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Spatial structure of magnetic polarons in strongly interacting antiferromagnets
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The properties of mobile impurities in quantum magnets are fundamental for our understanding of strongly
correlated materials and may play a key role in the physics of high-temperature superconductivity. Hereby, the
motion of hole-like defects through an antiferromagnet has been of particular importance. It creates magnetic
frustrations that lead to the formation of a quasiparticle, whose complex structure continues to pose substan-
tial challenges to theory and numerical simulations. In this article, we develop a nonperturbative theoretical
approach to describe the microscopic properties of such magnetic polarons. Based on the self-consistent Born
approximation, which is provenly accurate in the strong-coupling regime, we obtain a complete description of
the polaron wave function by solving a set of Dyson-like equations that permit to compute relevant spin-hole
correlation functions. We apply this new method to analyze the spatial structure of magnetic polarons in the
strongly interacting regime and find qualitative differences from predictions of previously applied truncation
schemes. Our calculations reveal a remarkably high spatial symmetry of the polaronic magnetization cloud and
a surprising misalignment between its orientation and the polaron crystal momentum. The developed framework
opens up an approach to the microscopic properties of doped quantum magnets and will enable detailed analyses
of ongoing experiments based on cold-atom quantum simulations of the Fermi-Hubbard model.
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I. INTRODUCTION

The Fermi-Hubbard Hamiltonian is a paradigmatic model
in condensed matter physics, introduced to describe the be-
havior of electrons in a solid [1]. It supports a remarkably
broad spectrum of quantum phases of matter, and it is believed
to capture the essential phenomenology of strongly correlated
materials including the cuprates [2]. Yet, the Fermi-Hubbard
model has proven extremely difficult to analyze and continues
to challenge theoretical and numerical efforts for more than
four decades [3–34]. An important case emerges close to half
filling where each lattice site is occupied by one fermion.
Then, strong on-site particle repulsion leads to the build-up
of antiferromagnetic order of the spins of the fermions, which
competes with the delocalization of holes that can be present
in the lattice [35–37]. This results in a buildup of magnetic
frustrations around such holes and the formation of quasiparti-
cles, termed magnetic polarons [3–7]. The emerging magnetic
dressing cloud induces effective interactions between two
such holes that have been conjectured to provide a mechanism
for high-temperature superconductivity [8–10]. Understand-
ing and characterizing magnetic polarons has therefore been
of key interest for many decades.

Owing to the shear complexity of the problem, only a
few theoretical approaches have been applied under different
conditions and with varying success. This includes exact di-
agonalization for small system sizes [12–14,23], mean field

approaches [11], and variational calculations [15,16]. One has
also analysed the string-excitations caused by defect motion
through the magnet [25–32], and employed numerical tech-
niques such as Monte Carlo simulations [17–20], machine
learning methods [32] as well as renormalization group tech-
niques [21–24].

Recent experimental breakthroughs in manipulating ultra-
cold atoms in optical lattices have opened up the possibility
to perform quantum simulations of the Fermi-Hubbard
model [38–54]. In particular, the ability to image individual
atoms with single-site spatial resolution [55–58] makes it
possible to probe the microscopic structure of the magnetic
polaron [46,47]. Such detailed insights offer stringent tests of
the understanding of the Fermi-Hubbard model, and enable
a systematic improvement of theoretical approaches to these
quasiparticles.

A particularly successful approach has been the self-
consistent Born approximation (SCBA) [3,5]. The SCBA
permits a nonperturbative calculation of the Green’s function
of the hole and was shown to yield quantitatively accurate
results [6,7,59,60] in the strongly interacting regime. De-
spite this success, its applicability has thus far been limited
to single-particle observables such as the energy dispersion
and quasiparticle residue of the magnetic polaron, while the
extraction of finer structural information, such as that con-
tained in spin-hole correlations or the polaron’s magnetic
dressing cloud, have proved difficult. The construction of the
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polaron wave function in terms of spin-wave excitations [61]
in principle offers a solution to this problem. Determining
correlation functions, however, entails an infinite series of
terms with increasing number of spin excitations [62,63],
whose truncation has restricted calculations to the weak cou-
pling domain [62–65]. Moreover, these conditions violate the
underlying assumptions of the SCBA treatment [3,5] in the
context of the Fermi-Hubbard model.

Here, we develop a theoretical framework that makes it
possible to overcome this obstacle. The approach is based
on a set of self-consistency equations that are reminiscent
of the Dyson equation, and enable the inclusion of all terms
up to infinite numbers of spin excitations in the SCBA wave
function for the magnetic polaron. It thereby extends its ap-
plication into the regime of strong interactions. We use this
new approach to explore the microscopic spatial structure of
the magnetic polaron in the regime of strong coupling. In
general, the obtained magnetic dressing cloud has an elon-
gated shape that increases in size and magnitude with the
strength of interactions, and, in the strong-coupling regime,
differs qualitatively from previous calculations based on a
truncated quasiparticle wave function. Our analysis reveals
that the symmetries of the antiferromagnetic spin lattice de-
cisively determine the form of the dressing cloud, and lead to
a remarkably high symmetry of the magnetic dressing cloud
for polaron momenta along the edge of the magnetic Brillouin
zone (MBZ). Surprisingly and in contrast to previous expec-
tation, this can lead to a misalignment between the dressing
cloud and the crystal momentum, such that the spatial struc-
ture of the polaron is generally not oriented along its direction
of motion.

Our theoretical framework moreover permits to explore
the transition of the underlying quantum magnet from the
isotropic Heisenberg spin-lattice to the Ising model. We find
that the gap opening in the spin-wave excitation spectrum re-
sults in a shrinking of the polaronic magnetization cloud with
increasing anisotropy of the effective spin-spin interaction. In
the Ising limit, the full symmetry of the antiferromagnetic
order is restored, which makes it possible to determine the
dressing cloud of the magnetic polaron analytically. More
generally, the developed framework may open up a new
approach for microscopic explorations of doped quantum
magnets in the strong-coupling regime, including finite tem-
perature effects and non-equilibrium dynamics to induced
interactions between multiple defects.

This article is organised as follows. Section II provides the
Fermi-Hubbard Hamiltonian and the t-J model that derives
from it. Based on the t-J model, we describe the transfor-
mation into a magnetic polaron Hamiltonian within linear
spin wave theory. In Sec. III, we summarize the quasiparticle
properties of the magnetic polaron, including the calculation
of the polaron Green’s and wave functions within the SCBA.
The magnetization in the vicinity of a hole is explored in
Sec. IV for a two-dimensional square lattice as a function
of interaction strength and anisotropy. In Sec. V, we demon-
strate the nonperturbative effects predicted by our developed
formalism, and Sec. VI gives a detailed derivation of the self-
consistency equations for the local magnetization. Finally,
in Sec. VII, we describe the prospects of testing our theory
experimentally.

FIG. 1. Magnetization around a hole in a Heisenberg antiferro-
magnet in a 16 by 16 square lattice for different interaction strengths
and crystal momenta along the magnetic Brillouin zone. As the hop-
ping amplitude t becomes large compared to the spin-spin coupling
J , moving from panels (a) to (b), the magnetic frustrations around
the hole increase in size and magnitude and the magnetic order even
flips sign at the nearest-neighbor sites. The dashed lines indicate the
reflection symmetries of the magnetization, which along with a C2

rotation symmetry means that the dressing cloud has the remarkably
high symmetry group C2v . As a consequence, the orientation of the
dressing cloud is in general misaligned with the crystal momentum
leading to a nontrivial behavior.

II. THE ANISOTROPIC t-J MODEL

The Fermi-Hubbard model

ĤFH = −t
∑
〈i,j〉,σ

[ĉ†
i,σ ĉj,σ + H.c.] + U

∑
i

n̂i,↑n̂i,↓ (1)

describes spin-1/2 fermions moving in a lattice with hop-
ping amplitude t and on-site repulsive interactions U > 0.
Here, 〈i, j〉 denotes nearest-neighbor lattice sites, ĉ†

i,σ creates

a fermion at site i and spin σ , while n̂i,σ = ĉ†
i,σ ĉi,σ is the

corresponding counting operator. Despite its apparent sim-
plicity, many open questions remain concerning its properties.
Near half filling, one can expand the Hubbard model in the
particle hopping for large on-site repulsion U � t to derive
an effective low-energy description given by the so-called t-J
model [10,35,37]. The Hamiltonian is Ĥ = Ĥt + ĤJ , where

Ĥt = −t
∑
〈i,j〉,σ

[c̃†
i,σ c̃i,σ + H.c.] (2)

describes the restrained nearest-neighbor particle hopping,
where c̃†

j,σ = ĉ†
j,σ (1 − n̂j,σ̄ ), and the factor (1 − n̂j,σ̄ ) with σ̄

the opposite spin restrains the Hilbert space of the model to
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states with maximally one particle per site. Furthermore,

ĤJ = J
∑
〈i,j〉

[
Ŝz

i Ŝz
j + α

2
(Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j ) − n̂in̂j

4

]
(3)

gives the antiferromagnetic (J > 0) spin-spin interactions.
The Schwinger fermion representation of spin 1/2 reads as
usual

Sj = 1

2

∑
σ,σ ′

ĉ†
j,σ σσσ ′ ĉj,σ ′ (4)

with σ = (σx, σy, σz ) a vector of the Pauli matrices. The t-J
model with α = 1 thus yields an accurate description of the
low-energy physics of the underlying Fermi-Hubbard model
for t � J = 4t2/U close to half filling. More generally, other
experimental platforms [66–70] make it possible to tune from
the isotropic Heisenberg limit with α = 1 to an Ising magnet
with α = 0. In Eq. (3), we have therefore generalized the
model to include the case of anisotropic spin interactions by
introducing the parameter 0 � α � 1.

