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Magnetoconductivity of a metal with a closed Fermi surface reconstructed by a biaxial density wave
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We investigate quantum dynamics and kinetics of a 2D conductor with a closed Fermi surface reconstructed
by a biaxial density wave, in which electrons move along a two-dimensional periodic net of semiclassical tra-
jectories coupled by the magnetic breakdown tunneling under a strong magnetic field. We derive a quasiparticle
dispersion law and magnetoconductivity tensor. The quasiparticle spectrum is found to be the alternating series of
two-dimensional magnetic energy bands with gaps between them. The longitudinal magnetoconductivity shows
giant oscillations with change of magnetic field, while the Hall coefficient changes sign and is absent in a wide
range of the magnetic fields in between. Preliminary estimations show that the suggested magnetoconductivity
mechanism may be the origin of such behavior of the Hall coefficient versus magnetic field, as observed in
experiments in materials with analogous topology of the Fermi surface, such as the high-Tc superconducting
cuprates.
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I. INTRODUCTION

Systems with charge carriers interacting with phonons or
other excitations in one- and two-dimensional (1D and 2D)
geometry are often found to be unstable with respect to spon-
taneous arising of a periodic modulation of charge or spin
density, which is usually called the density wave (DW) [1].
Such periodic ordering is stabilized whenever the decrease of
the electronic band energy, which occurs due to the recon-
struction of the Fermi surface (FS), overcomes the increase
of the crystal energy caused by the crystal lattice modula-
tion or electron-electron interactions. In 1D conductors, such
modulation opens a gap in an electron spectrum at the Fermi
energy, thus decreasing the electron band energy, constituting
the well-known Peierls instability [2]. The DW instability is
most commonly encountered in 2D conductors with highly
anisotropic open FSs, such that entire or a great part of its
contour can be mapped onto each other by a single wave
vector. It is known as the nesting mechanism of the DW stabi-
lization [1,3,4]. DWs have also been observed in conductors
with closed and convex FSs, such as high-Tc superconducting
cuprates [5] or intercalated graphite compounds [6], the DW
instability of which cannot be explained within the above-
mentioned nesting mechanism. A possible explanation of this
phenomenon was recently suggested in our papers [7–9]. This
mechanism is based on the topological reconstruction of the
initially closed FS into an open one, the latter being composed
of the initial FSs which slightly overlap (nearly touch) one an-
other with (pseudo) gap opening around the touching region.

Of particular interest are not only the DW properties but
also a response of such system to external fields, temperature,
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or currents. Conductance and its dependence on magnetic field
are of great importance both for fundamental science and
applications. Such phenomena as the de Haas–van Alphen,
or Shubnikov-de Haas oscillations, as well as the Hall ef-
fect, provide a powerful tool for the investigations of new
characteristics of the material imposed by the DW such as,
for example, the quasiparticle FS reconstructed by the DW.
Change of signs of the Hall coefficient [10] and its zero-value
in a wide interval of magnetic field [11], observed in exper-
iments on high-Tc superconducting cuprates, are particularly
intriguing.

In this paper, we investigate dynamics and kinetics of
quasiparticles in a 2D conductor, with a DW ordering, under
a strong magnetic field perpendicular to the sample. We con-
sider the case of biaxial DW (so-called checkerboard pattern),
characterized with two perpendicular wave vectors of the
same size, which brings the initial closed FSs into a 2D net of
FSs very slightly overlapping (nearly touching) one another.
By lifting the energy degeneracy and opening the gap around
the points of contact, the FS is transformed into a periodic set
of closed diamond-shaped pockets, which are close to each
other at the edges of the new Brillouin zones in the extended
zone scheme [12] (see Fig. 1).

Under a strong magnetic field, quasiparticles move along
the semiclassical trajectories undergoing magnetic breakdown
(MB) in the small gapped area around the touching points
(MB region shown shaded/dotted in Fig. 1) with the MB
probability [13–16]

|t |2 ≈ 1 − exp

(
− �2

(h̄ωH )4/3ε
2/3
F

)
(1)

to scatter and continue motion along the diamond-shaped
orbit, and probability |r|2 = 1 − |t |2 to tunnel through the
semiclassically forbidden regions and move along the circular
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FIG. 1. The Fermi surface (extended zone scheme) of investiga-
tion of a 2D conductor reconstructed by the biaxial density wave
(characterized by wave vectors Qx and Qy in x and y directions).
Initially circular contours (electronlike) are transformed into a set
of diamondlike contours (holelike) separated by gaps (shaded gray)
in small areas at the Brillouin zone boundary (red square). Under
the magnetic field perpendicular to the plane, quasiparticles move
in the momentum space (px, py ) along the semiclassical trajectories
(arrows) undergoing the MB scattering at the gapped areas (dotted
paths). A1 − A12 are constants related to the semiclassical wave func-
tions on the corresponding trajectories in the 2D MB net.

orbit. There ωH = eH/m is the cyclotron frequency, H is the
magnetic field, e is the electron charge (absolute value), m is
the electron effective mass, εF is the Fermi energy and � is
the gap in the quasiparticle energy spectrum. This equation for
the MB probability differs from the well-known Blount for-
mula [17–19] |t |2 = 1 − exp (−�2/(h̄ωH |v(0)

x v(0)
y |)), where

v(0)
x and v(0)

y are the velocity projections at the MB point
between trajectories crossing each other before opening of
the gap. This difference appears because one of the velocity
projections in the Blount probability would be equal to zero
if the MB takes place between the trajectories touching each
other as in the present case.

