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We numerically study the evolution of spectral correlations in the entanglement Hamiltonian (EH) of nonin-
teracting fermions in the Aubry-André-Harper (AAH) model. We analyze the time evolution of the EH spectrum
in a nonequilibrium setting by studying several quantities: spectral distribution, level statistics, entanglement
entropy, and spectral form factor (SFF) in the context of the delocalization-localization transition in the AAH
model. It is observed that the SFF of the entanglement spectrum in the delocalized phase and at the phase-
transition point evolves in three time intervals. We make a systematic study of the emergence of these three
timescales for various initial states and find that the number of time intervals remains 3 unless the Hamiltonian
is tuned in the localized phase or when the initial state is maximally entangled, when there is a featureless time
evolution. We find a broad direct correlation between the entanglement entropy and the length of the ramp of the
SFF. We also find that in the delocalized phase the spectral correlations are stronger in the center of the spectrum
and grow progressively weaker as more and more of the spectrum is considered.
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I. INTRODUCTION

The study of chaos in many-body quantum systems from
a dynamical viewpoint is of great current interest [1–11].
In the traditional approach, which has mainly focused on
short-range correlations in the spectrum, level statistics and
universal spectral properties through random matrix theory
(RMT) [12–14] have been popular objects of study. How-
ever other indicators of chaos, such as the out-of-time order
correlators (OTOC) [15–17] and the spectral form factor
(SFF) [18], are also of interest. For example, they have been
used to understand chaos in the Sachdev-Ye-Kitaev (SYK)
model which is important in the context of black hole physics
[19–22].

The spectral form factor is a useful measure for describing
spectral statistics in quantum systems. It is defined as the
Fourier transform of the correlation function between two
levels of the spectrum [23]:

g(τ ) =
〈∑

i, j

e−iτ (λi−λ j )

〉
. (1)

For a chaotic quantum system, the SFF of the spectrum ex-
hibits a “ramp” signaling the presence of universal spectral
correlations, whereas for an integrable system, the ramp is
absent. Since it deals with the long-range correlations in the
system, it presents an alternative picture from the known
measures of level statistics and hence it is being studied in a
variety of models such as Floquet systems [24–26], models
featuring many-body localization, etc. [27–29]. It has also
been discussed in detail in the context of various ensembles of
RMT, such as the Gaussian ensembles [30,31] or the Wishart

ensembles [23,30], and hence can serve as an indicator of
quantum chaos [12].

In systems where delocalization-localization phase tran-
sitions can be observed with a change in disorder strength,
entanglement entropy [32,33] often provides valuable in-
sights. In general, the entanglement entropy is observed to be
larger in the delocalized phase due to the presence of more
correlations than in the localized phase. Thus one can study
this quantity together with the spectral form factor to under-
stand the correlations of the spectrum better. One such model
which exhibits a delocalization-localization transition even in
one dimension is the Aubry-André-Harper model, which is
governed by a quasiperiodic disorder. All the single-particle
states of this system are either localized or delocalized de-
pending on the strength of the quasiperiodic disorder [34–36].

It has been seen recently that the dynamics of the spectral
form factor serves as a useful probe in understanding the
various stages of approach to thermalization in chaotic (non-
integrable) models [37] through the study of the correlations
in the spectrum of the entanglement Hamiltonian. It has been
noticed that there is a certain correspondence between the dy-
namics of the level repulsion, entanglement entropy [38–40],
and the development of the spectral form factor. With the aid
of a variety of quantities, including gap ratio and entanglement
entropy, Chang et al. [37] were able to identify three distinct
timescales which were observed in both the chaotic and MBL
phases. In the backdrop of such interesting findings in an
interacting model, it is of great interest to understand how
these different timescales play out within a noninteracting
model.

Here in this article we consider the AAH model in which
both delocalized and localized phases are possible depending
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on the strength of the disorder. It is a quadratic system with
the integrability weakly broken by the disorder. We study the
development of correlations in the entanglement Hamiltonian
spectrum of the AAH model through quench dynamics in its
different phases. Tracking the evolution of various quantities
such as the gap ratio, Renyi entropies, and spectral density
together with the SFF, we find the presence of three distinct
timescales in both the delocalized phase and at the critical
point, while is predictably flat in the localized phase. We also
compare the SFF with the evolution of the higher-order gap
ratios and find correspondence between both the measures.
From the spectrum-resolved study of the SFF, we find that the
correlations in the delocalized phase are dominant more at the
center of the spectrum. However, at the critical point the cor-
relations are uniformly spread out throughout the spectrum.
A systematic study of the dynamics starting from a variety of
initial states allows us to conclude that the length of the ramp
(in the units of τ ) in the SFF is strongly correlated with the
magnitude of the entanglement entropy.

The paper is organized as follows. In Sec. II, the model
Hamiltonian, spectral form factor, and the entanglement
Hamiltonian are briefly introduced. The nonequilibrium dy-
namics of the entanglement Hamiltonian is discussed in
Sec. III for various initial states: nonentangled and entangled.
This section comprises six subsections. In Secs. III A–III E the
nonequilibrium dynamics for a nonentangled initial product
state is studied by computing various quantities such as the
gap ratio, entanglement entropy, and spectral form factor.
Also, we look into the (sub)system-size dependences of these
quantities. In Sec. III F we consider entangled initial states and
study the dynamics of the corresponding EH spectrum. Then
we conclude in Sec. IV.

II. MODEL AND METHODS

A. Hamiltonian

We consider the AAH model given by the Hamiltonian
[34,35]:

H = −t
∑

i

(c†
i ci+1 + H.c.) +

∑
i

2λ cos(2π ib + θp)c†
i ci.

