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Hierarchical single-ion anisotropies in spin-1 Heisenberg antiferromagnets on the honeycomb lattice
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We examine the thermal properties of the spin-1 Heisenberg antiferromagnet on the honeycomb lattice in
the presence of an easy-plane single-ion anisotropy as well as the effects of an additional weak in-plane easy-
axis anisotropy. In particular, using large-scale quantum Monte Carlo simulations, we analyze the scaling of
the correlation length near the thermal phase transition into the ordered phase. This allows us to quantify the
temperature regime above the critical point in which—in spite of the additional in-plane easy-axis anisotropy—
characteristic easy-plane physics, such as near a Berezinskii-Kosterlitz-Thouless transition, can still be accessed.
Our theoretical analysis is motivated by recent neutron scattering studies of the spin-1 compound BaNi2V2O8 in
particular, and it addresses basic quantum spin models for generic spin-1 systems with weak anisotropies, which
we probe over the full range of experimentally relevant correlation length scales.
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I. INTRODUCTION

In recent years, the search for solid-state realizations
of Berezinskii-Kosterlitz-Thouless (BKT) topological phase
transitions [1–3] in magnetic compounds has lead to the
identification of several quasi-two-dimensional (2D) antifer-
romagnetic candidate materials [4–9]; for an overview over
the earlier literature on magnetic compounds for which BKT
transitions have been considered, cf. Ref. [10]. While in most
systems the BKT behavior is obstructed by the presence of
residual interlayer couplings, these were found to be neg-
ligible for the specific Ni2+ based compound BaNi2V2O8,
in which spin-1 degrees of freedom reside in effectively
decoupled 2D honeycomb lattice layers [11,12]. Instead of
interlayer coupling, a weak easy-plane single-ion anisotropy
stabilizes dominant planar (XY) correlations in BaNi2V2O8

upon lowering the temperature below about 80 K [12]. It
was found in theoretical studies that weakly anisotropic 2D
Heisenberg antiferromagnets indeed exhibit a vortex-driven
BKT transition at a temperature TBKT set by the Heisenberg
exchange coupling, separating a disordered high-temperature
regime from a quasi-long-range ordered phase below TBKT

[13].
However, BaNi2V2O8 features a true antiferromagnetic

ordering transition [11] at a Néel temperature TN of about
47.75 K [14]. Detailed inelastic neutron scattering studies of
the low-temperature ordered state of BaNi2V2O8 furthermore
indicate the presence of an additional, though very weak,
anisotropy which favors the alignment of the magnetic mo-
ments along only a subset of directions within the spin’s easy
plane [12].

As a most basic model system for the magnetism of
BaNi2V2O8, which accounts for these essential properties
[12,14], we consider here the Hamiltonian

H = J
∑
〈i, j〉

Si · S j + Dz

∑
i

(
Sz

i

)2 − Dx

∑
i

(
Sx

i

)2
, (1)

in terms of spin-1 degrees of freedom Si residing on the sites
of a honeycomb lattice with an antiferromagnetic nearest-
neighbor exchange constant J > 0 (i.e., the first sum extends
over all nearest-neighbor bonds). Further (weak) interaction
terms, e.g., between next-nearest neighboring spins were con-
sidered in Ref. [12] based on a linear spin wave theory
modeling. The more basic model H in Eq. (1) was then later
found to also account well for the neutron scattering data
on BaNi2V2O8, with the estimated values of J = 8.8 meV,
Dz = 0.099 meV, and Dx = 0.0014 meV [14].

The weak anisotropy Dz � J , along with an even weaker
Dx < Dz, indeed entails a hierarchy of single-ion anisotropies:
A finite Dz > 0 leads to the preferred orientation of the spin
moments within the spin-XY plane at low temperatures, while
the additional Dx > 0 favors their alignment in the spin-X
direction. Correspondingly, in the pure easy-plane limit Dx =
0, the Hamiltonian H has a residual O(2) symmetry in the
spin-XY plane and exhibits a BKT transition at a finite transi-
tion temperature TBKT (as quantified in detail below). On the
other hand, a finite value of Dx > 0 explicitly breaks the spin
symmetry of H down to a discrete Z2 symmetry in the spin-X
direction, and in this case the system instead exhibits a 2D
Ising ordering transition at a finite Néel temperature TN (also
quantified below).

Based on the underlying lattice structure, the in-plane
anisotropy in BaNi2V2O8 may be argued to exhibit a sixfold
symmetry instead of a single in-plane easy-axis direction [14].
Due to the irrelevancy of a Z6 perturbation at the BKT transi-
tion [15], the BKT transition would then not be affected by the
weak in-plane anisotropy (in the opposite limit of the classical
Z6-symmetric clock model the transition was instead found to
no longer be of BKT type [16]). However, the microscopic
models that were derived from the inelastic neutron scattering
data contain an explicit Z2 symmetric in-plane anisotropy,
as in Eq. (1), which is a strongly relevant perturbation at
the BKT transition. Moreover, it was observed in Ref. [14]
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that quantum effects in BaNi2V2O8 need to be accounted
for in order to quantitatively model the correlations in this
compound, even though the underlying thermal physics is
dominated by classical fluctuations in the weak anisotropy
regime. Therefore, our study focuses on the question, whether
for temperatures close to and above TN, one may still be able
to identify in the magnetic correlations characteristic features
of the dominant easy-plane anisotropy Dz, i.e., remnants of
the BKT physics that govern the magnetism of the quantum
spin model in Eq. (1) in the pure easy-plane limit Dx = 0.

In fact, it was observed recently that within a finite temper-
ature window above TN, the magnetic correlation length ξ in
BaNi2V2O8 exhibits a temperature dependence that fits well
to the BKT scaling formula ξ (T ) ∝ exp( b/

√
T − TBKT) [3],

as compared to conventional power-law scaling [14]. In the
above, b is a nonuniversal number, and TBKT defines an (effec-
tive) BKT transition temperature, estimated for BaNi2V2O8 to
be 44.7 K, i.e., TBKT is below TN. This indicates that the BKT
physics of vortex excitations still controls the initial buildup
of the magnetic correlations in BaNi2V2O8 upon approaching
the thermal phase transition, but the underlying BKT tran-
sition is preempted by the Néel ordering transition that is
induced by the additional weak in-plane anisotropy [14].

Here we assess the above scenario for the case of the ef-
fective model Hamiltonian H , which allows us to make direct
and quantitative comparisons of the correlation length scaling
between the full hierarchical model and the pure easy-plane
limit (Dx = 0). For this purpose we performed a series of
large-scale quantum Monte Carlo (QMC) simulations of the
hierarchical Hamiltonian H , using a variant of the stochastic
series expansion (SSE) method [17–19]. Having in mind a
hierarchy of weak anisotropies that is appropriate for the
compound BaNi2V2O8, we concentrate here on the regime
where Dx < Dz � J . However, we found that important as-
pects for the analysis of BKT transitions in spin-1 systems on
the honeycomb lattice are not available from previous studies.
For this reason we first consider in the following several limits
of the Hamiltonian H and related models.