At half filling with exactly one fermion per lattice site, the
first term in Eq. (2) is ineffective and a positive superexchange
coupling J > 0 between the spins enforces antiferromagnetic
ordering for any value of α. Lattice defects, or holes, in such
an antiferromagnet tend to delocalize and thereby lower their
kinetic energy, as given by Ĥt . The associated motion of holes,
on the other hand, leads to the buildup of magnetic frustra-
tion, which increases the energy of the system according to
ĤJ . The competition between these two processes eventually
gives rise to the magnetic polaron, i.e., a mobile hole that is
surrounded by a finite magnetization cloud. Small ratios of
J/t , thus, correspond to the strong coupling regime in which
a high hole mobility leads to a significant disturbance of its
magnetic environment and thereby generates strong spin-hole
correlations. We can accurately describe this process using
spin-wave theory as outlined in the next section.

Slave fermion representation

We begin by performing a Holstein-Primakoff transfor-
mation generalized to take into account the presence of
holes [3,5–7]. The antiferromagnetic state defines a bipartite
lattice, whereby one sublattice carries fermions in the spin-
up state, while the other sublattice is formed by particles in
the spin-down state. In the former, we rewrite Ŝ−

i = ŝ†
i (1 −

ŝ†
i ŝi − ĥ†

i ĥi)1/2, c̃i,↓ = ĥ†
i ŝi, and c̃i,↑ = ĥ†

i (1 − ŝ†
i ŝi − ĥ†

i ĥi)1/2

in terms of fermionic operators ĥ†
i and bosonic operators ŝ†

i
that create a hole and a spin excitation at site i, respectively.
The factor (1 − ŝ†

i ŝi − ĥ†
i ĥi)1/2 ensures that there is at most

one hole or one spin excitation at each site. Finally, the spin-z
operator can be rewritten as Ŝz

i = (1 − ĥ†
i ĥi)/2 − ŝ†

i ŝi. The
representation of the spin and holes on the other sublattice of
spin-down fermions, proceeds analogously by swapping spin
↑ and ↓ in the transformations given above. Using this so-
called slave-fermion representation in Eq. (3), keeping only
the linear terms, and diagonalizing the transformed Hamilto-
nian yields the spin wave Hamiltonian [3,5–7]

HJ = E0 +
∑

k

ωkb̂†
kb̂k. (5)

FIG. 2. Quasiparticle properties. (a) Dyson equation for the hole
Green’s function, G(p, ω), within SCBA (double-black line), in
terms of the noninteracting Green’s function G0(ω) = 1/ω (single-
black line), and the spin wave Green’s function Gb = 1/(ω −
ωk ) (blue wiggly line). (b) Hole spectral function A(p, ω) =
−2ImG(p, ω) in the Heisenberg limit in a 36 by 36 square lattice,
featuring a quasiparticle peak at εp � −2.4t for J/t = 0.3 (vertical-
red line). For J/t 	 1, the quasiparticle residue [panel (c)] becomes
very small. Consequently, an increasing number of terms must be
retained in the quasiparticle wave function [panel (e)]. The dia-
grammatic rules for the construction of the wave function are: (1)
Single straight line: Z1/2

p . (2) Blue-wiggly line with momentum −ki:

spin wave operator, b̂†
−ki

. (3) nth red dot from the right in a dia-
gram: interaction vertex, g(Kn, kn+1). Here, K0 = p, K1 = p + k1,
K2 = p + k1 + k2, and so forth. (4) nth double line from the right:
G(Kn, εp − ∑n

i=1 ωki ). (5) nth open-ended hole line from the right:
hole operator, ĥ†

Kn
. (6) Sum over all spin wave momenta, ki. (d) The

quasiparticle dispersion throughout the first Brillouin zone with the
four degenerate ground states at p = (±π/2,±π/2) indicated by
circles. The magnetic Brillouin zone (MBZ) is indicated by black
diagonal lines.

This describes spin waves with the energy ωk =
zJ

√
1 − α2γ 2

k /2, where the structure factor

γk = 1

z

∑
δ

eik·δ, (6)

is the sum of the z nearest-neighbor phases. The asso-
ciated bosonic spin wave operators b̂k are related to the
physical spin excitations ŝk via a Bogoliubov transforma-
tion b̂k = uk ŝk + vk ŝ†

−k with the antiferromagnetic coherence

factors given by uk = [(1/

√
1 − α2γ 2

k + 1)/2]1/2 and vk =
sgn(γk )[(1/

√
1 − α2γ 2

k − 1)/2]1/2. Using the slave fermion
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representation in Eq. (2) yields [3,5–7]

Ĥt =
∑
q,k

ĥ†
q+kĥq[g(q, k)b̂†

−k + g(q + k,−k)b̂k], (7)

where the interaction vertex is g(q, k) = zt · (ukγq+k −
vkγq)/

√
N with N the number of lattice sites. Here, we re-

tain terms linear in the spin-wave operators. Equation (7)
explicitly shows how the hopping of a hole gives rise to the
emission/absorption of spin waves and directly represents the
competition between hole delocalization and magnetic order.

III. MAGNETIC POLARON

The above formulation in terms of interactions with
magnetic spin-wave excitations enables a nonperturbative de-
scription of the microscopic structure of the magnetic polaron,
as we shall outline in this section. The approach is based
on the self-consistent Born approximation (SCBA) for the
hole Green’s function [3,5], which has been shown to yield
quantitatively accurate results for the polaron energy in the
Heisenberg limit across all interaction strengths [6].

A. The Green’s function

The SCBA includes the so-called rainbow diagrams in
the computation of the hole Green’s function G(p, ω) =
1/(ω − 	(p, ω) + iη) [3,5–7], where η = 0+ is a positive in-
finitesimal. Using the spin wave Green’s function Gb(k, ω) =
1/(ω − ωk + iη), the diagrammatic structure shown in
Fig. 2(a) leads to the self-consistent equation for the self-
energy

	(p, ω) =
∑

k

g2(p, k)

ω − ωk − 	(p + k, ω − ωk ) + iη
, (8)

which can be solved iteratively starting from 	 = 0. Knowing
the self-energy, one can determine several important quanti-

ties, such as the quasiparticle residue

Zp = 1

1 − ∂ω	(p, ω)|ω=εp

, (9)

which is the overlap Zp = | 〈AF| ĥp |p〉 |2 of the polaron
many-body wave function |p〉 with the state of a bare hole
in an otherwise unperturbed antiferromagnetic state ĥ†

p |AF〉
for a given crystal momentum p of the hole. Hereby, the an-
tiferromagnetic quantum Néel state is defined as b̂k |AF〉 = 0
for any spin-wave momentum k. The numerical solution of
Eq. (8) under strong-coupling conditions, J/t = 0.3, in a 36
by 36 square lattice is shown in Fig. 2. The hole spectral
function, depicted in Fig. 2(b), exhibits a clear quasiparticle
peak at ω � −2.4t giving the energy of the magnetic polaron.
The corresponding quasiparticle residue is Z � 0.3 and there
is a continuum of many-body states at higher energies with
large spectral weight, reflecting the strongly interacting na-
ture of the problem. The dispersion of the magnetic polaron
in the first Brillouin zone is shown in Fig. 2(d). It features
four degenerate ground states at the crystal momenta p =
(±π/2,±π/2), given in units of the inverse lattice constant.
The surprising predictive power of the SCBA result for the
hole spectral function in the Heisenberg limit [6] compared
to exact diagonalization studies [14] is attributed to small
vertex corrections to the SCBA even for strong coupling [59].
The dependence of quasiparticle residue on J/t [Fig. 2(c)]
clearly illustrates the necessity of a nonperturbative theory
for J/t 	 1, since small values of Zp indicate a large number
of spin-wave excitations and strong correlations between the
generated spin fluctuations and the motion of the hole. The
Green’s function alone is, however, not well suited to study
such correlations and requires additional analysis as we will
now discuss.

