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Probing phase transitions in non-Hermitian systems with multiple quantum coherences
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Understanding the interplay between quantum coherence and non-Hermitian features would enable the
devising of quantum technologies based on dissipative systems. In turn, quantum coherence can be characterized
in terms of the language of multiple quantum coherences (MQCs) originally developed in solid-state nuclear
magnetic resonance (NMR), nowadays applied to the detection of quantum chaos and to the study of criticality in
many-body quantum systems. Here, we show the usefulness of MQCs for probing equilibrium phase transitions
in non-Hermitian systems. To do so, we investigate the connection of quantum coherences and critical points
for several paradigmatic non-Hermitian Hamiltonians. For a non-Hermitian two-level system, MQCs witness
the parity-symmetry-breaking phase transition from the unbroken to the broken phase. Furthermore, for the
non-Hermitian transverse field Ising model, MQCs capture the Yang-Lee phase transition in which the ground
state energy acquires a nonzero imaginary component. For the disordered Hatano-Nelson (HN) model with
periodic boundary conditions, MQCs testify the emergence of mobility edges in the spectrum of this model.
In addition, MQCs signal the topological phase transition exhibited by the complex energy spectra of the
disorder-free HN model. Finally, we comment on experimentally probing phase transitions in NMR sys-
tems, realizing non-Hermitian Hamiltonians. Our results have applications to non-Hermitian quantum sensing,
quantum thermodynamics, and in the study of the non-Hermitian skin effect.
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I. INTRODUCTION

Dissipative quantum systems have been widely studied
in different contexts [1–6]. Among them, physical systems
which can be described by non-Hermitian Hamiltonians
are particularly important. Indeed, non-Hermitian systems
are becoming a central focus of research in optics [7–16],
photonics [17–20], quantum many-body systems [21–40],
quantum metrology [41–45], and systems with topological
order [46–63], to cite a few. Remarkably, some recent exper-
imental realizations show that non-Hermitian features might
stand as a resource for enhancing quantum sensing [41,64].

In addition, theoretical studies have addressed the effects
of non-Hermitian driving on quantum coherence [65], also un-
veiling a mechanism of topological protection of coherence in
dissipative quantum systems [66]. So far, quantum coherence
is a longstanding problem in quantum theory, thus standing as
one of its cornerstones [67]. It can be fully characterized in
terms of coherence orders and multiple quantum coherences
(MQCs). Overall, both concepts have been proposed by the
community of nuclear magnetic resonance (NMR) [68,69]
and find applications ranging from entanglement witnessing
[70] to solid-state spectroscopy [71–74], and many-body lo-
calization [75]. Opposite to the technique of quantum state
tomography, MQCs require a minimal experimental cost in
NMR systems [76].
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Quite recently, non-Hermitian parity-time symmetric
Hamiltonians have been successfully implemented in NMR
systems [77,78]. This suggests the investigation of MQCs in
nuclear spin systems realizing non-Hermitian Hamiltonians
would shed light on the possible connections between non-
Hermitian features and quantum coherence. In a more general
scenario, MQC might stand as a bona fide figure of merit to
witness phase transitions in non-Hermitian systems. This is
motivated by some recent works showing the MQCs testify
quantum phase transitions (QPTs) in Hermitian many-body
quantum systems [79].

In this paper, we show the usefulness of the framework
of MQCs for probing equilibrium phase transitions in non-
Hermitian systems. We address the so-called second moment
of multiple quantum intensities (MQIs), thus investigating
the link between quantum coherences and critical points for
some paradigmatic non-Hermitian Hamiltonians. Overall, our
approach is more appealing at both the theoretical and ex-
perimental levels. On the one hand, the framework of MQCs
is physically meaningful, mostly depending on the ground
state coherences of a non-Hermitian system, thus successfully
assigning signatures of dissipative equilibrium phase transi-
tions. On the other hand, our results might be implementable
with current technology, for example, in NMR platforms. In
other words, it suggests probing criticality in non-Hermitian
systems by measuring a few elements of the coherence order
spectrum that build up the ground state [76].

Furthermore, the framework of MQCs is more advan-
tageous when compared with other information-theoretic
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quantifiers such as quantum fidelity and Loschmidt echoes.
We point out that some recent works have proposed to de-
tect equilibrium phase transitions in non-Hermitian quantum
systems by using quantum fidelity and Loschmidt echoes
[80–83]. Note that such quantifiers mostly depend on the
overlap between two states, and its implementation might
require preparing copies of the system. Opposite to MQCs,
quantum fidelity and Loschmidt echoes require the complete
knowledge of the matrix elements of the ground state of the
system. In practice, this involves a tomographic state recon-
struction task that requires a number of measurements scaling
exponentially with the number of particles in a many-body
quantum system. In turn, probing criticality in non-Hermitian
systems with MQCs would require less information about the
system. Indeed, we show that one could infer the dissipative
phase transition measuring a few coherence orders of the non-
Hermitian ground state respective to some fixed eigenbasis.

For the simplest case of a coupled two-level system with
a gain-loss term, we show the second moment of the MQI
captures the parity-symmetry-breaking phase transition of this
non-Hermitian single-qubit model from the unbroken to the
broken phase. In addition, for the non-Hermitian transverse
field Ising model, MQIs capture the Yang-Lee phase transition
in which the ground state energy acquires a nonzero imaginary
component. For the Hatano-Nelson (HN) model, we show that
the second moment of the MQI captures the topological phase
transition exhibited by the complex energy spectra. In detail,
this critical behavior occurs in the Hermitian limit of the HN
model, i.e., for symmetric hopping amplitudes. In this case,
the imaginary part of its eigenenergies become zero, and the
phase transition is captured by a sudden change in the winding
number [53], the latter being an integer-valued topological
invariant [84]. In addition, the MQI testifies the presence of
mobility edges in the spectrum of the disordered HN model
with periodic boundary conditions (PBCs). Most importantly,
measurement of a single coherence order of the ground state
for the aforementioned systems can be experimentally per-
formed in current platforms. This can lead to a direct access
of non-Hermitian phase transitions for systems whose critical
behavior is described by the physical models studied in this
paper.