(2)
Here c†

i (ci ) is the creation (annihilation) operator on site i.
The first term describes the nearest-neighbor hopping along
the chain, where t is the hopping parameter, which we set
to unity. The second term describes the quasiperiodic on-site
energy, where the strength of the quasiperiodic potential is λ,
the quasiperiodicity parameter b is taken to be an irrational
number, and θp is an arbitrary global phase chosen randomly
from a uniform distribution in the range [0, 2π ]. The total
number of sites is N , and periodic boundary conditions are
assumed. As is well known [41], all the energy eigenstates
are delocalized when λ < 1, and all the energy eigenstates are
localized when λ > 1. λ = 1 is the critical point where all the
eigenstates are multifractal [42]. At λ = 1, the AAH model
in position space maps to itself in momentum space, which
makes the model self-dual [34,43]. This is observed whenever
the quasiperiodicity parameter is chosen to be an irrational
number. In this article, following convention, we set b to be
the golden mean (

√
5 − 1)/2.

B. Spectral form factor

The spectral form factor is used to understand the cor-
relations present in a spectrum. Given a spectrum of N
eigenvalues, we consider the eigenvalue density:

ν(λ) =
N∑

i=1

δ(λ − λi ). (3)

Defining the Fourier transform of the eigenvalue density as

Z (τ ) =
N∑

i=1

e−iτλi , (4)

the spectral form factor is conveniently expressed in terms of
Z (τ ) as

g(τ ) = 〈Z (τ )Z∗(τ )〉 =
〈

N∑
i, j=1

e−iτ (λi−λ j )

〉
, (5)

where the average is taken over an ensemble in order to
remove nonuniversal fluctuations in g(τ ) [and gc(τ )], since
it is not a self-averaging quantity [44,45]. In our work we
average our data over a set of values of the random phase θp,
as described in the previous section. The spectral form factor
exhibits a typical structure corresponding to universal spectral
correlations in the system. Starting at N2 at τ = 0 it starts to
decrease until it reaches a minimum, after which it shows a
strictly linear growth called the “ramp,” which is a signature
of the presence of long-range correlations in the system. The
curve then becomes constant at long times (at Heisenberg time
τH defined as 2π times the inverse of the mean level spacing),
reaching its “plateau” value [46]: limτ→∞ g(τ ) = N .

Another quantity of interest is the connected spectral form
factor (CSFF),

gc(τ ) = 〈Z (τ )Z∗(τ )〉 − 〈Z (τ )〉〈Z∗(τ )〉, (6)

which is obtained by deducting the disconnected part from
g(τ ). The disconnected part which is nonuniversal [23] is ac-
tive primarily in the smaller τ regime and leads to a reduction
in the size of the ramp seen in g(τ ). gc(τ ) explicitly removes
the nonuniversal disconnected part and exhibits a longer ramp
for the timescale that corresponds to energy differences that
lie in the universal regime.

C. Entanglement Hamiltonian and correlation matrix

We consider noninteracting spinless fermions at half-filling
in the AAH model. To calculate the entanglement Hamilto-
nian [47–49], one can divide the system into two contiguous
parts, one with NA number of sites and the other with NB =
N − NA sites where N is the total number of sites. Given the
density matrix ρ, the reduced density matrix (RDM) can be
calculated as ρA = TrB(ρ). Using the RDM, the von Neu-
mann entropy of the subsystem can be calculated as SA =
−Tr(ρA log ρA). But for a single Slater determinant many-
body state such as for free fermions, using Wick’s theorem
we can write

ρA = e−HA

Z
, (7)
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where HA = ∑NA
i j HA

i jc
†
i c j [47] is called the entanglement

Hamiltonian, and Z satisfies the condition Tr(ρA) = 1. The
correlation matrix for the chosen subsystem A is given as
Ci j = 〈c†

i c j〉, where i, j = 1, 2 . . . NA. The information held in
ρA of size 2NA × 2NA can be captured in terms of the correla-
tion matrix C of size NA × NA [48]. This subsystem correlation
matrix is related to the entanglement Hamiltonian as

HA = ln
1 − C

C
. (8)

Thus we can find the eigenvalues of the entanglement Hamil-
tonian from the eigenvalues of the correlation matrix. In the
present work, we will study the spectral form factor of the
entanglement Hamiltonian. While it is also meaningful to
study the spectral correlations of the RDM of the subsystem
[23,37], it is easier to consider the entanglement Hamiltonian
directly due to its intimate relationship with the RDM, see
Eq. (7).

III. NONEQUILIBRIUM DYNAMICS

Here we intend to understand the dynamical evolution of
the spectral correlations of the entanglement Hamiltonian in
different many-body phases of the AAH model. The dynamics
are studied in a nonequilibrium setting starting from the initial
product state |	0〉 = ∏N/2

i=1 c†
2i |0〉, where N is an even number.

The unitary time evolution of the state is represented as

|	(t )〉 = e−iHt |	0〉 . (9)

The time-dependent correlation matrix is then given by

Ci j (t ) = 〈	(t )| c†
i c j |	(t )〉 = 〈	0| c†

i (t )c j (t ) |	0〉 , (10)

where the time evolution of the operator ci(t ) is obtained
in the Heisenberg picture [48]. Thus the full time-dependent
correlation matrix in the Heisenberg picture is given as

C(t ) = eiHtC(0)e−iHt , (11)

where C(0) contains the initial correlations [50]. We then
obtain the correlation matrix and hence the time-dependent
entanglement Hamiltonian for the chosen subsystem using
Eq. (8). We stick to this nonentangled initial product state
except in Sec. III F, where we study the dynamics of ini-
tially entangled states. Our nonequilibrium setting is similar to
studying a global quench in the hopping model. Using Eq. (8),
one can find the time-dependent entanglement Hamiltonian,
whose eigenvalues are used to study the dynamics of a number
of useful quantities, such as the gap ratio, Renyi entropies, and
spectral form factor.