B. The polaron wave function

Our nonperturbative approach to determine spin-hole cor-
relations exploits the fact that it is formally possible to write
the wave function |p〉 of the magnetic polaron within the
SCBA. Explicitly, the wave function [61,63]

|p〉 =
∞∑

n=0

∑
{ki}

a(n)
(
p, {ki}n

i=1

) · ĥ†
Kn

n∏
i=1

b̂†
−ki

|AF〉 = √
Zp

[
h†

p+
∑

k1

g(p, k1)G(p+ k1, εp − ωk1 )ĥ†
p+k1

b̂†
−k1

+ . . .

]
|AF〉 , (10)

can be expressed as an expansion in the number of spin wave
excitations on the antiferromagnetic quantum Néel state |AF〉.
The lowest order coefficient, a(0)(p) = √

Zp, is given by the
square root of the quasiparticle residue ensuring the overall
normalization of the wave function, while the higher order
coefficients can be computed from the recurrence relation

a(n+1)
(
p, {ki}n+1

i=1

) = g
(
Kn, kn+1

)
a(n)

(
p, {ki}n

i=1

)
× G

(
Kn+1, εp −

n∑
i=1

ωki

)
, (11)

with Kn = p + ∑n
i=1 ki for n � 1, and K0 = p. The struc-

ture of the first order term a(1) can be understood by

using the recursion relation in Eq. (11) in the coupling be-
tween the two lowest order coefficients, a(0) and a(1), of
the quasiparticle wave function (10). This yields εpa(0)(p) =∑

k g(p, k)a(1)(p, k) = 	(p, εp)a(0)(p), by using Eq. (8) for
the self-energy 	. Hence, the construction of the wave func-
tion (10) relies on the presence of a well-defined quasiparticle
peak at εp determined by εp = 	(p, εp), corresponding to the
energy of the magnetic polaron.

The wave function is visualized diagrammatically [63] in
Fig. 2(e), along with the diagrammatic rules for its construc-
tion. The iterative structure of Fig. 2(e) together with precise
diagrammatic rules is reminiscent of the Dyson equation in
quantum field theory [Fig. 2(a)], and is at the heart of our non-
perturbative framework developed below. A major advantage
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of the polaron wave function is that it allows for the com-
putation of spin-hole correlation functions in a much more
direct way than the hole Green’s function. The problem is
nevertheless still far from straightforward, since the number
of important terms in Eq. (10) increases with the interaction,
t/J . As a consequence, there is no controlled way to truncate
the series for the wave function, while still obtaining reliable
results in the strong coupling regime J/t 	 1. This has so far
limited the use of this wave function to the weak coupling
regime, where it is sufficient to include only a small of num-
ber spin wave excitations [62,63]. However, since the SCBA
is least accurate precisely in the weak coupling regime of
J/t � 1, the validity of such an approach is not clear. The non-
perturbative framework, developed in the present work, thus
represents a major step as it now makes it possible to utilize
the SCBA for reliable calculations of correlation functions in
the strongly coupled regime.

IV. MAGNETIZATION AROUND A HOLE

Before presenting the derivation of our nonperturbative
approach in Sec. VI, in this section, we first illustrate its
application by calculating the local magnetization in the
neighborhood of a hole. This is a fundamental property of the
magnetic polaron that determines its microscopic structure,
and eventually the form of the induced interaction between
multiple holes.

Consider first the magnetization in the absence of holes.
The local magnetization at a given lattice site d is given by

〈AF|Ŝz
d|AF〉 = (−1)ld MAF = (−1)ld (1 − 2Mfl), (12)

where 0 � Mfl � 1 quantifies the effect of quantum spin fluc-
tuations to suppress the magnetic order from its maximum
value MAF = 1 in the Ising limit α = 0. Without loss of

generality, we take 〈AF| Ŝz
d=0 |AF〉 > 0 in the spontaneously

broken symmetry state |AF〉. The site-dependent parameter
ld is defined as the minimal number of lattice links between
the two sites r = 0 and r = d. From linear spin-wave theory,
we have Ŝz

d = (−1)ld (1/2 − ŝ†
dŝd) and ŝ†

d = ∑
k e−ik·dŝ†

k/
√

N ,
which gives Mfl = ∑

k 〈AF| ŝ†
k ŝk |AF〉 /N = ∑

k v2
k/N .

With these definitions, we can now formulate the magneti-
zation of a given lattice site at a distance d from the hole

Mp(d) =
〈
ĥ†

r ĥrŜz
r+d

〉
p

〈ĥ†
r ĥr〉p

〈
Ŝz

r+d

〉
p

= 1 − 2M (2)
p (d)

MAF
, (13)

where 〈. . .〉p = 〈p| . . . |p〉 is the expectation value for the
ground state Eq. (10) of a magnetic polaron with crystal mo-
mentum p, and

M (2)
p (d) = N 〈ĥ†

r ĥr ŝ†
r+dŝr+d〉p

. (14)

The translational symmetry of the system ensures that these
correlation functions only depend on the distance vector d. In
Eqs. (13) and (14), we have used 〈ĥ†

r ĥr〉p = 1/N , reflecting
the fact that the hole is equally distributed across the lattice
for a given momentum state. We can also omit corrections to
the average magnetization from the presence of a single hole,
since they scale as 〈Ŝz

d〉p − 〈AF| Ŝz
d |AF〉 ∼ O(1/N ).

Fourier transforming and rotating to the bosonic spin wave
operators b̂k, the remaining two-point correlator M (2)

p given by
Eq. (14) can be decomposed as

M (2)
p (d) = Mfl + Bp(d) + Cp(d). (15)

Notice that the zero-point fluctuations Mfl of the quantum
antiferromagnet appears explicitly. The corrections to the
magnetization due to the presence of the hole are thus de-
scribed by the functions

Bp(d) = 1

N2

∑
q1,q2

e−i(q2−q1 )·d[uq1 uq2 + vq1vq2 ] · B(q1, q2; p, εp), B(q1, q2; p, ω) = N
∑

k

〈
ĥ†

k+q1
ĥk+q2 b̂†

−q1
b̂−q2

〉
p,ω

, (16)

and

Cp(d) = − 1

2N2

∑
q1,q2

e−i(q2+q1 )·d[uq1vq2 + vq1 uq2 ] · C(q1, q2; p, εp) + c.c., C(q1, q2; p, ω) = N
∑

k

〈
ĥ†

k−q1−q2
ĥkb̂−q1 b̂−q2

〉
p,ω

,

(17)

where c.c. stands for the complex conjugate. In the defi-
nition of Bp(·, ω) and Cp(·, ω), we allow the energy ω of
the magnetic polaron to vary, meaning that the expectation
value 〈. . .〉p,ω is taken with respect to the state |p〉 given
by Eq. (10), where the polaron energy εp is replaced by
ω in the appearing Green’s functions. As we will describe
in Sec. VI, this generalization combined with the diagram-
matic rules for the wave function given in Fig. 2 makes
it possible to derive self-consistency equations for the cor-
relation functions in Eqs. (16) and (17). These equations
are similar to Eq. (8) for the self-energy, and ultimately fa-
cilitate evaluation of correlation functions to all orders in
the number of spin-wave excitations in the wave function
Eq. (10).

A. Heisenberg limit

In Figs. 1(a) and 1(b), we show the spatial structure of the
local magnetization M̃p(d) = 2 〈Ŝz

d〉p Mp(d) in the isotropic
Heisenberg limit, α → 1, for two different coupling strengths.
The crystal momentum is p = (π/2, π/2), which corresponds
to one of the four degenerate ground states of the polaron
[Fig. 2(d)]. The results show that the hole significantly reduces
the magnetic order in its vicinity. This effect is particularly
prominent for strong coupling, J/t = 0.05, where the size of
the magnetization cloud is increased, and where the nearest-
neighbor spins are even flipped as a consequence of strong
correlations between the motion of the hole and the local
magnetization of the lattice.
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FIG. 3. Magnetization in the neighborhood of a hole for the
ground state magnetic polaron with p = (π/2, π/2) in a Heisenberg
antiferromagnet as a function of interaction strength J/t in a 16 by
16 square lattice. (a) Red squares are for the nearest-neighbor sites,
blue dots are the next-nearest neighbours, and green triangles are for
the perpendicular direction as illustrated in the inset. The lines are
guides to the eye. Note that the magnetization at the green points
are larger than in the absence of holes for intermediate interaction
strengths, J/t > 0.3. (b) Heat maps of the magnetization for a strong
and intermediate interaction strength, J/t = 0.05 (left) and J/t = 0.5
(right), respectively.

