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Steady-state phases of the dissipative spin-1/2 XYZ model with frustrated interactions
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We investigate the steady-state phases of the dissipative spin-1/2 J1-J2 XYZ model on a two-dimensional
square lattice. We show the next-nearest-neighboring interaction plays a crucial role in determining the
steady-state properties. By means of the Gutzwiller mean-field (MF) factorization, we find the emergence of
antiferromagnetic (AFM) steady-state phases. The existence of such AFM steady-state phases in thermodynamic
limit is confirmed by cluster mean-field (CMF) analysis. Moreover, we find evidence of the limit cycle phase
through the largest quantum Lyapunov exponent in small cluster and check the stability of the oscillation by
calculating the averaged oscillation amplitude up to 4 × 4 CMF approximation.
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I. INTRODUCTION

Quantum phase transition under equilibrium conditions has
achieved a profound understanding in the past decades. The
quantum phase transition is manifested by the continuous or
abrupt changes of the ground state of a quantum many-body
system when varying the external parameter. The spontaneous
symmetry broken in the ground state is essentially driven by
quantum fluctuations [1].

The phase transition in a quantum many-body system may
also happen under the out-of-equilibrium condition. Actually,
the inevitable interactions of a quantum system and its en-
vironment always drive the system, referred to as an open
system, far from equilibrium. Because the thermal equilibrium
is absent, the stationary property of the nonequilibrium system
is determined by the asymptotical steady state of the nonuni-
tary dynamics in the long-time limit. Usually, the dynamics of
the open system in a Markovian (memoryless) environment
is well described by the quantum master equation in Lind-
blad form ˙̂ρ(t ) = Lρ̂(t ), where L is the so-called Liouvillian
superoperator [2–4]. The properties of the steady state, as a
result of the competition between the coherent evolution and
the dissipative process, can be captured by the spectrum of
L [5]. Analogous to the equilibrium case, the steady-state
symmetry ruled by the Lindblad master equation may also be
spontaneously broken in the thermodynamic limit.

The steady-state phase diagram of the open quantum many-
body system is predicted to be particularly rich [6–9]. It
displays exotic phases that have spontaneously broken the
symmetries possessed by the Liouvillian of the system [6,10–
14]. Among the steady-state phases, the limit cycle (LC)
phase, which spontaneously breaks the time translation in-
variance, has attracted significant attention [15–19]. It is
considered to be a potential realization of time crystals in the
nonequilibrium system [20–22]. Experimental investigations
of nonequilibrium properties of open quantum many-body
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systems have been realized in trapped ions [23], ultracold
atomic gases in optical lattices [24–28], and arrays of coupled
QED cavities [29–31].

Recently, it was explored that the frustration in a many-
body system can induce fantastic nontrivial steady-state
properties, such as the antiferromagnetism (AFM), spin-
density wave, and chaotic dynamics [32–35]. The frustration
refers to the fact that the competing interactions between
neighboring sites cannot be satisfied simultaneously [36–38].
Generally, the presence of frustration is characterized by a
large degeneracy in ground-state energy [39]. It is believed
that the frustration tends to destroy conventional long-range
orders. Basically, the frustration stems from either the ge-
ometry of the lattice or the competition among interactions
in the system. We call the former the geometrical frustration
and the latter the interaction frustration. One of the prototypes
of the geometrically frustrated system is the two-dimensional
Ising AFM on a triangular lattice. In this well-known model,
the incompatible AFM interplay emerges once two of the
spins are aligned oppositely to satisfy the AFM interaction and
the third one cannot be antialigned to the other two spins si-
multaneously. The macroscopically degenerated ground state
shows the fluidlike behavior [40,41]. The geometrical frustra-
tion has been realized experimentally [42–44]. Theoretically,
it has been shown that in the geometrically frustrated spin-
1/2 system on a triangular lattice, unconventional steady-state
antiferromagnetism and spin-density wave emerge [32,33].