The paper is organized as follows. In Sec. II, we review
useful basic concepts regarding MQCs. In Sec. III, we dis-
cuss probing the parity-time-reversal breaking symmetry of
non-Hermitian two-level systems. In Sec. IV, we address the
witnessing of Yang-Lee transition with the second moment
of the MQI in the next-nearest-neighbor Ising model with
complex fields. In Sec. V, we show the second moment of
the MQI signals the localization of mobility edges in the
disordered HN model. In addition, we discuss the probing of
topological phase transitions in the disorder-free HN model.
In Sec. VI, we comment on possible experimental realizations
of probing topological phase transitions in non-Hermitian sys-
tems in NMR platforms. Finally, in Sec. VII, we summarize
our conclusions.

II. MQCS

In this section, we briefly review some basic properties
of coherence orders and MQCs. Quantum coherence is a

basis-dependent concept, and thus, its characterization re-
quires fixing some preferred basis of states. Let A be an
arbitrary observable of a finite-dimensional quantum system,
with {|ψ�〉}�=1,...,2L being its complete set of eigenstates, and
{λ�}�=1,...,2L the corresponding set of discrete eigenvalues.
Hereafter, we will refer to this basis of states as the reference
basis. We furthermore assume that the spacing of the eigen-
value spectrum of A is an integer m ∈ Z, with λ j − λ� = m
for all j, � ∈ {1, . . . , 2L}. In this case, the coherence order
decomposition of a quantum state ρ into the reference basis
reads

ρ =
∑

m

ρm, (1)

where {ρm}m stands as a set of non-Hermitian matrix blocks,
with

ρm =
∑

λ j−λl =m

ρ jl |ψ j〉〈ψl |, (2)

and ρ jl = 〈ψ j |ρ|ψl〉. Then the MQIs are defined as

Im(ρ) := ‖ρm‖2
2 = Tr(ρ†

mρm). (3)

We notice that MQI is the Schatten 2-norm, i.e., the Hilbert-
Schmidt inner product, of each non-Hermitian block ρm in the
coherence order decomposition. The second moment of the
MQI of state ρ, with respect to the observable A, is defined
as [85,86]

F (ρ, A) =
√∑

m

m2Im(ρ). (4)

Importantly, it has been shown that both the MQI spectrum
and its second moment can capture signatures of QPTs in
many-body quantum systems, also unveiling the role of co-
herence and entanglement toward the criticality in Hermitian
systems [79]. In the following, we will compute the second
moment of the MQI for several one-dimensional (1D) non-
Hermitian Hamiltonians that can be engineered with ultracold
atoms in optical lattices [27], dissipative Bose-Einstein con-
densates [87], and nuclear spin systems [88], to cite a few.
We will show that, fixing the reference eigenbasis of some
observable of the quantum system, the second moment of the
MQI F (ρ, A) for the ground state ρ of the non-Hermitian sys-
tem stands as a useful quantifier for witnessing non-Hermitian
equilibrium phase transition.

III. TWO-LEVEL SYSTEM

We start by evaluating the MQCs for a paradigmatic two-
level system with gain and loss terms. Let H = (�u − i�γ ) · �σ
be the non-Hermitian two-level system Hamiltonian, where
�u = {ux, uy, uz} and �γ = {γx, γy, γz} are three-dimensional
real-valued vectors, while �σ = (σx, σy, σz ) is the vector of
Pauli matrices. Hereafter, we will set ‖�α‖2 := ∑

l α2
l as

the Euclidian norm of some vector �α = {αx, αy, αz}. The
Hamiltonian exhibits a complex spectrum as H |φ±〉 =
κ±|φ±〉, and H†|χ±〉 = κ∗

±|χ±〉, with κ± = ±‖�u − i�γ ‖, where
the set {|φl〉, |χl〉}l=± defines the so-called biorthogonal basis
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[89], with the eigenstates given by

|φ±〉 =
[

uz − iγz ± ‖�u − i�γ ‖
ux − iγx + i(uy − iγy)

]
|0〉 + |1〉,

‖χ±〉 =
[

uz + iγz ± ‖�u + i�γ ‖
ux + iγx + i(uy + iγy)

]
|0〉 + |1〉, (5)

where |0〉 = [1 0]T and |1〉 = [0 1]T are the vectors defin-
ing the computational basis states in the complex two-
dimensional (2D) vector space C2. Importantly, we stress
that the biorthogonal basis satisfies the completeness relation∑

l=±
|φl 〉〈χl |
〈χl |φl 〉 = I, with 〈χ j |φl〉 = δ jl〈χl |φl〉.

Next, we set the Hermitian operator A = ( 1
2 )(n̂ · �σ ) as the

generator of unitary evolutions, where n̂ = {nx, ny, nz} is a
unit vector with ‖n̂‖ = 1. In this case, the reference basis is
composed of the eigenstates {|ψ+〉, |ψ−〉} of the observable
A, with

|ψ±〉 = 1√
2

(
±

√
1 ± nz |0〉 + nx + i ny√

1 ± nz
|1〉

)
, (6)

where we have A|ψ±〉 = λ±|ψ±〉, with eigenvalues λ± = ± 1
2 .