We calculate spectrum of quasiparticles moving in such a
2D MB net under magnetic field [20], satisfying the condition
that �/�0 is a rational number, where � is the magnetic
flux threading the unit cell and �0 = h/e is the magnetic
flux quantum (h is the Planck’s constant). This condition,
appearing in our problem, is analogous to the one from the
well-known works of Zak [21] and Hofstadter [22], coming
from the requirement that the wave function must be uniquely
defined, i.e., from the required commensurability of the new
periodicity imposed by the magnetic field with the periodicity
of the underlying lattice imposed by the crystal potential or the
DW. Our analytical calculations show that the quasiparticle

spectrum in such a system is a serial of alternating 2D energy
bands with gaps between them.

Using this spectrum, we calculate the 2D magnetocon-
ductivity tensor σi j , i, j ∈ {x, y} and find that the diagonal
conductivities σxx and σyy perform giant oscillations with a
change of magnetic field in the whole interval of H in which
the MB is distinct, i.e., |t ||r| ∼ 1. It is particularly remarkable
that σxy = 0 and hence the Hall coefficient RH = 0 every-
where inside this wide interval of magnetic field.

We also show that the conventional magnetoconductivity
tensor for closed orbits [23] restores in the limits of relatively
weak, i.e., |r(H )| � 1, and relatively strong magnetic fields,
i.e., |t (H )| � 1, in which broadening of the Landau levels by
the MB is much smaller than the energy uncertainty caused
by the quasiparticle-impurity scattering characterized by the
scattering frequency ν0. The Hall coefficient has opposite
signs in these two limits (and vanishes between them).

The paper is organized as follows: In Sec. II, we con-
sider dynamics of quasiparticles moving in the 2D periodic
net of semiclassical trajectories coupled by the MB, finding
the quasiparticle wave functions and dispersion law in the
momentum representation. In Sec. III, we calculate the mag-
netoconductivity tensor. Section IV contains the concluding
remarks. In the Appendixes, we show mathematical details
related to the calculation of the above-mentioned quantities.

II. DYNAMICS OF QUASIPARTICLES IN A
TWO-DIMENSIONAL NET OF ORBITS UNDER

MAGNETIC BREAKDOWN CONDITIONS

Recently, we have shown that a homogeneous state of
electrons in 2D conductors with closed FSs may be unstable
with respect to spontaneous arising of a uniaxial DW in the
system [7–9]. In this paper, we consider a 2D conductor,
with initial quasiparticle spectrum ε(px, py) and momentum
p = (px, py), and closed FS determined by ε(px, py) = εF ,
in which the structural instability is caused by a biaxial DW
characterized by two perpendicular wave vectors Qx and Qy

in x and y directions, respectively. We consider the case which
results in a reconstruction of the initial closed FSs into a
2D periodic set of (new) FSs which are close to each other
at the edges of the (new) Brillouin zones in the extended
zone scheme as shown in Fig. 1. Under a strong magnetic
field εF /h̄ � ωH � ν0, the quasiparticle moves in the mo-
mentum space along the semiclassical trajectories at energy
ε(px, py) = ε between the MB regions, undergoing the MB
scatterings at them.

The semiclassical motion of the quasiparticle in the mo-
mentum space along the semiclassical trajectories between the
MB points is described by the Lifshitz-Onsager Hamiltonian
[24,25]. Choosing the Landau gauge for the vector potential,
A = (−Hy, 0, 0), one writes the Schrödinger equation in the
momentum representation for quasiparticles moving between
the MB points,

εα

(
Px + ib2

H

d

d py
, py

)
Gα (py) = εGα (py), (2)

where εα (px, py ) is the initial quasiparticle dispersion law
which is shifted to the position corresponding to the trajectory
α (the index α denotes the quasiparticle trajectory between
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two neighboring MB points—see Fig. 1) and Px is the con-
served generalized momentum projection. Here b2

H = eh̄H is
the elementary magnetic area in the momentum space, related
to the magnetic (cyclotron) energy as h̄ωH = b2

H/m.
The semiclassical solution of Eq. (2) is

Gα (py) = Aα√
vα

x

ei(Px py/b2
H )eiSα (py )/b2

H , (3)

where Aα are constants which are determined by matching of
the wave functions. The velocity

vα
x (py) = ∂εα (p)

∂ px

∣∣∣
px=dSα/d py

(4)

is determined by the momentum space area (phase)

Sα (py) =
∫ py

0
pα

x (ε, p′
y)d p′

y, (5)

where the integrated function pα
x (ε, p′

y) is found from the
algebraic equation

εα (px, p′
y) = ε. (6)

The beginning of the integration py = 0 is chosen to be a
starting point of the quasiparticle motion along the trajectory
α (the arrows in Fig. 1 show the direction of quasiparticle
motion).

