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Flat-band ferromagnetism and spin waves in the Haldane-Hubbard model
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We study the flat-band ferromagnetic phase of the Haldane-Hubbard model on a honeycomb lattice within
a bosonization scheme for flat-band Chern insulators, focusing on the calculation of the spin-wave excitation
spectrum. We consider the Haldane-Hubbard model with the noninteracting lower bands in a nearly flat band
limit, previously determined for the spinless model, and at 1/4 filling of its corresponding noninteracting limit.
Within the bosonization scheme, the Haldane-Hubbard model is mapped onto an effective interacting boson
model, whose quadratic term allows us to determine the spin-wave spectrum at the harmonic approximation. We
show that the excitation spectrum has two branches with a Goldstone mode and Dirac points at center and at the
K and K ′ points of the first Brillouin zone, respectively. We also consider the effects on the spin-wave spectrum
due to an energy offset in the on-site Hubbard repulsion energies and due to the presence of a staggered on-site
energy term, both quantities associated with the two triangular sublattices. In both cases, we find that an energy
gap opens at the K and K ′ points. Moreover, we also find some evidence for an instability of the flat-band
ferromagnetic phase in the presence of the staggered on-site energy term. We provide some additional results for
the square lattice topological Hubbard model previously studied within the bosonization formalism and comment
on the differences between the bosonization scheme implementation for the correlated Chern insulators on both
square and honeycomb lattices.
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I. INTRODUCTION

The tight-binding model on a honeycomb lattice with bro-
ken time-reversal symmetry proposed by Haldane [1] is an
interesting example of a Chern band insulator [2,3]. At half
filling, it can exhibit a quantized Hall conductance in the ab-
sence of an external magnetic field. This so-called anomalous
quantum Hall effect [4] is indeed related to the fact that the
electronic band structure of Haldane’s model is topologically
nontrivial; i.e., the corresponding Chern numbers of each band
are finite [2,3]. Interestingly, the model was experimentally
implemented in a system with ultracold fermions in an optical
honeycomb lattice [5] (see also the reviews [6,7]).

A lot of effort has also been devoted to the study of
the interplay between the topological properties of elec-
tronic band structures and the electron-electron interaction
[3,8]. A particular correlated Chern insulator that has been
receiving some attention in recent years is a natural exten-
sion of Haldane’s model [1], the so-called Haldane-Hubbard
model [9–18]. Here the electronic spin is explicitly taken into
account, time-reversal symmetry is broken, and correlation
effects are described via an on-site Hubbard repulsion term
[see Eq. (1) below]. At half filling, the phase diagram of the
Haldane-Hubbard model has been determined via differ-
ent mean-field approaches [9–13] and numerical methods
[15–18]. It was shown that the model supports a Chern insula-
tor phase for weak interactions and a trivial Néel magnetic
ordered phase for strong ones. Moreover, there is evidence
for a first-order transition between these two phases [18], but
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also for the presence of a distinct phase in the intermediate-
coupling region [9,10,17]. Differently from the time-reversal
symmetric Kane-Mele Hubbard model [3], the breaking of
time-reversal symmetry in the Haldane-Hubbard model yields
the so-called fermion sign problem, limiting the use of quan-
tum Monte Carlo simulations [17,18].

Away from half filling, the study of correlation effects in
Chern band insulators has also considered the possibility of
realizing fractional quantum Hall phases in lattice models.
Indeed, the interest in fractional Chern insulators [19–21]
was motivated by the studies [22–24], which showed that a
series of tight-binding models with only short-range hoppings
can display nearly flat and topologically nontrivial electronic
bands once the model parameters are properly chosen. Due
to the similarity between flat bands with nonzero Chern num-
bers and Landau levels realized in a two-dimensional electron
gas, it was proposed that these lattice models could display
a fractional quantum Hall effect for partially filled bands if
electron-electron interaction is taking into account [22–24].
Indeed, numerical evidence for the stability of fractional
Chern insulator phases was later reported [25,26]. We should
mention that, recently, the infinite density matrix renormal-
ization group (iDMRG) technique was employed to study
the stability of fractional quantum Hall states in correlated
Hofstadter-like models [27,28].

Correlation effects in a spinful topological Hubbard model
on a square lattice with nearly flat noninteracting bands but
at a commensurate filling were also discussed [29–31]. Here
the noninteracting limit of the topological Hubbard model is
given by the π -flux model, whose parameters can be adjusted
such that the band structure is given by two lower and two
higher (doubly degenerated) nearly flat bands separated by an
energy gap [22]. At 1/4 filling (half filling of the lower band),
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it was shown [29–31] that such topological Hubbard model
can realize a flat-band ferromagnetic phase [32]. In particu-
lar, one of us calculated the spin-wave excitation spectrum
of the flat-band ferromagnetic phase within a bosonization
formalism [30]. For the corresponding correlated Chern in-
sulator, it was shown that the spin-wave spectrum has one
gapped excitation branch and one gapless one, with the Gold-
stone mode at the center of the first Brillouin zone. These
analytical results qualitatively agree with the numerical ones
determined via exact diagonalization [31].

In the present paper, we study the flat-band ferromagnetic
phase of a correlated Chern insulator on a honeycomb lat-
tice described by the Haldane-Hubbard model. We consider
configurations close to the nearly flat band limit of the lower
(noninteracting) bands that was previously determined for
the (spinless) Haldane model [22]. We describe the flat-band
ferromagnetic phase of the Haldane-Hubbard model within
the bosonization formalism for flat-band correlated Chern in-
sulators proposed in Ref. [30]. Such a bosonization scheme
is based on the method proposed to study the quantum Hall
ferromagnetic phase of a two-dimensional electron gas at
filling factor ν = 1 [33]. It was later employed to described
the quantum Hall ferromagnetic phases realized in graphene
at filling factors ν = 0 and ν = ±1 [34]. We show that the
bosonization scheme allows us to map the Haldane-Hubbard
model at the nearly flat band limit of its lower band to
an effective interacting boson model. Our main finding is
the flat-band ferromagnetic phase spin-wave spectrum, which
corresponds to the dispersion relation of the bosons deter-
mined from the effective boson model within a harmonic
approximation. We find that the spin-wave excitation spec-
trum has one gapped and one gapless excitation branch, with
a Goldstone mode at the center of the first Brillouin zone and
Dirac points at the K and K ′ points [see Fig. 6(a) below].
Introducing an energy offset in the on-site Hubbard repul-
sion energies associated with the (triangular) sublattices A
and B, one finds that an energy gap opens in the spin-wave
excitation spectrum at the K and K ′ points. The effects on
the spin-wave spectrum due to the presence of a staggered
on-site energy term related to the sublattices A and B are also
discussed.

Our paper is organized as follows. In Sec. II, we intro-
duce the Haldane-Hubbard model on a honeycomb lattice
and discuss in detail the band structure of the noninteracting
term close to the nearly flat band limit determined in Ref. [22].
In Sec. III, we briefly review the bosonization scheme for
flat-band Chern insulators [30]. Section IV is devoted to
the description of the flat-band ferromagnetic phase of the
Haldane-Hubbard model: we quote the expression of the
effective interacting boson model derived within the bosoniza-
tion scheme and determine the spin-wave excitation spectra in
the nearly flat band limit and slightly away from this limit; the
effects of an energy offset in the on-site Hubbard repulsion
term and of a staggered on-site energy term are also discussed.
In Sec. V, we discuss our results and provide a brief summary
of our main findings. Details of the bosonization formalism
are presented in Appendices A and B while additional results
derived within the bosonization scheme for the topological
Hubbard model on a square lattice previously studied in
Ref. [30] are reported in Appendix C.

II. HALDANE-HUBBARD MODEL

Let us consider Ne spin-1/2 electrons on a honeycomb
lattice described by the Haldane-Hubbard model, whose
Hamiltonian is given by [9–18].

H = H0 + HU , (1)

where

H0 = t1
∑

i∈A,δ,σ

(c†
iAσ ci+δBσ + H.c.)

+ t2
∑

i∈A,τ,σ

(e−iφc†
iAσ ci+τAσ + H.c.)

+ t2
∑

i∈B,τ,σ

(e+iφc†
iBσ ci+τBσ + H.c.) (2)

and

HU =
∑

i

∑
a=A,B

Uaρ̂ia↑ρ̂ia↓. (3)

Here the operator c†
iaσ (ciaσ ) creates (destroys) an electron

with spin σ =↑,↓ on site i of the (triangular) sublattice
a = A, B of the honeycomb lattice. t1 � 0 and t2e±iφ with
t2 � 0 are, respectively, the nearest-neighbor and next-
nearest-neighbor hoppings. One notices that the electron
acquires a +φ (−φ) phase as it moves in the same (opposite)
direction of the arrows within the same sublattice [see dashed
lines in Fig. 1(a)]. Indeed, the complex next-nearest-neighbor
hopping t2e±iφ results in a fictitious flux pattern with zero net
flux per unit cell [see, e.g., Fig. 1(a) from Ref. [22] for de-
tails]. The index δ corresponds to the nearest-neighbor vectors
[Fig. 1(a)]

δ1 = −aŷ,

δ2 = a

2
(
√

3x̂ + ŷ), δ3 = −a

2
(
√

3x̂ − ŷ), (4)

while τ indicates the next-nearest-neighbor vectors

τ1 = δ2 − δ3 = a
√

3x̂,

τ2 = δ3 − δ1 = −a

2
(
√

3x̂ − 3ŷ),

τ3 = δ1 − δ2 = −a

2
(
√

3x̂ + 3ŷ). (5)

In the following, we set the nearest-neighbor distance to
unit, i.e., a = 1. Finally, the HU term [Eq. (3)] is the on-site
Hubbard repulsion term, which represents an energy cost paid
by double occupation of site i, and

ρ̂iaσ = c†
iaσ ciaσ (6)

is the density operator associated with electrons with spin σ

at site i of sublattice a. We consider that the on-site repulsion
energy Ua > 0 can depend on the sublattice a.

