typical value. For the case with a small �0,
the diamagnetism monotonically increases as the temperature
decreases. However, for the case with large �0, the nodal lines
are strongly deformed, and the diamagnetism is suppressed
rapidly. Whether χorbit decreases or increases as the temper-
ature decreases depends on the following three effects: the
interband effect, impurity scattering, and nodal-line deforma-
tion.

We compare the above theoretical results with a SQUID
magnetometer measurement. The magnetizations were mea-
sured between 2–300 K using a SQUID magnetometer
operated by a magnetic properties measurement system
(Quantum Design Inc., CA, USA). A newly synthesized poly-
crystalline sample of ∼5 mg is used. The core contribution
of the diamagnetism estimated by Pascal’s law (−2.8 × 10−4

emu/mol) is subtracted, as in the previous study [14]. The
experimental data obtained in the cooling (heating) process
are shown in Fig. 10 with circle (square) markers; the data
reproduce the temperature dependence obtained in a previous
study [14], including the absolute values.

Above 100 K, the total magnetic susceptibility is param-
agnetic. However, as the temperature decreases, the diamag-
netism prevails, and finally reaches a plateau below the CDW
phase transition temperature, Tc = 30 K.

To understand the experimental results, we consider that
the total magnetic susceptibility is given by

χobs = aχorbit + bχPauli, (15)
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FIG. 10. Magnetic susceptibility as a function of temperature.
The blue, orange, and green lines represent the theoretical evalua-
tion of aχorbit , bχPauli, and χobs, respectively, and the circle (square)
markers represent the experimental data obtained by the SQUID
magnetometer in the cooling (heating) process.

with positive coefficients a and b and χPauli is the Pauli para-
magnetic contribution

χPauli = −μ2
BkBT

∑
nk

Tr G2, (16)

where μB is the Bohr magneton μB = |e|h̄/2m. The coeffi-
cient a reflects the randomness of the polycrystal orientation,
and it is expected to be smaller than 1 because χorbit is cal-
culated under a magnetic field in the direction of the largest
diamagnetism. However, the coefficient b ideally equals 1.
Note that χorbit (χPauli) is dominant at low (high) temperatures.
Thus, the behavior below Tc is primarily determined by χorbit ,
which depends on �0 and � up to a numerical factor. To
reproduce the plateau that was experimentally observe, we
choose �0 = 11 meV and � = 4 meV, and we set the numer-
ical factor as a = 0.4. However, for the T > 100 K region,
the dominant contribution is from bχPauli, and to fit the data,
we set b = 2.1. We also show the obtained aχorbit , bχPauli,
and χobs in Fig. 10 with solid lines. The proposed theory
is in excellent agreement with the experimental results for
all temperature regions. This suggests that the experimental
result is explained by the above scenario, i.e., the anomalous
large diamagnetism at low temperatures is explained by the
conflict between the interband effect, impurity scattering, and
the deformation of nodal lines.

It should be noted that the coefficient b deviates from
unity in this fitting. The origin of this deviation is not clear,
however, it may be the intramolecular diamagnetism. Al-
though this contribution has been partly subtracted as Pascal’s
law, a further consideration will be needed for a precise
evaluation.

VII. CONCLUSION

The present study is based on a first-principles calculation
and tight-binding analysis, and it predicts that an organic
complex HMTSF-TCNQ is a new candidate material for the
nodal-line semimetal. We have also clarified that the CDW
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deforms open nodal lines into closed ones. We evaluated
the spin-lattice relaxation time T1 and the magnetic suscep-
tibility. An experiment was also conducted to investigate the
magnetization, and the large anomalous diamagnetism, the
origin of which had long been controversial, was reproduced.
The present theoretical evaluation of magnetic susceptibility
is in excellent agreement with the experimental results, and
it has clarified that the conflict between the interband dia-
magnetism, impurity scattering, and nodal-line deformation
realizes this anomalous diamagnetism. Our evaluation of T1

supports the existence of nodal lines, and it will be experi-
mentally confirmed by means of a nuclear magnetic resonance
measurement. This study is in progress, and the results will be
presented elsewhere [33].