More specifically, in the following Sec. II we first examine
the BKT transition of the spin-1 XY model on the honeycomb
lattice, in order to set the stage for the later discussion of the
hierarchical model H . Then, in Sec. III we concentrate on the
pure easy-plane limit (Dx = 0) of the Hamiltonian H , and then
examine the full hierarchical model in Sec. IV. Final conclu-
sions are then drawn in Sec. V. Important technical aspects
of the employed SSE algorithm that are specific to the QMC
simulation of the anisotropic Hamiltonian H are provided in
the Appendixes. There we also examine in detail the quantum
phase transition that emerges in the pure easy-plane model
for larger values of Dz. Finally, we provide in the Appendixes
also an analysis of the pure easy-axis regime (Dz = 0) of the
Hamiltonian H , for which we identify an enhanced ordering
temperature in the large-Dx regime relative to the classical
Blume-Capel limit.

II. THE SPIN-1 XY MODEL

While BKT transitions in several anisotropic quantum spin
systems have been studied to a high precision in the past,
we are not aware of any detailed study of anisotropic spin-

1 systems or even the most basic spin-1 XY model on the
honeycomb lattice. Hence, before we examine the full hier-
archical Hamiltonian H , we first consider the identification
of the BKT transition and the correlation length scaling in
the most basic spin-1 honeycomb lattice model that exhibits
a BKT transition, i.e., the spin-1 XY model. This model is
defined by the Hamiltonian

HXY = J
∑
〈i, j〉

Sx
i Sx

j + Sy
i Sy

j , (2)

which has a transverse antiferromagnetically ordered ground
state for J > 0 on a bipartite lattice, and a transverse ferro-
magnetic ground state for J < 0. On a bipartite lattice, such
as the honeycomb lattice, both cases can be related by a
sublattice rotation, so that here we need to treat explicitly
only one of these cases. We consider the antiferromagnetic
case in order to set up the notation in the following to apply
also directly to the Hamiltonian H , which also contains an
antiferromagnetic exchange interaction.

In the following we consider the honeycomb lattice in
terms of a triangular lattice with a two-site unit cell. For
the QMC simulations we use finite L × L rhombi of L2 unit
cells and N = 2L2 spins, taking periodic boundary conditions
in both lattice directions. Furthermore, we denote the lattice
constant in terms of the distance between neighboring lattice
sites by a0.

A standard means of identifying the BKT transition tem-
perature TBKT in O(2) symmetric systems is based on the
behavior of the spin stiffness ρS , which is predicted to ex-
hibit a universal jump of ρS = 2 TBKT/π at the system’s BKT
transition temperature TBKT [20]. For the specific case of the
XY model considered here, we will denote the BKT transition
temperature by T XY

BKT in the following. Within the SSE QMC
approach ρS can be calculated from the spin winding number
fluctuations [21,22]

ρS = T

2 Auc

(〈
W 2

x

〉 + 〈
W 2

y

〉)
, (3)

where Wx and Wy are the total winding numbers in the orthog-
onal x and y direction, respectively. In order to compare to the
universal scaling relation of the stiffness jump in the contin-
uum limit, the winding number fluctuations are normalized by
the unit cell area Auc in units of a2

0, which equals Auc = √
3/2

for the honeycomb lattice. To extract T XY
BKT from finite-size

QMC data, we then follow the standard approach of Ref. [23],
which is based on the finite-size scaling form [24]

ρS π

2 T
= A(T )

(
1 + 1

2 log[L/L0(T )]

)
(4)

that holds exactly at the transition point with A(TBKT) = 1.
We fitted this finite-size dependence to the data for different
temperatures, using A(T ) and L0(T ) as fit parameters. This
allows us to accurately estimate the transition temperature,
where A(TBKT) = 1 holds. Our results from this approach are
shown in Fig. 1, and we obtain from this analysis an estimate
of T XY

BKT/J = 0.7303(4) for the spin-1 XY model on the hon-
eycomb lattice.

As another approach to estimate T XY
BKT, we analyze the

transverse spin correlation function Cx(ri, j ) = 〈Sx
i Sx

j 〉, which
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FIG. 1. Spin stiffness ρS for different system sizes L as function
of temperature T of the spin-1 XY model on the honeycomb lattice.
The dashed line denotes the scaling form of the universal jump. The
inset shows the quantity A(T ) from the finite-size scaling analysis.
The critical point is denoted by the dashed vertical line, where
A(T ) = 1 holds, obtained using a linear fit (solid line).

for the XY model also equals Cy(ri, j ) = 〈Sy
i Sy

j〉, and where ri, j

denotes the spatial distance between spins i and j, accounting
for the periodic boundary conditions. In the thermodynamic
limit and at the BKT transition temperature, the magnitude
Cx,y(r) of these correlation functions is predicted to scale as

Cx,y(r) ∼ ln(r)1/8

rη

[
1 + O

(
ln(r)1/8

rη

)]
, (5)

with the critical exponent η = 1/4 [25]. We measured the
values of Cx,y[rmax(L)] at the largest available distance rmax(L)
for different lattice sizes L. Based on the above scaling form,
we can then estimate T XY

BKT from a crossing-point analysis
of the appropriately rescaled values of Cx,y[rmax(L)] between
system sizes L and 2 L, and performing an extrapolation to the
thermodynamic limit (1/L = 0), as shown in Fig. 2. Within
the statistical uncertainty, the value T XY

BKT/J = 0.728(2) that
we obtain for the BKT transition temperature from this analy-
sis is in accord with the (more accurate) estimate based on ρS

reported above.
Following the above identification of the BKT transition

temperature in the XY model, we next examine in detail the
behavior of the transverse spin correlation length ξXY in this
model and its scaling behavior near T XY

BKT. This analysis will
be important to our later study of the scaling behavior of the
correlation length in the hierarchical model H .

To extract the correlation length from the spin correlations
of a general spin model on the honeycomb lattice, we consider
the magnetic structure factor Sα (q), α = {x, y, z} defined as

Sα (q) = 1
2

[
SAA

α (q) + SBB
α (q) − SAB

α (q) − SBA
α (q)

]
, (6)

capturing the antiferromagnetic alignment inside the unit cell
at q = 0 = (0, 0), where

Sμν
α (q) = 1

L2

∑
m,n

eiq·(rm−rn )Cμν
α (rm − rn), (7)

with m, n summed over the L2 unit cells, is given in terms
of the correlation function Cμν

α (r) between the α component

FIG. 2. Transverse spin correlations Cx,y(rmax), multiplied by
(rmax)η log(rmax)−1/8 for different system sizes L, as functions of T
of the spin-1 XY model on the honeycomb lattice. Near the crossing
points they are approximated by polynomials of degree 3 (solid
lines). The inset shows the temperature T× of the crossing points
between the fitting polynomials of linear system sizes L and 2 L as a
function of inverse system size 1/L, which is extrapolated to 1/L = 0
using a linear fit (solid line).

of two spins at lattice sites belonging to sublattices μ, ν ∈
{A, B}, and where r denotes the separation of the unit cells
with respect to the underlying triangular lattice. The spin
correlation length ξα of the fluctuations in the α direction is
then obtained in the standard way [26] as

ξα = 1√
15/16

1

|q1|

√
Sα (0)

Sα (q1)
− 1, (8)

where q1 is one of the reciprocal lattice vectors closest to
0 = (0, 0) on the L × L lattice, and the factor 1/

√
15/16

is introduced to relate the estimator to the Ornstein-Zernike
correlation length [27].