A. Tight-binding term with nearly flat topological bands

In this section, we discuss in detail the noninteracting term
H0 [Eq. (2)] of the Hamiltonian (1) and show that it can dis-
play an almost flat (lower) electronic band that is topologically
nontrivial.
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FIG. 1. (a) Schematic representation of the Haldane-Hubbard
model (1) on the honeycomb lattice, indicating the nearest-
neighbor t1 and next-nearest-neighbor t2e±iφ hoppings and the on-site
Hubbard repulsion energy Ua. Blue and red circles indicate the
sites of the (triangular) sublattices A and B, respectively. δi and τ i

are the nearest-neighbor (4) and next-nearest-neighbor (5) vectors,
respectively. (b) The first Brillouin zone and its highly sym-
metrical points: K = (4π/3

√
3, 0), K′ = (2π/3

√
3, 2π/3), M1 =

(π/
√

3, π/3), and M2 = (0, 2π/3). The nearest-neighbor distance
of the honeycomb lattice a = 1.

The first step to diagonalize the free-electron Hamiltonian
(2) is to perform a Fourier transform,

c†
iaσ = 1√

Na

∑
k∈BZ

e−ik·Ri c†
kaσ , (7)

where the momentum sum runs over the first Brillouin zone
(BZ) [Fig. 1(b)] associated with the underline triangular
Bravais lattice and Na = N is the number of sites of the
sublattice a. It is then easy to show that the noninteracting
Hamiltonian (2) can be written in a matrix form,

H0 =
∑

k

	
†
kHk	k, (8)

where the 4 × 4 Hk matrix reads

Hk =
(

h↑
k 0

0 h↓
k

)
(9)

and the four-component spinor 	k is given by

	k = (ckA↑ ckB↑ ckA↓ ckB↓)T . (10)

The 2 × 2 matrices hσ
k associated with each spin sector are

such that h↑
k = h↓

k = hk, with the hk matrix given by

hk =
(

2t2
∑

τ cos(k · τ + φ) t1
∑

δ eik·δ

t1
∑

δ e−ik·δ 2t2
∑

τ cos(k · τ − φ)

)
.

It is possible to write the hk matrix in terms of the identity
matrix τ0 and the vector τ̂ = (τ1, τ2, τ3), whose components
are Pauli matrices,

hk = B0,kτ0 + Bk · τ̂ , (11)

where the B0,k function and the components of the vector
Bk = (B1,k, B2,k, B3,k ) are given by

B0,k = 2t2 cos(φ)
∑

τ

cos(k · τ),

B1,k = t1
∑

δ

cos(k · δ),

B2,k = t1
∑

δ

sin(k · δ),

B3,k = −2t2 sin(φ)
∑

τ

sin(k · τ), (12)

with the indices δ and τ corresponding to the nearest-neighbor
(4) and next-nearest-neighbor (5) vectors, respectively. The
fact that the matrices hσ

k related to each spin sector
h↑

k = h↓
k = hk indicates that the noninteracting model (2)

breaks time-reversal symmetry (see, e.g., Appendix A from
Ref. [30] for details).

The Hamiltonian (8) can be diagonalized via the canonical
transformation

dkσ = ukckAσ + vkckBσ ,

ckσ = v∗
kckAσ − u∗

kckBσ , (13)

where the coefficients uk and vk are given by

|uk|2 = 1
2 (1 + B̂3,k ), |vk|2 = 1

2 (1 − B̂3,k ),

ukv
∗
k = 1

2 (B̂1,k + iB̂2,k ), (14)

with the hatted Bi standing for the i component of the nor-
malized vector B̂k = Bk/|Bk|. After the diagonalization, the
Hamiltonian (8) then reads

H0 =
∑
kσ

ωc
kc†

kσ ckσ + ωd
kd†

kσ dkσ , (15)

with the dispersions of the lower band c (− sign) and the upper
one d (+ sign) given by

ω
d/c
k = B0 ±

√
B2

1,k + B2
2,k + B2

3,k. (16)

Notice that both c and d free-electronic bands are doubly
degenerated with respect to the spin degree of freedom.

Figure 2(a) shows the electronic bands (16) along paths in
the first Brillouin zone [Fig. 1(b)] for two different parameter
sets. For t2 = 0.3155 t1 and φ = 0, the spectrum is gapless
due to the presence of Dirac points at the K and K ′ points;
i.e., the upper and lower bands touch at these points and the
bands disperse linearly with momentum around them. A finite
phase φ breaks time-reversal symmetry and opens a gap �

between the lower and upper bands at the K and K ′ points,
as exemplified for the parameter choice t2 = 0.3155 t1 and
φ = 0.656. Moreover, a finite phase φ yields free-electronic
bands topologically nontrivial, since the corresponding Chern
numbers [2,22]

Cc/d
σ = ± 1

4π

∫
BZ

d2kB̂k · (∂kx B̂k × ∂ky B̂k ) (17)
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FIG. 2. Band structure (16) of the noninteracting hopping term (2) (in units of the nearest-neighbor hopping amplitude t1) along paths in
the first Brillouin zone [Fig. 1(b)] for different values of the next-nearest-neighbor hopping amplitude t2 and phase φ: (a) t2 = 0.3155 t1, φ = 0
(green) and t2 = 0.3155 t1, φ = 0.656 (magenta); (b) φ = 0.4 (blue), φ = 0.5 (green), and φ = 0.656 (magenta), with t2 given by the relation
cos(φ) = t1/(4t2); and (c) φ = 0.656 (magenta), φ = 0.75 (green), and φ = 0.85 (blue), with t2 given by the relation cos(φ) = t1/(4t2).

are finite. One finds that Cc
σ = +1 and Cd

σ = −1 respectively
for the lower and the upper bands regardless of the spin. As
mentioned in the Introduction, such nonzero Chern numbers,
combined with broken time-reversal symmetry, indicates that
the gapped phase of the noninteracting model (2) at half filling
is indeed a Chern band insulator [2,3]. The phase diagram
t2/t1 vs φ for the noninteracting model (2) at half filling can be
found, e.g., in Ref. [11]: in addition to a (gapped) Chern band
insulator phase with quantized Hall conductivity σxy = ±e2/h
per spin, the model also displays a Chern metal phase with
nonquantized σxy.

For the parameter choice (nearly flat band limit)

t2 = 0.3155 t1 and φ = 0.656, (18)

one also sees that the lower band c is almost flat. Indeed,
such a choice obeys the relation cos(φ) = t1/(4t2) = 3

√
3/43

[22] which yields a large flatness ratio for the lower band
fc = �/Wc = 6, where � = min(ωd,k ) − max(ωc,k ) is the
energy gap and Wc = max(ωc

k ) − min(ωc
k ) is the width of the

lower band c. It is easy to see that the flatness ratio decreases
as one moves away from the optimal parameter choice (18).
For instance, in Fig. 2(b), we plot the band structure (16) for
φ = 0.4, 0.5, and 0.656 with t2 given by cos(φ) = t1/(4t2).
One notices that as the phase φ decreases, the flatness ratio
fc also decreases; i.e., the energy gap at the K and K ′ points
decreases while the bandwidth Wc of the lower band c in-
creases. The flatness ratio fc also decreases for φ > 0.656;
see Fig. 2(c).

In the following, we consider configurations close to the
nearly flat band limit (18) of the lower band c. It is worth
mentioning that previous studies [9,10,12,13,16,18] on the
Haldane-Hubbard model (1) focus on configurations with
φ = π/2, which yields a particle-hole symmetric noninteract-
ing band structure.

B. Staggered on-site energy term

An additional interesting term, which is also present in
Haldane’s original model [1], is a staggered on-site energy
term that breaks inversion symmetry:

HM = M
∑

iσ

(c†
iAσ ciAσ − c†

iBσ ciBσ ). (19)

For |M/t2| < 3
√

3| sin φ|, it was shown that the electronic
bands are topologically nontrivial [1]. Later, considering

a topological Uhlmann number to characterize symmetry-
protected topological phases at finite temperatures, it was
verified that such a topological phase is stable up to some
critical temperature Tc [35].