The emergence of this sign flip is illustrated in Fig. 3(a),
where we show the magnetization Mp(d) as a function of
the inverse interaction strength J/t , indicating that this strong
magnetic disturbance extends to larger and larger distances
as we enter the strong coupling regime and further increase
t/J . The results also show that the magnetization of the next-
nearest neighbours is anisotropic and reflects the direction of
the crystal momentum of the moving polaron. Perpendicular
to this direction, the magnetization can even be larger than in
the absence of the hole. This surprising effect results from the
coherent addition of the generated spin waves to produce a
net increase in the magnetization for intermediate interaction
strengths.

The elongated shape of the magnetization cloud is shown
more directly in Fig. 3(b). It appears that the magnetization
cloud is oriented along the crystal momentum of the po-
laron, as also reported previously based on truncated wave
function calculations. There, the observed alignment has been
attributed to the semiclassical idea that the hole will pre-
dominantly disturb the magnetization in the direction of its
motion [62,63]. However, as we will discuss below, this is
generally not the case, as the symmetry properties of the
underlying antiferromagnetic competes with the directed mo-
tion of the polaron and yields a nontrivial orientation of
the magnetization cloud with respect to the polaron crystal
momentum.

While the SCBA can in principle lead to an unphysical spin
state in the vicinity of the hole, we find no evidence for this
in the entire investigated region. More precisely, the physical
limits of the magnetization in Eq. (13) is ±1/(1 − 2Mfl) �
±1.67 corresponding to having exactly 0 or 1 spin excitations
at a given site. The most extreme value is associated with the
nearest-neighbor magnetization M(d = 1) � −0.81 at J/t =
0.01. This corresponds to a mean value of spin excitations of
M (2)(d = 1) = 0.74.

B. Symmetries

The preceding discussion suggests an underlying sym-
metry of the magnetization around the hole, which we will
explore for general crystal momentum of the polaron in this
section. The antiferromagnetic spin lattice exhibits several
point symmetries, namely mirror symmetries with respect to
the two principal axes and the diagonals of the lattice, as well
as C4 rotations. This combines to the symmetry group C4v .

The symmetry group for the magnetic polaron must there-
fore be a descendant of C4v . It turns out that the magnetic
dressing cloud of the polaron has a remarkably high sym-
metry and that the full C4v is recovered for certain crystal
momenta p of the polaron. First, it follows from time-reversal
symmetry that the dressing cloud is inversion symmetric, i.e.,
Mp(d) = Mp(−d), for all crystal momenta, corresponding to
the C2 point symmetry group in two dimensions. The two-
point hole-spin operator M̂ (2)(d) ∝ ĥ†

0ĥ0ŝ†
dŝd [see Eq. (14)]

gives the spatial structure of the magnetization around the
hole, and we can therefore argue for the spatial symme-
tries from here. Since it is hermitian, it fulfills the identity
〈p| M̂ (2)(d) |p〉 = 〈̃p| T̂ M̂ (2)(d)T̂ −1 |̃p〉 [71]. Here, T̂
is the antiunitary time-reversal operator and |̃p〉 = T̂ |p〉
is the time-reversed polaron state. Now, the magnetization
operator is invariant under T̂ , i.e. T̂ M̂ (2)(d)T̂ −1 = M̂ (2)(d),
since reversal of time does not affect position operators. On
the other hand, reversal of time flips the crystal momentum of
the polaron so that T̂ |p〉 = |−p〉. Consequently, M−p(d) =
Mp(d) and using the total inversion symmetry of the system
M−p(d) = Mp(−d), we finally arrive at the C2 inversion sym-
metry of the magnetization for any crystal momentum

Mp(−d) = Mp(d). (18)

Note that this symmetry holds in any state given by a real
linear combination of the crystal momentum eigenstates. This
general C2 point symmetry group of the magnetic dressing
cloud may come as a surprise, since p defines a specific
direction, which stands at odds with inversion symmetry along
the direction of the crystal momentum.

Higher spatial symmetries emerge for special crystal mo-
menta. When p is parallel to one of the lattice axes or
one of the diagonals, the magnetization is symmetric under
reflection operations parallel or perpendicular to the momen-
tum. Combined with the general C2 symmetry this forms the
C2v symmetry group. Remarkably, the reflection symmetries
along the lattice diagonals are retained for all crystal momenta
along the edge of the magnetic Brillouin zone (MBZ) given by
|px| + |py| = π , as indicated by black lines in Fig. 4(a). This
can be understood from the symmetry of the magnetization
under the translation p → p ± Q, where Q = (π, π ) is the
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FIG. 4. Magnetization around the hole for J/t = 0.3 vs indicated crystal momenta [panel (a)] in the Heisenberg limit. For crystal momenta
on the MBZ boundary [panels (b)–(f)], i.e., |px| + |py| = π , the system retains the reflection symmetries around the two diagonals (green-
dashed lines), even though the total crystal momentum of the magnetic polaron might point off these axes. For crystal momenta marked with
green (purple) symbols, the magnetization cloud is oriented along the x = y (x = −y) diagonal. When p = (±π, 0), (0,±π ) [black squares,
panel (d)], the dressing cloud recovers the full C4v symmetry of the background antiferromagnetic order. This symmetry is again reduced
when the crystal momentum does not lie on the MBZ boundary, as can be seen by comparing panels (d) [in the cases of p = (±π, 0)] and (g)
[p = (±π/2, 0)], which have different symmetries even though the momenta are parallel. For a general momentum in panel (h), only the C2

symmetry is retained and four crystal momentum states [black stars] show the same magnetization cloud pattern.

wave vector of the antiferromagnetic spin-density wave. For
crystal momenta along the line (px, py) = (px, π − px ), it
follows that states with momenta (px, π − px ) − Q = (px −
π,−px ) = (−py,−px ) must show the same magnetization
pattern. This gives the reflection symmetry around the y =
−x diagonal. Using the C2 symmetry described above then
gives that (py, px ) and (px, py) show the same magnetization
pattern, which corresponds to a reflection symmetry around
the y = x diagonal. As a result, the dressing cloud of the
magnetic polaron with momenta along the edge of the MBZ
is characterized by the high point symmetry group C2v . It
even follows that when the momentum is at the corners of
the MBZ, i.e., p = (±π, 0) or p = (0,±π ), the dressing
cloud of the polaron has the full symmetry C4v of the AF

state without the polaron. We note that this unusual spatial
symmetry of the moving polaron is a fundamental property
of the system, and holds generally irrespective of our SCBA
treatment. Remarkably, the highest spatial symmetry of the
magnetic polaron does, hereby, not emerge in its ground state
at p = (±π/2,±π/2).

The described symmetries are summarized in Fig. 4
showing the magnetic dressing cloud for different crystal
momenta. Moving along the MBZ [Figs. 4(b)–4(f)], the
magnetization cloud undergoes a discrete rotation where it is
always oriented along one of the diagonals, which leads to a
misalignment of the dressing cloud and the crystal
momentum. The dressing cloud recovers the full C4v

symmetry of the background antiferromagnetic order
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FIG. 5. Magnetization around the hole for J/t = 0.3 and different crystal momenta in the Heisenberg limit (top) compared to the scattering
probability P̄scat

p→q = Pscat
p→+q + Pscat

p→−q defined in Eq. (19) and normalized to its maximal value (bottom). While the crystal momentum of the
magnetic polaron may be misaligned with the magnetization cloud, we find that the scattering probability, characterizing in which direction
the hole preferably moves under the emission of spin waves, generally reflects the orientation of the magnetic dressing cloud. For the cases
illustrated in panels (d) and (e), the polaron shows a strong tendency to scatter to very few momentum states, making the scattering profile
remarkably sharp.

when p = (±π, 0), (0,±π ) [Fig. 4(d)], whereas the
symmetry descends to C2v when the momentum reduces
to p = (±π/2, 0) [Fig. 4(g)]. Finally, Fig. 4(h) shows
how the magnetic dressing cloud exhibits the minimal
C2 symmetry for a general momentum, while still
being misaligned with the crystal momentum of the
hole.