For the spin-1 XY model we consider the correlation length
of the transverse fluctuations ξx = ξy, which we denote by
ξXY in the following. Its temperature dependence is shown in
Fig. 3, as obtained from extrapolating the finite-size estimates
to the thermodynamic limit (cf. Fig. 4). In this way we are
able to reliably extract values of ξXY up to about 140 lattice
constants a0.

Close to the BKT temperature, the correlation length is
predicted to scale as

ξXY = a exp
(
b/

√
T − T XY

BKT

)
, (9)

where a and b are nonuniversal parameters. We find that the
numerical data fits well to this BKT scaling form, as shown
by the fit line in Fig. 3. In particular, we can also obtain
from this analysis a further estimate of T XY

BKT/J = 0.7305(3),
consistent with our previous values. A more direct comparison
to the BKT scaling form is obtained by examining ξXY on a
logarithmic scale, for which the BKT scaling form yields

ln(ξXY/a0) = ln(a/a0) + b/
√

T − T XY
BKT, (10)

which indeed fits well to the numerical data, as seen in the
inset of Fig. 3. We thus find that for the spin-1 XY model on
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FIG. 3. Correlation length ξXY of the spin-1 XY model on the
honeycomb lattice as a function of T . The solid red line shows a
fit to the BKT scaling formula. The inset shows the same data on a
logarithmic scale as a function of 1/

√
T − T XY

BKT.

the honeycomb lattice, the correlation length closely follows
the BKT scaling form upon approaching the BKT transition
temperature.

III. PURE EASY-PLANE REGIME

After having examined the basic spin-1 XY model on the
honeycomb lattice, we next turn our attention to the easy-
plane limit (Dx = 0) of the Hamiltonian H , i.e., we consider

HEP = J
∑
〈i, j〉

Si · S j + Dz

∑
i

(
Sz

i

)2
. (11)

Here a finite value of Dz > 0 breaks the O(3) symmetry of
the Heisenberg model down to a residual O(2) symmetry in
the spin-XY plane, and in this two-dimensional model this is
expected to lead to a BKT transition in the easy plane, even
for very weak anisotropies. As already stated in Sec. I, here we
focus on the regime of weak Dz � J , and we consider in detail

FIG. 4. Extrapolation of the correlation length ξXY of the spin-1
XY model on the honeycomb lattice from the finite-size data for the
lower temperatures from Fig. 3, as obtained from fitting to polyno-
mials of order 2 (dashed lines).

FIG. 5. Spin stiffness ρS for different system sizes L as function
of temperature T for the spin-1 easy-plane model HEP on the hon-
eycomb lattice for Dz = 0.01J . The dashed line denotes the scaling
form of the universal jump. The inset shows the quantity A(T ) from
the finite-size scaling analysis. The critical point is denoted by the
dashed vertical line, where A(T ) = 1 holds, obtained using a linear
fit (solid line).

the value of Dz = 0.01J , which is of the order of the value
estimated for BaNi2V2O8 [12,14]. In this regime the model
indeed exhibits an XY ordered antiferromagnetic ground state
and a BKT transition into the low-T critical regime. In the fol-
lowing we first identify the emergence of the BKT transition
for the easy-plane spin-1 model on the honeycomb lattice and
then analyze the correlation length scaling upon approaching
the BKT transition temperature.

We identity the BKT transition temperature using the spin
stiffness ρS , following the same approach as introduced in
Sec. II. The result of this analysis for HEP is shown in Fig. 5,
from which we extract the value of T EP

BKT/J = 0.46860(1) (we
verified that this estimate is also in accord with a correspond-
ing analysis of the correlation function Cx,y[rmax(L)], as for
the spin-1 XY model in the previous section).

The above procedure can be repeated for varying values
of Dz in order to obtain a thermal phase diagram of the
Hamiltonian HEP. For completeness we present the QMC data
for T EP

BKT as a function of Dz in Fig. 6. These results exhibit
several noticeable features: (i) as a function of Dz, T EP

BKT ex-
hibits a nonmonotonous behavior: The initial increase of T EP

BKT
with Dz near the isotropic limit is followed by a reduction of
T EP

BKT for Dz � 1. (ii) T EP
BKT vanishes for Dz approaching the

value of Dc
z ≈ 3.8J . In fact, as examined in more detail in

Appendix B, the Hamiltonian HEP features a quantum phase
transition within the three-dimensional (3D) XY universality
class at Dc

z/J = 3.83805(5), beyond which the XY-ordered
antiferromagnetic ground state gets replaced by a nonmag-
netic state due to the proliferation of the local Sz

i = 0 states
for larger values of Dz. This quantum phase transition was also
recently identified within a mean field approximation [28], as
well as by QMC for HEP on a square lattice geometry [29]. (iii)
The maximum value of T EP

BKT, for Dz ≈ J , is remarkably close
to the value of the BKT transition in the spin-1 XY model HXY

(indicated by the horizontal line in Fig. 6). (iv) In the low-Dz

regime, we observe an approximate logarithmic suppression
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FIG. 6. BKT transition temperature T EP
BKT of HEP as a function

of the easy-plane anisotropy Dz. The dashed vertical line denotes
Dc

z and the dashed horizontal line the BKT transition temperature
T XY

BKT of HXY. The inset indicates the logarithmic scaling of 1/T EP
BKT ∝

ln(Dz/c) at small Dz.

of T EP
BKT, i.e.,

T EP
BKT ∝ 1/ ln(Dz/c), (12)

where c is a (nonuniversal) constant (cf. the inset of Fig. 6).
Such a leading logarithmic scaling was indeed obtained by
earlier spin-wave theory and renormalization group calcula-
tions [30,31], and was also observed in numerical studies
of both classical and spin-1/2 weakly anisotropic easy-plane
XXZ models [13].

For the easy-plane model HEP, the correlation lengths ξx

and ξy diverge upon approaching T EP
BKT. Both quantify the

transverse correlations and equal each other due to the resid-
ual O(2) symmetry. We thus denote this quantity by ξEP

xy in
the following. We also consider the correlation length ξz of
the longitudinal fluctuations, which we denote by ξEP

z corre-
spondingly. Both quantities were obtained as described in the
previous section, based on the corresponding spin structure
factors.

The evolution of these correlation lengths with T , after an
extrapolation to the thermodynamic limit, is shown in Fig. 7.
Here we again consider the value of Dz = 0.01J . In addition
to the expected increase of the transverse correlation length
ξEP

xy , we observe a nonmonotonous behavior in the longitudi-
nal correlation length ξEP

z : For temperatures larger than T ≈
0.75J , both correlation lengths closely follow each other, as
expected from the O(3) symmetry of the leading Heisenberg
exchange term in HEP. Below this scale however, ξEP

xy starts to
deviate noticeably from ξEP

z . Indeed, ξEP
z , while initially still

increasing upon lowering T , exhibits a broad maximum at a
temperature Tp of about Tp ≈ 0.56J (see the inset in Fig. 7),
before it decreases slightly upon further lowering T . In earlier
studies of spin-1/2 XXZ models on square lattice geometries,
similar behavior of the correlation lengths was observed in the
regime of (weak) easy-plane exchange anisotropy [32]. There,
the temperature of the maximum in the longitudinal correla-
tion length was identified as a crossover scale separating the
high-T Heisenberg region from an intermediate temperature

FIG. 7. Correlation lengths ξEP
xy and ξEP

z as functions of tempera-
ture T of the spin-1 easy-plane HEP model on the honeycomb lattice
for Dz = 0.01J .

regime with enhanced in-plane fluctuations above the BKT
transition.