Adding the staggered on-site energy term (19) to the tight-
binding model (2), one easily finds that the new Hamiltonian
H0 + HM also assumes the form (8) with the B0,k and the
Bi,k (i = 1, 2, 3) functions given by Eq. (12) apart from the
replacement

B3,k → B3,k + M. (20)

In Fig. 3, we plot the band structure (16) for the parameters
(18) and M = 0, 0.1, 0.2, and 0.3 t1. We notice that, for a
finite on-site energy M > 0 (M < 0), the energy gap is located
at the K ′ (K) point. Moreover, as the parameter M increases,
the energy gap decreases, the difference (ωc

K ′ − ωc
K ) increases,

and the flatness ratio of the lower band c decreases. Indeed, the
increasing of the parameter M can induce a gap closure that
destroys the topological phase; see Fig. 2 from Ref. [1].

In Sec. IV C below, we consider a finite staggered on-site
energy M as a source of departure of the lower band c from
the nearly flat band limit (18).

FIG. 3. Band structure (16) of the noninteracting hopping term
(2) with the additional staggered on-site energy term (19) (in units
of the nearest-neighbor hopping amplitude t1) along paths in the
first Brillouin zone for the next-nearest-neighbor hopping ampli-
tude t2 = 0.3155 t1, phase φ = 0.656, and staggered on-site energy
M = 0 (magenta), 0.1 (green), 0.2 (blue), and 0.3 t1 (orange).
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C. Hubbard term in momentum space

The expression of the on-site Hubbard interaction (2) easily
follows from the Fourier transform of the electron density
operator (6), which is given by

ρ̂iaσ = 1

N

∑
q∈BZ

eiq·Ri ρ̂aσ (q). (21)

Substituting Eq. (21) into the Hamiltonian (2), one finds

HU = 1

N

∑
a=A,B

∑
q

Uaρ̂a↑(−q)ρ̂a↓(q). (22)

It is also useful to determine the expansion of the density
operator ρ̂aσ (k) in terms of the fermion operators ck a σ . With
the aid of Eqs. (6), (7), and (21), one shows that

ρ̂aσ (q) =
∑

p

c†
p−q a σ cp a σ . (23)

The canonical transformation (13) allows us to express (23) in
terms of the fermion operators ck σ and dk σ . In particular, the
density operator (23) projected into the lower noninteracting
band c reads [30]

ρ̄a σ (q) =
∑

p

Ga(p, q)c†
p−q σ cp σ , (24)

with the Ga(p, q) function given by Eq. (A3).
Once the expression of the projected density operator (24)

is known, we can determine the projection H̄U of the on-
site Hubbard term (22) into the noninteracting lower bands
c. Indeed, H̄U assumes the form (22) with the replacement
ρ̂aσ (q) → ρ̄aσ (q), i.e.,

H̄U = 1

N

∑
a=A,B

∑
q

Uaρ̄a↑(−q)ρ̄a↓(q). (25)

III. BOSONIZATION FORMALISM FOR FLAT-BAND
CHERN INSULATORS

In this section, we briefly summarize the bosonization
scheme for a Chern insulator introduced in Ref. [30] for the
description of the flat-band ferromagnetic phase of a corre-
lated Chern insulator on a square lattice.

Let us consider a spinful Chern insulator on a bipartite
lattice whose Hamiltonian assumes the form (8). We choose
the model parameters such that (at least) the lower band c
is (nearly) flat and consider that the number of electrons
Ne = NA = NB = N , where NA and NB are, respectively, the
number of sites of the sublattices A and B. Such a choice
corresponds to a 1/4 filling, i.e., the lower (nearly flat) band
c is half filled. In particular, let us assume that the lower
band c ↑ is completely occupied, as illustrated in Fig. 4(a).
In this case, the ground state of the noninteracting system
(the reference state) is completely spin polarized and it can
be written as a product of single-particle states,

|FM〉 =
∏

k∈BZ

c†
k↑|0〉. (26)

Since the lower flat bands c are separated from the upper
bands d by an energy gap, the lowest-energy neutral excita-
tions above the ground state (26) are given by particle-hole

FIG. 4. Schematic representation of (a) the ground state (26) of
the noninteracting term (2) in the nearly flat limit (18) of the lower
band c at 1/4 filling and (b) the particle-hole pair excitation above
the ground state (26). Although the free bands c and d are doubly
degenerated with respect to the spin degree of freedom, an offset
between the σ =↑ and ↓ bands are introduced for clarity.

pairs within the lower bands c; i.e., they are spin-flips that can
be written as [see Fig. 4(b)]

|	k〉 ∝ S−
k |FM〉. (27)

It is possible to show that such particle-hole pair excitations
can be treated approximated as bosons. Indeed, one can define
the boson operators

bα,q = S̄+
−q,α

Fαα,q
= 1

Fαα,q

∑
p

gα (p,−q)c†
p+q↑cp↓,

b†
α,q = S̄−

q,α

Fαα,q
= 1

Fαα,q

∑
p

gα (p, q)c†
p−q↓cp↑, (28)

with α = 0, 1, that satisfy the canonical commutation
relations

[bα,k, b†
β,q] = δα,β δk,q,

[bα,k, bβ,q] = [b†
α,k, b†

β,q] = 0, (29)

and whose vacuum state is given by the (reference) spin-
polarized state (26), i.e.,

bα,q|FM〉 = 0. (30)

Here the operators S̄±
q,α are linear combinations of projected

spin operators associated with sublattices A and B,

S̄±
q,α = S̄±

q,A + (−1)α S̄±
q,B, (31)

with α = 0, 1 and S̄±
q,a = S̄x

q,a ± iS̄y
q,a. The operator S̄λ

q,a, with
λ = x, y, z, is the λ component of the spin operator Sλ

q,a

projected onto the lower bands c with Sλ
q,a being the Fourier
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transform of the spin operator Sλ
i,a at site i of the sublattice

a. Indeed, the projected operator S̄λ
q,a is determined from Sλ

i,a
following the same procedure outlined in Sec. II C for the
density operator (24). Finally, the Fαβ,q function is given by

F 2
αβ,q =

∑
p

gα (p, q)g∗
β (p, q), (32)

with the gα (p, q) function being related to the coefficients (14)
of the canonical transformation (13),

gα (p, q) = v∗
p−qvp + (−1)αu∗

p−qup. (33)

Any operator expanded in terms of the fermion operators
c†

kσ and ckσ can, in principle, be rewritten in terms of the
bosons (28). In particular, the density operator (24) projected
into the lower bands c assumes the form

ρ̄aσ (k) = 1

2
Nδσ,↑δk,0 +

∑
α,β

∑
q

Gαβaσ (k, q)b†
β,k+qbα,q,

(34)

where the Gαβaσ (k, q) function is given by Eq. (A2). Impor-
tantly, both F 2

αβ,q and Gαβaσ (k, q) functions can be explicitly
written in terms of the coefficients (12); see Eqs. (A1) and
(A4), respectively.

IV. FLAT-BAND FERROMAGNETISM IN THE
HALDANE-HUBBARD MODEL

In the completely flat band limit (bandwidth Wc = 0) of
the lower noninteracting bands c, Hund’s rule yields that the
ground state of the Haldane-Hubbard model is ferromagnetic,
once such bands are half filled [36]. As the amplitude t2 of
the next-nearest-neighbor hopping is modified and the non-
interacting bands c get more dispersive, the ferromagnetic
phase might be stable up to a critical bandwidth Wc,critic,
for fixed on-site repulsion energies Ua [37]. Indeed, recent
exact diagonalization calculations [38] indicate the stability
of the flat-band ferromagnetic phase for the Haldane-Hubbard
model in the vicinity of the nearly flat band limit (18); see
discussion below.

In this section, we study the flat-band ferromagnet phase
of the Haldane-Hubbard model (1) within the bosonization
formalism [30] for flat-band Chern insulators. In particular,
we concentrate on the determination of the dispersion relation
of the elementary (neutral) particle-hole pair excitations; i.e.,
we calculate the spectrum of the spin-wave excitations above
the (flat-band) ferromagnetic ground state (26). We show that
the spin-wave spectrum has a Goldstone mode at momentum
q = 0, a feature that indicates the stability of the flat-band
ferromagnetic ground state.

A. Effective interacting boson model

Let us consider the Haldane-Hubbard model (1) on a
honeycomb lattice with the noninteracting lower bands c in
the nearly flat band limit (18) and at 1/4 filling of its corre-
sponding noninteracting limit; i.e., we assume that the number
of electrons Ne = NA = NB = N , with NA and NB being the
number of sites of the (triangular) sublattices A and B, respec-
tively. In this case, the bosonization scheme [30] allows us to

map the Hamiltonian (1) onto an effective interacting boson
model.