We can develop a microscopic picture of the discussed
symmetries by considering the probability to find a hole at
momentum q in a polaron state with momentum p. This
probability is given by

Pscat
p→q = 〈p| ĥ†

qĥq |p〉 − Zp · δp,q, (19)

and describes the scattering between the hole and excitations
of the AF in the magnetic polaron state. Since the bare hole
state ĥ†

p |AF〉 carries no spin wave excitations, and therefore
does not contain any information about the magnetization
cloud, we subtract the probability Zp of remaining in that
state. By itself, this scattering probability is not symmetric
under inversion of the scattered momentum, q → −q, but we
can consider its symmetrized form P̄scat

p→q = Pscat
p→+q + Pscat

p→−q,
which is shown in Fig. 5 for selected crystal momenta. The
depicted momentum distributions indicate the preferred direc-
tionality of the motion of the hole for a given momentum p
of the magnetic polaron, and its maxima indeed reflect the
orientation of the magnetization cloud. In particular, for the
ground-state momentum, p = (π/2, π/2), we see in Fig. 5(a)
that the hole motion predominantly remains along the x = y
diagonal, thereby reducing the magnetization the most in this
direction. The comparison between Mp(d) and P̄scat

p→q for p
clearly shows that it is not the polaron crystal momentum but
the preferred direction of the hole momentum that determines

the symmetry and orientation of of the magnetic dressing
cloud. Like the magnetization, P̄scat

p→q is obtained from a self-
consistency equation, which we derive in Appendix C.

C. Anisotropic spin interactions and the Ising limit

The developed framework also permits to study the tran-
sition from the Heisenberg to the Ising limit, by tuning the
parameter α from 1 to 0 in Eq. (3). While choosing α �= 1
looses the correspondence with the original Fermi-Hubbard
Hamiltonian, approaching the Ising limit makes the t-J model
better accessible to approximate treatments, such as a descrip-
tion in terms of defect-strings described in [25–32].

In Fig. 6(a), we plot the local magnetization around the
hole as a function of α for J/t = 0.3. As one approaches
the Ising limit, the magnetization cloud deforms and becomes
more symmetric. This is associated with the appearance of a

gap in the spin wave dispersion ωk = zJ
√

1 − α2γ 2
k /2, mak-

ing it harder for the hole to emit spin waves when α < 1.
The direction perpendicular to p stands out since the mag-
netization decreases as the Ising limit is approached, and the
coherent increase of the magnetization in a Heisenberg mag-
net is lost. The Ising limit α = 0 restores the C4v symmetry
of the magnetization, whereby the magnetization of all next-
nearest neighbours becomes identical.

This isotropy, shown in Fig. 6(b), makes it possible to de-
rive an analytical expression for the magnetization in the Ising
limit, as we show explicitly in Appendix D. Due to corrections
to the hole Green’s function beyond the SCBA [60] and the
so-called Trugman loops [27], this result is not exact. In fact,
these small corrections have been shown [27,60] to slightly
lift the massive degeneracy of the crystal momentum states,
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FIG. 6. Magnetization in the neighborhood of a hole for the
polaron ground state with p = (π/2, π/2) as a function of α de-
termining the anisotropy of the spin-spin interactions for J/t = 0.3
in a 16 by 16 square. (a) Near the Heisenberg limit, α � 1, the
magnetization of the nearest neighbors (red squares) and of the
next-nearest neighbors in direction of the hole crystal momentum
(blue dots) rapidly changes with α, whereas it only changes slightly
for 0 � α � 0.8. (b) Magnetization heat maps for the Ising case
(α = 0, left) and for α = 0.5 (right). Note the difference in scale
from Fig. 5(a), which illustrates the shrinking dressing cloud as the
Ising limit is approached.

favoring the crystal momentum p = (0, 0) as the ground state.
Therefore, the reemergence of the C4v symmetry in the Ising
limit [30] can be expected to be an exact result for the ground
state of the t-Jz model.

V. STRONG-COUPLING EFFECTS

Previous SCBA calculations of spin-hole correlations
have required a truncation of the SCBA polaron wave
function restricting the number number of spin wave ex-
citations [63,64] or considered essentially flat excitation
spectra [63,65] to simplify higher-order terms in the polaron
wave function.

Since the hole-spin interaction vertex scales as g(q, p) ∼ t ,
and the spin wave energy scales as ∼J , such a truncation of
the wave function can be understood as a perturbative series
in t/J . This naturally limits the accuracy of such calculations
to the weak to intermediate coupling regime J/t � 1. This is
illustrated in Fig. 7, where we compare the results from this
truncation approach to our nonperturbative theory. For the in-
teraction strength J/t = 1, the results converge nicely, and the
magnetization calculated by including up to three spin waves
in the wave function is essentially identical to the nonpertur-
bative result. However, we see that the effects of the hole on
the surrounding magnetization is significantly underestimated
by the truncated wave functions for J/t = 0.05. In particular,
it completely misses the sign flip in the magnetization at the
nearest-neighbor sites.

FIG. 7. Comparison of the full magnetization obtained from our
nonperturbative calculation (solid lines) with that obtained by trun-
cating the summation of the lowest terms (dashed lines) for J = t
(a) and J = 0.05t (b) as a function of distance d from the hole
along the y direction in a 16 by 16 square lattice. The dashed lines
correspond to including 1, 2, and 3 spin waves in the magnetic
polaron wave function, Eq. (10). For J = t , keeping only 2 spin
waves gives an accurate description, while the 3 spin wave result is
indistinguishable from the full calculation. For J = 0.05t , however,
the full calculation yields quantitatively and qualitatively different
results, including a sign flip of the magnetization at the nearest
neighbor, d = 1.

One should note that the t-J model no longer describes the
Fermi-Hubbard model when J ∼ t . The found discrepancies,
therefore, render any such truncation procedures practically
inapplicable when comparing to the Fermi-Hubbard model.
In contrast, the nonperturbative framework developed here
allows for the inclusion of all terms in Eq. (10), whereby one
can describe the spatial correlation of holes and spins deep in
the strongly correlated regime of J/t 	 1, in which the SCBA
is expected to yield an efficient and accurate description of the
t-J Hamiltonian as well as the Fermi-Hubbard model around
half filling.

VI. DERIVATION OF SELF-CONSISTENCY EQUATIONS

We now describe the theoretical framework to include
all terms in the SCBA wave function, Eq. (10), as used in
the previous section. In particular, we derive self-consistency
equations for the B and C functions in Eqs. (16) and (17),
which makes it possible to sum the infinite series in terms of
spin wave excitation numbers.

Figure 8 shows the first few diagrams in the B series.
We construct these diagrams in the following way. First, we
take the polaron wave function |p〉 and its adjoint 〈p|,
corresponding to Fig. 2(b) and its mirror image, respectively.
Second, we place the operator B̂ = N

∑
k ĥ†

k+q1
ĥk+q2 b̂†

−q1
b̂−q2

between 〈p| and |p〉 to compute the expectation value
B(q1, q2; p, εp) in Eq. (16). A nonzero contribution to this
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(a)

N/Zp = 1 + + + . . .

(b)

B1 =

B2 = +

B3 = +

+

B4 = . . .

FIG. 8. Diagrammatic representation for the norm series (a) and
the B series (b). The B series comes from inserting the basic diagram,
B1, in the norm series (a). The shown diagrams are the ones that give
a nonzero contribution to the B function. These come in an increasing
order denoted Bn, where n denotes the number of interaction vertices
(red dots) to each side. At a given order n, there are n nonzero
diagrams.

expectation value involves the annihilation of a hole and a
spin wave for both 〈p| and |p〉, which yields the structure
B1 in Fig. 8(b). Finally, all spin waves from 〈p| and |p〉
that are not annihilated by B̂ must be joined together. Visually,
this means that the series can be constructed from the norm
series shown in Fig. 8(a). Specifically, we detach all double
lines from black and red dots, insert the likewise detached B1

diagram and reassemble the double lines with the dots. As a
result, an infinite series of terms B1, B2, . . . emerges [62,63],
as shown in Fig. 8(b). The nth term Bn = ∑n

i=1 B(i)
n contains

n nonzero diagrams coming from the n spin wave term in
the polaron wave function (10). In all diagrams, we have
suppressed the two overall single lines corresponding to the
residue Zp as depicted in Fig. 2(e). All diagrams, where the
spin wave lines of the wave function cross are not allowed
within the SCBA, and have to be omitted for consistency. This
is at the heart of the SCBA, in which only rainbow diagrams
are included. Also, all diagrams that are left-right asymmetric
vanish, as we show explicitly in Appendix B.