Regarding the competing-interaction frustrated system,
the typical example is the J1-J2 spin-1/2 Heisenberg model
on square lattice in which both the nearest- (J1) and the
next-nearest- (J2) neighboring (NNN) interactions are consid-
ered. The competition between the nearest-neighboring (NN)
and NNN interactions dramatically modifies the Hamiltonian
spectrum of the system with only NN interactions. The ratio
J1/J2 determines the properties of the ground state of the
system. In particular, for J1/J2 < 1, the ground state in the
so-called Néel state, while in the opposite side J1/J2 > 1, is
in the collinear striped antiferromagnetic (CAF) order [45,46].
In the intermediate region, the long-range order is suppressed
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by quantum fluctuations and the system is strongly frustrated.
It is believed that the quantum spin liquid may exist in this
region [47]. Inspired by the rich ground-state phase diagram
induced by the competing NN and NNN interactions in the
equilibrium case, we are going to investigate the steady-state
properties of the open quantum many-body system with the
J1-J2 interactions. As a concrete example, we focus on a
dissipative spin-1/2 XYZ model on two-dimensional square
lattice. We consider both the NN and the NNN anisotropic
Heisenberg couplings among the sites. In addition, the local
dissipative processes on each site that drive the system out
of equilibrium are considered taken into account. Our goal is
to discover the novel steady-state phases that are brought by
the NNN couplings. By employing a combination of state-
of-the-art approaches, we shed light on the impact of NNN
interactions in determining the steady state. As the NNN cou-
pling varyies, the system exhibits various steady-state phases.
We mostly concentrate on the AFM phases. We also predict
a LC phase in which the steady state is time periodic. In
particular, the emergence of the LC phase is highlighted by
the largest quantum Lyapunov exponent (LE) and averaged
oscillation amplitude. The existence of LC phase is closely
connected to the dissipative time crystals [14,21,22,48–50].

This paper is organized as follows. In Sec. II, we explain
the dissipative spin-1/2 J1-J2 XYZ model on the square lat-
tice and the corresponding master equation that describes
the evolution of the system. We present the possible steady-
state phases that may appear in the system. In Sec. III, by
employing the Gutzwiller single-site mean-field (MF) factor-
ization, we solve the steady-state solutions to the single-site
MF master equation. By performing linear stability analysis
on the MF fixed points, we uncover the various steady-state
phases. In Sec. IV, we include the short-range interaction in
the discussion by performing the cluster mean-field (CMF)
method. We confirm the existence of the CAF phase and show
evidence of the LC phase through the largest LE and the
average oscillation amplitude. We summarize in Sec. V.

II. MODEL

The model we consider here is a spin-1/2 quantum many-
body model on square lattice whose Hamiltonian is given by
(set h̄ = 1 hereinafter),

Ĥ =
∑

α

Jα

⎡
⎣J1

∑
〈 j,l〉

σ̂ α
j σ̂ α

l + J2

∑
〈〈 j,l〉〉

σ̂ α
j σ̂ α

l

⎤
⎦, (1)

where σ̂ α
j (α = x, y, z) are the Pauli matrices for the j-th site;

〈 j, l〉 and 〈〈 j, l〉〉 denote the sums of the spin-spin coupling
run over the NN and NNN interactions, respectively; Jα are the
coupling constants. For J2 = 0, we recover the conventional
XYZ model with NN couplings. The XYZ Hamiltonian is
generic in spin systems and can be reduced to the isotropic
Heisenberg Hamiltonian for Jx = Jy = Jz and the Ising Hamil-
tonian for Jx = Jy = 0.

In order to drive the system out of equilibrium, we assume
that each spin contacts with a Markovian environment which
leads to a local dissipative process on each spin. In our specific
model, the local environment tends to incoherently flip each
spin down to the z direction. Thus the quantum master equa-

tion governing the evolution of the system’s density-matrix
ρ̂(t ) is

d ρ̂

dt
(t ) = L[ρ̂(t )] = −i[Ĥ, ρ̂(t )] +

∑
j

D j[ρ̂(t )], (2)

where L is the Liouvillian superoperator. The local dissipator
D j on the j-th site takes the form of

D j[ρ̂(t )] = γ

2
[2σ̂−

j ρ̂(t )σ̂+
j − σ̂+

j σ̂−
j ρ̂(t ) − ρ̂(t )σ̂+

j σ̂−
j ],

(3)
where γ is the decay rate and the operators σ̂±

j = (σ̂ x
j ±

iσ̂ y
j )/2 represent the raising and lowering operators for the

j-th spin. In the following, we will always work in units of
γ . Additionally, for simplicity, we set J1/γ = 1 and restrict
the NNN coupling to be J2/γ ∈ (0, 1) in this work.

The Lindblad master equation Eq. (2) admits the Z2 sym-
metry associated to a π rotation of all the spins about the
z axis (σ̂ x

j → −σ̂ x
j , σ̂

y
j → −σ̂

y
j ,∀ j). In the thermodynamic

limit, this Z2 symmetry may be spontaneously broken as
the strengths of spin-spin interactions vary. In the symmetry-
broken phases the magnetization on the x-y plane of each spin
is nonzero and could be spatially modulated. Here we list the
possible steady-state phases as the following:

(i) Paramagnetic (PM) phase. This is a trivial uniform
state in which all the spins are pointing down along the z
axis, 〈σ̂ x〉 = 〈σ̂ y〉 = 0 indicating that the system preserves
the Z2-symmetry. The notation 〈 ˆσα〉 = tr(σαρ) (α = x, y, z)
means the expectation value of σ̂ α .