In order to derive such an effective boson model, the
first step is to project the Hamiltonian (1) into the lower
noninteracting bands c. Such a restriction is appropriated
as long as the on-site repulsion energies Ua < �, where
� = min(ωd,k ) − max(ωc,k ) is the energy gap of the free-
electronic bands (see Fig. 2): in particular, one finds that
� = 1.75 t1 for the nearly flat band limit (18). One shows that
(see Eq. (28) from Ref. [30] for details)

H → H̄ = H̄0 + H̄U . (35)

Here the projected noninteracting term H̄0 follows from
Eq. (15),

H̄0 =
∑
kσ

ωc
kc†

kσ
ckσ , (36)

while the projected on-site Hubbard term H̄U is given by
Eq. (25). The expression of the noninteracting (kinetic) term
H̄0 in terms of the bosons (28) is given by (see Appendix B
from Ref. [30] for details)

H̄0,B = E0 +
∑
αβ

∑
q∈BZ

ω̄αβ
q b†

β,qbα,q, (37)

where E0 = ∑
k ωc

k is a constant associated with the action of
H̄0 into the reference state (26) and

ω̄αβ
q = 1

Fαα,qFββ,q

∑
p

(
ωc

p−q − ωc
p

)
gα (p, q)g∗

β (p, q), (38)

with the Fαβ,q and the gα (p, q) functions given by Eqs. (32)
and (33), respectively. The bosonic representation of the pro-
jected on-site Hubbard term H̄U follows from Eqs. (25) and
(34): After normal-ordering the expression resulting from the
substitution of Eq. (34) into (25), one shows that [30]

H̄U,B = H̄ (2)
U,B + H̄ (4)

U,B, (39)

where the quadratic and quartic boson terms read

H̄ (2)
U,B =

∑
αβ

∑
q

εαβ
q b†

β,qbα,q, (40)

H̄ (4)
U,B = 1

N

∑
k,q,p

∑
αβα′β ′

V αβα′β ′
k,q,p b†

β ′,p+kb†
β,q−kbαqbα′p, (41)

with the coefficient

εαβ
q = 1

2

∑
a

UaGαβa↓(0, q)

+ 1

N

∑
a,α′,k

UaGα′βa↑(−k, k + q)Gαα′a↓(k, q) (42)

and the boson-boson interaction given by

V αβα′β ′
k,q,p = 1

N

∑
a

UaGαβa↑(−k, q)Gα′β ′a↓(k, p). (43)

The effective interacting boson model that describes the flat-
band ferromagnetic phase of the Haldane-Hubbard model (1)
then assumes the form

H̄B = H̄0,B + H̄ (2)
U,B + H̄ (4)

U,B. (44)
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FIG. 5. The real (solid magenta line) and imaginary (dashed green line) parts of (a) the coefficient ω̄01
q [Eq. (38)] and (b) the coefficient ε01

q
[Eq. (42)] along paths in the first Brillouin zone [Fig. 1(b)] for the Haldane-Hubbard model (1) in the nearly flat band limit (18) of the lower
noninteracting band c.

B. Spin-wave spectrum in the nearly flat band limit

In this section, we consider the effective boson model (44)
in the lowest-order (harmonic) approximation, which consists
of keeping only terms up to quadratic order in the boson
operators (28) of the Hamiltonian (44); i.e., we consider

H̄B ≈ H̄0,B + H̄ (2)
U,B. (45)

In principle, the Hamiltonian (45) can be diagonalized via a
canonical transformation yielding the spectrum of elementary
excitations (spin waves) in terms of ω̄

αβ
q [Eq. (38)] and ε

αβ
q

[Eq. (42)]. However, before proceeding, we would like to
discuss both contributions in detail.

The coefficient ω̄
αβ
q [Eq. (38)] represents the (kinetic) con-

tribution to the energy of the elementary excitations explicitly
related to the dispersion of the noninteracting (lower) bands
c. One can see that, if the free band c is completely flat
(ωc

q = constant), this coefficient vanishes while, in the nearly
flat band limit, it can be finite. For the noninteracting term (2)
on the honeycomb lattice in the nearly flat band limit (18),
we find that ω̄αα

q = 0 while ω̄01
q = ω̄10

q are finite but rather
small in units of the nearest-neighbor hopping energy t1 [see
Fig. 5(a)]. Such a result is distinct from the square lattice
π -flux model, where symmetry considerations yield ω̄

αβ
q = 0

[30]. We believe that the finite values of the coefficients ω̄01
q

and ω̄10
q for the Haldane model might be related not only to

the symmetries of the noninteracting Hamiltonian (2) but also
to the fact that the condition

Fαβ,q = δα,βFαα,q (46)

is not fulfilled for the Haldane model, an important feature dis-
tinct from the square lattice π -flux model. We refer the reader
to Appendix B for a detailed discussion about the implications
of the condition (46) for the approximations involved in the
bosonization scheme. Due to the smallness of ω̄01

q and ω̄10
q ,

in the following, we assume that ω̄
αβ
q ≈ 0; i.e., we neglected

the (explicit) kinetic contribution (38) to the energy of the
elementary excitations.

Concerning the coefficients (42), which are related to the
on-site Hubbard term (3), we find that εαα

q are real quantities
while ε01

q = −ε10
q = ε10

−q = −ε01
−q are complex ones, implying

that the Hamiltonian (40) is non-Hermitian. Such a feature

is also in contrast with the square lattice π -flux model [30]
for which ε01

q = ε10
q = 0 (see also Ref. [39]). In particular,

for the nearly flat band limit (18), one finds that ε01
q is quite

pronounced around the M1 and M2 points and it is also
finite close to the K and K ′ points of the first Brillouin zone
[see Fig. 5(b)]. Again, we believe that the non-Hermiticity of
the Hamiltonian H̄ (2)

U,B might be an artifact of the bosonization
scheme related to the fact that the condition (46) is not fulfilled
for the Haldane model (see Appendix B for details). Since
such an issue is not completely understood at the moment,
in the following, we determine the spin-wave spectrum both
in the presence and in the absence of the off-diagonal terms
(α, β ) = (0, 1) and (1,0) of the Hamiltonian (40).

The Hamiltonian (45) with ω̄
αβ
q = 0 can be diagonalized

via a canonical transformation similar to Eq. (13),
b0,q = u†

qa+,q + vqa−,q,

b1,q = v†
qa+,q − uqa−,q, (47)

where the coefficients uq and vq are now given by

|uq|2, |vq|2 = 1

2
± 1

4εq

(
ε00

q − ε11
q

)
,

uqv
∗
q = ε01

q

4εq
, vqu∗

q = ε10
q

4εq
, (48)

with

εq = 1

2

√(
ε00

q − ε11
q

)2 + 4ε01
q ε10

q . (49)

It is then easy to show that the Hamiltonian (45) assumes
the form

H̄B = E0 +
∑
μ=±

∑
q∈BZ

�μ,qa†
μ,qaμ,q, (50)

where the constant E0 = ∑
k ωc

k = (−1.69 t1)N for the nearly
flat band limit (18) and the dispersion relation of the bosons
a± reads

�±,q = 1
2

(
ε00

q + ε11
q

) ± εq, (51)

with εq given by Eq. (49) (see also Ref. [40]). Assuming that
ε01

q = ε10
q = 0, the dispersion relation (51) reduces to

�−,q = ε00
q and �+,q = ε11

q , (52)

since ε00
q < ε11

q .
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One notices that the ground state of the Hamiltonian (50)
is the vacuum (reference) state for both bosons b0,1 and a±,
which corresponds to the spin-polarized ferromagnet state
|FM〉 [see Eqs. (26) and (30)]. Such a result is a first indication
of the stability of a flat-band ferromagnetic phase for the
Haldane-Hubbard model (1). Indeed, one expects that the fer-
romagnetic ground state might be stable only if U � Uc(t2).
Unfortunately, due to limitations of our bosonization scheme,
at the moment, it is not possible to determine such critical
Uc: recall that (see Sec. IV B) the kinetic coefficients (38)
related with the dispersion of the noninteracting bands c are
not included in the effective boson model (44) due to the
fact that the condition (46) is not fulfilled for the Haldane
model. We refer the reader to Sec. V below for a more detailed
discussion about the stability of the flat-band ferromagnetic
phase.

The dispersion relations (51) and (52) of the bosons a±,
which indeed correspond to the spin-wave spectrum above
the flat-band ferromagnetic ground state (26), for the nearly
flat band limit (18) and UA = UB = U are shown in Fig. 6(a).
Due to the absence of the kinetic coefficients (38) associated
with the dispersion of the noninteracting bands c, one sees
that the energy scale of the spin-wave spectrum is determined
by the on-site repulsion energy U . Both spin-wave spectra
(51) and (52) have two branches: the acoustic (lower) branch
�−,q is gapless, with a Goldstone mode at the Brillouin zone
center (� point), and the characteristic quadratic dispersion
of ferromagnetic spin waves near the � point; the optical
(upper) one �+,q is gapped, with the lowest energy excitation
at the K and K ′ points. The presence of the Goldstone mode
indicates the stability of the flat-band ferromagnetic phase.
Interestingly, for the dispersion relation (52), one finds a quite
small energy gap at the K and K ′ points (�(K ) = �+,K −
�−,K = 2.01 × 10−3 U ) while the excitation spectrum (51)
displays Dirac points at the K and K ′ points. Indeed, the
presence of the Dirac points is related to the fact that ε01

q and
ε10

q are finite at the K and K ′ points; see Fig. 5(b). Moreover,
the fact that ε01

q = −ε10
q yields a very small decay rate (the

imaginary part of �±,q) for the spin-wave excitations (51) at
the border of the first Brillouin zone [see the dashed line in
Fig. 6(a) and note the multiplicative factor 50].