Inside the small areas (shaded and marked by thick dots
in the figure), in which the semiclassical trajectories closely
approach each other, the quasiparticle undergoes a quan-
tum tunneling between them (so-called magnetic breakdown
[17,26]—MB). At the MB points, the outgoing and incoming
wave functions are related by the 2 × 2 unitary matrix—the
MB matrix,

τ̂ = eiχ

(
t r

−r� t�

)
, (7)

where t and r are the complex amplitudes of the before-
mentioned probabilities for quasiparticle motion along the
diamond-shaped or circular orbit, respectively, after scattering
in the MB region, fulfilling the condition |t |2 + |r|2 = 1, χ is
the real phase. All four independent parameters of the MB
matrix depend on magnetic field [13–16]. Therefore, in the
momentum representation, the wave function of the quasipar-
ticle moving along the 2D net under magnetic field takes the
form

G(px, py) = ei(Px py/b2
H )

∑
α

Aα√
vα

x

eiSα (py )/b2
H , (8)

where the wave functions under summation are coupled by
the MB matrix Eq. (7). Note that the dependence of the wave
function G(px, py) on px is implicitly present in the Aα and
the position of the trajectory α.

Matching all the semiclassical wave functions, Eq. (3),
related to the first Brillouin zone with the MB matrix, one
finds a set of eight algebraic equations for coefficients Aα:(

A1

A5

)
= eiχ

(
t r

−r� t�

)(
A2ei
2

A4ei
4

)
,

(
A4

A10

)
= eiχ

(
t r

−r� t�

)(
A9ei
9

A3ei
3

)
,

(
A9

A12

)
= eiχ

(
t r

−r� t�

)(
A8ei
8

A11ei
11

)
,

(
A6

A8

)
= eiχ

(
t r

−r� t�

)(
A7ei
7

A5ei
5

)
, (9)

where


α = Sα (pe
α )

b2
H

(10)

are the phase gains obtained by the wave function Eq. (3)
during the quasiparticle motion from the beginning to the
end of the trajectory α. There, pe

α is the py coordinate of the
trajectory ending point with respect to the direction of motion.

As one sees from the Eq. (8), the sought wave function
G(px, py) is the proper function of the translation operator
T̂y = eby∂/∂ py , i.e.,

T̂yG(px, py) = ei(Pxby/b2
H )G(px, py) (11)

for any value of magnetic field, where by is the (reciprocal) lat-
tice constant in the py direction of the reciprocal (momentum)
space after reconstruction. The eigenvalue is characterized
by the proper generalized momentum Px. The 2D net of the
MB-coupled trajectories is geometrically periodic (see Fig. 1)
in both px and py directions and, hence, one may assume that
the quasiparticle wave function G(px, py) is a proper function
not only of the translation operator T̂y, but also of T̂x = ebx∂/∂ px

with the proper generalized momentum Py, i.e.,

T̂xG(px, py) = ei(Pybx/b2
H )G(px, py), (12)

where bx is the analogous reciprocal lattice constant in px di-
rection. In this case, as it follows from Eqs. (3), (11), (12), and
Fig. 1, constants Aα are additionally coupled by the conditions

A2 = A8eiPybx/b2
H ; A11 = A4e−iPybx/b2

H ,

A1 = A9eiPybx/b2
H ; A12 = A5e−iPybx/b2

H ,

A6 = A4eiPxby/b2
H ; A3 = A5e−iPxby/b2

H ,

A7 = A9eiPxby/b2
H ; A10 = A8e−iPxby/b2

H , (13)

where we note the phase factors determined by the conserved
generalized momenta Px and Py. As a result, we have 16
equations, Eqs. (9) and (13) for 12 unknown coefficients Aα .
Since the number of equations is larger than the number of
unknowns, the system is overdetermined and, hence, cannot
be solved as such.

However, as one can see from the definition of the phase
gains Eq. (10) and Fig. 1, there are the following relations
between phases:


2 = 
8 + bxby

2b2
H

; 
3 = 
5,


11 = 
4 − bxby

2b2
H

; 
7 = 
9. (14)

If magnetic field is chosen to satisfy condition

bxby

2b2
H

= π
�0

axayH
= 2π l, (15)
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where l is an integer (in our case l � 1), ax and ay are recon-
structed lattice constants in the real space, and � = axayH is
thus the magnetic flux piercing the unit cell, only four equa-
tions from the set of eight equations Eqs. (9) are independent,
hence making the total system of equations solvable [27]. As
already mentioned in the Introduction, this condition is con-
sistent with works of Zak and Hofstadter [21,22], so we call it
Zak’s condition in this paper. Inserting Eq. (14) into Eqs. (9),
one easily finds that the first four and last four equations are
identical. Therefore, for the magnetic fields satisfying Zak’s
condition Eq. (15), the set of equations Eqs. (9) reduces to the
system of four equations for four unknowns, i.e.,

+rA4ei(
11−Ky ) + tA8ei
8 − A9e−iχ = 0,

−t�A5ei
5 + A8e−iχ + r�A9ei(
7+Kx ) = 0,

−t�A4ei
4 + A5e−iχ + r�A8ei(
2+Ky ) = 0,

−A4e−iχ + rA5ei(
3−Kx ) + tA9ei(
9 ) = 0,

(16)

that determine the quasiparticle wave function Eq. (8) and the
quasiparticle spectrum.