The central idea to obtain the self-consistency equations is
the following. First, we take the last diagram from each order
B(n)

n and sum up only these, to obtain

B0 =
∞∑

n=1

B(n)
n . (20)

This leads to the diagrammatic structure shown in Figs. 9(a)
and 9(b). Second, we notice that all other terms in Fig. 8
are related to B0 by putting a number of spin wave lines
around B0. The result is the full B function shown in Fig. 9(c).
Algebraically, the B0 function is thus

B0(q1, q2; p, ω) = Ng(p, q1)g(p, q2)

(a)

B0 = +

(b)

=
FB

+
FB

(c)

B = B0 + B0 + . . . = B0 + B

FIG. 9. (a) Summation of all the last diagrams, B0 = ∑
n B(n)

n .
(b) The FB function thus emerges. (c) Finally, the full B function
comes about by putting 0, 1, 2 . . . spin wave lines around B0. This
results in a self-consistent equation for the B function.

× G(p+ q1, ω− ωq1 )G(p+ q2, ω− ωq2 )

× [1 + FB(q1, q2; p, ω)]. (21)

This is written in terms of the function FB, which fulfills the
self-consistency equation

FB(q1, q2; p, ω) =
∑

k

g(p + q1, k)g(p + q2, k)

× G(p + q1 + k, ω − ωq1 − ωk )

× G(p + q2 + k, ω − ωq2 − ωk )

× [1 + FB(q1, q2; p + k, ω − ωk )], (22)

that is depicted diagrammatically in Fig. 9(b). Both of these
depend on the general energy ω � εp. Finally, the self-
consistency equation shown in Fig. 9(c) can be written as

B(q1, q2; p, ω) = B0(q1, q2; p, ω)

+
∑

k

g2(p, k)G2(p + k, ω − ωk )

× B(q1, q2; p + k, ω − ωk ). (23)

Importantly, we can relate the structure of Eqs. (22) and (23)
to that of the self-energy, in Eq. (8). Specifically, taking the
derivative of the self-energy equation yields

−∂ω	(p, ω) =
∑

k

g2(p, k)G2(p + k, ω − ωk )

× [1 − ∂ω	(p + k, ω − ωk )], (24)

which corresponds to the norm series in Fig. 8(a), apart from
the first term. Comparing this to the self-consistency equation
for the B function, we see that −∂ω	(p, ω) takes on the
role of B, while

∑
k g2(p, k)G2(p + k, ω − ωk ) corresponds

to B0. For each external momenta q1 and q2, these more
advanced self-consistency equations, thus, show the exact
same structure as that of the self-energy. In fact, computing
FB(0, 0; p, ω + ω0) in Eq. (22) and comparing it to Eq. (24)
shows that

FB(0, 0; p, ω + ω0) = −∂ω	(p, ω), (25)

which in turn is related to the quasiparticle residue in Eq. (9).
This link provides a useful consistency check for the nu-
merical calculations, and also offers an alternative way of
computing the residue. Furthermore, it shows that the order
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of the B and C functions (including the overall factor of Zp)
is Zp · O( − ∂ω	(p, ω)) = Zp(1/Zp − 1) = 1 − Zp. This em-
phasizes that small quasiparticle residues, Zp 	 1, correspond
to large changes in the local magnetization cloud, B,C ∼ 1, as
was discussed in more general terms in Sec. III.

For the C function, an equivalent derivation, see Ap-
pendix A, leads to the feeding term

C0(q1, q2; p, ω)

= N
[
g(p, q1)g(p + q1, q2)G(p + q1, ω − ωq1 )

+ g(p, q2)g(p + q2, q1)G(p + q2, ω − ωq2 )
]

× G(p + q1 + q2, ω − ωq1 − ωq2 ),

× [1 + FC (q1, q2; p, ω)]. (26)

This is written in terms of the FC function

FC (q1, q2; p, ω)

=
∑

k

g(p, k)g(p + q1 + q2, k)

× G(p + k, ω − ωk )

× G(p + q1 + q2 + k, ω − ωq1 − ωq2 − ωk )

× [1 + FC (q1, q2; p + k, ω − ωk )], (27)

which has the same role as FB in the B series, and which it also
closely resembles. The final self-consistency equation for the
C function is identical to Eq. (23) with C and C0 playing the
role of B and B0, respectively.

The full computation of the magnetization in the neighbor-
hood of a hole can then be performed as follows. For each pair
of external spin wave momenta q1, q2, we first solve the two
self-consistency equations for FB and FC , Eqs. (22) and (27),
respectively. From these, we calculate B0 and C0, Eqs. (21)
and (26). These are used in the self-consistency equation (23).
We then multiply B and C with the overall residue Zp, and
finally transform them to position space according to Eqs. (16)
and (17). The task of solving N2 self-consistency equations
may seem daunting at first sight. A major simplification,
however, comes from a number of symmetry properties of
the B and C functions in momentum space, as outlined in
Appendix E. Therefore, only a small fraction of the N2 equa-
tions has to be solved explicitly, whereby all results presented
in this work could be obtained with modest computational
resources.

VII. EXPERIMENTS

The spatial structure of magnetic polarons can play an
important role for the transport properties of electrons in a
solid. While experiments show evidence for their formation
in the cuprates [72–78], a detailed and direct probing of the
underlying correlations on a microscopic level has not been
possible in condensed matter measurements. This has changed
with the development of quantum simulation platforms based
on cold atoms in optical lattices [38,79,80], and has in recent
years made it possible to implement near-perfect realizations
of the Fermi-Hubbard model [39–53].

The single-site resolution achievable in current exper-
iments permits to image any desired correlation function
between particles, and in particular between a dopant and
its surrounding effective spins. This opens up the possibility
to probe the inner structure of the magnetic polaron and its
motion, as explored in the present work. So far, the lowest
achieved temperatures are around kBT = 0.5J [47], at which
there may be significant thermal corrections to the pure po-
laron states investigated here. Reaching lower temperatures
will be an important step for direct comparisons and is widely
expected to yield key insights into the microscopic physics of
magnetic polarons and their role in high-Tc superconductivity
in strongly correlated materials.

While such quantum simulators of the Fermi-Hubbard
Hamiltonian naturally realize the isotropic t-J model, the
versatile toolbox to control and manipulate cold atoms also
makes it possible to implement more general spin Hamil-
tonians, such as considered in Eq. (3). This includes polar
molecules [67], as well as Rydberg-dressed atoms in optical
lattices [69,70,81–84], which will make it possible to contin-
uously tune between the t-J and t-Jz model, and to realize low
temperatures compared to the much larger spin interactions
achievable in these systems.

VIII. CONCLUSIONS AND OUTLOOK

Inspired by recent experimental breakthroughs, we ex-
plored the properties of magnetic polarons that are formed by
a hole and spin fluctuations in an antiferromagnetic square
lattice, as described by the t-J model. By combining the
SCBA for the hole Green’s function with the many-body
wave function wave of the polaron, we developed a nonper-
turbative resummation scheme that now makes it possible to
determine spin-hole correlations in the strongly interacting
regime. This method thus enables broad explorations of the
microscopic structure of magnetic polarons, which, so far,
has not been possible within the SCBA. Given the proven
accuracy of the SCBA for one-body observables such as the
energy and residue of the polaron, this constitutes a significant
step forward and will enable detailed analyses of ongoing
experiments based on cold-atom quantum simulators. To il-
lustrate the power of the approach, we have considered the
magnetization in the vicinity of the hole, which turns out to
deviate considerable from previous perturbative results under
conditions where the t-J model is valid. For a moving hole the
magnetization cloud has an elongated shape, which features a
surprising misalignment with the hole momentum that orig-
inates from the various symmetries of the antiferromagnetic
state of the underlying spin lattice.

The demonstrated possibility to explore correlations within
the SCBA opens up new perspectives for studying strongly
correlated quantum matter, including the physics of cuprates
in the limit of small doping. It has been shown [28,85,86]
that these systems can be modeled quantitatively by includ-
ing next-nearest-neighbor hopping terms in the Hamiltonian,
defining the so-called t-t ′-t ′′-J model. Within linear spin wave
theory, this amounts to the addition of kinetic energy terms for
the hole and can, thus, straightforwardly be including in our
methodology.
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The developed approach in general offers a promising
starting point for extensions of the method along several
directions and will facilitate detailed comparisons to recent
cold-atom experiments on the Fermi-Hubbard model. While
we have focused here on two-dimensional square lattices,
the developed theoretical framework can be equally applied
to any bipartite Bravais lattice in one, two or three spa-
tial dimensions. It will moreover be interesting to assess
corrections beyond linear spin wave theory [87–92] and to
explore higher-order correlation functions [20,30,31], which
have been observed in recent cold-atom experiments [46–48].
The SCBA approach as used here to describe spin-hole corre-
lations may also be employed to analyze correlations between
two holes [10,93,94], which will contribute to the understand-
ing of pairing and a potential mechanism for high temperature
superconductivity in the limit of small doping [9,37,95–
98]. While the present pure-state treatment restricts our pre-
dictions to zero temperature, generalizing our framework
to finite temperatures will make it possible to characterize
the impact of temperatures that are currently achievable in
optical-lattice experiments [46–48] and enable tests of the
SCBA framework based on direct comparisons to measured
correlation functions at finite temperature and strong interac-
tions. Circumventing current temperature limitations, recent
experiments [53] have probed the transient dynamics fol-
lowing hole creation [99,100], which permits to trace the
formation of magnetic polarons. We anticipate that the SCBA
approach developed in this work can also provide an accurate
framework to describe the non-equilibrium dynamics of po-
larons in strongly interacting quantum magnets.
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APPENDIX A: DERIVATION OF C FUNCTION

The derivation of the C function closely follows the deriva-
tion of the B function in Sec. VI. The basic diagram for the C
series is denoted C02 and shown in Fig. 10(a). Analogous to
the B series, the full C series is then obtained by placing this
basic diagram in the norm series, Fig. 8(a). This leads to the
terms Cn,n+2, where n is the number of spin waves from the
adjoint state 〈p| and n + 2 is the number of spin waves from
|p〉. There are n + 1 terms at order n: Cn,n+2 = ∑n

i=0 C(i)
n,n+2.