In addition to a configuration with homogeneous on-site
Hubbard energy UA = UB = U , we also consider the Haldane-
Hubbard model with a sublattice-dependent on-site Hubbard
energy. The spin-wave spectra (51) and (52) for the nearly
flat band limit (18) and with UB = 0.8UA = 0.8U and UB =
0.6UA = 0.6U are shown in Figs. 6(b) and 6(c), respectively.
One notices that both spin-wave spectra (51) and (52) have a
Goldstone mode at the � point, the energies of the excitations
decrease as the difference �U = UA − UB increases, and the
difference between the energies at the K and K ′ points (e.g.,
�−,K − �−,K ′ ) also increases with �U . For UB > UA, we find
similar features, but the energy at the K point is lower than the
one at the K ′ point. Importantly, the dispersion relation (52)
has a small gap at the K and K ′ points, similar to the homoge-
neous case UA = UB: �(K ) = 1.81 × 10−3 U (�U = 0.2U )
and 1.61 × 10−3 U (�U = 0.4U ). On the other hand, for the
dispersion relation (51), a finite energy gap opens at the K and
K ′ points in contrast with the homogeneous case �U = 0.
One finds that �(K ) = 3.18 × 10−2 U (�U = 0.2U ) and

FIG. 6. The elementary excitation (spin-wave) energies of the
effective boson model (44) in the harmonic approximation for the
nearly flat band limit (18): dispersion relations (51) (real part, solid
green line) and (52) (solid magenta line) along paths in the first
Brillouin zone [Fig. 1(b)]. The dashed blue line indicates the imagi-
nary part of �+,q = −�−,q [see Eq. (51)], which is multiplied by a
factor of 50 for clarity. On-site repulsion energies: (a) UA = UB = U ;
(b) UB = 0.8UA = 0.8U ; and (c) UB = 0.6UA = 0.6U .

6.40 × 10−2 U (�U = 0.4U ). Such a finite energy gap might
be related to the fact that a Hubbard term with UA �= UB breaks
inversion symmetry. Similar to the homogeneous configura-
tion, the spin-wave excitations (51) at the first Brillouin zone
border have a finite decay rate.

Gu and collaborators [38] performed exact diagonaliza-
tion calculations and determined the spin-wave spectrum for
the Haldane-Hubbard model (1) in the nearly flat band limit
(18) neglecting the dispersion of the noninteracting electronic
bands, which corresponds to the approximation ω̄

αβ
q = 0 con-

sidered above. For homogeneous on-site Hubbard energies
UA = UB, it was found that the spin-wave spectrum has Dirac
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points at the K and K ′ points (see Fig. 2(a1) from Ref. [38])
while, for a finite �U , the energies of the excitations de-
crease with �U and energy gaps open at the K and K ′ points
(see Figs. 2(b1) and 2(c1) from Ref. [38]). Remarkably, the
spin-wave spectrum (51) determined within the bosonization
scheme qualitatively agrees with the numerical one, apart
from the fact that the numerical results do not indicate a finite
decay rate.

One should mention that the presence of Dirac points
at the K and K ′ points is not only a feature of the spin-
wave spectrum of the flat-band ferromagnetic phase of the
Haldane-Hubbard model. Indeed, recent exact diagonaliza-
tion calculations [41] for a topological Hubbard model on a
kagome lattice also indicate such a feature in the excitation
spectrum of the corresponding flat-band ferromagnetic phase
when the dispersion of the (lower) noninteracting electronic
band is neglected.

As mentioned above, although the non-Hermiticity of the
Hamiltonian (40) (and consequently finite decay rates) might
be an artifact of the bosonization scheme, the off-diagonal
terms ε01

q and ε10
q of the quadratic Hamiltonian (40) should

be considered in order to properly describe the spin-wave
spectrum at the border of the first Brillouin zone. Therefore,
in the following, we determine the spin-wave spectrum away
from the nearly flat band limit (18) with the aid of Eq. (51).

C. Spin-wave spectrum away from the nearly flat band limit

Although the main focus of our discussion is the descrip-
tion of the flat-band ferromagnetic phase of the Haldane-
Hubbard model in the nearly flat band limit (18), we also con-
sider configurations such that the noninteracting band c has
smaller flatness ratio fc < 6. In particular, we consider the ef-
fects on the spin-wave spectrum (51) related to the increasing
of the bandwidth Wc (decreasing of the flatness ratio fc) of
the noninteracting band c due to (i) the decrease/increase
of the phase φ [see Figs. 2(b) and 2(c)] and (ii) the presence of
a staggered on-site energy term (19) in the total Hamiltonian
(see Fig. 3). These perturbations furnish some clues about the
stability of the flat-band ferromagnetic phase.

In Fig. 7(a), we show the spin-wave spectrum (51) for
φ = 0.4, 0.5, and 0.656, the hopping amplitude t2 given by the
relation cos(φ) = t1/(4t2), and the on-site repulsion energy
UA = UB = U . One sees that the spin-wave spectrum (in units
of the on-site repulsion energy U ) for φ = 0.4 and 0.5 is quite
similar to the one derived for the nearly flat band limit (18).
As the flux parameter φ decreases, the excitation energies near
the border of the Brillouin zone (the K-M1-K ′ line) decrease,
while the energies of the optical branch in the vicinity of the �

point increase. The fact that the spin-wave spectrum displays
a Goldstone mode at the � point, regardless of the value of the
phase φ, indicates the stability of the flat-band ferromagnetic
phase with respect to the simultaneous variations of the phase
φ and the next-nearest-neighbor hopping amplitude t2. Finite
decay rates are still found at the border of the first Brillouin
zone. The flat-band ferromagnetic phase seems also to be
stable for φ > 0.656; see Fig. 7(b). Here, however, as the flux
parameter φ increases, the excitation energies near the border
of the Brillouin zone increase and the energies of the upper
branch in the vicinity of the � point decrease.

FIG. 7. The real part of the dispersion relation (51) (solid line)
along paths in the first Brillouin zone [Fig. 1(b)] for on-site repulsion
energy UA = UB = U and t2 given by the relation cos(φ) = t1/(4t2).
(a) φ = 0.4 (blue), φ = 0.5 (green), φ = 0.656 (magenta) and (b)
φ = 0.656 (magenta), φ = 0.75 (green), φ = 0.85 (blue). The corre-
sponding dashed line indicates the imaginary part of �+,q = −�−,q

[see Eq. (51)], which is multiplied by a factor of 50 for clarity.

The effect on the spin-wave spectrum of a finite staggered
on-site energy M [Eq. (19)] is quite distinct. In Fig. 8(a), we
plot the spin-wave spectrum (51) for the optimal parameters
(18), M = 0.1 and 0.2 t1, and the on-site Hubbard energy
UA = UB = U = t1. Comparing with the homogeneous on-
site energy M = 0 configuration [Fig. 6(a)], one sees that the
whole spin-wave spectrum shifts downward in energy as M
increases and energy gaps open at the K and K ′ points. The
latter is indeed related to the fact that the staggered on-site
energy term (19) breaks inversion symmetry. Most impor-
tantly, the energies of the acoustic branch are negative in the
vicinity of the � point, indicating an instability of the flat-band
ferromagnetic phase for finite values of the staggered on-site
energy M. Such features are also found for the square lattice
π -flux model [30]; see Fig. 10 in Appendix C.

A finite staggered on-site energy M also modifies the
(kinetic) coefficients (38) directly related to the dispersion of
the noninteracting band c. In particular, we find that ω̄αα

q no
longer vanishes for a finite M [see Fig. 5(a) for M = 0]. Such
an effect can be easily included in the spin-wave spectrum
(51) with the replacement

εαα
q → ω̄αα

q + εαα
q . (53)
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FIG. 8. The real part of the dispersion relation (51) (solid line) along paths in the first Brillouin zone [Fig. 1(b)] for the optimal parameters
(18), on-site Hubbard energy UA = UB = U = t1, and staggered on-site energy M = 0.1 (magenta) and 0.2 t1 (green). (b) Similar results for
the spin-wave spectrum (51), but with the replacement (53). The corresponding dashed line indicates the imaginary part of �+,q = −�−,q [see
Eq. (51)], which is multiplied by a factor of 50 for clarity.

Figure 8(b) shows the spin-wave spectrum (51) with the
replacement (53) (in units of the nearest-neighbor hopping
amplitude t1) for the optimal parameters (18), M = 0.1 and
0.2 t1, and the on-site Hubbard energy UA = UB = U = t1.
One notices that ω̄αα

q does not modify the excitation energies
in the vicinity of the � point, but only changes the excitation
energies near the border K-M1-K ′ of the first Brillouin zone.
Such an effect resembles the one found when distinct on-site
repulsion energies UA �= UB are considered; see Figs. 6(b)
and 6(c).

V. SUMMARY AND DISCUSSION

The effective boson model (44) is not only restricted to
the Haldane-Hubbard model (1) on a honeycomb lattice, but,
in principle, it can also be employed to study the flat-band
ferromagnetic phase of a correlated Chern insulator described
by a topological Hubbard model on a bipartite lattice whose
noninteracting (kinetic) term breaks time-reversal symmetry
and assumes the form (8): Notice that a tight-binding model
of the form (8) is completely defined by the B0,k and Bi,k
(i = 1, 2, 3) functions (12); the Fαβ,q function, which is im-
portant in the definition of the boson operators (28), can be
written in terms of the normalized B̂i,k = Bi,k/|Bi,k| functions
[see Eq. (A1)]; finally, the coefficients (38) and (42) and the
boson-boson interaction (43), which completely characterize
the effective boson model (44), can also be expressed in terms
of the normalized B̂i,k functions (see Appendix A).