(ii) Ferromagnetic (FM) phase. The FM phase is a uniform
ordered phase. Each spin has an identical nonzero steady-state
magnetization on the xy plane, namely, 〈σ̂ x〉 �= 0, 〈σ̂ y〉 �= 0 as
shown in Fig. 1(a), indicating that the Z2-symmetry is broken.

(iii) AFM phase. The AFM phase is a nonuniform ordered
phase. In the AFM phase, as shown in Fig. 1(b), the whole
lattice is divided into two alternating sublattices. All the spins
have nonzero steady-state magnetizations on the x-y plane.
Moreover, the spin on one sublattice points to a different di-
rection to the other. The steady-state magnetization is spatially
modulated with a period of twice the lattice constant.

(iv) CAF phase. The CAF phase is another type of nonuni-
form ordered phase. In the CAF phase, the spins on the lattice
are collinearly polarized. The steady-state magnetization is
spatially modulated with a period of twice lattice constant in
either the x or the y direction, as shown in Figs. 1(c) and 1(d).

The frustration in the J1-J2 XYZ Hamiltonian

In this subsection, we check the existence of frustration
in the studied Hamiltonian Eq. (1). We adopt the measure
of frustration proposed in Refs. [51,52] which quantifies the
incompatibility between the global and the local orders. A
many-body Hamiltonian can be expressed as ĤG = ∑

� ĥ�,
where G stands for the global system and � = 〈i, j〉 or 〈〈i, j〉〉
stands for the subsystem associated with local interactions ĥ�.
The measure of frustration for ĥ� is defined as follows:

f� = 1 − tr[ρ̂��̂�], (4)

where ρ̂� = tr �=�ρ̂G is the reduced local state obtained from the
partial trace of the global ground state ρ̂G of ĤG over the rest
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FIG. 1. (a)–(d) Illustration of partial Z2-symmetry broken quantum phases in Heisenberg XYZ model; the black and white colors represent
the different magnetization directions in x axis. (a) FM order; (b) AFM order; (c), (d) CAF order. (e) Schematic diagram of the Gutzwiller
factorization of the full lattice. In the MF approximation (N = 1), the interactions between sites are all treated as an effective field (the dashed
bonds), the lattice are divide into four sublattices (in different colors), marked by A, B, C, and D. For the CMF approximation with different
sizes (N � 4), the interactions between the sites inside the cluster (the solid bonds) are treated exactly, the NN and NNN interactions outside
of the cluster are treated as an effective field.

of the system, and �̂� is the projector onto the ground-state
space of the local Hamiltonian ĥ�. The second term on the
right-hand side of Eq. (4) quantifies the overlap between the
reduced local state and the local ground state associated to ĥ�.
Therefore the system is frustration-free if f� = 0, ∀�. The total
frustration of the global Hamiltonian is thus defined by aver-
aging over all the local measures f�. This measure quantifies
the frustrations due to the geometry of the system, the compet-
ing interactions, and the noncommutativity between different
ĥ�s.

The effects of frustrations in the XYZ model with com-
peting J1-J2 interactions have been discussed in Ref. [53].
Here, in Fig. 2, we show the total frustration as a function
of the strength of the NNN coupling of the XYZ model on
a 4 × 4 lattice (open boundary condition). For the chosen
parameters, one can see that the frustration is always present,
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0.47

0.471

J
2
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n

FIG. 2. The total frustration as a function of J2 for the XYZ
Hamiltonian on a 4 × 4 cluster (open boundary condition). The pa-
rameters are chosen as {Jx, Jy, Jz} = {−3.2,−1, 1}.

although the strength of NNN coupling affects the quantity
of the frustration slightly. As will be seen in Sec. IV, the
system exhibits various steady-state phases. Note that because
the global ground state is twofold degenerate for the specific
parameters, ρG is taken as the equiprobable statistical average
of the two degenerate global ground states, namely, the maxi-
mally mixed global ground state [52].