A. Gap ratio and Renyi entropy

The gap ratio [51] is defined as

rk = min(sk, sk+1)

max(sk, sk+1)
, (12)

where sk = ek − ek−1 and ek’s are the eigenvalues arranged
in ascending order. The mean gap ratio 〈r〉 is calculated by
averaging rk over the energy spectrum. In Fig. 1(a), 〈r〉 starts
from a Poisson-like value (≈0.386). It evolves with time in a
manner consistent with growing nearest-neighbor correlations

FIG. 1. Spectral properties of the EH in different phases under
time evolution. Here λ = 0.5, 1, 1.5 signify the delocalized phase,
phase-transition point, and the localized phase, respectively. Time
evolution of (a) nearest-neighbor spacing ratio 〈r〉, (b) zeroth-order
Renyi entropy S0, (c) von Neumann entropy S1, and (d) entanglement
bandwidth δE . Here the system size is N = 1920 and subsystem size
is NA = N/2. The average has been taken over 100 random values
of θp.

until it reaches the Gaussian unitary ensemble (GUE) value
(≈0.599 [51]). The dynamics of higher-order gap ratios in-
volving gaps between more than nearest energy levels is also
interesting and will be discussed later (see Sec. III D). The
time at which the first-order gap ratio hits its saturating value
is denoted by t1 and hence the first timescale is defined by
t < t1.

The αth-order time-dependent Renyi entropy in terms of
the eigenvalues λk’s of the subsystem correlation matrix C(t )
is given as [52]

Sα (t ) = 1

1 − α

NA∑
k=1

ln[(1 − λk (t ))α + (λk (t ))α], (13)

where α is the order of the Renyi entropy. The zeroth-order
Renyi entropy S0, by definition, determines the number of
nonzero eigenvalues or the rank of the RDM. The first-order
Renyi entropy, also called the von Neumann entropy, can be
defined as S1 = limα→1 Sα , which is given by

S1 = −
NA∑

k=1

[λk (t ) ln (λk (t )) + (1 − λk (t )) ln ((1 − λk (t ))].

(14)

The above expression can also be derived via the relation in
Eq. (8) [49]. For the initial product state as considered here,
Sα = 0 at t = 0, but Sα (t ) > 0 otherwise. It turns out that S0

also hits saturation along with the first-order gap ratio around
t1. We have observed that only when the correlation matrix is
obtained from a product state does S0 saturate at time t1. In all
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FIG. 2. Scaled gap ratio 〈r〉s(= η1〈r〉) and zeroth-order Renyi
entropy S0 saturating at time t1, while scaled entanglement bandwidth
(δE )s(= η2δE ) and von Neumann entropy S1 saturating at time t2. The
scaling factors are η1 = 1108.0 and η2 = 12.9533 in the delocalized
phase (λ = 0.5). The system size is N = 1920 and NA = N/2. The
average has been taken over 100 random values of θp.

other cases (see Sec. III F) S0 remains saturated for times t <

t1 also. We are able to identify a second timescale where the
first-order gap ratio [and S0 as shown in Fig. 1(b)] is saturated
whereas S1 keeps on increasing. At time t2, S1 also saturates
[see Fig. 1(c)], and thus the second timescale is defined by the
interval t1 < t < t2 [53]. We are also able to identify a third
timescale which is marked by t > t2. Another useful quantity
that can be constructed from the entanglement spectrum is the
entanglement bandwidth. It is defined as

δE = Emax − Emin, (15)

where Emax and Emin are the maximum and minimum eigen-
values of the entanglement Hamiltonian. We find that for
times beyond t > t2, it is not just S1 that saturates, but in
fact, the entire EH spectrum that saturates, and hence δE also
saturates as shown in Fig. 1(d). Thus the onset of saturation in
δE also determines the onset of the third timescale. Also, from
Fig. 2 it can be observed that on scaling the nearest-neighbor
gap ratio 〈r〉 [see Fig. 1(a)] by a factor η1, it can be compared
with the zeroth-order Renyi entropy S0 [see Fig. 1(b)] and
hence it becomes apparent that they both reach saturation at
time t1. Similarly, it can be observed that the entanglement
bandwidth δE can be scaled by a factor η2 and at t2 reaches
saturation together with the von Neumann entropy S1. Since
they both depend on the EH spectrum, they saturate as soon
as the spectrum saturates, i.e., at t2. This can be seen in both
the delocalized phase and at the critical point.

To understand the above observations better for different
phases, it is useful to study the probability distribution of
the eigenvalues of the entanglement Hamiltonian at different
instants of time [54]. The evolution of the spectral density
of EH is shown in Fig. 3 for different phases. Referring to
Eqs. (8) and (14), we observe that the near-zero eigenvalues
of the EH contribute maximally to the entanglement entropy,
whereas the eigenvalues with large magnitudes barely con-
tribute to it. As shown in Figs. 3(a) and 3(b), the initial state
corresponds to large eigenvalues of the EH, and thus the
entanglement entropy is also very low. As EH evolves with
time the eigenvalues become smaller, thus contributing more
to the entanglement entropy. However, Fig. 3(c) shows that in

FIG. 3. Time evolution of spectral density of EH (scaled with
subsystem size NA) in different phases. (a) λ = 0.5: delocalized
phase, (b) λ = 1: phase-transition point, and (c) λ = 1.5: localized
phase. Here the system size is N = 1920 and NA = N/2. The average
has been taken over 100 random values of θp.

the localized phase the distribution does not change from its
initial bimodal form with the peaks remaining at large values.
This implies almost no growth in entanglement entropy in the
localized phase [see Fig. 1(c)].