An important requirement for the application of the
bosonization scheme [30] to a topological Hubbard model is
that the condition (46) is fulfilled by the noninteracting term of
the model. Once the validity of such a condition is verified, the
two sets of independent boson operators (28) can be defined
and the bosonic representation of an operator written in terms
of the original fermions, such as the projected density operator
(24), is well defined. This is indeed the case for the square
lattice topological Hubbard model whose noninteracting limit
is giving by the π -flux model [30]. As mentioned above, the
spin-wave spectrum [31] determined via exact diagonaliza-
tion calculations for the flat-band ferromagnetic phase of the
square lattice π -flux model in the (completely) flat-band limit

qualitatively agrees with the harmonic one calculated within
the bosonization formalism. Additional results for the square
lattice π -flux model derived within the bosonization scheme
are presented in Appendix C.

For the Haldane-Hubbard model on a honeycomb lat-
tice in the nearly flat band limit (18) of the noninteracting
(lower) band c (the second application of the bosonization
formalism), the condition (46) is not fulfilled for all momenta
q [see Fig. 9(b)], which implies that additional considera-
tions are needed in order to apply the bosonization scheme.
As discussed in Appendix B, in order to preserve the form
of the original effective boson model (44), one should as-
sume that the two sets of boson operators b0,1 defined by
Eq. (28) are independent and that the bosonic expression (34)
for the projected electron density operator ρ̄aσ (k) holds for
the Haldane model. Moreover, although the non-Hermiticity
of the quadratic Hamiltonian (40) might be related to the
fact that the condition (46) is not completely valid for the
Haldane model, one should keep the off-diagonal terms ε01

q

and ε10
q [see Eq. (42)] in order to properly describe the spin-

wave excitations at the border of the first Brillouin zone (see
Fig. 6) as indicated by the comparison between the disper-
sion relations (51) and (52) and the numerical results [38].
Importantly, it is not clear at the moment whether the finite
decay rates found for high-energy spin-wave excitations are
an artifact of the bosonization scheme. Even considering these
additional approximations, the qualitative agreement between
the real part of the dispersion relation (51) and the numerical
spin-wave spectrum [38] indicates that the effective boson
model (44) provides an appropriate description for the flat-
band ferromagnetic phase of the Haldane-Hubbard model.

In addition to the nearly flat band limit (18), we also study
the flat-band ferromagnetic phase of the Haldane-Hubbard
model when the noninteracting lower band c gets more dis-
persive. While the ferromagnetic phase seems to be less
sensible to the increase of the bandwidth Wc of the nonin-
teracting band c due to variations of the phase φ and the
next-nearest-neighbor amplitude t2 (Fig. 7), an instability
of the ferromagnetic ground state is found when a stag-
gered on-site energy (19) is included [Figs. 8(a) and 8(b)].
Interestingly, for the latter, one notices that the F 2

αα,q function
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and Im F 2
01,q = Im F 2

10,q are not affected by a finite staggered
on-site energy M, while Re F 2

01,q = Re F 2
10,q acquires a con-

stant value proportional to the staggered on-site energy M
[see Figs. 9(b) and 9(c)]: indeed, it is easy to see that the
replacement (20) modifies the second term of the integrand
(A1), yielding an additional term proportional to the parame-
ter M. Notice that the instability of a flat-band ferromagnetic
phase due to a finite M is also related to a stronger violation
of the condition (46). At the moment, it is not clear whether
such an instability is an artifact of the bosonization scheme
related to some difficulties in including kinetic effects; see the
discussion below. Interestingly, such kind of instability is also
found for the square lattice π -flux model; see Appendix C for
details.

The stability of a flat-band ferromagnetic phase was
studied by Kusakabe and Aoki via exact diagonalization cal-
culations performed for the two-dimensional Mielke model
[42] and Mielke and Tasaki models [43]. A parameter γ

was introduced in the original models, such that γ = 0
corresponds to (lower) noninteracting bands completely flat
(flat-band limit). It was found that, for γ = 0, a ferromagnetic
phase is stable regardless the value of the on-site repulsion
energy U . For finite values of the parameter γ (system away
from the flat-band limit), a ferromagnetic ground state is sta-
ble only if U � Uc(γ ) (see Figs. 1 and 2 from Ref. [43]).
Such a scenario agrees with more recently numerical results
for the square lattice π -flux model in the nearly flat band limit
[31], which indicates that a ferromagnetic phase sets in only if
U � Uc(t2), with t2 being the next-nearest-neighbor hopping
amplitude. Müller et al. studied one- and two-dimensional
Hubbard models with nearly flat bands that are not in the
class of Mielke and Tasaki flat-band models, since they do
not obey some connectivity conditions [44]. They found that
small and moderate noninteracting band dispersion may stabi-
lize a ferromagnetic phase for U � Uc; i.e., the ferromagnetic
phase is driven by the kinetic energy. In particular, for a
two-dimensional bilayer model, Uc(δl ) is a nonmonotonic
function of the parameter δl that controls the width of the band
(see Fig. 7 from [44]); i.e., the ferromagnetic phase sets in
only for a finite band dispersion. For rigorous results about
the stability of a ferromagnetic phase on Hubbard models
with nearly flat bands, we refer the reader to the review by
Tasaki [45].

The fact that a ferromagnetic phase is stable in Hubbard
models with nearly flat (noninteracting) bands only for U �
Uc is related to the competition between the kinetic energy
(dispersion of the noninteracting bands) and the (short-range)
Coulomb interaction U [45]. The bosonization formalism
[30] partially takes into account such a competition: although
the explicitly contribution (38) of the dispersion of the non-
interacting bands c is not included in the effective boson
model (44), such kinetic effects are partially considered by
the bosonization scheme, since the coefficients (42) and the
boson-boson interaction (43) depend on the B̂i,q functions
(12) that completely determine the free-band structure (16).
At the moment, it is not clear how to properly include in
the effective boson model (44) the main effects related to the
noninteracting band dispersion. Due to this limitation, we ex-
pected that the results derived within the bosonization scheme
for flat-band Chern insulators get more accurate as the (lower)

noninteracting bands get less dispersive. One should recall
that the bosonization scheme [30] is based on the formalism
[33] that was proposed to describe the quantum Hall ferro-
magnet realized in a two-dimensional electron gas at filling
factor ν = 1: here, the noninteracting bands correspond to
(completely flat) Landau levels.

Concerning the topological properties of the spin-wave
excitations, one would expect that the nontrivial topologi-
cal properties of the noninteracting electronic bands of the
Haldane-Hubbard model may yield a flat-band ferromag-
netic phase with topologically nontrivial spin-wave excitation
bands. Indeed, topological magnons in Heisenberg ferromag-
nets [46–51] and, in particular, magnets on a honeycomb
lattice [48–51] have been studied. An important ingredient
for such topological magnon insulators is the Dzyaloshinskii-
Moriya interaction that may open energy gaps in the magnon
spectrum and yields magnon bands with nonzero Chern num-
bers. We calculate the Chern numbers of the spin-wave bands
for configurations of the Haldane-Hubbard model whose spin-
wave spectrum displays an energy gap at the K and K ′ points
[Figs. 6(b) and 6(c)]: we expand the Hamiltonian (45) in
terms of Pauli matrices as done in Eq. (11), determine the
corresponding Bi,q coefficients assuming that ε01

q = (ε10
q )∗,

and calculate the Chern numbers using Eq. (17). In agree-
ment with exact diagonalization calculations (see Figs. 2(b1)
and 2(c1) from [38]) for the Haldane-Hubbard model in the
nearly flat band limit (18) and neglecting the dispersion of the
noninteracting electronic bands (similar to the approximation
ω̄

αβ
q = 0 considered in Sec. IV B), we find that the Chern

numbers of the spin-wave bands vanish. Such a result is in-
deed a feature of the completely flat band limit: the exact
diagonalization calculations [38] indicate that the spin-wave
excitation bands have nonzero Chern numbers only when the
dispersion of the noninteracting electronic bands is explicitly
taken into account (see Figs. 2(a2) and 2(d) from [38]); as dis-
cussed in the previous paragraph, at the moment, it is not clear
how to include in the effective boson model (44) the main
effects associated with the dispersion of the noninteracting
electronic lower bands c.

In summary, in this paper we studied the flat-band fer-
romagnetic phase of a correlated Chern insulator on a
honeycomb lattice described by the Haldane-Hubbard model.
We considered the system at 1/4 filling of the noninteracting
bands and in the nearly flat band limit of the noninteracting
lower bands. We determined the spin-wave excitation spec-
trum within a bosonization scheme for flat-band correlated
Chern insulators and found that it has a Goldstone mode
at the first Brillouin zone center and Dirac points at the K
and K ′ points. We also studied how the spin-wave excitation
spectrum changes as an offset in the on-site Hubbard energies
associated with the sublattices A and B is introduced and as
the width of the lower noninteracting bands increases due to
variations of the kinetic term parameters and the presence of a
staggered on-site energy term. In particular, we found that the
flat-band ferromagnetic phase might be unstable when a finite
staggered on-site energy term is included in the kinetic term
of the Haldane-Hubbard model.