The coherence order spectrum related to the eigenbasis of A is
labeled by the set of integers m = {−1, 0,+1}. In this case,
given the ground state ρ = |φ−〉〈χ−| of the non-Hermitian
Hamiltonian H , its coherence order decomposition reads ρ =∑

m={0,±1} ρm. In turn, the MQI spectrum {Im(ρ)}m=0,±1 is
obtained from Eq. (3) and reads

I±1(ρ) = [n̂ × (�u − i�γ )] · [n̂ × (�u + i�γ )] ∓ 2 n̂ · (�u × �γ )

4 ‖�u − i�γ ‖‖�u + i�γ ‖ ,

(7)
and

I0(ρ) = 1

2

{
1 + [n̂ · (�u − i�γ )] [n̂ · (�u + i�γ )]

‖�u − i�γ ‖‖�u + i�γ ‖
}
. (8)

Finally, from Eqs. (7) and (8), the second moment of the MQI
spectrum [see Eq. (4)] is written as

F (ρ, A) =
√

[n̂ × (�u − i�γ )] · [n̂ × (�u + i�γ )]

2 ‖�u − i�γ ‖‖�u + i�γ ‖ . (9)

Equation (8) assigns a geometric interpretation to the
second moment of the MQI. In fact, we notice that, for vec-
tors {û, γ , n̂} pointing in the same direction along the Bloch
sphere, Eqs. (7) and (8) lead to the MQI spectrum I±1(ρ) =
0 and I0(ρ) = 1, respectively, while Eq. (9) implies that
F (ρ, A) = 0. Importantly, this case is equivalent to setting H
and A as commuting operators, and thus, the second moment
of the MQI vanishes since the ground state of H is a fully inco-
herent state with respect to the eigenbasis of the observable A.
Hereafter, we will specialize our results to the non-Hermitian
Hamiltonian H = Jσx + iσz with parity-time-reversal (PT )
symmetry, with J and  being real parameters [90]. This
means setting the vectors �u = {J, 0, 0} and �γ = {0, 0, }. Re-
cently, this system has been experimentally realized in a single
trapped ion setup undergoing dissipative perturbations, in
which J plays the role of an interlevel coupling strength, while
 is related to a dissipation rate [91]. This system exhibits a
phase transition from the unbroken PT symmetry-preserving
phase (/J < 1) with real eigenvalues ±√

J2 − 2 to the

FIG. 1. Second moment of the multiple-quantum intensity spec-
trum F (ρ, Sl ) for the ground state ρ = |φ〉〈χ | of the non-Hermitian
Hamiltonian H = Jσx + iσz with respect to the reference eigenba-
sis of the single-qubit spin operators Sx,y,z = ( 1

2 ) σx,y,z.

so-called PT symmetry-broken phase (/J > 1), in which
the eigenvalues become purely imaginary ±i

√
2 − J2. At

the critical (exceptional) point  = J , the spectrum becomes
degenerate with vanishing eigenvalues. To introduce the role
of the coherence orders in this non-Hermitian system, we set
ρ = |φ〉〈χ | as the ground state of H and consider the eigenba-
sis of the collective magnetization operators Sx,y,z = ( 1

2 ) σx,y,z

as the reference basis. It is straightforward to verify from
Eq. (9) that F (ρ, Sx ) = ||F (ρ, Sz ) = ||/

√
2 |J2 − 2|,

while F (ρ, Sy) =
√

(J2 + 2)/(2 |J2 − 2|).
In Fig. 1, we plot the second moment of the MQI spectrum

F (ρ, Sx,y,z ) as a function of the ratio /J for the ground state
ρ = |φ〉〈χ | of the aforementioned Hamitonian H relative to
the reference eigenbasis of the collective magnetization oper-
ators Sx,y,z = ( 1

2 ) σx,y,z. We notice that F (ρ, Sx,y,z ) signals the
phase transition between unbroken and broken symmetry sec-
tors. The dissipative phase transition is witnessed by a narrow
pick exhibited by F (ρ, Sx,y,z ) at the critical point  = J . For
the unbroken phase, /J < 1, note that F (ρ, Sy) and F (ρ, Sz )
saturate around constant values, while F (ρ, Sx ) grows linearly
as /J increases. However, for the broken phase /J > 1, we
see that F (ρ, Sz ) decreases, while both F (ρ, Sx ) and F (ρ, Sy )
stay constant as we increase the ratio /J . Fixing the eigenba-
sis of Sx,y,z, the coherences of the ground state of H will take
larger values as the system approaches the critical point.

IV. YANG-LEE TRANSITION

We now move to a paradigmatic many-body spin sys-
tem. We consider the 1D ferromagnetic transverse-field Ising
model with next-nearest-neighbor couplings in the presence
of imaginary fields [92]

H = H1 + iH2, (10)

with

H1 = −
L∑

j=1

(
Jσ z

j σ
z
j+1 + J2σ

z
j σ

z
j+2 + σ x

j

)
, (11)
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FIG. 2. Plot of multiple-quantum intensity spectrum {Im(ρ )}m=1,...,L defined in Eq. (3) for the ground state ρ of the non-Hermitian
Hamiltonian in Eq. (10) relative to the reference basis of the collective magnetization along the z axis A = Sz = ( 1

2 )
∑L

j=1σ
z
j . Here, we set

J = 1, J2 = 0,  = 1, hy = 0, and system sizes L = {5, 6, 7} with periodic boundary conditions.

and

H2 = −
L∑

j=1

(
hzσ

z
j + hyσ

y
j

)
, (12)

where σ x,y,z denotes the Pauli matrices, while the set
{J, J2, , hy, hz} stand as positive and real-valued parameters.
We point out that [H1, H2] 
= 0, with the Hamiltonian H being
nonintegrable in the absence of imaginary fields for J2 
= 0.
For hy = 0, the Hamiltonian H belongs to the class of uni-
versality of the 2D classical Ising model. This non-Hermitian
system undergoes a phase transition that falls into the so-
called Yang-Lee universality class, which occurs at hz 
= 0 for
 > J [93–97].