Returning to HEP, at about the crossover scale Tp, the
further increase of the transverse correlation length ξEP

xy upon
approaching the BKT transition indeed starts to be well de-
scribed in terms of the exponential BKT scaling of Eq. (9),
with T XY

BKT replaced by T EP
BKT. This is illustrated by the fits to the

BKT scaling form in Fig. 8. The main panel of Fig. 8 shows
the inverse transverse correlation length a0/ξ

EP
xy (in units of

a0), which conveniently approaches the value of zero at the
BKT transition, along with a fit to the BKT scaling form
(unfortunately, due to restrictions in the accessible system
sizes, we were not able to explicitly follow this quantity to
even lower temperatures than those shown in Fig. 8). The inset
of Fig. 8 provides the same data on a logarithmic scale in
order to more explicitly demonstrate the approach to a linear

scaling of ln(a0/ξ
EP
xy ) with 1/

√
T − T EP

BKT, cf. Eq. (10), upon

approaching T EP
BKT. Based on our large-scale QMC simula-

tions, we are thus able to access the correlation length scales

FIG. 8. Inverse correlation length a0/ξ
EP
xy of the easy-plane

model HEP for Dz = 0.01J as a function of temperature in the vicinity
of the BKT transition. The solid black line is a fit of the exponential
BKT scaling form to the lowest five data points. The inset shows the
same data on a logarithmic scale as a function of 1/

√
T − T EP

BKT.
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FIG. 9. Order parameter estimator mx as a function of temper-
ature T for Dz = 0.01J , Dx = 0.1Dz for different system sizes L
near the antiferromagnetic ordering transition. The inset shows a
finite-size scaling plot to estimate TN, based on the values β = 1/8
and ν = 1 for the 2D Ising universality class [33].

that are required in order to observe the onset of BKT scaling
of the in-plane correlation length upon approaching the BKT
transition of HEP, even for such a weak value of Dz = 0.01J
as relevant for the compound BaNi2V2O8 [12,14].

In the next section we will examine to what extent this
accessibility of the characteristic correlation length scaling
near a BKT transition is affected by the additional presence
of a finite in-plane easy-axis anisotropy Dx > 0 in the full
Hamiltonian H .

IV. HIERARCHICAL ANISOTROPIES

After having established the BKT transition in the easy-
plane limit, as well as the associated correlation length
scaling, we now consider the hierarchical model H with finite
values of both anisotropies. Since a finite value of Dx > 0
breaks the O(2) symmetry from the easy-plane limit HEP down
to a residual Z2 symmetry in the spin-X direction, the hierar-
chical model H exhibits a low-T thermal Ising transition to
a low-temperature antiferromagnetically ordered state, with a
finite value of the staggered magnetization in the spin-X direc-
tion. In the following we first focus on the case of Dx = 0.1Dz,
where Dz = 0.01J as in the previous section. For this value of
Dx we are able to examine the thermal phase transition in more
detail than for even lower values of Dx (due to the increasingly
larger system sizes that are required to observe the asymptotic
critical scaling at even lower values of Dx). Later, we also turn
to values of Dx/Dz = 0.01–0.05, which are more relevant in
view of the compound BaNi2V2O8 [12,14].

In the QMC simulations we can quantify the emergence of
the low-temperature magnetic state in terms of the estimator

mx =
√

1

2L2
Sx(0) (13)

for the absolute value of the staggered magnetization. Figure 9
shows the temperature dependence of mx for various linear
system sizes L, for Dz = 0.01J and Dx = 0.1Dz. The temper-
ature range in Fig. 9 focuses on the transition region into the
low-T ordered phase, which is seen to emerge in the thermo-

FIG. 10. Binder cumulant U as a function of temperature T
for Dz = 0.01J , Dx = 0.1Dz for different system sizes L near the
antiferromagnetic ordering transition. Close to the crossing points
polynomials of degree 3 are used to interpolate the data (solid lines).
Inset (a) shows the temperature T× of the crossing points between
the fitting polynomials of linear system sizes L and 2L as functions
of the inverse system size 1/L, extrapolated to the thermodynamic
limit using a linear fit (solid line). Inset (b) shows the value of the
Binder cumulant U× at the crossing points as a function of 1/L. The
critical value Uc of the Binder cumulant for an Ising transition on the
triangular lattice is denoted by the dashed line.

dynamic limit below a Néel temperature of TN ≈ 0.53J . As
the antiferromagnetic order breaks the residual Z2 symmetry
of H , the thermal phase transition at TN is expected to belong
to the universality class of the 2D Ising model. Using the
finite-size scaling mx ∝ L−β/ν at criticality, with the exactly
known values β = 1/8 and ν = 1 for the critical exponents
in the 2D Ising universality class [33], we extract TN/J =
0.533(1), based on an appropriate scaling plot as shown in
the inset of Fig. 9.

In order to obtain a more accurate estimate for TN and to
confirm the anticipated Ising model universality class of the
phase transition at TN, we analyze the Binder cumulant [34,35]

U = 1 − 1

3

〈
m4

x

〉
〈
m2

x

〉2 , (14)

which is shown in Fig. 10 for different system sizes in the
vicinity of TN. Using a crossing-point analysis of the values of
U for system sizes L and 2L, we can obtain an estimate for the
ordering temperature: An extrapolation of the temperatures T×
of these crossing points to the thermodynamic limit [cf. inset
(a) of Fig. 10], gives TN/J = 0.5325(1). The critical value of
the Binder cumulant for the Ising model on triangular lattices
with rhombic shapes has previously been determined to Uc =
0.61182 . . . [36,37]. Given the underlying triangular structure
of the honeycomb lattice, we expect the critical Binder ratio to
agree with this value. We indeed find the data for the Binder
cumulants at the crossing points U× to approach this value
in the thermodynamic limit [cf. inset (b) of Fig. 10]. This is
in accord with the expected universality class of the phase
transition at TN. We note that for a controlled extrapolation to
the thermodynamic limit we require rather large system sizes,
e.g., the crossing points in the Binder ratio in Fig. 10 exhibit
significant drifts even for values of L of several hundreds.
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FIG. 11. Correlation lengths ξx , ξy, and ξz as functions of T for
Dz = 0.01J , Dx = 0.1Dz. The dashed line indicates the Néel temper-
ature TN.

Most importantly, we can confirm from this analysis that the
phase transition at TN belongs to the Ising universality class
and thus the BKT transition, which takes place for Dx = 0, is
replaced by a true ordering transition in the full hierarchical
model at finite Dx.