Calculating the determinant of the above set of homoge-
neous algebraic equations

D(ε, P) = sin

[
S	(ε)

2b2
H

+ 2χ

]

+ |t ||r|
{

sin

[
byPx

b2
H

+ μ − η

]

+ sin

[
bxPy

b2
H

− μ − η

]}
, (17)

where P = (Px, Py), one finds the dispersion equation for
quasiparticles moving in the 2D lattice under magnetic field:

D(ε, P) = 0. (18)

Here S	 is the area of the diamond-shaped trajectory in Fig. 1,
related to the circular-shaped one S◦ = 2πmε, by the relation
S	(ε) = bxby − S◦ = bxby − 2πmε, while μ and η are phases
of the probability amplitudes t and r, respectively.

The quasiparticle spectrum found from Eq. (18) reads

εs(Px, Py ) = h̄ωH

{
s + 2χ

π

+ (−1)s

π
arcsin

[
|tr|

(
sin

(
byPx

b2
H

+ μ − η

)

+ sin

(
bxPy

b2
H

− μ − η

))]}
, (19)

where s = 0, 1, 2, ... is the new band index and is shown in
Fig. 2. One can see from Eq. (19) and Figs. 2(a) and 2(b)
that the spectrum consists of the periodic series of alternating
(magnetic) energy bands of the width

W (H ) = 2

π
arcsin[2|t (H )r(H )|]h̄ωH (20)

and gaps of the width h̄ωH − W between them. The function
|t (H )r(H )| takes values between 0 and 1/2 [see Fig. 2(c)].
In the limit |t (H )| = 0 or |r(H )| = 0, we have Landau levels
due to the Landau quantization of circular or diamond-shaped

orbits, respectively. In the intermediate regime, starting with
|t | � 1 in one and |r| � 1 in another mentioned limit, the
Landau levels are broadened into magnetic energy bands due
to the MB, with gaps in between. In the limit |tr| = 1/2, the
gap closes in the � and M points in the Brillouin zone, with
approximately linear dispersion around them [see Fig. 2(b)].
Spectrum also exhibits rapid oscillations with respect to mag-
netic field [see Fig. 2(d)] with period determined by the area
of the pocket encircled by the semiclassical trajectory.

It is worth noticing that the quasiparticle group velocity is
of the order of the Fermi velocity vF in spite of the fact that
the bandwidth is very narrow, i.e., v = ∂εs/∂P ∼ |tr|b/m ∼
106m/s for |tr| ∼ 1, where, for the sake of simplicity, we
assumed the cubic lattice symmetry, i.e., bx = by ≡ b.

Also, it is important to emphasize, once more, that the
spectrum Eq. (19), as well as all quantities following from
it (e.g., conductivity discussed in the next section) is valid
for the magnetic fields satisfying Zak’s condition Eq. (15).
Number l determines how many unit cells in real space host
one flux quantum and, for materials with lattice constant of
angström size, this number is huge, of the order of 104 for
magnetic fields of the order of 10 T. Resolution of magnetic
field, corresponding to the change of l by one, is of the
order of 10−3T in such systems. It is known [28] that the
Zak/Hofstdater effect of flux quantization versus the under-
lying lattice is observable for specially engineered structures
with large unit cells, very strong magnetic fields, and clean
samples. It is also possible to generalize the present analysis
to the periodicities in the reciprocal space involving multiple
reciprocal unit cells, e.g., by using the transfer matrix or some
other method, however, neither of the two above-mentioned
issues are in the focus of this paper and will be discussed
elsewhere.

III. KINETICS OF QUASIPARTICLES IN THE 2D NET OF
SEMICLASSICAL TRAJECTORIES UNDER THE MB

CONDITIONS

In this section, we consider kinetics of quasiparticles in
the 2D MB net under magnetic field which satisfies Zak’s
condition Eq. (15). Due to the MB scattering, for which the
corresponding amplitudes |t (H )| and |r(H )| are comparable,
a 2D quasiparticle is delocalized in both directions, mov-
ing along the diamond-shaped and circular orbits as well
as tunneling between them, having two conserved gener-
alized momenta, Px and Py, consequently resulting in the
quasiparticle dispersion equation Eq. (18). The width of the
quasiparticle energy band, Eq. (20), essentially depends on the
function |t (H )r(H )|, thus defining two characteristic limits of
weak and strong magnetic field in which |t (H )r(H )| → 0 [see
Fig. 2(c)]. Consequently, W → 0 in those limits, determining
two intervals of magnetic field in which kinetics (and dynam-
ics) of quasiparticles is qualitatively different:

1) If the bandwidth is much greater than the energy un-
certainty due to scattering on impurities, i.e., W � h̄ν0, the
quasiparticle is delocalized and its group velocity is large in
both directions, i.e., v = ∂εs/∂P ∼ |t (H )r(H )|vF .