We notice that in the delocalized phase, during the first
timescale (t < t1) the spectral distribution carries the bimodal
peaks and at the end of this timescale the distribution attains
a single peak at about zero with the bimodal structure dis-
mantled. In the second timescale (t1 < t < t2), the single peak
continues to develop further and saturates on reaching the
third timescale. This is also observed from Fig. 2, where at
time t1, a sharp transition can be seen in the scaled entan-
glement bandwidth (δE )s, though it reaches saturation later
only at time t2. At the critical point λ = 1, qualitatively the
scenario remains the same as in the delocalized phase. How-
ever, one obtains bimodal peaks close to zero in the second
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FIG. 4. Time evolution of spectral form factor. Here plots (a), (b), and (c) show evolution of g(τ ) (SFF) and plots (d), (e), and (f) show
the evolution of connected spectral form factor gc(τ ) corresponding to λ = 0.5, 1, and 1.5, respectively. The system size is N = 1920 and
NA = N/2. The average has been taken over 500 random values of θp.

timescale in this case instead of a single peak at about zero
in the delocalized phase. In the localized phase, the spectrum
does not evolve with time and hence the distribution does
not change. This analysis of timescales as discussed here is
consistent with the analysis obtained from the other quantities
studied in Fig. 1.

B. Spectral form factor

Through the above analysis based on gap ratio, the spread
of the nearest-neighbor (NN) spectral correlations in the
entanglement spectrum becomes clear. However, we are in-
terested in understanding the global spread of correlations in
the spectrum. Hence the spectral form factor (SFF) defined in
Sec. II B becomes an appropriate measure for it. It is sensitive
not only to long-range correlations but also to the density
of states, unlike the gap ratio. Figures 4(a)–4(c) show the
evolution of the SFF, and Figs. 4(d)–4(f) show the evolution
of the CSFF of the EH in different phases.

Here we associate the time evolution of the features of
SFF with times t1 and t2 as discussed in the previous section.
The nearest-neighbor repulsion in the spectrum develops until
t < t1. However, as the spectral form factor also quantifies
longer correlations, it keeps developing between t1 < t < t2.
For time t > t2 the entanglement spectrum does not evolve
and consequently, the SFF also becomes time independent.

The time taken for the SFF to reach saturation in the
delocalized phase is less than that at the critical point [see
Figs. 4(a) and 4(b)]. The short-time growth of the entangle-
ment entropy is seen to be slower at the critical point [see
Fig. 1(c)] in comparison with the delocalized phase, because
the eigenstates at the critical point are barely extended in na-
ture. The length of the ramp (in units of τ ) is nearly the same

in both cases, which shows that the number of eigenvalues that
exhibits universal spectral correlations is also approximately
equal. Also, there are initial fluctuations seen at earlier val-
ues of τ in all the cases of g(τ ) which are absent in gc(τ ).
These are nonuniversal and depend on the spectral density
of the entanglement Hamiltonian of the AAH model. In the
localized phase, one can observe that irrespective of the time
of evolution, g(τ ) does not develop any ramplike structure.
For τ → ∞, it can be concluded from Eq. (5) that the only
terms which will survive are those where λi = λ j . Since the
subsystem size is N/2 here, g(τ ) = N/2. Also, as τ → ∞,
the disconnected part 〈Z (τ )〉〈Z∗(τ )〉 = 0 [see Eq. (6)], which
in turn implies that gc(τ ) = g(τ ) = N/2. The same can be
observed from Fig. 4. Hence the spectral form factor serves
as a probe to distinguish between the different phases of the
spectrum.

C. System- and subsystem-size dependence

Starting from the initial product state, the system-size
and subsystem-size dependences are studied here in different
phases. The system-size dependences on t1 and t2 in the de-
localized phase and at the phase-transition point are shown
in Figs. 5(a) and 5(b), respectively. We define t1 as the time
beyond which the (numerically determined) time derivative of
the NN gap ratio, i.e., d〈r〉

dt , remains consistently below 10−5.
Similarly, t2 is defined as the time beyond which the time
derivative of the entanglement entropy ( dS1

dt ) remains con-
sistently below 10−5. For a clean system (results not shown
here), we find that there is a systematic increase in the time t2
with increasing system sizes. A similar trend is also expected
in the case of disordered systems, which is unclear here from
Fig. 5 on account of the high cost of the numerical probe.
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FIG. 5. System-size dependence of times t1 and t2 for the initial
product state (a) λ = 0.5 and (b) λ = 1. In all cases NA = N/2, and
the average has been taken over a range of 100–30 random values of
θp (depending on system size).

However, we are guaranteed that the time t1 will not cross
time t2. This is due to the fact that the butterfly velocity vB

is generically larger than the entanglement velocity vE , and
hence the spectrum develops level repulsion before the von
Neumann entropy reaches its saturation value [53].

The system-size dependences of the gap ratio, zeroth-order
Renyi entropy, and entanglement entropy (EE) are also dis-
cussed here [see Figs. 6(a)–6(c)]. It can be seen from Fig. 6(c)
that the EE in the localized phase is independent of the system
size, and hence it exhibits an area-law-like behavior, i.e., S1

is constant, despite the state itself involving all the excited
eigenstates as well. Also, it can be observed that the zeroth-
and first-order Renyi entropy at short times shows a power-law
dependence on time t in the delocalized phase and at the
critical point, i.e., S ∝ tγ , where γ is some exponent which
is system-size independent [55]. The span of growth of en-
tanglement entropy is larger at the critical point with smaller
saturation values as compared to the delocalized phase. The
EH eigenvalues in the delocalized phase have smaller magni-
tude than those at the phase-transition point [see Figs. 3(a) and
3(b)]; therefore the EE tends to be larger in the delocalized
phase. It can also be observed that when entropy reaches its
saturation value it obeys volume law, i.e., both S0 and S1 at
saturation increase linearly with N [see insets of Figs. 6(b)
and 6(c)].