III. MF APPROXIMATION

Due to the complexity of the full quantum master equa-
tion, we start with the single-site MF method basing on the
Gutzwiller factorization. The density matrix for the whole
lattice is factorized as ρ̂ = ⊗

j ρ̂ j with the reduced density-
matrix ρ j = tr�= jρ for each site. The reduced density matrices
belong to the same sublattice and are assumed to be identical.
Substituting the factorized density matrix into Eq. (2), we may
obtain the single-site MF master equation for each sublattice
in the following form,

d ρ̂ j

dt
= −i

[
Ĥmf

j , ρ̂ j
] + γ

2
[2σ̂−

j ρ̂ j σ̂
+
j − {σ̂+

j σ̂−
j , ρ̂ j}], (5)

where j = A, B,C, and D denotes the sublattice. The corre-
sponding MF Hamiltonian for sublattice j is governed by

Ĥmf
j =

∑
α=x,y,z

∑
k,l

Jασ̂ α
j

(
J1

〈
σ̂ α

k

〉 + J2
〈
σ̂ α

l

〉)
, (6)

where 〈σ̂ α
j,l〉 = tr(σ̂ αρ̂ j,l ), and the subscripts k and l denote the

nearest and NNN of site j, respectively. By virtue of Eqs. (5)
and (6), we obtain the following system of Bloch equations
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for each sublattice as,

d
〈
σ̂ x

j

〉

dt
=2

∑
l

∑
k

Jy
(
J1

〈
σ̂

y
k

〉 + J2
〈
σ̂

y
l

〉)〈
σ̂ z

j

〉 − Jz
(
J1

〈
σ̂ z

k

〉 + J2
〈
σ̂ z

l

〉)〈
σ̂

y
j

〉 − γ

2

〈
σ̂ x

j

〉
,

d
〈
σ̂

y
j

〉

dt
=2

∑
l

∑
k

Jz
(
J1

〈
σ̂ z

k

〉 + J2
〈
σ̂ z

l

〉)〈
σ̂ x

j

〉 − Jx
(
J1

〈
σ̂ x

k

〉 + J2
〈
σ̂ x

l

〉)〈
σ̂ z

j

〉 − γ

2

〈
σ̂

y
j

〉
,

d
〈
σ̂ z

j

〉

dt
=2

∑
l

∑
k

Jx
(
J1

〈
σ̂ x

k

〉 + J2
〈
σ̂ x

l

〉)〈
σ̂

y
j

〉 − Jy
(
J1

〈
σ̂

y
k

〉 + J2
〈
σ̂

y
l

〉)〈
σ̂ x

j

〉 − γ
(〈
σ̂ z

j

〉 + 1
)
,

(7)

here again the sum over k, l is taken over the nearest and NNN
of site j, respectively. The fixed points can be determined
by setting Eq. (7) to be zero. Apparently, the state ρ̂ j,↓ =
|↓ j〉〈↓ j |, with the spin pointing down to the z direction, is
always a steady-state solution to Eq. (7). The joint state of the
whole lattice is thus given by ρ̂↓ = ⊗

j ρ̂ j,↓ indicating that the
system is in the PM phase. However, ρ̂↓ is not always stable;
the linear stability analysis on ρ̂↓ can reveal the possibility of
transitions from the PM to other phases.

The idea of linear stability analysis is to introduce local
small fluctuations δρ j to around the MF steady state by

ρ̂↓ →
⊗

j

(ρ̂ j,↓ + δρ j ) (8)

and check how the perturbations evolve with time. We expand
the perturbations in terms of plane waves

δρ j =
∑

k

e−ik·r j δρk
j , (9)

where k is the wave vector. Thus the equation of motion for
the perturbation δρk

j is decoupled in the momentum space and
reads,

∂tδρ
k = Lk · δρk. (10)

The superoperator Lk has the following form,

Lk =

⎛
⎜⎝

−γ 0 0 0
0 P − γ

2 Q 0
0 −Q −P − γ

2 0
γ 0 0 0

⎞
⎟⎠, (11)

where the coefficients are given by P = −i[(Jx + Jy)tk −
2z(1 + J2)Jz], Q = −i(Jx − Jy)tk, z = 4 is the coordi-
nate number, tk = 2 cos(kxa) + 2 cos(kya) + J2[ei(kx+ky )a +
ei(kx−ky )a + e−i(kx−ky )a + e−i(kx+ky )a], and a is the lattice con-
stant [10].

The steady state is dynamically stable when the real parts
of all the eigenvalues of Lk are negative; otherwise it is
unstable to the perturbation of wave-vector k = (kx, ky). We
define the most unstable eigenvalue λmax as the one with the
largest positive real part; the wave-vector k = (kx, ky ) associ-
ated to the most unstable eigenvalue can be used to distinguish
distinct phases [33,54–57].

Additionally, we choose the initial states for each
sublattice as |ψA(0)〉 = (|↑〉 + |↓〉)/

√
2, |ψB(0)〉 = (|↑〉 +

eiπ/2|↓〉)/
√

2, |ψC (0)〉 = (|↑〉 + eiπ |↓〉)/
√

2 and |ψD(0)〉 =
(|↑〉 + ei3π/2|↓〉)/

√
2 to investigate the time evolution of the

system, although the steady states are independent of the
initial states.