2) If the bandwidth is much smaller than the energy
uncertainty due to scattering on impurities, i.e., W � h̄ν0,
the effective spectrum is a serial of Landau energy levels
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FIG. 2. Spectrum of quasiparticles: (a) Formation of the energy bands (along vertical axis, indexed by I, II, III,...) depending on argument
of the arcsin function (curve) in Eq. (19) shown on the horizontal axis, which is proportional to |t (H )r(H )|, determining the width of the bands
Eq. (20). (b) Energy dispersion in the momentum space along the lines between the characteristic points (see the inset). Width of the magnetic
energy bands is maximal, i.e., h̄ωH , for |tr| = 1/2 (full lines) and the gap is closed. For |tr| < 1/2 (dashed), the bandwidth is smaller and gaps
between bands appear. (c) Function |t (ξ )r(ξ )| = exp [−ξ/2]

√
1 − exp [−ξ ], where the argument ξ ≡ �2(h̄ωH )−4/3ε

−2/3
F depends on magnetic

field. (d) Energy spectrum taken at the � point depending on magnetic field exhibits rapid oscillations with period �H−1 ≈ he/p2
F with respect

to the inverse magnetic field H−1 (pF is the Fermi momentum determined by the area of the pocket encircled by the quasiparticle trajectory,
e.g., S◦ ≈ π p2

F ). For simplicity, we set the phase χ = π/4 in Eq. (19), valid in the limit of Landau levels.

corresponding to the quasiparticle motion along the diamond-
shaped trajectory for t (H ) → 1 or the circular one for
r(H ) → 1 (see Fig. 1). Therefore, in those limiting cases, the
magnetoconductivity tensor is the standard one, correspond-
ing to the closed FSs, well known from literature [23].

A. Magnetoconductivity of quasiparticles delocalized by the MB
in both x- and y-direction of the 2D net

Here we assume the inequality W � h̄ν0 and find the mag-
netoconductivity tensor for quasiparticles.

The linearized equation for the density matrix ρ̂ =
f0(Ĥ0) + ρ̂ (1) for quasiparticles under electric field E reads

1

ih̄
[Ĥ0, ρ̂

(1)] + ρ̂ (1)

t0
= −eE

ih̄
[r̂, f0(Ĥ0)]. (21)

Here Ĥ0 is the quasiparticle effective Hamiltonian, the
Schrödinger equation for which is

Ĥ0|n, P〉 = εn(P)|n, P〉, (22)

where the proper energy εn(P) is defined by the dispersion
equation Eq. (18) and the proper functions are Bloch func-
tions, t0 is the relaxation time (time of the mean-free path of
a quasiparticle), f0 is the Fermi distribution function, and ρ̂ (1)

is the first correction to ρ̂ with respect to linearization.
Taking matrix elements of the density matrix Eq. (21) and

using the fact that both projections of velocity are finite, vx �=
0 and vy �= 0, one finds the density matrix

ρ
(1)
κκ ′ = eE

ih̄vκκ ′

εκ − εκ ′ + ih̄ν0

f0(εκ ) − f0(εκ ′ )

εκ − εκ ′
, (23)
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where κ = (P, n) and vκκ ′ are the the velocity matrices:

vκκ ′ = ∂εκ

∂P
δ(P − P′)δn,n′ . (24)

As the quasiparticle group velocity is not zero, the main
contribution to the current j = −2eTr(v̂ρ̂ ), where factor 2
accounts for the quasiparticle spin and Tr denotes the trace
operation, comes from the diagonal element of the density
matrix Eq. (23) and, hence, the conductivity is

σik = −2e2t0
∑

n

∫
dP

(2π h̄)2

∂εn

∂Pi

∂εn

∂Pk

∂ f0

∂ε

∣∣∣
ε=εn (P)

, (25)

where i, k ∈ {x, y} (details of calculations are presented in
Appendix A).

For calculations of various thermodynamic and kinetic co-
efficients of quasiparticles with complicated dispersion laws,
it is convenient to use the approach developed by Slutskin
[29] for electrons under the MB in which one uses the dis-
persion equation for calculations instead of the complicated
dispersion law. Differentiating dispersion equation Eq. (18)
with respect to P, i.e., ∂εD · ∂Piε + ∂Pi D = 0, one finds

vi = ∂εn

∂Pi
= −∂D(ε, P)/∂Pi

∂D(ε, P)/∂ε
, (26)

with D(ε, P) = 0. This expression allows to present the con-
ductance, Eq. (25), in the sought form (see Appendix B):

σik = −2e2t0

∫
dε

∂ f0

∂ε

∫
dP

(2π h̄)2

∂D
∂Pi

∂D
∂Pk

| ∂D
∂ε

| δ[D(ε, P)]. (27)

Using Eq. (18), one can write Eq. (27) in the form

σik = −2e2t0
b̄ib̄k

πmb2
H

|tr|2
∫

dε
∂ f0/∂ε

| cos 
	|
∫

dP
(2π h̄)2

× cos 
i cos 
kδ[sin 
	(ε) − |rt |(sin 
x + sin 
y)],

(28)

where the bar denotes the index conjugation, i.e., b̄x = by,
b̄y = bx, and


	 = S	(ε)

2b2
H

+ χ,


x = Pxby

b2
H

+ μ − ν,


y = Pybx

b2
H

− μ − ν. (29)