FIG. 7. SFF at time t = 106 corresponding to various system
sizes for (a) the delocalized phase λ = 0.5 and (b) at the critical point
λ = 1.0. Here subsystem size is NA = N/2 in all cases. Inset shows
the length of the ramp LR (in units of τ ) corresponding to various
system sizes. The length of the ramp here is determined numerically
by subtracting the Thouless time (local minimum of the CSFF) from
the plateau time, which is taken to be the τ at which gc(τ ) reaches
98% of its maximum value (i.e., NA). The average has been taken
over 500 random values of θp.

Since S0 signifies the number of nonzero eigenvalues of the
RDM of the subsystem ρm and eigenvalues of EH are related
to it as {Em} = {− log ρm}, it can be concluded that though
the number of nonzero eigenvalues of the RDM is the same in
both phases, their magnitudes are different as observed from
S1. In general, for any i > j, Si � S j [56]; in particular, S1 the
von Neumann entropy is a lower bound for S0, as observed
from Figs. 6(b) and 6(c).

We have seen that at long times, the system saturates to
a state whose properties depend on the phase in which the
Hamiltonian is tuned (see Fig. 1). Here we study the system-
size dependence of the SFF of the states attained at long times.
Figures 7(a) and 7(b) show the system-size dependence of the
SFF calculated from the states at time t = 106 for the delo-
calized phase and at the phase-transition point, respectively. It
can be observed, especially from the linear scale (see inset),
that the length of the ramp “LR” (in units of τ ) increases
as the system size becomes larger. This signifies that with
a change in the system size, the number of eigenvalues that
exhibit universal spectral correlations also increases, which
in turn leads to a longer ramp. Also, we have studied the

FIG. 6. System-size effects on (a) gap ratio, (b) zeroth-order Renyi entropy, and (c) von Neumann entropy for the different phases
corresponding to λ = 0.5, 1.0, 1.5. Here the power-law dependence is shown by fitting nonlinear maroon curves in (b) and (c) with the
expression Sλ

α (t ) = ctγ + d: S0.5
0 (t ) = 1.86t0.88 + 17.20, S1

0 (t ) = 6.57t0.47, S0.5
1 (t ) = t0.90, and S1

1 (t ) = 5.15t0.31 − 17.02. The insets in (b) and
(c) show dependence of saturated magnitude of S0 and S1 on system size. Here the subsystem size is NA = N/2 for all cases. The average has
been taken for over 100 random values of θp.
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FIG. 8. Time evolution of nth-order gap ratio of EH spectrum
for (a) λ = 0.5 and (b) λ = 1. The horizontal dot-dashed lines are
used to show time of saturation. Figures correspond to N = 1920
and NA = N/2. The average has been taken over 100 random values
of θp.

subsystem-size dependence on the length of the ramp, which
is not shown here. Our main observation from this study is
that for a given system size, as the subsystem size is increased
(even for sizes much smaller than N

2 ), the length of the ramp
tends to saturate, thus signaling a characteristic length of ramp
for a given system size.

D. Higher-order gap ratio

The nearest-neighbor level spacing ratio as defined in
Eq. (12) can be generalized to the nth-order gap ratio, which
examines the variations in the higher-order gaps of the spec-
trum. These higher-order gap ratios are focused on larger
spectral intervals and can be compared with the SFF, which
is also a probe of global correlations in the spectrum. The
nth-order gap ratio is defined as

r (n)
k = min

(
s(n)

k , s(n)
k+n

)
max

(
s(n)

k , s(n)
k+n

) , (16)

where s(n)
k = ek − ek−n. We study the evolution of this quan-

tity for the dynamics starting with the initial product state,
when the system is tuned in the delocalized phase and at the
critical point.

Figure 8 shows the time evolution of the higher-order gap
ratio for a number of different orders. In general, it can be
observed that as the order n increases, the time taken for the
gap ratio 〈r (n)〉 to saturate also increases. As discussed earlier
〈r (1)〉 saturates at time t1. In the delocalized phase, it can be
seen from Fig. 8(a) that the time taken for the gap ratio of
order n = 2 to saturate is around t = 103, at which it can be
observed [see Fig. 4(a)] that the SFF is still evolving. Tracking
the higher-order gap ratios and their saturation, we observe
that 〈r (14)〉 reaches saturation at t ≈ 30 000 (which corre-
sponds to time t2), at which point the SFF is also saturated
[see Fig. 4(a)]. All higher-order gap ratios beyond n = 14
saturate at time t2, which can also be seen from 〈r (n)〉 with n =
50 here. We conclude that the development of higher-order
correlations are encapsulated in the SFF. Similarly, at the
critical point, from Figs. 8(b) and 4(b), all 〈r (n)〉 with orders
higher than n = 14 saturate approximately at time t2 along
with the SFF. Thus there exists a correspondence between the

FIG. 9. SFF for subset of eigenvalues (arranged in ascending
order) at different time steps t of the EH spectrum for λ = 0.5,
N = 1920, and NA = N/2 over 100 realizations. Subset of eigen-
values (a) 1 − 120 (bottom 1/8th), (b) 121 − 360 [1/4th above (a)],
(c) 361 − 600 (central 1/4th), and (d) 601 − 840 [1/4th above (c)].

higher-order gap ratios and SFF, both of which are measures
of long-range spectral correlations.

E. Spectrum-resolved SFF

Here the spectrum of the EH is divided into subsets [23]
(with eigenvalues arranged in ascending order), and the time
evolution of the SFF corresponding to each subset has been
plotted in Fig. 9. This is used to understand the time evolu-
tion as well as the spread of the spectral correlations in the
eigenvalues present in a particular span of the spectrum.