A. FM phase

We start with the phase transition from the PM to the
FM phase. The critical point for the PM-FM phase transition
can be obtained by solving Eq. (7); the explicit expression is
given by

Jc
x,y = 1

16z2(1 + J2)2(Jz − Jy,x )
+ Jz. (12)

In Fig. 3, we show the time evolution of the magnetization
〈σ x(t )〉 for Jx = 1.01 (PM phase) and 1.05 (FM phase) and
Jy = 0.9. In the PM phase, the magnetizations of all the sites
approach to zero after a sufficiently long time, regardless of
the initial magnetization. While in the FM phase, after a tran-
sient oscillation, the state of each site first evolves a metastable
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FIG. 3. (a), (b) The real part of the most unstable eigenvalue as
a function of the wave-vectors kx and ky in momentum space. The
dashed line indicates the first Brillouin zone. (c), (d) The MF steady-
state magnetizations along the x direction for the sublattices. The
parameters are chosen as J2 = 0.9, Jy = 0.9, Jz = 1, and Jx = 1.01
for (a) and (c) and 1.05 for (b) and (d). The labels of sublattices are
consistent with Fig. 1.
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FIG. 4. (a), (b) The real part of the most unstable eigenvalue in
momentum space. The dashed line indicates the first Brillouin zone.
(c, (d) The MF steady-state magnetizations along the x direction for
the sublattices. The parameters are chosen as Jx = −2.5, Jy = 0.9,
Jz = 1, and J2 = 0.9 for (a) and (c) and J2 = 0.1 for (b) and (d). The
labels of the sublattices are consistent with Fig. 1.

region with almost vanishing 〈σ x(t )〉 and eventually ends up
in the steady state with nonzero magnetization along the x
direction. The appearance of the metastable state is because
the chosen coupling parameter is close to the critical point.

In order to give the intuitive pictures for the PM and FM
phases, we show the real parts of the most unstable eigenval-
ues in the momentum space in Fig. 3. For Jx = 1.01, the real
part of λmax is always negative in the kx-ky plane indicating
that ρ̂↓ is stable against the perturbations. The maximum of
the real part is about −0.0193 locating at the origin of the
momentum space. As the coupling strength Jx increasing, the
maximum of the real part increases and become positive in
the FM phase. It is shown in Fig. 3 that the maximum is
positive for Jx = 1.05 and the position of the maximum re-
mains at the origin. In this case, the state ρ̂↓ is unstable against
uniform perturbations which offset each spin with a nonzero
magnetization on the x-y plane. This indicates the appearance
of the FM phase.

B. The PM-CAF transition

In this subsection, we discuss the phase transition from
PM to AFM phases. Similarly to Eq. (12), one can obtain the
expression for the critical point for PM-CAF transition as

Jc
x,y = − 1

16zJ2[(1 + J2)Jz + J2Jy,x]
− 1 + J2

J2
Jz. (13)

The real part of the most unstable eigenvalue in the mo-
mentum space in the CAF phase is shown in Fig. 4(a). The
appearance of positive-valued maximum at k = (0,±π ) and
(±π, 0) indicates that ρ̂↓ is unstable against perturbations in

terms of plane wave along the x or y direction. Such pertur-
bations give rise to a spatial modulation of the magnetizations
along the x or y direction with the wavelength being twice
the lattice constant. In Fig. 4(c), the time evolution of the
magnetization 〈σ̂ x(t )〉 for each sublattice is shown. One can
see that the magnetizations 〈σ̂ x〉 of the sublattices in the same
column evolve to the same steady-state value for a sufficient
long time indicating the CAF pattern.

Interestingly, we find that the CAF phase may become the
AFM phase by varying the strength of NNN coupling J2.
The real part of λmax in the momentum space in the AFM
phase with J2 = 0.1 is shown in Fig. 4(b). Compared to the
case of CAF phase, in the AFM phase the positive maximum
appears at k = (±π,±π ) (the high-symmetry point M in
the first Brillouin zone). This corresponds to the perturbation
in both x and y directions. The steady-state magnetization
is modulated in both directions with a period of two lattice
sites; the whole lattice is actually divided into two sublattices.
The steady-state pattern of the AFM state is also revealed by
the time evolution of the magnetization 〈σ x〉. From Fig. 4(d)
one can see that magnetizations in the long-time limit exhibit
〈σ x

A〉 = 〈σ x
C〉 �= 〈σ x

B〉 = 〈σ x
D〉.