In the first-principles calculation we have neglected SOI.
However, we expect that small SOI exists because of Se
atoms. According to the indicator (z2,2, z′

2) = (1, 1), with
SOI, all of the Dirac dispersions open gaps, and the system

TABLE III. Total energy calculated with different cutoffs.

Cutoffs Total energy

{Ewf , Eρ} = {70 Ry, 320 Ry} −1519.72405531 Ry
{Ewf , Eρ} = {140 Ry, 640 Ry} −1519.75310850 Ry

will turn into a weak topological insulator [57]. Therefore,
future work should focus on the electronic state and transport
at the edge in the presence of SOI.

For this material, many intriguing physical properties
besides the magnetic susceptibility have been investigated
experimentally, e.g., the Seebeck coefficient and Hall con-
ductivity. These properties are also expected to be derived
from the interplay between the CDW and nodal lines. These
characteristics will be elaborated by the framework proposed
in this study.

A point
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conduction

valence

conduction

valence

conduction

tniop Ltniop M

valence

conduction

valence

conduction

valence

conduction

V point Y pointΓ point

FIG. 11. Wave functions for the valence and conduction bands at the TRIM.
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TABLE IV. Parities of inversion operation for the wave functions
at TRIM.

� V Y A M L

Valence + − + − + +
Conduction − − − − + −
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APPENDIX A: CUTOFF STABILITY OF THE
FIRST-PRINCIPLES CALCULATION

We confirm the cutoff stability of the first-principles calcu-
lation by comparing the total energy calculated with different
cutoffs Ewf and Eρ , which are the cutoffs for the plane
wave expansion and the electron density, respectively. The
calculated total energy is tabulated in Table III between
the cases of {Ewf , Eρ} = {70 Ry, 320 Ry} and {Ewf , Eρ} =
{140 Ry, 640 Ry}. These two values are close enough. Thus,
we conclude that the first-principles calculation was per-
formed properly.

APPENDIX B: WAVE FUNCTIONS AND INVERSION
PARITIES AT TRIM

Figure 11 shows the wave functions for the valence and
conduction bands at the TRIM, which are obtained by the

(a)

(b)

kx = 0 Å-1, kz = 0.3805 Å-1

kx = 0 Å-1, kz = 0.3805 Å-1

Without CDW

With CDW (Δ = 50 meV)

ky  (Å-1)

)
Ve( ygren

E
)

Ve( ygren
E

FIG. 13. Energy dispersion near a Dirac point at kx = 0 Å−1

and kz = 0.3805 Å−1 (a) without and (b) with a CDW with order
parameter �. With a CDW, a gap of 2� opens at the gapless point.
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first-principles calculation. For the � point, the colors in the
figure represent the signs of the wave functions. For other
k points, the wave functions are generally complex and are
shown in yellow. The cross sections of the wave functions
with the Brillouin zone boundary are shown in blue. Each
wave function is the molecular orbital of either HMTSF or
TCNQ. This suggests that the wave function at a generic point
is also given by the linear combination of the wave functions
for the two molecules, which justifies the assumption that the
low-energy electronic state is described in terms of these two
orbitals.

The parities of the inversion operation for the wave func-
tions at TRIM are summarized in Table IV. The symmetry
indicator is calculated from these values for the valence band.

APPENDIX C: DIRAC CONE

The energy dispersion near a Dirac point when kx = 0 is
shown in Fig. 12(a), and the contour plot of the difference
of the energies E+ − E− is shown in Fig. 12(b). We observe
that the Dirac cone has strong anisotropy, and the system is
two dimensional only in the vicinity of the Dirac point. The
detailed energy dispersions are shown in Fig. 13(a) without
CDW and Fig. 13(b) with CDW at kx = 0 Å−1 and kz =
0.3805 Å−1, which are obtained from the tight-binding model
Eqs. (3) and (9), respectively. We observe the gapless energy
dispersion without CDW, and the CDW opens a gap of 2�,
which is the largest gap among the Dirac points on the nodal
lines.
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