In Fig. 9(a), the spectrum-resolved SFF considering the
bottom 1/8th of the eigenvalues of the EH spectrum is plotted.
Since the spectrum is symmetric about zero, the same behav-
ior can also be observed with the top 1/8th of the eigenvalues
of the spectrum. The ramp here is smaller as compared to
subsets of eigenvalues that lie at the center of the spectrum.
For example, we see a larger ramp in Fig. 9(b), where the SFF
is computed with 1/4th of the total number of eigenvalues
above the bottom set. We also observe an earlier dephasing in
Fig. 9(a) on account of the larger magnitude of the eigenvalues
involved. As one moves towards the center of the spectrum,
the ramp becomes longer and dephases later. At saturation, the
length of the ramp is longest for the middle of the spectrum as
shown in Fig. 9(c) (where the central 1/4th of the eigenvalues
is used to compute the SFF). Figure 9(d) shows the evolution
of the SFF considering the next 1/4th of the total number
of eigenvalues. Due to the symmetry of the eigenvalues on
either side of the central eigenvalue, the features of the SFF at
saturation in Figs. 9(b) and 9(d) are almost identical.

It can be concluded that in the delocalized phase, the
correlations are concentrated more at the center of the spec-
trum, and as one moves towards the edges, these correlations
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FIG. 10. Evolution of the spectral properties of the EH obtained from various initial correlation matrices: CE matrix, CP matrix, CR matrix,
and CS matrix for N = 1920 and NA = N/2. Gap ratio for (a) λ = 0.5, (b) λ = 1.0, and (c) λ = 1.5. Also, von Neumann entropy for (d) λ = 0.5,
(e) λ = 1.0, and (f) λ = 1.5. The average has been taken over 100 random values of θp.

decrease. This happens as the contributions to entanglement
come mostly from smaller magnitude eigenvalues. We have
checked that at the phase-transition point λ = 1, the length of
the ramp at saturation corresponding to the top (or bottom)
1/8th of the eigenvalues is smallest (in units of τ ). However,
the other subsets, namely, the next 1/4th and the central 1/4th
of the eigenvalues, show the same length of the ramp at sat-
uration. Our main observation from the study of the length
of the ramp at saturation is that the correlations at the critical
point are more uniformly spread out than in the delocalized
phase. We have also calculated the first-order gap ratio 〈r〉
for various subsets of the EH spectrum. We observe that all
subsets eventually reach close to the GUE value ≈0.599 at
nearly the same time, i.e., the time taken for all the subsets to
develop NN level repulsion is the same.

F. Dynamics of an initially entangled system

So far we have considered the dynamics of the system
starting from an initial product state with a nonentangled
subsystem correlation matrix. As time evolves, we have seen
how entanglement tends to grow and saturate to a characteris-
tic value at long times. In the current section we will study
the dynamics of the system considering a variety of initial
(subsystem) correlation matrices with nonzero entanglement
entropy at time t = 0. The gap ratio of the EH related to
the product state we have considered so far corresponds to
the Poissonian value of 〈r〉 = 0.38. We now consider three
different kinds of initial states whose gap ratios are different
from the Poissonian value and track the evolution of these
states.

Firstly, we take the correlation matrix of the full system
to be a diagonal matrix whose elements are drawn from a
Gaussian distribution, with the constraint that the sum of
its diagonal terms is equal to the number of fermions. The
corresponding correlation matrix denoted by CR is given by

CR = ξ

⎡
⎢⎢⎢⎣

c11 0 0 0 ·
0 c22 0 0 ·
0 0 c33 0 ·
0 0 0 c44 ·
· · · · ·

⎤
⎥⎥⎥⎦, (17)

where c11, c22, c33, .. are numbers drawn randomly from a
Gaussian distribution N (0.5, 0.02), and the normalization ξ

is set according to the number of fermions. For implementing
the constraint, we fix ξ such that the trace of the resulting
matrix is equal to the number of fermions, which in our case
is taken to be N/2. The results shown here are qualitatively in-
dependent of the type of distribution from which the diagonal
elements are drawn [we have checked the same for a uniform
distribution U (0, 1)].

Using the above correlation matrix, quench dynamics is
studied for the AAH model. The NN gap ratio evolves starting
from the Poissonian value and saturates to the GUE value at
late times, except in the case of the localized phase which
does not show any evolution [see Figs. 10(a)–10(c)]. Here,
since the initial correlation matrix eigenvalues are engineered
to lie close to 0.5, the corresponding EH eigenvalues have very
small magnitude, and thus it can be seen that the EE is close
to the maximum entropy. Also, its evolution is similar to that
of the nonentangled initial product state, as discussed in the
previous sections, whose correlation matrix is denoted here as
CP [see Figs. 10(d)–10(f)]. We have also checked the effect
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of the inclusion of small off-diagonal terms into Eq. (17). We
find that the resulting time-evolved state’s spectral properties
are similar to those evolving from the CR matrix, though the
magnitude of EE becomes higher as the number of nonzero
off-diagonal elements of the matrix increase.

Secondly, we have considered an initial (system) correla-
tion matrix obtained from the superposition of two DW-type
pure states, |	0〉 = ∏N/2

i=1 c†
2i |0〉, with probability amplitude√

a and |ψ0〉 = ∏N/2
i=1 c†

(2i−1) |0〉 with probability amplitude√
b. This correlation matrix is denoted by CS:

CS =

⎡
⎢⎢⎢⎣

c11 0 0 0 ·
0 c22 0 0 ·
0 0 c33 0 ·
0 0 0 c44 ·
· · · · ·

⎤
⎥⎥⎥⎦. (18)

Here for all odd values of i, cii = b, while for all even
values of i, cii = a. Tuning the parameters a = 1 and b = 0,
we get the initial product state denoted by CP, for which the
results have already been discussed. For a = 0.5 and b = 0.5,
we get the maximally entangled state, which does not show
any evolution and hence there is no timescale associated with
it. For all other values of a and b, the state is entangled. It can
be observed from Figs. 10(a)–10(c) that the magnitude of the
NN gap ratios corresponding to various values of a and b are
initially much below the Poissonian value (i.e., 0.38). How-
ever, they also evolve with time to saturate at the GUE value,
except in the localized phase, where completely flat time
evolution is seen. Also, it can be noted from Figs. 10(d)–10(f)
that with the change in parameters the initial entanglement
entropy of the subsystem increases until it reaches the value
NA ln 2 for the maximally entangled state. As a result of the
subsystem having nonzero entanglement initially, the time
taken for the EE to reach saturation decreases, which reduces
the second timescale in both the delocalized phase and at the
phase-transition point in comparison to CP.