One sees that the integrand in Eq. (28),

Q = cos 
i cos 
kδ[sin 
	(ε) − |tr|(sin 
x + sin 
y)],

(30)

is a 2π -periodic function of 
x and 
y, provided they are
considered as free variables, which allows us to expand the
the integrand in the double-Fourier series:

Qik =
∞∑

l1=−∞

∞∑
l2=−∞

Aik
l1l2 ei(l1
x+l2
y ). (31)

Since εF /h̄ωH � 1, the exponents are fast-oscillating func-
tions of Px and Py and, hence, the main contribution to the
integral in Eq. (28) comes from the Fourier factor with l1 =
l2 = 0, and therefore the sought integrand is approximately

Qik ≈ Aik
00 = 1

(2π )2

∫ π

−π

dϕx

∫ 2π

0
dϕy cos ϕi cos ϕkδ[sin 
	(ε) − |tr|(sin ϕx + sin ϕy)]. (32)

Inserting Qik in the integral in Eq. (28), one finds the conductivity in the form

σik = −2e2t0
b̄ib̄k|tr|2
πmb2

H

bxby

(2π h̄)2

∫
dε

∂ f0/∂ε

| cos 
	|
∫ π

−π

∫ π

−π

dϕxdϕy sin ϕi sin ϕk δ[sin 
	(ε) − |tr|(cos ϕx + cos ϕy)], (33)

where, while writing this expression, we shifted the integra-
tion variables ϕx,y → ϕx,y + π/2 and, hence, the limits of
integration to explicitly match the integral to the symmetry

of the system. Using the symmetric properties of the integral
and integrating the delta function, we obtain components of
the magnetoconductivity tensor:

σxx = −e2t0
b2

y

π4mh̄2

[
1

2π

(
bxby

2b2
H

)] ∫
dε

∂ f0/∂ε

| cos 
	|
∫ +π

−π

dϕ
√

|tr|2−(|tr| cos ϕ− sin 
	(ε))2�[|tr|2 − (|tr| cos ϕ−sin 
	(ε))2],

σxy = 0, (34)

where � is the Heaviside unit-step function, while the other
two components, σyy and σyx, are simply obtained from the
above expression by changing the indices x ↔ y. One should
note the factor appearing in the square brackets multiplying
the integral, which equals the integer number determined by

the condition Eq. (15): it is proportional to 1/H (through b2
H )

that appears in the discrete quantities. Therefore, the obtained
equation for the conductivity tensor, Eqs. (34), is valid at
discrete values of the magnetic field Hl determined by
Eq. (15). From the latter equation and Eqs. (34), one easily
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FIG. 3. (a) Characteristic intervals of magnetic field with qualitatively different behavior of magnetoconductivity with respect to devel-
opment of the MB. H0 is the lower limit of magnetic field in our consideration, for which t0ωH0 � 1 holds (t0 is the quasiparticle mean-free
path time). In regions I and V, we have either small or large magnetic field for which |r| → 0, or |t | → 0, so the quasiparticles move along
diamond-shaped or circular closed orbits, respectively. The magnetoconductivity attains the standard textbook form for closed holelike or
electronlike orbits, i.e., Eq. (35) or (36), respectively. In region III, |t | and |r| are comparable, magnetoconductivity is given by Eqs. (34),
and depicted in panels (b) and (c), here scaled by the factor multiplying the integral in Eqs. (34), proportional to H−1 through b2

H , which
has dimension of the 2D conductivity. II and IV are the crossover regions between the regimes described above. (b) An envelope (upper) of
the oscillatory part of the longitudinal magnetoconductivity in region III versus inverse magnetic field (expressed in εF /h̄ωH dimensionelss
units), depending on temperature: kBT/εF = 0; 0.0001; 0.01 for curves 1–3, respectively. (c) An inset from panel (b), showing the oscillations
of longitudinal magnetoconductivity versus inverse magnetic field (expressed in εF /h̄ωH dimensionelss units), depending on temperature:
kBT/εF = 0; 0.0001; 0.0005; 0.001; 0.005; 0.01 for curves 1–5, respectively.

finds that the distance between the neighboring points H−1
l −

H−1
l+1 and the period of conductance oscillations, �H−1, are

incommensurate. From here it follows that the points H−1
l

gathered inside one period of the conductance oscillations
cover it everywhere densely and, hence, Eqs. (34) present the
conductivity tensor with very fine resolution. This result is
valid in the limit of (magnetic) bandwidth significantly larger
than the energy uncertainty related to quasiparticle scattering
on impurities, i.e., W � h̄ν0. It is depicted in Fig. 3 and
is relevant for interval of magnetic fields marked by III in
Fig. 3(a), where the characteristic intervals of magnetic field
with qualitatively different behavior of magnetoconductivity
with respect to the MB development are explained; for the
sake of simplicity, the phase in the integral in Eqs. (29) and
(34) is taken χ = π/4.

There are several important points to notice regarding the
result Eqs. (34). First, a remarkable fact is that the Hall effect
is absent, i.e., σxy = σyx = 0. It is easy to obtain that result
simply from the symmetry of the integral Eq. (33) by changing
ϕi → −ϕi. It happens in a wide range of magnetic fields in
which the MB gives comparable probabilities |t |2 and |r|2 for
motion along the closed orbits and tunneling between them.