In the following, we will compute the MQI spectrum
{Im(ρ)}m and the second moment of the MQI F (ρ, Sz ) for
the ground state ρ of Eq. (10) with PBCs. To accomplish this
task, we consider the coherence order decomposition of ρ in
the eigenbasis of the collective magnetization operator along
the z axis, Sz = ( 1

2 )
∑L

j=1σ
z
j . Unless otherwise stated, we set

the parameters J = 0.4,  = 1, and hy = 0.
In Fig. 2, we plot the MQI spectrum for the non-Hermitian

Ising model (J2 = 0) as a function of hz for the system
sizes L = {5, 6, 7}. From Figs. 2(a)–2(c), note that the MQI
spectrum is symmetrically distributed around the mode of
coherence m = 0, which in turn is translationally invariant
regarding unitary rotations generated by the operator Sz. We
see that, regardless of the size L of the system, the MQI
spectrum decreases for larger values of hz, and the amplitudes
of Im(ρ) will be mostly dominated by the modes of coherence
around m = 0. Indeed, the higher hz, the less relevant to the
MQI spectrum will be to the amplitude of those MQIs I±m(ρ)
related to the coherence orders labeled by integers m ∼ ±L.

In Figs. 2(d)–2(f), we see the MQI spectrum {Im(ρ)}m

exhibits a narrow peak at some critical point hc
z . Note that,

for hz < hc
z , the MQI grows as hz increases, while for hz > hc

z ,
one gets the MQI spectrum decreasing for all integers m 
= 0.

In turn, the quantity I0(ρ) reaches a stationary value as hz in-
creases, regardless of the system size L, thus being the relevant
contribution to the MQI spectrum for hz away from the critical
point. It is worthwhile to note that the higher the integer m,
the smaller the amplitude of Im(ρ) as a function of hz. This
suggests that, to understand the role of coherence orders in this
many-body non-Hermitian system, it would suffice to address
spin chains including only a few sites, thus evaluating the MQI
spectrum around the mode m = 0.

In Fig. 3, we plot the second moment of the MQI
F (ρ, Sz ) as a function of hz for the non-Hermitian inte-
grable Ising model (J2 = 0) with PBCs for the system sizes
L = {5, 6, 7, 8}. We see that the critical behavior of F (ρ, Sz )

FIG. 3. Plot of the second moment of the multiple-quantum in-
tensity spectrum F (ρ, Sz ) for the ground state ρ = |φ〉〈χ | of the
non-Hermitian Hamiltonian in Eq. (10) with respect to the refer-
ence basis of the collective magnetization operator along the z axis
Sz = ( 1

2 )
∑L

j=1σ
z
j . Here, we set J = 0.4, J2 = 0,  = 1, hy = 0, and

system sizes L = {5, 6, 7, 8} with periodic boundary conditions.
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FIG. 4. Plot of the second moment of the multiple-quantum in-
tensity spectrum F (ρ, Sz ) for the ground state ρ of the non-Hermitian
Hamiltonian in Eq. (10) with respect to the reference basis of the
collective magnetization operator along the z axis Sz = ( 1

2 )
∑L

j=1σ
z
j .

Here, we set J = 0.4, J2 = 0.1,  = 1, hy = 0, and system size
L = 10 with periodic boundary conditions.

around hz ≈ hc
z assigns the phase transition exhibited by the

spin model in the paramagnetic regime  > J for hy = 0.
The inset shows that the critical point hc

z slightly decreases as
we increase the system size L but starts saturating to a fixed
value from L = 7 to 8. Overall, for hz < hc

z , note that F (ρ, Sz )
takes some constant value, while it suddenly grows at the
critical point hz ≈ hc

z and then starts decreasing for hz > hc
z .

Overall, this means that the larger hz, the less commuting
will be H and Sz. However, for hz  hc

z , the small values of
F (ρ, Sz ) shown in Fig. 3 indicate that the coherence orders
of the ground state in the eigenbasis of Sz starts decreasing,
which means that H and Sz commute.

In Fig. 4, we investigate the Yang-Lee edge singularity for
the nonintegrable Ising model (J2 
= 0) with PBCs, setting
the spin chain with L = 10 sites. In Fig. 4(a), we plot the
imaginary part Im(E ) of the ground state energy of the system.
The Yang-Lee transition is depicted at the critical value hc

z in
which the ground state enters a PT symmetry-broken phase,
and its energy acquires a nonzero imaginary component, i.e.,
Im(E ) > 0. In this case, we obtain the value hc

z ≈ 0.135. In
Fig. 4(b), we plot the second moment of the MQI F (ρ, Sz )
as a function of hz. Importantly, the second moment of the
MQI signals the Yang-Lee edge singularity, which in turn is
depicted by the narrow peak at the aforementioned critical
point hc

z . For hz < hc
z , the quantity F (ρ, Sz ) saturates around a

FIG. 5. Finite-sized scaling of the critical points hc
z of the

multiple-quantum intensity spectrum F (ρ, Sz ) as a function of sys-
tem size 1/L for the ground state ρ = |φ〉〈χ | of the non-Hermitian
Hamiltonian in Eq. (10) with respect to the reference basis of the
collective magnetization operator along the z axis Sz = ( 1

2 )
∑L

j=1σ
z
j .

Here, we set J = 0.4, J2 = 0.1,  = 1, and hy = 0 with periodic
boundary conditions.

constant value, while it suddenly increases as the system ap-
proaches the critical point and then starts decreasing for hz >

hc
z . We clearly see that F (ρ, Sz ) stands as a useful figure of

merit for witnessing the phase transition of the non-Hermitian
system.