Next, we study another kind of initially entangled state
with a tridiagonal correlation matrix denoted by CE . The main
aim here is to understand the evolution of a state which ini-
tially has nearly equally distant eigenvalues and hence shows
a higher value of the NN gap ratio, i.e., whose eigenvalues
are more correlated than GUE. Here the diagonal terms are
determined in such a way that they mimic the energy levels
of a harmonic oscillator [57], and the off-diagonal terms are
added keeping in mind the positive semidefinite nature of the
correlation matrix. The matrix corresponding to it is given by

CE =

⎡
⎢⎢⎢⎣

c11 c12 0 0 ·
c12 2c11 c23 0 ·
0 c23 3c11 c34 ·
0 0 c34 4c11 ·
· · · · ·

⎤
⎥⎥⎥⎦ (19)

and has nearly equidistant eigenvalues. Here the value of
the term c11 = 2NP

N (N+1) , where NP is the number of fermions
(which is equal to N/2 here) and N is the total number of sites
(i.e., the dimension of the system). The off-diagonal elements
here are chosen such that for any value of i,

∑
i 
= j ci j < cii

to satisfy the positive semi-definite nature of the matrix. We
also observe that evidently, the trace of the matrix CE is equal

FIG. 11. Distribution of nth-order spacing ratios of EH spectrum
for λ = 0.5, N = 1920, and NA = N/2 with corresponding analytic
curves. (a) At an early time t = 1 and (b) at a late time t = 105. The
average has been taken over 5000 random values of θp.

to N/2, the number of fermions. The resulting EH of the
subsystem also has nearly equally distant eigenvalues and thus
the gap ratio is initially ≈1. We notice from Figs. 10(a) and
10(b) that it evolves with time, eventually to nearly the GUE
value.

It can be concluded that irrespective of the initial state, the
nearest-neighbor gap ratio of the system evolves and saturates
to the GUE value in the delocalized phase and at the phase-
transition point [see Figs. 10(a) and 10(b)]. However, for the
localized phase, the system does not show any evolution irre-
spective of the initial state of the system [see Fig. 10(c)]. Also,
the evolution of the EE for the delocalized phase and at the
critical point are plotted in Figs. 10(d) and 10(e), respectively.

In order to get a finer understanding of the nature of the
initial and final states, we also study the nth-order gap ratio
given by

r (n)
i = s(n)

i+n

s(n)
i

. (20)

Note that this definition is a little different from the higher-
order gap ratio definition in Eq. (16). We have considered this
variant [Eq. (20)] here, since benchmark analytic results for
the probability distribution of these nth-order spacing ratios
have been obtained for Gaussian ensembles [58] and for un-
correlated eigenvalues [59]. For the initial product state (CP)
in the delocalized phase, i.e., λ = 0.5, the distribution for NN
spacing ratio n = 1 as well as higher orders n = 2, 3, 4 have
been plotted at the initial time, Fig. 11(a), and in the long-time
limit, Fig. 11(b). The analytic distributions [58,59] P(rn) are
found to match with our numerically determined distributions.
We observe that at early times when the NN gap ratio is
≈0.38, the distributions of nth-order spacing ratios are also
found to match with those obtained from a sequence of uncor-
related eigenvalues, whereas at late times when 〈r〉 ≈ 0.599
the distributions match with those obtained from the spectrum
of random matrices drawn from a GUE. Also, in Figs. 8(a) and
8(b), at saturation the average value of r was found to match
with the GUE values [58].

Similar results were observed for the higher-order spacing
distributions at both early and late times in the case of the
initially entangled state obtained from the correlation matrix
CR. We have also studied the same for the case of the entangled
initial state obtained from the correlation matrix CS . We find
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FIG. 12. Connected spectral form factor (at saturation) t = 5 ×
105, considering various values of a and b of the correlation matrix
CS . Here (a) λ = 0.5 and (b) λ = 1.0 for N = 1920 and NA = N/2.
The average has been taken over 500 random values of θp.

that P(rn) here does not match with the analytic distributions
corresponding to uncorrelated eigenvalues at early times, but
at late times they show distributions obtained from the spec-
trum of random matrices drawn from a GUE. In the case when
the EH of the subsystem has nearly equally distant eigenvalues
(corresponding to CE ), at early times the higher-order distri-
butions of the gap ratios are peaked at ≈1 as the eigenvalues
are highly correlated. At late times only the distribution for
the order n = 1 was found to match with that proposed by
Ref. [58].

The SFF-related results are next discussed for the various
initially entangled subsystems described above. Figures 12(a)
and 12(b) show the connected spectral form factor gc(τ ) at
saturation (long-time limit) for different values of a and b for
the delocalized phase and at the critical point, respectively.
We have determined the length of the ramp as follows. The
time (τ ) at which the ramp starts (i.e., the Thouless time) is
also a local minimum of the connected SFF, which can be
found by zooming in the area close to the local minimum and
then determining it. For the plateau time [i.e., the value of τ at
which g(τ ) or gc(τ ) saturates], we consider the time taken for
gc(τ ) to reach 90% (allowing some room for fluctuations) of
its saturation value [i.e., limτ→∞ gc(τ ) = NA]. The length of
the ramp can be found by deducting the Thouless time from
the plateau time.

As one goes from the product state to the maximally en-
tangled state, the magnitude of EE increases at saturation [see

FIG. 13. Connected spectral form factor (at saturation) t = 5 ×
105, for various initial correlation matrices: CE matrix, CP matrix,
CR matrix, and CS matrix (here a = 0.2, b = 0.8) for N = 1920 and
NA = N/2. Here (a) λ = 0.5 and (b) λ = 1.0 for N = 1920 and NA =
N/2. The average has been taken over 500 random values of θp.