After having established the thermal phase diagram of the
hierarchical model, we now turn to analyze the behavior of the
correlation lengths in this system. For this purpose we deter-
mined the correlation lengths ξx, ξy, and ξz, in all three spin
directions, using the approach from Sec. II. Their tempera-
ture dependence, after an extrapolation to the thermodynamic
limit, is shown in Fig. 11. While for large temperatures the
three correlation lengths are very similar, as expected from
the O(3) symmetry of the leading Heisenberg exchange term
in H , they exhibit noticeable different behavior below about
T ≈ 0.75J . In particular, both in-plane correlation lengths ξx

and ξy exhibit an enhanced further increase, whereas this is
less pronounced for ξz. Similarly to the easy-plane case in
Sec. III, ξz instead exhibits only a rather broad maximum at
about T ≈ 0.55J , i.e., slightly above TN, before its decrease in
the ordered phase. We observe that ξy still follows the increase
of ξx down to T ≈ 0.65J . Within the temperature window
0.65 � T/J � 0.75, the correlations can thus be character-
ized as easy-plane-like (note that this does not imply BKT
scaling within this temperature regime). For even lower tem-
peratures, ξy however falls noticeably below ξx, and it reaches
a maximum at a similar temperature scale as ξz, but with a
substantially larger maximum value, before it also decreases
in the ordered phase in a more noticeable manner. Since ξx

is the only diverging correlation length in the hierarchical
system, we concentrate in the following on the behavior of this
dominant correlation length upon approaching the thermal
phase transition.

While a finite value of the anisotropy Dx > 0 strongly
affects the nature of the phase transition and the scaling of
the correlation length ξx in the low-temperature region, we
expect it to be only little affected by the weak value of Dx

for temperatures well above TN. Indeed, we find ξx to closely
follow ξEP

xy at large temperatures. Upon approaching TN how-
ever, ξx deviates increasingly from the easy-plane values ξEP

xy ,

FIG. 12. Inverse correlation length a0/ξx for Dz = 0.01J , Dx =
0.1Dz as a function of temperature T , and compared to the inverse
correlation length a0/ξ

EP
x of the easy-plane model (Dx = 0). The

solid line is a fit to the exponential BKT scaling form for ξEP
x , and

the dashed line is an extrapolation of the linear drop in a0/ξx near the
Ising transition.

as shown in Fig. 12, where we again consider the inverse
correlation lengths, since they conveniently approach zero at
the thermal phase transitions.

Upon lowering the temperature we observe a different be-
havior in the transverse correlation lengths for the two models:
while the data for the easy-plane model approaches the BKT
scaling form (indicated by the solid line in Fig. 12), the hi-
erarchical model shows clear deviations from this behavior.
Instead, we can identify (cf. the inset) the onset of a linear
decrease of a0/ξx, which results from the emergence of the
algebraic scaling near the Néel temperature, ξx ∝ (T − TN)−ν

of the 2D Ising model universality, i.e., ν = 1. Indeed, the
linear extrapolation of the linear drop in a0/ξx, shown in the
inset of Fig. 12, yields an upper bound for TN that is only
slightly larger than the previously determined value of TN,
where a0/ξx vanishes.

We thus find that for the value of Dx = 0.1Dz considered
so far, the system does not show an extended crossover region
separating the anisotropic high-T region from the low-T al-
gebraic scaling of ξx due to the onset of the Ising criticality.
This situation is expected to change for even smaller value of
Dx, since this weakens the effects of the in-plane anisotropy.
More quantitatively, in Fig. 13 we compare the behavior of
the correlation length ξx for varying values of Dx, as obtained
from QMC simulations. We indeed find that (i) for the lower
two values of Dx, the data follows more closely the behavior
of the easy-plane model towards lower temperatures, and (ii)
for these lower values of Dx, we can identify an intermediate
temperature regime in which the correlation length growth for
the hierarchical model follows the BKT scaling prior to the
onset of the asymptotic Ising scaling. More quantitatively, one
can introduce an effective BKT transition temperature T ∗

BKT
(denoted TBKT in Ref. [14]), such that the intermediate growth
of ξx can be fitted to the scaling in Eq. (9) (with T XY

BKT replaced
by T ∗

BKT), prior to the onset of the extrapolated characteristic
linear Ising-model scaling of a0/ξx near the ordering transi-
tion. For both values of Dx, the extracted values of T ∗

BKT are
smaller than the estimated values of TN, in accord with the
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FIG. 13. Inverse correlation length a0/ξx for Dz = 0.01J and
different values of Dx as functions of temperature T , and compared
to the inverse correlation length a0/ξ

EP
x of the easy-plane model with

Dx = 0. Solid black lines are fits to the exponential BKT scaling
form, and dashed lines extrapolations of the linear drop in a0/ξx near
the Ising transition.

interpretation that the BKT transition in the easy-plane limit
is preempted by the onset of Néel order, due to the finite value
of Dx in the full Hamiltonian H . Accordingly, upon lowering
Dx, the value of T ∗

BKT also approaches closer to the true BKT
transition temperature T EP

BKT of the easy-plane limit.
Finally, we consider the estimation of the Néel temperature

for the lower values of Dx. As we already mentioned, it is
not feasible to accurately determine TN for these lower values
of Dx based on the analysis of the Binder cumulant that we
performed for Dx/Dz = 0.1, since inaccessibly large system
sizes would be required for such an approach. One could then
try to estimate TN from the linear extrapolations shown in
Fig. 13. However, these extrapolations provide only an upper
bound on TN, similar to what we observed already for the case
of Dx/Dz = 0.1 in Fig 12. In fact, we expect that even lower
temperatures (and therefore also larger system sizes due to the
further increasing correlation length) are necessary in order to
reach the asymptotic Ising scaling regime for ξx and to reliably
extract TN from the extrapolation of the correlation length
data for these low values of Dx. In view of this limitation,
it would certainly be interesting to quantify the actual Dx

dependence of TN based on other, analytical treatments such
as renormalization group calculations.

V. CONCLUSIONS

We examined the thermal properties of anisotropic spin-1
Heisenberg antiferromagnets on the honeycomb lattice, with
a focus on the behavior of the correlation length near the
thermal phase transition. For this purpose we first considered
both the basic XY model and the pure single-ion anisotropic
easy-plane model. For both systems we determined the value
of the BKT transition temperature and also explored its Dz de-
pendence for the easy-plane case. Furthermore, we confirmed
that the correlation-length growth in the easy-plane case ap-
proaches the BKT scaling form upon approaching the BKT
transition temperature. For the XY model the BKT scaling

is even observed up to temperatures at which the correlation
length becomes of the order of the lattice constant.

In addition, we considered the effects of a weak addi-
tional in-plane easy-axis anisotropy, which breaks the O(2)
symmetry of the pure easy-plane model down to a residual
Z2 symmetry. This provides us with a basic quantum spin
model for examining the situation in the Ni2+ based com-
pound BaNi2V2O8. We were able to explicitly demonstrate
the onset of Ising criticality for such a hierarchical model with
two different single-ion anisotropies. However, we also found
that for sufficiently weak values of the easy-axis anisotropy, as
reported for BaNi2V2O8 [12], one can still identify a narrow
temperature regime above the Néel ordering temperature, in
which the critical correlation length follows the characteristic
BKT scaling form in terms of an effective BKT transition
temperature T ∗

BKT, which lies between the Néel ordering tem-
perature and the BKT transition temperature of the easy-plane
limit.