Next, we will discuss the finite-sized scaling of the second
moment of the MQI for the nonintegrable Ising model with
complex fields. In Fig. 5, we plot the critical points hc

z of
F (ρ, Sz ) as a function of system size 1/L. We see that the
value of the critical point hc

z monotonically decreases as we
increase the system size L and starts saturating around a fixed
value from L = 10 to 11.

V. HN MODEL

Here, we consider the so-called disordered HN model with
generalized boundary conditions [62,98–100]

H =
N−1∑
j=1

(JLc†
j c j+1 + JRc†

j+1c j ) +
N∑

j=1

Vjc
†
j c j

+ δRc†
1cN + δLc†

N c1, (13)

where N is the number of lattice sites, Vj ∈ [−W,W ] is
the onsite disorder parameter with W the disorder strength.
Here, JL, JR ∈ R are imbalanced hopping amplitudes, and
δL, δR ∈ R determines the generalized boundary conditions.
The disorder-free HN model is recovered with W = 0, i.e.,
choosing Vj = 0 for all j = {1, . . . , N}. In addition, note that
δL,R 
= 0 sets the case of generalized PBCs, while for δL,R = 0,
one obtains open boundary conditions (OBCs) [101,102]. In
the thermodynamic limit, the complex energy spectrum of H
for PBCs display a loop that encircles the origin, with the
OBC case comprising a completely real spectrum, regard-
less of the hopping parameters [63]. Interestingly, the HN

155141-5



DIEGO PAIVA PIRES AND TOMMASO MACRÌ PHYSICAL REVIEW B 104, 155141 (2021)

Hamiltonian can be recast as H = H1 + iH2, with

H1 = 1

2
(H + H†) =

(
JL + JR

2

)N−1∑
j=1

(c†
j c j+1 + c†

j+1c j )

+
(

δR + δL

2

)
(c†

1cN + c†
N c1) +

N∑
j=1

Vjc
†
j c j, (14)

and

H2 = 1

2i
(H − H†) =

(
JL − JR

2i

)N−1∑
j=1

(c†
j c j+1 − c†

j+1c j )

+
(

δL − δR

2i

)
(c†

N c1 − c†
1cN ). (15)

In the following, we will discuss the second moment of the
MQI F (ρ, H2), which in turn signals the coherences of the
ground state ρ = |φ〉〈χ | of the HN Hamiltonian with respect
to the reference basis of eigenstates of H2. In contrast to
spin Hamiltonians, here, the eigenvalues of H2 are no longer
half-integers, thus implying the index m is an arbitrary real
number. Hence, the sum in Eq. (4) is interchanged to run over
nondegenerated gaps in the spectrum of H2.

A. Disorder-free HN model

Here, we address the disorder-free HN model, i.e., we turn
off the onsite potentials in the Hamiltonian H in Eq. (13) by
setting W = 0. For PBCs, one can prove that H1 and H2 are
noncommuting operators for nonzero parameters JL, JR, δL,
and δR. However, one can verify that [H1, H2] = 0 for the
case JL/JR = δL/δR (or even JL/δL = JR/δR), which means
that F (ρ, H2) vanishes since the ground state of H is fully
incoherent into the eigenbasis of H2. In the Hermitian limit,
i.e., JL = JR and δL = δR, the spectrum of the HN Hamiltonian
is no longer complex, and the energies become symmetrically
distributed on the real axis, regardless of the system size.
In Appendix, we prove that F (ρ, H2) is identically zero for
δL = JL and δR = JR.

In Fig. 6, we plot the phase diagram of F (ρ, H2) as a
function of the ratios δL/JL and δR/JR, setting the hopping
parameters JL = 1, JR = 1, and system size N = 100. We
see that F (ρ, H2) vanishes along the gray dashed line with
δL/JL = δR/JR, i.e., both the operators H1 and H2 commute.
This critical line depicts a transition between two regions
where the ground state is coherent in the reference basis. In
addition, setting 0 < δL/JL � 1 (0 < δR/JR � 1), note the
second moment of the MQI approaches small values for all
δR/JR > 0 (δL/JL > 0), regardless of the system size.

Next, for OBCs with δL,R = 0, both the observables H1

and H2 are noncommuting operators for nonzero values of
JL and JR, except at the exceptional point JL = JR in which
the spectrum of the HN model undergoes a topological phase
transition [61]. Hence, we expect that F (ρ, H2) signals this
critical point by depicting a sudden change between two re-
gions in which ρ is a coherent state regarding the eigenbasis
of H2. We will discuss this in more detail. For δL,R = 0, the
HN Hamiltonian exhibits the spectral decomposition H =∑N

�=1 E�|ψR
� 〉〈ψL

� |, where the energy spectrum reads E� =

FIG. 6. Phase diagram of the second moment of the multiple
quantum intensity (MQI) F (ρ, H2) for the ground state ρ of the
disorder-free Hatano-Nelson model with periodic boundary condi-
tions [see Eq. (13)] relative to the reference basis of the Hermitian
operator H2 [see Eq. (15)]. Here, we set the hopping parameters
JL = 1, JR = 1, and system size N = 100. Along the gray dashed
line (δL/JL = δR/JR), F (ρ, H2) vanishes.