As for the B series, we, then, first sum up only the last dia-
grams C(n)

n,n+2 at each order, defining

C0 =
∑

n

C(n)
n,n+2. (A1)

This leads to the diagrammatic structure shown in Figs. 10(b)
and 10(c). The result can be written in a similar form to B0

(a)

C02 =

C13 =
+

C24 =
+

+

C35 = . . .

(b)

C0 = +

FC

(c)

C = C0 + C0 + . . . = C0 + C

FIG. 10. Diagrammatic representation for the C series. (a) The
C series comes from inserting the basic diagram, C02, in the norm
series, Fig. 8(a). The shown diagrams are the ones that give a
nonzero contribution to the C function. These come in an increasing
order denoted Cn,n+2. At a given order n, there are n interaction
vertices to the left, n + 2 to the right and a total of n + 1 nonzero
diagrams. (b) Summation of all the last diagrams, C0 = ∑

n C (n)
n,n+2.

The appearing FC function is shown in double spin wave lines.
Diagrammatically, this looks identical to FB. However, because the
exterior is different, the structure of the self-consistent equation for
FC [Eq. (27)] is different in this case. (c) The self-consistent equation
for the full C function is achieved by putting 0, 1, 2, . . . spin wave
lines around C0.

and FB, see Eqs. (21) and (22). Explicitly,

C0(q1, q2; p, ω)

= N[g(p, q1)g(p + q1, q2)G(p + q1, ω − ωq1 )

+ g(p, q2)g(p + q2, q1)G(p + q2, ω − ωq2 )]

× G(p + q1 + q2, ω − ωq1 − ωq2 ),

× [1 + FC (q1, q2; p, ω)]. (A2)

Here, FC is given by Eq. (27), while the above expression is
identical to Eq. (26). By putting 0, 1, 2, . . . spin wave lines
around C0, as shown in Fig. 10(c), the self-consistent equation
for C is achieved

C(q1, q2; p, ω) = C0(q1, q2; p, ω)

+
∑

k

g2(p, k)G2(p + k, ω − ωk )

× C(q1, q2; p + k, ω − ωk ), (A3)
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Basym.
2 =

Cvan.
13 =

FIG. 11. Examples of vanishing B and C diagrams from orders
B2 and C13, respectively.

which has the exact same structure as Eq. (23) for the B
function.

APPENDIX B: VANISHING DIAGRAMS

In this section, we show that all left-right asymmetric di-
agrams in the B series vanish, and that the corresponding
diagrams in the C series vanish as well.

To understand how these diagrams vanish, we must first
analyze a certain symmetry of the interaction vertex g(p, k).
Consider, therefore, a Bravais lattice in which the lattice
points can be written

r = n1a1 + n2a2 + n3a3. (B1)

Here, the ai’s are the primitive vectors. In 2D, we simply set
n3 = 0. In 1D, n3 = n2 = 0. When the lattice is bi-partite, we
can choose the primitive vectors to be nearest neighbors to
a given site, such that δ ∈ {±a1,±a2,±a3}. Because of the
periodic boundary conditions eik·a j ·L j = 1 for a Lx × Ly × Lz

lattice. In turn,

k · a j = n j · 2π

Lj
, (B2)

where n j = −Lj/2 + 1,−Lj/2 + 2, . . . , Lj/2 is an integer.
Now, the wave vector of the antiferromagnetic spin-density
wave Q is defined by letting n j = Lj/2 for j = x, y, z. Then
eiQ·a j = eiπ = −1. In turn,

γk+Q = 1

z

∑
δ

eiQ·δeik·δ = −γk, (B3)

since eiQ·δ = −1, using that δ ∈ {±a1,±a2,±a3}. As in Ap-
pendix B, the change in sign of γk also means that the
interaction changes sign

g(p, k + Q) = g(p + Q, k) = −g(p, k). (B4)

On the other hand, the self-energy, and thereby the Green’s
function G(p, ω), is insensitive to this change in sign, because
it scales with the square of the interaction. Therefore,

G(p + Q, ω) = G(p, ω). (B5)

As we shall now show this leads to the vanishing of all asym-
metric B diagrams, as well as the corresponding diagrams in
the C series.

Specifically, the asymmetric diagrams are all of the
form shown in the top of Fig. 11. The example shown

evaluates to

Basym.

2 (q1, q2; p, ω) = N g(p, q2)G(p + q2, ω − ωq2 )

×
∑

k

g(p, k)G(p + k, ω − ωk )

× g(p + k, q1)g(p + q2, k)

× G(p + k + q1, ω − ωk − ωq1 )

× G(p + k + q2, ω − ωk − ωq2 ).

(B6)

Here, the key point is that unlike the symmetric diagrams
in Fig. 8, there is an odd number of terms with interaction
vertices g(·, ·) that depend on the summation index, k. It is,
therefore, sensitive to changes in sign of g. As a result, the
two terms k and k + Q in the sum in Eq. (B6) have the
same magnitude, but opposite signs. Therefore, they cancel
each other exactly. In this way, all asymmetric diagrams in
the B series vanish identically. Another way to understand
this vanishing is in terms of sublattice states. Every time the
hole hops, it changes sublattice. Therefore, the asymmetric
diagrams like the one shown in the top of Fig. 11 features
overlaps of holes in opposite sublattices and thus vanish. In-
deed, the symmetry in Eq. (B4) of the interaction is due to the
underlying sublattice symmetry of the system.

We finally comment on the vanishing of the remaining
diagrams in the C series. These diagrams have the structure
shown in bottom part of Fig. 11, where at least one spin wave
line is between the external spin wave lines at momenta −q1

and −q2 joining the black dot. The reason that this vanishes
is exactly the same as why the asymmetric diagrams in the
B series all vanish. Specifically, a sum ∼ ∑

k g(p, k)g(p +
q1, k)g(p + q1 + k, q2) appears, in which terms at k and
k + Q cancel.

APPENDIX C: SELF-CONSISTENCY EQUATION FOR THE
SCATTERING PROBABILITY

In this Appendix, we derive a self-consistency equation for
the scattering probability

Pscat
p→q = 〈p| ĥ†

qĥq |p〉 − Zp · δp,q (C1)

also defined in Eq. (19) of the main text. While this can be
done diagrammatically as for the B and C functions, it is just
as simple to write down the lowest-order terms at a general
energy ω and recognize the pattern. As for the B and C series,
we omit the overall factor of the residue Zp in the following.
This must be included in the end. Since the final momentum
must be q, the total change in crystal momentum is q − p.
The lowest order term from the polaron wave function is
thus g2(p, q − p)G2(q, ω − ωq−p). As required, the scattering
probability to a specific momentum state scales as 1/N , since
g2(·, ·) ∝ 1/N . Inclusion of the next term yields

Pscat
p→q(ω) = g2(p, q − p)G2(q, ω − ωq−p)

+
∑

k

g2(p, k)G2(p + k, ω − ωk )

× g2(p+ k, q− p− k)G2(q, ω− ωk− ωq−p−k )

+ . . .
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FIG. 12. C2 symmetrized scattering probability P̄scat
p→q =

Pscat
p→+q + Pscat

p→−q normalized to their maximal values for various
indicated crystal momenta and an interaction strength J/t = 0.3
in a 16 by 16 square lattice. Moving through panels (a) to (d), we
increase py from 4π/8 to 7π/8, keeping px = 7π/8 constant. Panel
(a) corresponds to Fig. 5(e).