Returning to the case of BaNi2V2O8, for which an ex-
tended BKT scaling regime was reported recently in the
correlation length [14], our results confirm that the charac-
teristic BKT scaling of the correlation length can be identified
in the hierarchical model of the magnetism in this compound
on length scales of the order of a hundred lattice constants. It
would of course be important to more accurately quantify the
width of this intermediate BKT scaling regime in terms of the
hierarchical anisotropies. In addition, it would be interesting
to take the discrete lattice symmetries of BaNi2V2O8 into
account in the microscopic modeling [12], replacing thereby
the residual Z2 symmetry of H by a Z6 symmetry [14], which
is expected to further stabilize the BKT transition and its
corresponding scaling regime [15].
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APPENDIX A: STOCHASTIC SERIES EXPANSION

The stochastic series expansion QMC method with di-
rected loop updates [17–19,38] offers an unbiased approach
to study sign-free quantum spin systems. In the following we
comment on some technical aspects that are relevant for the
SSE simulations of the specific models that we considered
here. For a more general and detailed introduction, cf., e.g.,
Ref. [19].

The starting point of the SSE QMC method is a high
temperature expansion of the partition function

Z = Tr(e−βH ) =
∑

α

∞∑
n=0

βn

n!
〈α| (−H )n |α〉 , (A1)

where {|α〉} is a orthonormal basis of the Hilbert space of
H , called the computational basis. Here we use the standard
local product Sz basis, i.e., |α〉 = |Sz

1, Sz
2, . . . , Sz

N 〉. To evaluate
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the matrix elements 〈α| (−H )n |α〉, the Hamiltonian H is de-
composed as H = −∑

b,t Hb,t into a sum of bond operators
Hb,t , specified by a bond index b, and the operator type t .
These bond operators must be nonbranching, i.e., the action
of Hb,t on a given basis state |α〉 is proportional to another
basis state |α′〉. Introducing a sequence of bond operators Sn =
{[b1, t1], . . . , [bn, tn]} that contributes to the partition function,
we can rewrite Z as

Z =
∑

α

∞∑
n=0

∑
{Sn}

βn

n!
〈α|

n∏
i=1

(Hbi,ti ) |α〉 , (A2)

where the expansion order n corresponds to the number of
operators in Sn, i.e., its length. In practice, the expansion order
is fixed to some cut-off L that is set larger than the maximally
sampled expansion order. In this fixed length representation
the operator string SL is padded with unity operators, such that
n corresponds to the number of nonunity operators in SL. The
expansion order n, the state |α〉, as well as the operators in the
string SL are then sampled during the Monte Carlo updating
procedures.

In the diagonal update step operators that are diagonal in
the computational basis are inserted or removed from SL. The
second update step is the directed-loop update, which is a
global update that proceeds via locally constructing a cluster
of operators in SL, viewed as list of vertices along with two
incoming and outgoing legs. The latter carry the local spin
state of the two sites that belong to the bond b of the bond
operator. If the matrix elements of the diagonal operators are
much larger than those of the off-diagonal operators, these
local steps during the (global) directed-loop update each have
very low acceptance probabilities. This can cause the updating
dynamics to freeze and may lead to ergodicity problems of the
Monte Carlo update.

After these general remarks, we consider the hierarchical
Hamiltonian H , i.e.,

H = J
∑
〈i, j〉

Si · S j + Dz

∑
i

(
Sz

i

)2 − Dx

∑
i

(
Sx

i

)2
, (A3)

and we first examine the decomposition into bond operators.
In the following we consider a bond b connecting the two sites
i and j on the honeycomb lattice. The decomposition leads
to three types of bond operators Hb,t , t = 0, 1, 2, which are
classified by the action on the spins connected by this bond:
(i) a bond operator that is diagonal in the computational basis,

Hb,0 =C − JSz
i Sz

j −
∑

k∈{i, j}

(
Dz

z

(
Sz

k

)2 − Dx

4z
(S+

k S−
k + S−

k S+
k )

)
,

(A4)

where an appropriate constant C can be added in order to
ensure that all matrix elements are positive, (ii) a first off-
diagonal part due to the Heisenberg exchange,

Hb,1 = −J

2
(S+

i S−
j + S−

i S+
j ), (A5)

as well as (iii) a second off-diagonal part due to the easy-axis
anisotropy Dx,

Hb,2 = Dx

4z

∑
k∈{i, j}

(S+
k S+

k + S−
k S−

k ). (A6)

Here z = 3 is the coordination number on the honeycomb
lattice. The full Hamiltonian is given by the sum H = NbC −∑

b,t Hb,t over these bond operators (Nb denotes the number of
bonds on the finite lattice). On a bipartite lattice, such as the
honeycomb lattice considered here, all finite contributions to
the partition function in Eq. (A2) have positive weights, and
can thus be sampled without a sign problem.

Several observations are in order: (i) For finite values of
Dx, the presence of the bond operator Hb,2 leads to the fol-
lowing modification from the standard directed loop update:
the head of the moving operator, which is assigned a local
S+ or S− operator, is now allowed to switch-and-revert [19]
to the other site of a local vertex without being inverted. (ii)
The easy-axis anisotropy Dx contributes to both the diagonal
and off-diagonal operators, whereas the easy-plane anisotropy
Dz contributes only to diagonal operators. In the limit of
large |Dz|, this leads to sampling problems, which result in
larger statistical errors. We observed that these are reduced,
if the larger of the two anisotropies aligns in the spin-X di-
rection. For this purpose, one can perform a rotation of the
Hamiltonian in the spin plane about the spin-Y axis, without
introducing a QMC sign problem due to the bipartiteness of
of the honeycomb lattice. (iii) Some observables, in particular
the Binder ratio U , are more readily accessible after per-
forming such a rotation of the Hamiltonian about the spin-Y
axis. Indeed, the second and forth moments of the the order
parameter are then diagonal observables in the computational
basis. For our simulations, we took those observations into
account in order to optimize the computational efforts.

APPENDIX B: QUANTUM PHASE TRANSITION
IN THE PURE EASY-PLANE MODEL

In this Appendix we examine the high-Dz continuous quan-
tum phase transition of the spin-1 easy-plane Hamiltonian

HEP = J
∑
〈i, j〉

Si · S j + Dz

∑
i

(
Sz

i

)2
(B1)

in more detail. In addition to breaking the SO(3) symmetry
of the Heisenberg model, finite values of Dz > 0 suppress the
local spin states Sz

i = ±1, whereas the local state Sz
i = 0 is

preferred by finite Dz > 0. In the large-Dz limit, the ground
state is given by the direct product state |0〉 = ∏

i |Sz
i = 0〉,

with Sz
i = 0 on each lattice site i. We expect a quantum phase

transition to take place at a finite value of Dz > 0, beyond
which the XY-antiferromagnetic ground state gets replaced
by a nonmagnetic state that connects to this large-Dz limit
product state. To gain insight into this transition, we can
employ a simple perturbative argument in the limit J/Dz � 1:
The energy spectrum of the unperturbed Hamiltonian H (0) =
Dz

∑
i(S

z
i )2 in this limit is described by the number of lo-

cal Sz
i = ±1 states, which we denote by N±. It is therefore

given by the discrete energies E (0)
N± = DzN±, which are well

separated from each other. The direct product state |0〉 is the
ground state of H (0), with E (0)