2
√

JL/JR cos φ�, with φ� = �π/(N + 1), while the biorthogo-
nal basis is formed by the set of right eigenvectors∣∣ψR

�

〉 = {c�,1; c�,2; . . . ; c�,N }T, (16)

with

c�,p =
√

2

N + 1

(
JL

JR

)−p/2

sin(pφ�), (17)

and the left eigenvectors∣∣ψL
�

〉 = {d�,1; d�,2; . . . ; d�,N }T, (18)

with

d�,p =
√

2

N + 1

(
JL

JR

)p/2

sin(pφ�). (19)

The ground state of the non-Hermitian Hamiltonian
H is given by ρ = |ψR

N 〉〈ψL
N |, with energy EN =

2
√

JL/JR cos[Nπ/(N + 1)]. In the following, we will
compute the second moment of the MQI F (ρ, H2) for
the ground state ρ relative to the eigenbasis of the observable
H2. From Eq. (15), one gets the spectral decomposition
H2 = ∑N

�=1 Ẽ�|χ�〉〈χ�|, with the energy spectrum

Ẽ� =
(

JL

JR
− 1

)
cos φ�, (20)

while the set of eigenstates {|χ�〉}�=1,...,N is composed of the
vectors

|χ�〉 = {w�,1; w�,2; . . . ; w�,N }T, (21)
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FIG. 7. Plot of the second moment of the multiple quantum in-
tensity F (ρ, H2) as a function of the ratio JL/JR for the system sizes
N = {10, 20, 30}. Here, we set the ground state ρ = |ψR

N 〉〈ψL
N | of the

disorder-free Hatano-Nelson model with open boundary conditions
(δL,R = 0) [see Eq. (13)] with respect to the reference basis of the
Hermitian operator H2 [see Eq. (15)].

with

w�,p = −ip

√
2

N + 1
sin(pφ�). (22)

The second moment of the MQI spectrum thus yields

[F (ρ, H2)]2 =
(

JL

JR
− 1

)2 N∑
j,l=1

(cos φ j − cos φl )
2|ρ jl |2, (23)

with the coefficient ρ jl = 〈χ j |ψR
N 〉〈ψL

N |χl〉 being the matrix
element of the ground state relative to the reference basis,
which yields

ρ jl = 4

(N + 1)2

N∑
p,q=1

(−1)p ip+q

(
JL

JR

)(q−p)/2

ξ j,l (p, q),

(24)
where we define the auxiliary function

ξ j,l (p, q) = sin(pφN ) sin(qφN ) sin(pφ j ) sin(qφl ). (25)

In Fig. 7, we show the second moment of the MQI for
the ground state ρ = |ψR

N 〉〈ψL
N | of the HN model with OBCs,

fixing the reference eigenbasis of H2. We set the system sizes
N = {10, 20, 30} and plot the quantity F (ρ, H2)/N2 as a func-
tion of the ratio JL/JR. We point out that, regardless of the
system size, F (ρ, H2) vanishes at JL = JR, the latter being the
exceptional point in which the spectrum of the HN model un-
dergoes a topological phase transition. This critical behavior
occurs for the case of symmetric hopping amplitudes in the
HN model, and thus, the imaginary part of its eigenenergies
become zero. It has been shown that this phase transition is
witnessed by an abrupt change in the winding number [53],
the latter being an integer-valued topological invariant [84].

B. Disordered HN model

Finally, we consider the disordered HN model of Eq. (13)
with disorder strength W 
= 0, setting asymmetric hopping
amplitudes with δL = JL and δR = JR, [98–100]. In contrast
to 1D Hermitian systems that exhibit Anderson localization

FIG. 8. Plot of the averaged second moment of the multiple
quantum intensity F (ρ, H2) as a function of the disorder strength
W for hopping parameters JL = 1, JR = 2. Here, we set the excited
state ρ in the middle of the spectrum of the HN Hamiltonian H [see
Eq. (13)] and consider the reference basis of the Hermitian operator
H2 [see Eq. (15)]. The upper panel (a) shows the average of F (ρ, H2)
over 1100 realizations for the system size N = 100, while the lower
panels show the average of F (ρ, H2) over 3000 realizations, for
system sizes (b) N = 50 and (c) N = 100.

regardless of the disorder strength [103], the disordered HN
model exhibits an Anderson transition [104]. Importantly, it
has been shown that this localization is related to a topo-
logical transition in which the complex energy spectrum of
the HN model becomes fully real at finite energy. In detail,
the mobility edges in the spectrum are mapped onto the ori-
gin as W increases, thus increasing the fraction of localized
modes in the real axis of the spectrum. Indeed, for JL = 1
and JR = 2, this transition takes place for disorder strengths
4 � W � 6 [61].

In the following, we will investigate localization in the
disordered HN model under the viewpoint of coherence or-
ders. We point out that the signaling of localization effects
and the buildup of quantum correlations have been addressed
under the framework of MQC in many-body quantum sys-
tems [75,105,106]. Here, fixing the eigenbasis of H2, we
evaluate the second moment F (ρ, H2) of the MQI, where
ρ = |ψR〉〈ψL| is an excited state of H [see Eq. (13)] that is
located in the middle of the complex energy spectra of the
disordered HN model.

In Fig. 8, we plot the average of F (ρ, H2) as a function of
the disorder strength W for the hopping parameters JL = 1,
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JR = 2. We set the reference basis comprising the eigenstates
of the observable H2, thus addressing the coherences of the
excited state ρ into this fixed basis. In Fig. 8(a), we show the
second moment of the MQI averaged over 1100 realizations
for a system size N = 100. We see that F (ρ, H2) is almost
vanishing for W � 3, while it starts to increase and reaches
nonzero values for W � 3, thus exhibiting a peak around
the interval 4 � W � 6. In addition, F (ρ, H2) decreases and
rapidly approaches zero for W � 6. This means that, for 4 �
W � 6, the excited state becomes coherent in the reference
eigenbasis, while H1 and H2 stand as commuting operators for
W � 3 and W � 6. The solid red bars depict the average stan-
dard deviation of F (ρ, H2) over the disorder realizations, thus
showing strong fluctuations around the interval 4 � W � 6,
whereas such fluctuations are strongly suppressed for W � 3
and W � 6. In Figs. 8(b) and 8(c), we set the system sizes
N = 50 and 100, respectively, and plot the quantity F (ρ, H2)
averaged over 3000 realizations for W ∈ [4, 6]. Overall, the
larger the system, the higher the fluctuations on F (ρ, H2),
which in turn also exhibits higher amplitudes.