This means that the quasiparticle is delocalized in both direc-
tions of the 2D net, by the MB, performing motion as if there
is effectively no magnetic field acting on it. Below we show
that the Hall effect restores in the limits of relatively weak and
relatively strong magnetic fields when quasiparticles move
along the closed semiclassical trajectories.

The diagonal magnetoconductivity exhibits oscillations
under a change of magnetic field—Fig. 3(b) shows the enve-
lope, while the inset drawn in Fig. 3(c) shows the oscillations.
As one can see from Eqs. (34) and Fig. 3, the period of oscil-
lations is close to the period of the conventional de Haas-van
Alphen or Subnikov-de Haas oscillations, but their amplitude
is giant, becoming less pronounced with increasing temper-
ature as well as changing the phase (due to integration of
components with more periods depending on energy in the
kBT -window around the Fermi energy).

B. Magnetoconductivity in the limit of narrow bandwidth

As noted above, if the MB probability amplitudes are such
that the inequality W � h̄ν0 � h̄ωH is fulfilled, i.e., when the
(magnetic) bandwidth is the smallest parameter, the quasipar-
ticle band structure is a set of Landau levels slightly broadened
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FIG. 4. Dependence of the Hall coefficient RH on magnetic
field (through the MB probability amplitude |t (H )|). In respectively
weak magnetic field (still greater than H0 for which t0ωH0 � 1)
—interval I, as well as in strong enough fields—interval V, such
that the quasiparticle bandwidths are negligible, i.e., W � h̄ν0 �
h̄ωH , the quasiparticles move along the diamond-shaped (hole) and
circular (electron) trajectories, respectively. Consequently, the Hall
coefficient is given by Eq. (38) or (41), respectively. In the wide
intermediate magnetic field range in which W � h̄ν0 (interval III),
the quasiparticles freely move in both x and y directions, resulting in
RH = 0 due to the reciprocal lattice symmetry. Intervals II and IV are
the crossover regions between the above-mentioned ones.

by the MB tunneling between the closed orbits. In this limit,
we neglect that level broadening, i.e., we consider quasiparti-
cles moving semiclassically along either the diamond-shaped
orbit (rather weak magnetic fields, |r| � 1) or along the circu-
lar orbits (strong magnetic fields, |t | � 1) shown in Fig. 1. As
a result, the magnetoconductivity tensor is the conventional
one [23], that is,

(a) |t | → 1 for the holelike trajectories

σ (h)
xx = σ (h)

yy = σ
(h)
0

(t0ωH )2
,

σ (h)
xy = −σ (h)

yx = n(h)e

H
, (35)

(b) |t | → 0 for the electronlike trajectories

σ (e)
xx = σ (e)

yy = σ
(e)
0

(t0ωH )2
,

σ (e)
xy = −σ (e)

yx = −n(e)e

H
, (36)

where σ
(e,h)
0 = n(e,h)e2t0/m is the conductivity of electrons

(e), or holes (h) in the absence of magnetic field, while n(e) =
π p2

F /(2π h̄)2 is the concentration of electrons and n(h) =
[b2 − π p2

F ]/(2π h̄)2 concentration of holes. Here, for the sake
of simplicity, we consider bx = by ≡ b and equal effective
masses of electrons and holes, i.e., me = mh ≡ m.

C. The Hall coefficient

Behavior of the Hall coefficient,

RH ≡ Ey

jxH
= σxy

(σxxσyy + σ 2
xy)H

, (37)

with a change of magnetic field in the system under consider-
ation is particularly remarkable as can be seen from Fig. 4.

In relatively weak magnetic fields, |r(H )| � ν0/ωH � 1,
the MB is negligible, quasiparticles (holes) move along the

diamond-shaped orbits (see Fig. 1) and hence the Hall coeffi-
cient

RH ≈ 1

en(h)
(38)

is positive (one should bear in mind that in all our expressions,
e denotes the absolute value of electron charge).

After that, an increase of magnetic field results in an in-
crease of the MB amplitude |r(H )| to become comparable to
|t (H )| and (still in the limit t0h̄ωH � 1) the Hall coefficient is

RH = 0. (39)

The equality Eq. (39) is based on the symmetry of the MB net.
Indeed, changing the integral variables in Eq. (28),

Px = P′
x + b2

H

by
(π/2 − μ + ν),

Py = P′
x − b2

H

by
(π/2 + μ + ν), (40)

together with a change Px → −Px (or Py → −Py), one obtains
Eq.(39).

The Hall coefficient vanishes in the whole interval of
magnetic fields for which W � h̄ν0, as the quasiparticle is
effectively delocalized in both directions of the 2D MB net.

With further increase of magnetic field, in the limit
|t (H )| � ν0/ωH � 1, the Hall coefficient restores to non-
vanishing value, changing its sign from positive to negative
because the quasiparticles move along the electronlike circu-
lar orbits in this limit, i.e.,

RH ≈ − 1

en(e)
. (41)

IV. CONCLUSION

Quantum dynamics and kinetics of quasiparticles, under
strong magnetic field, in the 2D net of diamond-shaped
semiclassical trajectories, generated by the reconstruction of
initially circular FS by the biaxial DW, coupled by the MB
are considered. We present an analytical solution of the 2D
MB problem, within the semiclassical approximation. We find
that the obtained quasiparticle spectrum and wave functions
of Bloch type, in the momentum representation, are functions
of the conserved 2D generalized momentum P = (Px, Py) if
magnetic field satisfies the rational magnetic flux quantization
rule analogous to the Zak/Hofstdater condition. The quasi-
particle spectrum is found to be the series of alternating 2D
energy bands of the width proportional to the magnetic energy
h̄ωH , and gaps between them, both in detail determined by
the MB amplitude of the quasiparticle tunneling between the
semiclassical trajectories.