0 = 0. The lowest excited states
belong to the N± = 1 sector, with E (0)

1 = Dz. In contrast to
the ground state |0〉, this energy level is thus highly degen-
erate. The Heisenberg exchange interaction allows a local
Sz

i = ±1 excitation atop the state |0〉 to hop on the honeycomb
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lattice. This leads to an effective tight-binding kinetic energy
contribution, with a hopping amplitude that is equal to J
on the honeycomb lattice. This results into a J-dependent
change of the lowest excitation energy in the N± = 1 sector
to E (0)

1 + E (1)
1 = Dz − 3J on the threefold coordinated honey-

comb lattice within this first-order perturbation theory.
The direct product state |0〉 in the N± = 0 sector instead

does not change within first-order perturbation theory. Upon
comparing the energies from the two sectors, we thus ex-
pect from this lowest-order perturbative calculation a critical
value Dc

z of Dz, where a transition takes place out of the
large-Dz ground state |0〉. More specifically, we obtain from
this analysis a first-order estimate for the critical easy-plane
anisotropy of Dc

z = 3J . A more quantitative computation
needs to consider also higher-order terms and excited states
in the perturbative expansion, which result in a dressing of
the ground state |0〉 for finite values of J/Dz. We furthermore
expect those contributions to replace the level-crossing transi-
tion from the first-order approach by a continuous quantum
phase transition in the thermodynamic limit. Indeed, from
symmetry considerations, we expect a continuous quantum
phase transition to separate the two regimes, belonging to the
three-dimensional O(2) universality class, based on the global
O(2) symmetry of the easy-plane Hamiltonian in d = 2 spatial
dimensions. In addition, the dynamical critical exponent is
then equal to z = 1. In order to accurately locate the quantum
phase transition, we turn to QMC simulations. More specif-
ically, we consider the spin stiffness ρS , which scales at the
quantum critical point as [26,39–41]

ρS ∝ L2−d−z, (B2)

in order to accurately calculate Dc
z . Based on z = 1, we mea-

sured ρS at an inverse temperature of β = 2L for different
linear system sizes up to L = 96 and for different easy-plane
anisotropies Dz. The numerical results for ρS are shown in
Fig. 14. The value of Dc

z/J = 3.83805(5) is then obtained
upon extrapolating crossing points in ρS from system sizes L
and 2L to the thermodynamic limit, as indicated by the vertical
line in Fig. 14.

The actual value of Dc
z is larger that the above first-order

perturbative estimate, which however already provides the
right order of magnitude. Also included in Fig. 14 (in the
inset) are QMC results for the mean occupation density n0 of
the local Sz

i = 0 states. This quantity increases from the exact
SU(2)-symmetric value of 1/3 for Dz = 0 to the limiting value
of 1 in the large-Dz limit. Furthermore, it evolves smoothly
across the quantum phase transition (as befits a continuous
transition), merely exhibiting a mild kink at the quantum
critical point.

Near the quantum critical point at Dc
z , the BKT transition

temperature is expected to scale as

T EP
BKT ∝ (

D − Dc
z

)νz
, (B3)

where ν = 0.67155(27) for the 3D XY model [42]. As shown
in Fig. 15, our numerical results for T EP

BKT are in accord with
an approach to this scaling close to Dc

z .

FIG. 14. Spin stiffness ρS multiplied by L at β = 2L as a function
of Dz of the spin-1 easy-plane model HEP on the honeycomb lattice
of different linear system size L. Polynomials of degree 3 are used to
interpolate the data (solid lines). The critical value Dc

z , obtained by
extrapolating the crossing points of the fitting polynomials in ρSL for
system sizes L and 2L, is denoted by the (dashed) vertical line. The
inset shows the mean occupation density n0 of the local Sz

i = 0 states
as a function of Dz (for L = 48, β = 2L). The vertical line denotes
Dc

z , while the horizontal lines indicates the occupation density of the
spin-1 Heisenberg model.

APPENDIX C: PURE EASY-AXIS MODEL

In this Appendix we examine the pure easy-axis regime
(Dz = 0) of the Hamiltonian H . Moreover, we also introduce
an exchange anisotropy in the form of the additional parame-
ter λ, such that we consider here the Hamiltonian

HEA = J
∑
〈i, j〉

Sx
i Sx

j + λ
(
Sy

i Sy
j + Sz

i Sz
j

) − Dx

∑
i

(
Sx

i

)2
, (C1)

which for λ = 1 recovers the original Heisenberg interaction
of H , while in the limit λ = 0 a classical spin model is ob-
tained. This classical limit of our spin-1 model is the well
known Blume-Capel model [43,44]. Both models are usually
formulated in terms of the spin-Z direction as the easy axis

FIG. 15. BKT transition temperature of the spin-1 easy-plane
model HEP on the honeycomb lattice in the vicinity of the quantum
critical point in a log-log plot, compared to the scaling prediction in
Eq. (B3) near Dc

z , indicated by the slope of the dashed line.
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FIG. 16. Néel temperature TN as a function of the easy-axis
anisotropy Dx in HEA for different values of λ. The dashed lines de-
note results from second-order Brillouin-Wigner perturbation theory
in the large Dx limit.

instead of the spin-X direction, which we use here in order to
remain consistent with our convention in the main part of the
paper.

As in the full hierarchical model H , a finite value of Dx > 0
leads to a thermal phase transition into a low-T phase with
antiferromagnetic order in the spin-X direction. We can obtain
the corresponding Néel temperature TN from QMC simula-
tions based on the Binder cumulant analysis as discussed
in Sec. IV (for λ = 0, we used the approach of Ref. [45]
to simulate the Blume-Capel model). The results for TN for
different values of λ are summarized in Fig. 16.

Let us first consider the classical (Blume-Capel) limit
λ = 0. Here, for large values of Dx, the Néel temperature
approaches the value of the two-dimensional Ising model (on
the honeycomb lattice), which is known exactly and equal to
T Ising

N /J = 1.518 . . . [46]. Indeed, a large value of Dx sup-
presses the local spin states Sx

i = 0 (in the spin-X basis),
whereas the local spin states Sx

i = ±1 are energetically fa-
vorable. As a result, for λ = 0, due to the Sx

i Sx
j term in the

exchange coupling, we (exactly) obtain an Ising model in the
limit Dx → ∞.

Turning now to the case of nonzero λ > 0, we find that
again the Néel temperature tends towards the Ising model
value for large Dx. However, we observe in this case a non-
monotonous behavior in the Dx dependence of TN, as seen in
the zoom of Fig. 16. In particular, we find that for finite values
of λ, the Néel temperature approaches T Ising

N from above, in
contrast to the classical limit (λ = 0), in which TN increases
monotonously and approaches T Ising

N from below.
To gain analytical insight into this behavior, we inves-

tigated the large-Dx region using second-order Brillouin-
Wigner perturbation theory to derive an effective Hamiltonian
in the large-Dx regime. We find that, up to second order
in J/Dx, HEA can be described by a spin-1/2 XXZ model,
given by

H eff
EA = J

∑
〈i, j〉

−λeff
(
Sy

i Sy
j + Sz

i Sz
j

) + 
Sx
i Sx

j , (C2)

where

λeff = λ2

2

J

Dx
, 
 =

(
4 + λ2

2

J

Dx

)
. (C3)

The derivation of this effective Hamiltonian can be found in
Appendix D.