The bosonization scheme for flat-band correlated Chern
insulators provides an effective interacting boson model for
the description of the flat-band ferromagnetic phase of a
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topological Hubbard model. In the near future, we intend
to study the effects of the boson-boson interaction not only
in the Haldane-Hubbard model, but also in the square lat-
tice π -flux model previously studied in Ref. [30]. Motivated
by the similarities with the quantum Hall ferromagnetic
phase realized in a two-dimensional electron gas at filling
factor ν = 1 [33], we would like to check whether
the boson-boson interaction may yield two-boson bound
states.

We also intend to investigate how the bosonization scheme
can be modified in order to properly include the main ef-
fects associated with the dispersion of the noninteracting
electronic bands that are encoded in the kinetic coefficients
ω̄

αβ
q [Eq. (38)]. Recall that, for the square lattice topological

Hubbard model previously studied [30], symmetry considera-
tions yield ω̄

αβ
q = 0, while, for the Haldane model, a (small)

finite ω̄
αβ
q might be related to the fact that the condition (46) is

not fulfilled for the Haldane model. Once this is done, we will
be able to properly describe flat-band ferromagnetic phases
of the Haldane-Hubbard model with topologically nontrivial
spin-wave excitation bands. Moreover, we could identify pos-
sible instabilities of the ferromagnetic ground state associated
with a softening of the spin-wave excitation spectrum at finite
momentum q. Indeed, such a feature was observed in exact
diagonalization calculations for a square lattice topological
Hubbard model when the effects of the dispersion of the non-
interacting electronic bands are explicitly taken into account
(see Fig. 5 from Ref. [31]). A softening of the spin-wave bands
at finite momentum q indicates that the Haldane-Hubbard
model at 1/4 filling may display other magnetic ordered
phases, such as a chiral tetrahedron ordered state that was
discussed in a previous mean-field analysis of the Hubbard
model on a honeycomb lattice [52]. Importantly, in principle,
the bosonization scheme could not be employed to study
such distinct magnetic ordered phases, since the definition

of the bosons operators (28) is based on the ferromagnetic
(reference) state (26).

It would be interesting to see whether the bosonization
formalism [30], eventually combined with the approxima-
tions discussed in this paper, can also be employed to study
twisted bilayer graphene near a magic angle [53–62]. Here the
resulting moiré pattern induces an effective superlattice and a
set of flat minibands in the moiré Brillouin zone. In addition to
a superconducting phase [53,54], evidence for a ferromagnetic
phase at 3/4 filling of the conduction miniband are also found
[55]. In principle, a possible flat-band ferromagnetic phase of
the effective lattice model introduced in Ref. [59] for twisted
bilayer graphene could be studied within the bosonization
scheme. It would be interesting to compare such results with
recent numerical ones obtained within exact diagonalization
[60,61].

Finally, we should mention that a similar study reported
in this paper for a correlated flat-band Z2 topological in-
sulator on a honeycomb lattice, described by a topological
Hubbard model similar to Eq. (1) but that preserves time-
reversal symmetry, is currently in progress and will be
published elsewhere. For φ = π/2, such a model corresponds
to the Kane-Mele-Hubbard model; see Ref. [3] for details.
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APPENDIX A: EXPRESSIONS OF THE Fαβ,q AND
Gαβaσ (k, q) FUNCTIONS

In this Appendix, we quote the expansions of the Fαβ,q and
Gαβaσ (k, q) functions in terms of the coefficients (12) that
were derived in Ref. [30].

The Fαβ,q function (32) is defined in terms of the gα (p, q) function (33), which is written in terms of the coefficients uk and
vk of the canonical transformation (13). With the aid of Eq. (14), one shows that

F 2
αβ,q = 1

4

∑
p

[1 + (−1)α+β](1 + B̂3,pB̂3,p−q) − [1 − (−1)α+β ](B̂3,p + B̂3,p−p)

+ [(−1)α + (−1)β](B̂1,pB̂1,p−q + B̂2,pB̂2,p−q) + i[(−1)α − (−1)β](B̂1,pB̂2,p−q − B̂2,pB̂1,p−q), (A1)

with α, β = 0, 1 and B̂i,k = Bi,k/|Bk|.
The Gαβaσ (k, q) function, which determines the bosonic expression (34) of the projected density operator ρ̄aσ (k), is

defined as

Gαβa↑(k, q) = −
∑

p

Ga(p, k)

Fαα,qFββ,k+q
gα (p − k, q)g∗

β (p, k + q),

Gαβa↓(k, q) = +
∑

p

Ga(p − q, k)

Fαα,qFββ,k+q
gα (p, q), g∗

β (p, k + q), (A2)

where

Ga(p, q) = δa,Av∗
p−qvp + δa,Bu∗

p−qup, (A3)
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with uk and vk being the coefficients of the canonical transformation (13). It is then possible to show that

Gαβa↑(k, q) = − 1

8
[δa,A + δa,B(−1)α+β ]

1

Fα,qFβ,k+q

×
∑

p

1 − 3(−1)aB̂3,p + B̂3,p−qB̂3,p+k + B̂3,p−qB̂3,p + B̂3,p+kB̂3,p − (−1)aB̂3,p−qB̂3,pB̂3,p+k

+ (−1)α[B̂1,p−qB̂1,p + B̂2,p−qB̂2,p + i(−1)a(B̂1,p−qB̂2,p − B̂2,p−qB̂1,p)][1 − (−1)aB̂3,p+k]

+ (−1)β[B̂1,p−qB̂1,p+k + B̂2,p−qB̂2,p+k − i(−1)a(B̂1,p−qB̂2,p+k − B̂2,p−qB̂1,p+k )][1 − (−1)aB̂3,p]

+ (−1)α+β[B̂1,p+kB̂1,p + B̂2,p+kB̂2,p + i(−1)a(B̂1,p+kB̂2,p − B̂2,p+kB̂1,p)][1 + (−1)aB̂3,p−q]. (A4)

The expansion of the Gαβa↓(k, q) function easily follows from Eq. (A4), since Gαβa↓(k, q) = −G∗
αβa↑(−k,−q).

APPENDIX B: DETAILS ABOUT THE
BOSONIZATION SCHEME

In this Appendix, we provide some details about the defi-
nition of the boson operators (28) and discuss the differences
between the application of the bosonization formalism for
the Haldane model and the square lattice π -flux model [30].
Indeed, the application of the bosonization scheme [30] for
the Haldane model on a honeycomb lattice requires further
approximations as compared to the case of the square lattice
π -flux model.

As mentioned in Sec. III, the boson operators (28) are
defined in terms of projected spin operators in momentum
space:

bα,q ∝ S̄+
−q,α and b†

α,q ∝ S̄−
q,α.

In terms of the fermion operators c†
k σ and ck σ (associated with

the lower noninteracting band c), the commutator between the
projected spin operators S̄+

−q,α and S̄−
q,α reads

[S̄+
q,α, S̄−

q′,β ] =
∑

p

[gα (p − q′, q)gβ (p, q′)c†
p−q−q′ ↑cp ↑

− gα (p, q)gβ (p − q, q′)c†
p−q−q′ ↓cp ↓], (B1)

with the gα (p, q) function giving by Eq. (33). One sees that
Eq. (B1) is different from the canonical commutation relation
(29) for boson operators. However, as long as we are close to
the ferromagnetic state (26), i.e., the number of particle-hole

pair excitations is small, one can assume that

c†
p−q ↑cp ↑ ≈ 〈FM|c†

p−q ↑cp ↑|FM〉 = δq,0,

c†
p−q ↓cp ↓ ≈ 〈FM|c†

p−q ↓cp ↓|FM〉 = 0, (B2)

and therefore, the commutator (B1) now reads

[S̄+
q,α, S̄−

q′,β] ≈ δq,−q′F 2
αβ,q, (B3)

where the Fαβ,q function is defined by Eq. (32). The com-
mutator (B3) indicates that the particle-hole pair excitations
(27) can be treated approximated as bosons. The bosonization
formalism for flat-band Chern insulators [30] is indeed based
on the assumption (B2).

For the square lattice π -flux model [30], it was found that
the condition (46) holds, and therefore, Eq. (B3) allows us
to define two sets of independent boson operators b0 and b1 as
done in Eq. (28). On the other hand, for the Haldane model (2)
on the honeycomb lattice, the condition (46) is not fulfilled, as
exemplified in Figs. 9(a) and 9(b) for the nearly flat band limit
(18). Since F 2

αα,q are real quantities, the imaginary parts of
F 2

01,q and F 2
10,q are finite only in the vicinity of the M1 and M2

points, and |F 2
01,q|, |F 2

10,q| < |F 2
αα,q|; we assume that, for the

Haldane model, bosons operators b0 and b1 can still be defined
by Eq. (28) and that they constitute two sets of independent
boson operators.