Importantly, for typical realizations of the disordered HN
model, its complex energy spectra form a loop that encircles
the origin for small values of disorder strength [61]. In this
regard, while the fraction of localized modes increases for
4 � W � 6, Fig. 8(a) shows the excited state in the middle of
the spectrum exhibits nonzero values of quantum coherences
in the eigenbasis of H2. Furthermore, Figs. 8(b) and 8(c)
indicate the line width of the fluctuating peak in F (ρ, H2)
decreases as we increase the system size. This indicates that
F (ρ, H2) testifies the interplay of quantum coherences and
emergence of the mobility edges in this non-Hermitian dis-
ordered system.

VI. EXPERIMENTAL DISCUSSION

So far, MQCs have been widely applied for characterizing
nuclear spin systems, mostly taking advantage of the ability
to control the spins through radiofrequency pulses with NMR
spectroscopy [72,73,107]. Quite recently, non-Hermitian PT -
symmetric Hamiltonians have been implemented in NMR
systems [77,78]. This suggest that NMR platforms might be
feasible testbeds for probing topological phase transitions via
the measurement of MQCs. In the following, we comment on
how to experimentally probe such phase transitions in non-
Hermitian systems by exploiting the framework of MQCs.

Given the ground state ρ = |�R
GS〉〈�L

GS| of a non-
Hermitian Hamiltonian H spin system, we take A =∑N

l=1 λl |ψl〉〈ψl | as an observable belonging to the referred
physical system, with {|ψl〉}l=1,...,N being the fixed reference
basis. In this case, one obtains ρ = ∑

m ρm as the coherence
order decomposition of the ground state in the eigenbasis
of A, with ρm = ∑

λ j−λl =m ρ jl |ψ j〉〈ψl |, and ρ jl = 〈ψ j |ρ|ψl〉.
By hypothesis, the ground state undergoes a unitary evo-
lution ρϕ = e−iϕA ρ eiϕA = ∑

m e−imϕρm that imprints some
unknown phase ϕ on it, with ϕ ∈ [0, 2π ). This process could
be experimentally realized in NMR setups by engineering a
sequence of microwave pulses that implement collective spin
rotations [107–109]. Estimating the phase ϕ requires measur-
ing the fidelity f (ρ, ρϕ ) := Tr(ρρϕ ) of the two pure states

ρ and ρϕ . In turn, quantum fidelity relies on the overlap of
density matrices [110]. In terms of coherence order language,
this fidelity is recast as [85,86]

f (ρ, ρϕ ) =
∑

m

Im(ρ) e−imϕ, (26)

where Im(ρ) = Tr(ρmρ†
m) is the MQI. Hence, the MQI spec-

trum can be retrieved from the Fourier transform of this signal,
with the mth MQI written as

Im(ρ) = 1

2π

∫ 2π

0
dϕ f (ρ, ρϕ ) eimϕ. (27)

It is worthwhile to note that both the fidelity and the MQI
spectrum have been measured for trapped ions realizing a
fully connected Hermitian Ising model [85].

To probe the information encoded in a given subspace of
the quantum system, Eq. (27) means that one can measure the
MQI Im(ρ) ruled by the mth coherence order sector labeling
such quantum subspace. In this case, there is no need to fully
reconstruct the ground state of the system via quantum state
tomography, the latter exhibiting a complexity that grows
exponentially with the number of particles in a many-body
quantum system. Remarkably, measuring a single MQI typi-
cally requires a minimal experimental cost in NMR systems
[76]. Hence, this suggests the usefulness of the framework
of coherence orders for probing the ground state of a many-
particle quantum system.

To illustrate this idea, we refer to the non-Hermitian trans-
verse field Ising model discussed in Sec. IV. In detail, given
the coherence orders of the ground state related to the collec-
tive magnetization operator along the z axis, Figs. 2(d)–2(f)
clearly show that the MQI spectrum captures the Yang-Lee
transition. In other words, given the mth coherence order,
the quantity Im(ρ) unveils an interplay between quantum co-
herence and the symmetry-breaking phase transition in the
many-body system. Hence, one could infer such a phase tran-
sition with the measurement of a single MQI, e.g., I0(ρ) that
is labeled by the sector m = 0. This can be directly applied,
for instance, to NMR quantum computing platforms realizing
PT -symmetric systems [77,78].

VII. CONCLUSIONS

In conclusion, we have shown the usefulness of the coher-
ence order framework for probing phase transitions in non-
Hermitian systems. Focusing on the second moment of MQIs,
we verified the interplay of quantum coherences and critical
points for some prototypical non-Hermitian Hamiltonians.

For the ground state of non-Hermitian two-level systems,
fixing a given reference basis, we have shown that the second
moment of the MQI displays a critical behavior at the same
critical points as the spectrum of a non-Hermitian system
(see Fig. 1). In other words, measuring the coherences of the
ground state respective to the fixed eigenbasis, the second
moment of the MQI witnesses the parity-symmetry-breaking
phase transition of the single-qubit non-Hermitian model.

Next, for the non-Hermitian transverse field Ising model
with PBCs, the second moment of the MQI for its ground
state exhibits a critical behavior as a function of the magnetic
field hz, thus displaying the Yang-Lee phase transition (see
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Fig. 4). We see that this critical behavior persists for both the
(Hermitian) integrable and nonintegrable cases (see Fig. 3).
For the latter, the finite-sized scaling of the second moment of
the MQI shows that the critical point monotonically decreases
as a function of the system size L−1 and starts saturating
around a fixed value for L � 10 (see Fig. 5). Importantly, we
see the MQI spectrum signals this critical point, and thus, one
could probe the non-Hermitian phase transition by measuring
a single coherence order of the ground state (see Fig. 2).