In terms of the parameters of H eff
EA, the large-Dx regime cor-

responds to the limit 
 � λeff , in which the Néel temperature
of the spin-1/2 XXZ model approaches 
T Ising

N /4 (cf. also
Ref. [47] for a square lattice geometry). From the expression
for 
 in Eq. (C3), we thus indeed find that for finite λ > 0 in
the large-Dx regime, the Néel temperature

TN ≈
(

1 + λ2

8

J

Dx

)
T Ising

N (C4)

approaches T Ising
N from above, as observed also in the QMC

data. A quantitative comparison between the QMC data and
the perturbation theory result is included in Fig. 16. We
find that the second-order perturbation theory fits well to the
trend seen in the QMC data for increasingly large values of
Dx. However, this comparison also reveals that higher-order
contributions become important at lower values of Dx, as
the crossover to decreasing Néel temperatures at smaller Dx

cannot be captured in this order of perturbation theory.

APPENDIX D: BRILLOUIN-WIGNER PERTURBATION
THEORY

Here we detail the Brillouin-Wigner perturbation theory
[48–50] that we used to derive an effective Hamiltonian in the
Ising limit J � Dx of the easy-axis Hamiltonian HEA. In this
Appendix we work in the Sz basis, and therefore we first rotate
the Hamiltonian such that the easy-axis anisotropy aligns in
the spin-Z direction. Expressing the rotated Hamiltonian in
units of the easy-axis anisotropy Dx, we obtain

(D1)
The energy spectrum of the unperturbed part H (0) is given by
the number of |0〉 states N0 as E (0) = −(N − N0). Therefore,
the subspaces of the Hilbert space with different number of
|0〉 states N0 are well separated compared to J/Dx � 1. In the
Ising limit J/Dx → 0, the lowest energy subspace has N0 = 0.
We thus divide the Hilbert space into the subspace with N0 =
0 (subspace 1) and N0 � 1 (subspace 2). The Schrödinger
equation in this notation is given by(

H (0)
11 + V11 V12

V21 H (0)
22 + V22

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
, (D2)

where Hii = H (0)
ii + Vii describe the Hamiltonians in subspace

i and V12 and V21 are perturbations that couple the subspaces
1 and 2. This gives the two equations

H11ψ1 + V12ψ2 = E ψ1, (D3)

V21ψ1 + H22ψ2 = Eψ2. (D4)
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To obtain an effective theory in subspace 1 we can insert the
second equation in to the first and get

H eff
11 = H (0)

11 + V11 + V12
1

E − H (0)
22 − V22

V21. (D5)

The energy dependence of the Hamiltonian H eff
11 can be elim-

inated by expanding the energy E = ∑∞
k=0 E (k) with E (k) ∝

O[(J/Dx )k]. Using the identity

1

A − B
=

∞∑
k=0

(
1

A
B

)k 1

A
, (D6)

with A = E (0) − H (0)
22 and B = V22 − ∑∞

k=1 E (k) then yields
the general form

H eff
11 = H (0)

11 + V11

+
∞∑

l=0

V12

[
1

E (0) − H (0)
22

(
V22 −

∞∑
k=1

E (k)

)]l

× 1

E (0) − H (0)
22

V21. (D7)

Therefore, the effective Hamiltonian up to second order is
given by

H eff
11 = H (0)

11 + V11 + V12
1

E (0) − H (0)
22

V21 + O

[(
J

Dx

)3]
.

(D8)
The first-order correction V11 is given by

V11 = J

Dx

∑
〈i, j〉

P1
(
Sz

i Sz
j

)
P1, (D9)

where P1 is a projector onto the subspace 1. This can be
expressed using classical Ising spins σi = ±1, such that V11 =
(J/Dx )

∑
〈i, j〉 σiσ j . The off-diagonal part of the perturbation

V12, which couples the subspaces 1 and 2, is given by

V21 =
∑
〈i, j〉

P2
J

Dx

λ

2
(S+

i S−
j + S−

i S+
j )P1, (D10)

and V12 analogously with just the order of the projectors
changed. This yields for the second-order correction

V12
1

E (0) − H (0)
22

V21

= P1

∑
〈m,n〉

∑
〈i, j〉

(
J

Dx

)2
λ2

4

1

−N − ( − ∑
k Sz

kSz
k

)
× (S+

m S−
n + S−

m S+
n )(S+

i S−
j + S−

i S+
j )P1. (D11)

Each virtual bond state that is created in subspace 2 has to
be acted on again to get back to subspace 1, thus yielding
〈m, n〉 = 〈i, j〉. For each bond state |±1,∓1〉, the action of
the operators creates the virtual state |0, 0〉 and act on it again,
so we obtain the processes

(D12)

If the bond states in subspace 1 are parallel |±1,±1〉 the
action of the operators is 0. Therefore, the virtual state differs
for each bond by exactly two |0〉 states, so that

1

E (0) − H (0)
22

= 1

−N − [−(N − 2)]
= −1

2
. (D13)

We thus obtain for the second-order correction

H (2)
11 = −λ2

8

(
J

Dx

)2

P1(Vdiag + Voffdiag)P1, (D14)

where we introduced the off-diagonal part

Voff-diag =
∑
〈i, j〉

(S+
i )2(S−

j )2 + (S−
i )2(S+

j )2, (D15)

and the diagonal part

Vdiag =
∑
〈i, j〉

S−
i S+

i S+
j S−

j + S+
i S−

i S−
j S+

j . (D16)

We now consider Vdiag and Voff-diag in more detail. Both opera-
tors can be expressed in terms of spin-1/2 degrees of freedom.
First, we examine Vdiag, which can be expressed as

Vdiag = 2
∑
〈i, j〉

δσi,σ j − σiσ j = 2
∑
〈i, j〉

1

2
(σiσ j + 1) − σiσ j

= Nb − 4
∑
〈i, j〉

Sz
i Sz

j, (D17)

where σi = ±1 are as previously introduced classical Ising
spins, Sz

i are spin-1/2 variables, and Nb is the number of bonds
on the lattice. Turning our attention to the off-diagonal part,
we can express it by spin-1/2 operators as follows:

Voff-diag = 2
∑
〈i, j〉

(S+
i S−

j + S−
i S+

j ). (D18)

Previously we saw that the first-order correction V11 is a
classical Ising model with coupling J/Dx. This can be ex-
pressed in terms of spin-1/2 variables as well, such that V11 =
(4J/Dx )

∑
〈i, j〉 Sz

i Sz
j .

Finally, taking into account the first- and second-order
corrections and expressing the Hamiltonian in its original
units, we obtain the effective spin-1/2 Hamiltonian in the
subspace 1,

H eff
11 = J

∑
〈i, j〉

−λeff

2
(S+

i S−
j + S−

i S+
j ) + 
Sz

i Sz
j, (D19)

where

λeff = λ2

2

J

Dx
, 
 =

(
4 + λ2

2

J

Dx

)
. (D20)

In the large Dx limit, the easy-axis Hamiltonian can therefore
be described by an effective spin-1/2 XXZ model, where in
the limit J/Dx → 0, irrespective of the value of λ, the Ising
model is obtained exactly.
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