We recall that for J2 = 0, the model reduces to the conven-
tional XYZ model in which only the AFM phase exists [6]. In
this sense, the CAF phase can be considered as a result of the
presence of the NNN interaction and the competition to the
NN interaction.

IV. CLUSTER MF METHOD

So far, we have neglected all the correlations in the dis-
cussion. In order to refine the MF results, we will take the
short-range correlation into account in the analysis. To this
aim, we apply the CMF technique to our model. In the CMF
approximation, as schematically shown in Fig. 1(e), the whole
lattice is divided into a series of clusters C which consist of a
number of contiguous sites. All the clusters are assumed to
be identical. The density matrix of the whole lattice is thus
factorized as the product of the density matrix of each cluster,

ρ̂CMF =
⊗
C

ρ̂C. (14)

Substituting Eq. (14) into Eq. (2) and taking the partial trace
of the global density matrix over all the clusters except for C,
one can obtain the CMF master equation regarding cluster C
as the following,

d ρ̂C

dt
= −i[ĤCMF, ρ̂C] +

∑
j∈C
D j[ρ̂C]. (15)

In the expression above, the CMF Hamiltonian is given by

ĤCMF = ĤC + ĤB(C), (16)

where ĤC = ∑
α Jα[J1

∑
〈 j,l〉∈C σ̂ α

j σ̂ α
l + J2

∑
〈〈 j,l〉〉∈C σ̂ α

j σ̂ α
l ]

(α = x, y, z, 〈·, ·〉, and 〈〈·, ·〉〉 denote the NN and NNN sites)
describes interactions between the sites inside the cluster C,
while ĤB(C) = ∑

α Jα[J1
∑

〈 j,l〉 σ̂ α
j 〈σ̂ α

l 〉 + J2
∑

〈〈 j,l〉〉 σ̂ α
j 〈σ̂ α

l 〉],
where j ∈ C and l ∈ C′ (C′ is the cluster adjacent to C)
describes the intercluster interactions. More details about the
CMF approximation can be found in Ref. [57].
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FIG. 5. The steady-state magnetizations along the x direction for
a 2 × 2 cluster (each site indicated by various symbol) as a function
of NNN coupling strength J2. In the LC region, the data are lacking
since the system never reaches the asymptotical steady state in long-
time limit. With J2 increasing, the system exhibits the PM, AFM, LC,
and CAF steady-state phases.

As shown in Eq. (16), the idea of CMF approximation
is that the interactions between the sites inside a cluster are
treated exactly, while the interactions between different clus-
ters are treated at the mean-field level. In principle, as the
size of the cluster is approaching to infinity and the corre-
lations embedded in the lattice are gradually included in the
analysis, we are able to obtain the property of the system in
thermodynamic limit. The conventional MF approximation is
considered to be a limit case for which all the correlations are
neglected.

Here we will use a series of rectangular clusters of size L =
n1 × n2 in the CMF analysis. To be specific, for the clusters
of size L � 9 we employ the standard fourth-order Runge-
Kutta method to directly integrate the CMF master equation
Eq. (15); for L > 10, we combine the CMF approximation
with the quantum trajectory method [58–60] and the results
are obtained by averaging over 500 trajectories [57].

We note that such rectangular clusters are convenient in
revealing the FM or AFM nature of the steady states in our
model because of their translation invariance along both x and
y directions. Moreover, this choice simplifies the determina-
tion of the effective field in ĤB(C). A series of clusters in other
forms may also be used for CMF analysis, for instance, the
clusters that can tile the square lattice [61]. The steady-state
property of the system in thermodynamic limit is independent
of the choice of clusters.

A. CAF phase

In Fig. 5, we show the CMF phase diagram as a function
of J2 with a cluster of size L = 2 × 2; the other parameters
are chosen as {Jx, Jy, Jz} = {−3.2,−1, 1}. One can see that as
the strength of NNN coupling increases, the system exhibits
various steady-state phases. For the limit cases of small and
large J2, the steady-state phases are similar to those in the
equilibrium system.

To corroborate the existence of the CAF phase, we in-
vestigate the steady-state magnetizations by systematically
increasing the size of the clusters. In accordance with the
definition of CAF phase, we choose the order parameter as
OCAF = ∑L

j=1

∑
〈〈 j,l〉〉 |〈σ x

j 〉ss − 〈σ x
l 〉ss|/�, where � is the total

number of NNN interactions. This order parameter shows the
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FIG. 6. The order-parameter OCAF as a function of J2 for vari-
ous sizes of clusters. Other parameters are chosen as {Jx, Jy, Jz} =
{−3.2, −1, 1}. The instable CMF data in 0.6 � J2 � 0.7 means the
steady state of the system is.

steady-state magnetization difference between the j-th site
and its NNN site. The nonzero value of OCAF indicates the
system is in the CAF phase.