For the HN model with OBCs, we have shown that
the second moment of the MQI captures the topological
phase transition exhibited by the complex energy spectra (see
Fig. 7). Indeed, the MQI vanishes at the exceptional point
displaying the Hermitian limit of the HN model. For PBCs,
the second moment of the MQI depicts two nonzero regions
where the ground state is coherent in the fixed reference basis.

We have verified the second moment of the MQI unveils a
signature of the emergence of mobility edges in the spectrum
of the disordered HN model with PBCs. We have shown that,
for some excited state in the middle of the complex energy
spectra, the averaged second moment of the MQI mostly
vanishes, except for a peak that appears for a given range of
the disorder strength [see Fig. 8(a)]. This peak has a strongly
fluctuating amplitude, and its width decreases as we increase
the system size [see Figs. 8(b) and 8(c)]. Importantly, this peak
occurs around some values of disorder strength for which it is
known the whole spectrum becomes localized. We expect that,
increasing both the system size and the number of averaging
realizations, the peak will become more pronounced, while
the disorder strength approaches the critical value for localiza-
tion transition of mobility edges in the disordered HN model.

Finally, we discussed an experimentally relevant scheme to
probe equilibrium phase transitions in non-Hermitian systems
by exploiting the framework of MQCs. Our results suggest
that one could probe criticality in non-Hermitian systems by
measuring a few elements of the MQI spectrum, the latter
ruling the coherence orders that build up the density ma-
trix. The results in this paper could find applications in the
subject of non-Hermitian quantum thermodynamics [111]
and in the study of enhancing quantum sensing with non-
Hermitian systems [43,44].
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APPENDIX: HN MODEL WITH PBCS

Let us consider the HN model with PBCs, also setting δL =
JL and δR = JR, whose Hamiltonian reads as H = H1 + iH2,
where

H1 =
(

JL + JR

2

) N∑
j=1

(c†
j c j+1 + c†

j+1c j ), (A1)

and

H2 =
(

JL − JR

2i

) N∑
j=1

(c†
j c j+1 − c†

j+1c j ), (A2)

with the constraint cN+1 = c1. Here, we will show the second
moment of the MQI, i.e., F (ρ, H2), identically vanishes when
considering the ground state ρ of the HN model, fixing the
reference eigenbasis of H2. To do so, note the non-Hermitian
HN Hamiltonian exhibits the complex spectrum given by [63]

En =
(

JL

JR
+ 1

)
cos θn + i

(
JL

JR
− 1

)
sin θn, (A3)

with θn = 2πn/N , and also the set of eigenvectors
{|ψn〉}n=1,...,N , with

|ψn〉 = 1√
N

{eiθn , e2iθn , . . . , eNiθn}T. (A4)

For N even, the ground state of the Hamiltonian H is labeled
as n = N/2. However, for N odd, the ground state exhibits a
twofold degeneracy and is obtained for n = (N ± 1)/2. We
point out that H2 = ∑

n En|φn〉〈φn| is the spectral decomposi-
tion of H2, with the real energies

En =
(

JL

JR
− 1

)
sin θn, (A5)

and the eigenstates

|φn〉 = (−1)n

√
N

{eiθn , e2iθn , . . . , eNiθn}T. (A6)

For N even, it follows that ρ = |ψN/2〉〈ψN/2| stands as the
ground state of the HN Hamiltonian. In this case, the second
moment of the MQI spectrum thus yields

[F (ρ, H2)]2 = 1

N2

(
JL

JR
− 1

)2 N∑
j,l=1

(sin θ j − sin θl )
2|ρ jl |2,

(A7)

where ρ jl := 〈φ j |ψN/2〉〈ψN/2|φl〉 is the matrix element of the
ground state with respect to the eigenbasis of H2 and can be
recast as

ρ jl = (−1) j+l

{
1

N

N∑
p=1

exp

[
−2π ip

N

(
j − N

2

)]}

×
{

1

N

N∑
q=1

exp

[
−2π iq

N

(
l − N

2

)] }

= (−1) j+l δ j,N/2 δl,N/2, (A8)

where we have recognized the product of the Kronecker δ.
Hence, plugging Eq. (A8) into Eq. (A7), it is straightforward
to conclude the second moment of the MQI vanishes, i.e.,
F (ρ, H2) = 0 for N even. Next, for N odd, the ground state
of H is twofold degenerated as ρ = |ψ(N±1)/2〉〈ψ(N±1)/2|. The
second moment of the MQI spectrum thus yields

[F±(ρ, H2)]2 =
(

JL

JR
− 1

)2 N∑
j,l=1

(sin θ j − sin θl )
2|ρ±

jl |2, (A9)
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where, here, ρ±
jl := 〈φ j |ψ(N±1)/2〉〈ψ(N±1)/2|φl〉, which is writ-

ten as

ρ±
jl = (−1) j+l

{
1

N

N∑
p=1

exp

[
2π ip

N

(
N ± 1

2
− j

)]}

×
{

1

N

N∑
q=1

exp

[
2π iq

N

(
l − N ± 1

2

)]}

= (−1) j+l δ j,(N±1)/2 δl,(N±1)/2. (A10)

Finally, substituting Eq. (A10) into Eq. (A9), we see the
second moment of the MQI vanishes, i.e., F (ρ, H2) = 0 for
N odd. As a final comment, we point out that F (ρ, H2) is
expected to be zero since H1 and H2 are commuting operators,
and thus, the ground state of H is an incoherent state with
respect to the eigenbasis of H2.
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