In the second term, there is a single free momentum, k, but
the final momentum must again be q. This gives the structure
of the second term. This series continues indefinitely, but we
notice that it can be rewritten as a self-consistency equation

Pscat
p→q(ω) = g2(p, q − p)G2(q, ω − ωq−p)

+
∑

k

g2(p, k)G2(p + k, ω − ωk )

× Pscat
p+k→q(ω − ωk ). (C2)

Like the equations for the B and C functions, this has the
exact same structure as the equation for the derivative of the
self-energy Eq. (24). By solving this iteratively, evaluating at
the quasiparticle peak εp and multiplying the result by the
residue Zp, we obtain the scattering probabilities plotted in
Fig. 5. If we sum up all contributions in Eq. (C1), we obtain∑

q Pscat
p→q = 1 − Zp, as one might expect. This summation

rule gives a good consistency check for the numerical calcu-
lations.

In Figs. 5(d) and 5(e), we noticed that the scattering profiles
are remarkably sharp. We look into this in Fig. 12, where we
vary py from 4π/8 to 7π/8, keeping a constant px = 7π/8
as in Fig. 5(e). This shows that the sharp scattering profiles
in Figs. 5(d)–5(e) are by no means exceptional. In fact, at
p = (7π/8, 7π/8), the scattering probability is sharpened fur-
ther, and the hole dominantly scatters to only eight distinct
momentum states.

APPENDIX D: ANALYTICAL RESULT IN THE
ISING LIMIT

In this Appendix, we derive an analytical formula for
the magnetization in the Ising limit α = 0. This is possible
due to a huge simplification in the interaction, g(q, k) → zt ·
γq+k/

√
N . As a result of this simplification, the Green’s func-

tion within SCBA is independent of crystal momentum, and
fulfills the equation G−1(ω) = ω − zJ/2 − zt2 · G(ω − zJ/2).
This allows for an analytical solution in terms of a continued
fraction [101]

G(ω) = 1

ω − zJ/2 − zt2 1
ω−2·zJ/2−zt2 1

ω−3·zJ/2...

, (D1)

facilitating a numerically simple implementation. We now
show that a similar description applies to the magnetization.

Since the antiferromagnetic coherence factors in the Ising
limit are uk → 1 and vk → 0, the C series does not contribute
to the magnetization [Eq. (17)]. Focusing then on the B series,
we first calculate FB from Eq. (22)

FB(q1 − q2; ω) = zt2γq1−q2 G2(ω − zJ )

× [1 + FB(q1 − q2, ω − zJ/2)]

=
∞∑

n=1

(zt2γq1−q2 )n
n∏

k=1

G2
(
ω − (k + 1)

zJ

2

)
.

(D2)

To obtain the upper line, we assume that FB is indepen-
dent of the polaron crystal momentum p, and use that∑

k γk+q1γk+q2/N = γq1−q2/z. Note that FB only depends on
relative momentum, q1 − q2. Then, by repeatedly reinserting
FB as described by the upper line, we obtain the infinite series
in the lower line. From Eq. (21), it then follows that

B0(q1, q2; p, ω) = (zt )2γp+q1γp+q2 G2(ω − zJ/2)

× [1 + FB(q1 − q2; ω)]. (D3)

This, therefore, still depends on the momentum of the po-
laron p. To get rid of this momentum dependency in the
self-consistency equations, we define

�B(q1, q2; ω) = B(q1, q2; p, ω) − B0(q1, q2; p, ω), (D4)

and make the ansatz that this is independent of p. Using
Eq. (23), we, in fact, get

�B(q1, q2; ω) = �B0(q1, q2; ω) + zt2 · G2(ω − zJ/2)

× �B(q1, q2; ω − zJ/2), (D5)

where

�B0(q1, q2; ω) = (zt2)2

[
2γq1γq2 +

(
1− 2

z

)
γq1−q2 −

γq1+q2

z

]

× G2(ω − zJ/2)G2(ω − zJ )

× [1 + FB(q1 − q2; ω − zJ/2)] (D6)

Here, we use that
∑

k γ 2
k γk+q1γk+q2/N = [2γq1γq2 + (1 −

2/z)γq1−q2 − γq1+q2/z]/z2. In the final step, we repeatedly
insert �B on the right-hand side, starting from the initial value
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of �B = 0. Thus,

�B(q1, q2; ω)

= �B0(q1, q, ω) +
∞∑

n=1

(zt2)n ·
n∏

k=1

G2
(
ω − k

zJ

2

)

× �B0

(
q1, q2; ω − n

zJ

2

)
. (D7)

To get the sought analytical result for the B series, we then
combine Eqs. (D7) for �B and (D4) for B with Eq. (D6)
for �B0, Eq. (D3) for B0, and Eq. (D2) for FB. In all of
these expressions, we use the continued fraction form for the
Green’s function in Eq. (D1). Finally, the magnetization in the
neighborhood of the hole is achieved by multiplying B with
the (momentum independent) residue Z and then transforming
to position space using Eqs. (15) and (16).

Since B0 depends explicitly on the polaron crystal momen-
tum, p, we might expect that the magnetization in position
space will as well. We show now, however, that the mag-
netization becomes independent of the polaron momentum
just as the Green’s function Eq. (D1). The magnetization,
M(d) = �M(d) + M0(p, d), can be separated into two terms
using Eq. (D4):

�M(d) = 1

N2

∑
q1,q2

ei(q1−q2 )·d�B(q1, q2; ε0)

M0(p, d) = 1

N2

∑
q1,q2

ei(q1−q2 )·dB0(q1, q2; p, ε0). (D8)

Here, we explicitly evaluate the functions at the
quasiparticle ground state energy, ε0 = 	(ε0). While
the first term, �M(d), is explicitly independent of p,
the second term, M0(p, d), might still depend on p. We
now insert Eq. (D3), writing �q = q1 − q2 and using
that B0(q1, q2; p, ε0) = Zγp+q1γp+q2 b0(�q; ε0). Here,
b0(�q; ε0) = (zt )2G2(ω − zJ/2)[1 + FB(�q; ω − zJ/2)].
Consequently, we get

M0(p, d) = Z

N2

∑
�q,q1

ei�q·db0(�q; ε0)γp+q1γp+q1−�q

= Z

(zN )2

∑
�q,q1

ei�q·db0(�q; ε0)

×
∑
δ1,δ2

ei(p+q1 )·(δ1+δ2 )−i�q·δ2 .

Note that Z is the quasiparticle residue, while z is the coordi-
nation number. The sum over q1 now enforces δ2 = −δ1,

M0(d) = Z

z2N

∑
�q

ei�q·db0(�q; ε0)
∑
δ1

e−i�q·δ1

= Z

zN

∑
�q

ei�q·db0(�q; ε0)γ�q. (D9)

This shows explicitly that the magnetization is independent of
the polaron momentum p in the Ising case.

APPENDIX E: SYMMETRIES OF THE B
AND C FUNCTIONS

From the equations for the B and C function [Eqs. (16)
and (17)]

B(q1, q2; p, ω) = N
∑

k

〈ĥ†
k+q1

ĥk+q2 b̂†
−q1

b̂−q2〉p,ω
,

C(q1, q2; p, ω) = N
∑

k

〈ĥ†
k−q1−q2

ĥkb̂−q1 b̂−q2〉p,ω
. (E1)

and the spatial symmetries of the interactions, it follows that
the B and C functions have 3 essential symmetry properties
(X = B,C)

(1) Total exchange symmetry:
X (q2, q1; p, ω) = X (q1, q2; p, ω)

(2) Any exchange of (x, y, z) coordinates:

X (q∗
1, q∗

2; p∗, ω) = X (q1, q2; p, ω).
Example: q∗ = (qx, qy, qz )∗ = (qy, qx, qz ).

(3) Sign flip of individual coordinates:
X (q̄1, q̄2; p̄, ω) = X (q1, q2; p, ω).
Example q̄ = (−qx, qy, qz ).

For the C function, the total exchange symmetry
(1) follows directly from the symmetric form of C
in Eq. (E1). For the B function, we additionally use
that it is real so that B(q1, q2; p, ω) = B∗(q1, q2; p, ω) =
N

∑
k 〈(ĥ†

k+q1
ĥk+q2 b̂†

−q1
b̂−q2 )†〉

p,ω
= B(q2, q1; p, ω). The re-

ality of B(q1, q2; p, ω) is a result of the fact that all
coefficients in the polaron wave function expansion in Eq. (10)
are real. This, in turn, is a consequence of the fact that all
appearing Green’s functions are always evaluated below the
quasiparticle peak. The second and third symmetries reflect
that there is no preferred direction of the system. Therefore,
we can swap the coordinates as we wish (2) and reverse 1, 2
or all 3 spatial directions (3).
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