In Fig. 6 we show the order-parameter OCAF as a func-
tion of J2 in the CMF approximation with different sizes of
clusters. For the chosen anisotropic coupling case, both the
single-site MF and the CMF results show the existence of the
CAF phases at larger J2. As the size of the cluster increases,
the CAF phase shrinks and remains in 0.7 � J2 < 1 up to a
4 × 4 cluster. One point that should be clarified is that the
order-parameter OCAF in the regions other than CAF phase
is not exactly zero for the 2 × 4 cluster because of the geo-
metrical anisotropy of the cluster.

B. Limit cycle

Interestingly, in the 2 × 2 CMF approximation, a LC re-
gion emerges for 0.59 � J2 � 0.63. In the LC region, the
magnetization of each site oscillates periodically with time
instead of reaching an asymptotic steady state in the long-time
limit. The LCs are common in classical nonlinear dynami-
cal systems and feature a stable closed trajectory in phase
space. For the dissipative spin-1/2 XYZ model with only
NN interaction, the LC is predicted by the single-site MF
approximation [62,63]. On the contrary, here in our model
with frustrated interactions, although the LC is missed by the
single-site MF approximation, it is uncovered by the inclusion
of short-range correlations in the CMF approximation.

In order to discriminate whether the time-dependent oscil-
lation of the magnetization is a LC or chaos, we employ the
so-called largest LE as proposed in Ref. [64].

Analogous to the classical definition, we use the quantum
trajectories to simulate the evolution of the system. The largest
LE is thus defined by the “distance” between the fiducial
and the auxiliary trajectories. The “distance” may be obtained
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FIG. 7. The top panel shows the time-dependent magnetization
〈σ x〉 of the fiducial trajectories (Ftraj) and auxiliary trajectories
(Atraj). The red discrete dots represent the changing of the largest
LE over time. The bottom panel shows changes of the difference of
the observable 
 as a function time. The black dash line denotes the
threshold 
max = 0.05 for resetting the auxiliary trajectory.

by direct calculation of the difference of some observables.
In this work, we choose the observable to be the magnetization
along the x direction σ̄ x(t ), which can be obtained by

σ̄ x(t ) = 1

N

N∑
j=1

〈ψ j (t )|σ̂ x|ψ j (t )〉. (17)

The fiducial trajectory is initialized as a normalized quan-
tum state vector ψ ini

f , and the auxiliary one is also prepared
as a normalized state with a perturbation on the fiducial initial
state,

ψ ini
a = ψ ini

f + δψp∣∣∣∣ψ ini
f + δψp

∣∣∣∣ . (18)

Here ψp is a random perturbative state and δ � 1. The
difference of observables 
(t ) = |σ̄ x

f (t ) − σ̄ x
a (t )| is time de-

pendent. The initial value can be calculated by 
0 = |σ̄ x
f (0) −

σ̄ x
a (0)|. If the difference exceeds threshold 
(tk ) > 
max at

time tk , the growth factor of the largest LE dk = 
(tk )/
0

is summed and the auxiliary state vectors have to be renor-
malized close to the fiducial trajectories. The difference of
observables is reset to the initial value. The largest LE can
be estimated as

λ = lim
t→∞

1

t

∑
k

ln dk . (19)

Here we discuss the cluster of size L = 2 × 2. In the simu-
lation, the number of trajectories is M = 300 and the threshold
is 
max = 0.05. The numerical result is shown in Fig. 7. In the
top panel, the left y axis corresponds to the time evolution
of on-site magnetization for fiducial and auxiliary trajecto-
ries, σ̄ x

f (t ) and σ̄ x
a (t ), respectively. Although the amplitude

of the oscillation fluctuates due to the probabilistic nature
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FIG. 8. The top panel presents the time-dependent magnetization
〈σ x

j 〉 for a 4 × 4 cluster. The middle panel shows the time-dependent
order-parameter OCAF, the time-dependent average amplitude is
shown in the bottom panel, the error bars denote the variances of
the average amplitude, and the parameters are chosen as Jx = −3.2,

Jy = −1, Jz = 1, and J2 = 0.63.

of the quantum trajectory method, the significant oscillating
behavior can be observed. The right y axis is related to the
change of the largest LE with evolution time. The largest LE
is updated three times in the time interval of t ∈ [0, 100],
corresponding to the time at which the difference exceeds
the threshold. We have extended the simulation to t = 500;
the largest LE descends from {λ, t} = {1.0269, 7.5645} to
{λ, t} = {0.0625, 500}. The largest LE at t = 500 is shown
by the most-right orange symbol.