Using the explicit expression for the dispersion equation,
we find that the diagonal magnetoconductivity σxx and σyy os-
cillate with a giant amplitude when magnetic field is changed.
Period of these oscillations with respect to the inverse mag-
netic field is proportional to the area of the pocket in the
momentum space encircled by the semiclassical quasiparticle
trajectory. We also show that the nondiagonal conductivity is
equal to zero, i.e., σxy = σyx = 0 in a wide range of magnetic
fields in which the width of the quasiparticle band is much
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larger than the energy uncertainty caused by the quasiparticle-
impurity scattering, and in which the MB probabilities for a
quasiparticle to move along the semiclassical trajectories and
to tunnel between them are comparable. In such conditions,
the quasiparticle moves freely in x and y directions in the 2D
net as if there is effectively no magnetic field acting on it to
cause the Hall effect, consequently resulting in vanishing Hall
coefficient.

In the opposite limit of negligibly narrow bandwidth with
respect to the impurity scattering energy uncertainty, the
spectrum is a set of discrete Landau levels and the mag-
netoconductivity tensor is the conventional one for closed
trajectories, well-known from textbooks. For relatively weak
fields, when small MB tunneling probability yields the prefer-
able motion along the closed diamond-shaped hole orbits, we
have a standard expression for the Hall coefficient, inversely
proportional to concentration of carriers (holes), with posi-
tive sign. On the other hand, for relatively strong magnetic
fields, when strong MB tunneling probability between hole
orbits reconstructs the preferable motion of carriers along the
closed electronlike circular orbits, we again have the standard
expression for the Hall coefficient, inversely proportional to
concentration of carriers (electrons) but now with negative
sign. Altogether, we have the holelike Hall effect for weak
field, switching to the electronlike one for strong fields, with
wide intervals of magnetic field with vanishing Hall effect
between them. Our preliminary estimations show that the
analytical magnetoconductivity model suggested here may be
used to explain the absence of the Hall effect and change of
its sign observed in certain experiments in high-Tc supercon-
ducting cuprates [10,11].
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APPENDIX A: GENERAL FORMULA FOR CURRENT OF
DELOCALIZED QUASIPARTICLES

Introducing the symmetric operator of electron density at a
point R in the coordinate space,

n̂(R) = 1
2 [ρ̂δ(r̂ − R) + δ(r̂ − R)ρ̂], (A1)

one writes the local current density at the point R = (X,Y ) in
the form

j(R) = −2eTr(v̂n̂(R)), (A2)

factor 2 coming from the quasiparticle spin.
Writing the trace in the representation of the proper func-

tions of Hamiltonian Ĥ0 and using Eq. (24), one finds the
current density

ji(R) = −2e2t0
∑

κ

Ek
∂εκ

∂Pk

∂εκ

∂Pi

∂ f0

∂εκ

ϕ�
κ (R)ϕκ (R), (A3)

where E is electric field and i ∈ {x, y}. Here ϕκ is the electron
proper Bloch functions

ϕn,P(R) = eiPR/h̄un,P(R) (A4)

in the coordinate representation, κ = (n, P), i.e., the band in-
dex and conserved generalized momentum, respectively. The
total current flowing along the plate of the length Lx and the
width Ly is

I =
∫ Lx/2

−Lx/2
dX

∫ Ly/2

−Ly/2
dY j(R). (A5)

Using the normalization condition for the periodic factors in
Bloch functions, one finds∫ Lx/2

−Lx/2
dX

∫ Ly/2

−Ly/2
dYu�

n,P(R)un,P(R) = LX LY (A6)

and, hence, the current density averaged over the sample, J =
I/LxLy, is

Ji = −2e2t0
∑

n

Ek

∫
dP

(2π h̄)2

∂εn

∂Pi

∂εn

∂Pk

∂ f0

∂ε

∣∣∣
ε=εn (P)

. (A7)

APPENDIX B: CALCULATION OF CURRENT IN TERMS
OF DISPERSION FUNCTION

Solution of the dispersion equation Eq. (18) appearing
in Eq. (26) is ε = εn(P), thus the dependence of vi on P
is vi(P) = vi(εn(P), P). The latter dependence allows us to
rewrite Eq. (25) in the form

σik = −2e2t0

∫
dP

(2π h̄)2

∫
dε

∂ f0

∂ε
vi(ε, P)vk (ε, P)

×
∑

n

δ[ε − εn(P)]. (B1)

Using the known mathematical identity

δ[ f (x)] =
∑

k

δ[x − xk]

f ′(x)
, (B2)

where xk are zeros of function f (x), and Eq. (26), one finds
Eq. (27) from the main text.
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