FIG. 14. Evolution of connected spectral form factor obtained
from the spectrum of EH corresponding to the CE matrix. (a) λ = 0.5
and (b) λ = 1.0. Here system size N = 1920 and NA = N/2. The
average has been taken over 500 random values of θp.

Figs. 10(a) and 10(b)]. This is due to decreasing magnitude
of the eigenvalues of the EH. Since the smaller the magnitude
of the eigenvalues, the larger the value of τ at which their
difference dephases; the length (in units of τ ) of the ramp will
become longer with the increasing value of EE. The same is
true when we compare the connected spectral form factor in
the long-time limit for the various correlation matrices, in the
delocalized and critical phases which are shown in Figs. 13(a)
and 13(b), respectively. It can be concluded that there exists a
correspondence between the magnitude of EE and the length
of the ramp (in units of τ ) which is not apparent through the
NN gap ratio. A systematic comparison of the states attained
by the system starting from various initial states is useful. Dur-
ing the first timescale, the length of the ramp is always longer,
corresponding to a higher EE, irrespective of the magnitude
of the NN gap ratio. However, if EEs are comparable (e.g.,
compare CE and CS with a = 0.2 and b = 0.8), the NN gap
ratio seems to come into play. We observe that the length of
the ramp corresponding to a higher NN gap ratio is longer.
Also, in the maximally entangled case, i.e., when a = 0.5 and
b = 0.5, we find both numerically and analytically that g(τ ) =
N2

A , while gc(τ ) = 0, on account of all the EH eigenvalues
being ≈0. In the second timescale, since the NN gap ratios
have already saturated, we see a clear monotonic relationship
between the length of the ramp and the EE.

When the initial state corresponds to the CE matrix, we
see a distinct feature that is observable from Figs. 14(a) and
14(b), which presents the evolution of gc(τ ) in the delocalized
phase and at the critical point, respectively. Here, due to the
presence of correlations in the spectrum initially, the ramp
structure is observed even at early times. This, however, also
evolves with time and saturates for time t > t2, i.e., when von
Neumann entropy saturates. The change in the length of the
ramp as time evolves is not very clear here and requires further
investigation. In particular, it would be interesting to study if
the presence of initial higher-order correlations in the system
is the reason for this anomalous behavior. In the localized
phase, the ramp does not evolve, independent of the initial
spectral correlations.

IV. CONCLUSION

We present a study of the nonequilibrium dynamics
of the entanglement spectrum of a disordered integrable
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system, namely, the Aubry-André-Harper model, which hosts
a delocalization-localization transition. For a system of nonin-
teracting fermions in one dimension, we numerically explore
the presence and the development of spectral correlations in
the entanglement Hamiltonian spectrum. We explore the time
evolution of the spectral form factor, which is a measure of
long-range correlations, along with other quantities such as
the gap ratio and the Renyi entropies for various initial (sub-
system) correlation matrices. The spectral form factor exhibits
a characteristic “ramp” structure whose length is intimately
connected to the spectral correlations.

We have analyzed various aspects of the EH spectrum
when an initial state of the system is density-wave (DW)
type and is evolved under the Hamiltonian. One can see the
presence of three distinct timescales in the delocalized phase
and at the critical point. We identify the time t1 at which
the NN gap ratio saturates along with the zeroth-order Renyi
entropy S0 and the time t2 at which both the von Neumann
entropy S1 and entanglement bandwidth δE saturate. The
three timescales are defined by t < t1, t1 < t < t2, and t > t2.
In addition, we also find signatures of the timescales from
the evolution of the spectral density of the EH. We observe
from the SFF that the length of the ramp (in units of τ ) is
nearly the same in the delocalized phase and at the critical
point, which signifies that the number of eigenvalues that
exhibit universal spectral correlations is approximately equal
for both. However, in the localized phase, the time evolu-
tion is seen to be completely flat, which is characteristic of
localization.

Also, a comparison between zeroth- and first-order Renyi
entropies shows that at saturation, though the number of
nonzero eigenvalues is the same for both the delocalized phase
and at the critical point, their magnitudes are significantly
different. We also study the time evolution of the higher-order
gap ratio. It is observed that the time taken for nth-order
gap ratio to saturate increases initially with the order n until
a certain order, after which all higher orders saturate at the
same time t at which the SFF also saturates. A spectrum-
resolved study of the spread of correlations reveals that in

the delocalized phase, the spectrum becomes more correlated
as we move towards the center from the edges, while at the
phase-transition point they are more evenly spread out through
the spectrum.

We also study the dynamics starting from a variety of initial
states. For all possible initial states, one can see that the gap
ratio eventually saturates approximately to its GUE value in
the delocalized phase and at the phase-transition point. The
three timescales exist for all these states; however, when the
entanglement in the initial state is high, the second timescale
becomes smaller. It is also observed that generically the length
of the ramp (in units of τ ) is greater when the corresponding
entanglement entropy has a higher magnitude. However, there
are some exceptions to this trend when the gap ratio also
seems to play a role.

In our study, we are able to link the long-range spectral
correlations quantified by the spectral form factor to vari-
ous physically relevant observables in a disordered integrable
model by studying the quench dynamics of the system in
different phases. As a future possibility, one can also study
interacting versions of this and other allied models [60]. An-
other interesting direction would be to probe higher moments
of the spectral form factor. The SFF remains to be explored
in several contexts where the spectral correlations of the en-
tanglement spectrum are important. An inexhaustive list of
systems where this quantity may potentially find application
includes periodically driven systems [61,62], open quantum
systems [63,64], and non-Hermitian [65,66] and topological
[67,68] systems.
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