The bottom panel is the time evolution of the difference of
observables 
(t ). It can be seen that there are three discontin-
uous jumps at t ≈ 8, 30, and 96. The jumps mark the events
that the difference of observables exceeds the threshold. The
difference at t = 500 is 
 < 3 × 10−10 (not shown), which is
small enough to indicate that the largest LE will continue to
descend in the long-time limit. We can conclude that the 
(t )
will eventually reach zero and the oscillation is stable.

In the upper panel of Fig. 8, we show the time evolution
of the magnetization for each sublattice in the LC region with
the 4 × 4 CMF approximation. The time dependence of the
CAF order parameter is shown in the middle panel as well.
One can see that the magnetization is time dependent and
showing a CAF pattern. As reported in Refs. [62,63], the LC
is absent in the case of J2 = 0; the coexistence of the CAF
ordering and oscillating magnetization is a combination of
the effects of the interaction frustration and nonequilibrium
nature of the system. To check the stability of the oscillation,
we defineA(t ) = ∑L

j=1A[〈σ̂ x
j 〉]/L, whereA[〈σ̂ x

j 〉] measures
the difference between the local maximum and minimum
values. The averaged amplitude A(t ) is shown in the bottom
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panel of Fig. 8. The error bars are the variances of the average
oscillation amplitude. In each oscillation period, the peaks or
the valleys of the time-dependent magnetization of each site
do not always accurately locate at the same time. After deter-
mining the local maximum t loc

max or minimum time point t loc
min

for each magnetization, we average each magnetization over
a small time window 
t to obtain the amplitude, e.g., 
t =
t loc
max ± δt, δt = 0.4. Without considering the fluctuationsA(t )

caused by the probabilistic nature of the quantum trajectory
method, the value of A(t ) stays in the range 0.45 � A(t ) �
0.55 indicating that the oscillation is stable.

V. SUMMARY

In summary, we have investigated the steady-state phases
of the dissipative spin-1/2 XYZ model with J1-J2 couplings.
Compared with the previous studies on the same model but
with only NN couplings (J1), the presence of the interaction
frustration induced by the NNN coupling (J2) indeed enriches
the steady-state phases. In order to study the dynamics of
the system, we perform the MF approximation, based on the
Gutzwiller factorization, to decouple the master equation that
governs the dynamics of the whole lattice. We check the linear
stability of the fixed points to the system of single-site MF
Bloch equations. The results from the single-site MF approx-
imation reveal the emergence of the various AFM phases,
including the AFM and CAF phases. The critical point of the
PM-CAF phase transition is presented.

The formalism of the linear stability analysis reminds
us of the well-known spin-wave theory in determining the
low-energy excitation of the magnetically ordered system.
In the spin-wave theory, the spins of the considered system
are assumed to be aligned in the same direction. The wave-
like low-energy excitation is created by the spin operator in
the reciprocal lattice Ŝk = ∑

j eik·r j Ŝ j . The thermodynamics
properties as well as the dynamics of the considered sys-

tem can thus be investigated by the diagonalization of the
Hamiltonian in the momentum space. Recently, the spin-wave
approximation has been used in studying the effect of the
external magnetic field in the quantum spin system which
is described by the Karplus-Schwinger master equation [65].
The application of spin-wave approximation to open quantum
systems would be an interesting topic.

The existence of the AFM phases in the thermodynamic
limit is confirmed by a series of CMF analysis. The short-
range correlations are gradually included as the size of clusters
increases. The CAF order remains nonzero up to the 4 × 4
CMF approximation. Moreover, we find evidence of the LC
phase, in which the system is in a time-periodic oscillating
state in the long-time limit, in the CMF approximation. The
fact that the LC phase is absent in single-site MF approxi-
mation but appears in the CMF approximation is the unique
feature in the interaction frustrated system. The investigations
on the largest quantum LE and the averaged oscillation am-
plitude support the existence of the LC phase up to the 4 × 4
CMF approximation.

Finally, we note that the properties of the steady-state
phases investigated in this paper, especially the stability of the
LC phase, are limited by the cluster size; analysis on the larger
size cluster is still required. On this perspective, the combina-
tion of the CMF approach with other available techniques is
promising to achieve this purpose, such as machine learning
techniques [66–70] and corner-space renormalization [71,72].
A comprehensive panorama of the simulation methods for
open quantum many-body systems can be found in Ref. [73].
In addition, our theoretical predictions may be experimentally
investigated in following different platforms [74–76].
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