A second important distinction between the Haldane and
square lattice π -flux models is associated with the determina-
tion of the bosonic representation of operators written in terms
of the fermion operators cq σ , such as the projected electron
density operator ρ̄aσ (k) [Eq. (34)]. As discussed in Sec. III B

FIG. 9. The real (solid line) and imaginary (dashed line) parts of the F 2
αβ,q function [Eq. (32)] for the Haldane model (2) in the nearly flat

band limit (18): (a) F 2
00,q and F 2

11,q, (b) F 2
01,q and F 2

10,q for staggered on-site energy M = 0; (c) F 2
01,q for staggered on-site energy M = 0.2 t1.
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from Ref. [30], such a procedure is based on the fact that one
can define the product of fermion operators c†

p−q ↓cp ↑ in terms
of the boson operators bα , i.e.,

c†
p−q ↓cp ↑ ≡

∑
β

hβ (p, q)b†
β,q. (B4)

For the square lattice π -flux model, where the condition (46)
holds, it is easy to see that the hβ (p, q) function is given by

hβ (p, q) = 1

Fββ,q
g∗

β (p, q), (B5)

since the substitution of Eqs. (B4) and (B5) into (28) yields

b†
α,q = 1

Fαα,q

∑
β

[∑
p

hβ (p, q)gα (p, q)

]
b†

β,q

= 1

Fαα,q

∑
β

δα,βF 2
αβ,q

Fββ,q
b†

β,q = b†
α,q; (B6)

see also Eq. (32). For the Haldane model on the honeycomb
lattice, the choice (B5) for the hβ (p, q) function seems to be
not appropriate, since the condition (46) is no longer valid.
Due to the involved expansion of the gα (p, q) function in
terms of the coefficients (12) (not shown here), it is diffi-
cult to determine an hβ (p, q) function such that the identity
(B6) is satisfied. Therefore, based on the same assumptions
considered in the definition of the boson operators bα and
discussed in the previous paragraph, we also assume that
Eq. (B5) [and consequently Eq. (34)] holds for the Haldane
model.

As discussed in Sec. IV B, one important consequence of
the fact that the condition (46) is not fulfilled for the Haldane
model is that the coefficients ω̄01

q and ω̄10
q [Eq. (38)] are

finite and the coefficients (42) obey the relation ε01
q = −ε10

q ,
yielding a non-Hermitian quadratic boson Hamiltonian (40). It
is indeed easy to understand the relation between these results
once we compare the integrand of Eq. (32) with the ones of
Eqs. (38) and (A2): Notice that all of them depend on the
product gα (x, y)g∗

β (x′, y′); for α �= β, additional terms might
be included in the Gαβaσ (k, q) function, yielding ε01

q = −ε10
q .

In principle, the condition ε01
q = (ε10

q )∗ could be restored,
once an appropriated choice for the hβ (p, q) function were
done such that the identity (B6) is now verified.

APPENDIX C: SQUARE LATTICE π-FLUX MODEL

In this Appendix, we present additional results derived
within the bosonization formalism for the flat-band ferromag-
netic phase of the topological Hubbard model on a square
lattice, whose noninteracting limit is given by the π -flux
model, previously studied in Ref. [30]. We follow the lines
of Secs. IV B and IV C and find that the spin-wave spectra
of both square lattice π -flux and Haldane models display the
same features.

Figure 10(a) shows the spin-wave spectrum (51) for the
nearly flat band limit of the square lattice π -flux model
(which corresponds to the configuration with the next-
nearest-neighbor hopping amplitude t2 = t1/

√
2) and on-site

repulsion energies UB = 0.8UA = 0.8U and UB = 0.6UA =
0.6U . A comparison with the spin-wave spectrum obtained
for the homogeneous case UB = UA = U [see Fig. 4 from
Ref. [30] and Fig. 10(b)] indicates that the energies of the
excitations decrease with �U and an energy gap opens at the
border of the first Brillouin zone (the X -M line). Such features
were also found for the Haldane-Hubbard model; see Fig. 6.
Importantly, for the square lattice π -flux model, the decay
rates of the spin-wave excitations vanish.

The effects of a decreasing of the flatness ratio of the
noninteracting bands due to the variation of the next-nearest-
neighbor hopping amplitude t2 (see Fig. 3 from Ref. [30]
for details) are shown in Fig. 10(b). Apart from a renormal-
ization of the excitation energies, the spin-wave spectrum
(51) displays the same features of the nearly flat band limit,
similar to the behavior found for the Haldane-Hubbard model;
see Fig. 7.

Finally, the effects of a finite staggered on-site energy M
are presented in Fig. 10(c). Since the kinetic contribution
ω̄α,α

q is quite small it is not considered. In addition to open-
ing an energy gap at the first Brillouin zone border, a finite
M also decreases the lower branch energies in the vicinity
of the � point, which indicates an instability of the flat-band
ferromagnetic phase; see also Fig. 8(a).

As discussed in Sec. V, the instability of the flat-band
ferromagnetic phase in the presence of a finite staggered
on-site energy M might be an artifact of the bosonization
formalism related to the kinetic contribution (38). Although
it is not clear yet how to properly include in the effective
boson model (44) the explicit effects of the dispersion of

FIG. 10. Spin-wave excitation spectra (51) for the flat-band ferromagnetic phase of the square lattice π -flux model (see Ref. [30] for
details): (a) Next-nearest-neighbor hopping amplitudes t2 = 1/

√
2 and on-site repulsion energy UB = 0.8UA = 0.8U (magenta) and UB =

0.6UA = 0.6U (green); (b) UA = UB = U and t2 = 1/
√

2 (magenta), 0.4 (green), and 0.3 t1 (blue); (c) t2 = 1/
√

2, UA = UB = U , and staggered
on-site energy M = 0.1 (magenta) and 0.2 t1 (green).
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FIG. 11. (a) The energy of the Goldstone mode for the square lattice π -flux model with on-site staggered energy M = 0.2 t1 in terms of
�η = η − π/4 determined with the dispersion relations (51) (solid green line) and (52) (solid magenta line). (b) Dispersion relation (52) for
�η = 0 (dashed blue line) and �η = 0.258 (solid magenta line).

the noninteracting bands, we check weather a modification
of the boson operators (28) definition could restore the Gold-
stone mode. In the following, we briefly summarize such a
possible procedure and apply it for the square lattice π -flux
model.

The definition of the boson operators (28) is based on the
linear combination (31) of the projected spin operators S̄q,A/B.
Since a finite M introduces an offset in the energies of the sites
associated with the sublattices A and B, instead of Eq. (31),
one should consider the generalized form

S̄±
q,0 =

√
2

2

[
cos(η)S̄±

q,A + sin(η)S̄±
q,B

]
,

S̄±
q,1 =

√
2

2

[
sin(η)S̄±

q,A − cos(η)S̄±
q,B

]
, (C1)

where the linear combination (31) can be obtained by choosing the parameter η = π/4. In this case, the expansion of the F 2
αβ,q

function (32) in terms of the coefficients (12) now reads

F 2
αα,q = 1

4

∑
k

[1 + B̂3kB̂3k−q] − (−1)α
cos(2η)

4
[B̂3k + B̂3k−q] + (−1)α

sin(2η)

4
[B̂1kB̂1k−q + B̂2kB̂2k−q],

F 2
αβ,q =

∑
k

− sin(2η)

4
[B̂3k + B̂3k−q] − cos(2η)

4
[B̂1kB̂1k−q + B̂2kB̂2k−q] − (−1)α

i

4
[B̂2kB̂1k−q − B̂1kB̂2k−q], (C2)

with α �= β, and the gα (p, q) function (33) is now given by

gα (p, q) = GA(p, q)[cos(η)(1 − α) + α sin(η)] + GB(p, q)[sin(η)(1 − α) − α cos(η)], (C3)

with the Ga(p, q) function defined by Eq. (A3). Equations (C2) and (C3) implies that the expansion (A4) of the Gαβaσ (k, q)
function in terms of the coefficients (12) is also modified. Importantly, the modified F 2

αβ,q function (C2) with η �= π/4 implies
that the condition (46) is no longer valid for the square lattice π -flux model.

Figure 11(a) shows the energy of the Goldstone mode in terms of �η = η − π/4 determined with both dispersion relations
(51) and (52) for on-site staggered energy M = 0.2 t1. One notices that it is possible to find a parameter η such that the
Goldstone mode is restored only if the coefficients ε01

q and ε10
q [Eq. (42)] are neglected. The spin-wave spectrum (52) for optimal

�η = 0.258 is display in Fig. 11(b).

[1] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the Parity
Anomaly, Phys. Rev. Lett. 61, 2015 (1988).

[2] C. L. Kane, in Topological Insulators, Contemporary Concepts
of Condensed Matter Science Vol. 6, edited by M. Franz and L.
Molenkamp (Elsevier, Oxford, UK, 2013), p. 3.

[3] S. Rachel, Interacting topological insulators: A review, Rep.
Prog. Phys. 81, 116501 (2018).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the

155129-15

https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1088/1361-6633/aad6a6
https://doi.org/10.1103/RevModPhys.83.1057


LEONARDO S. G. LEITE AND R. L. DORETTO PHYSICAL REVIEW B 104, 155129 (2021)

topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[6] N. Goldman, J. C. Budich, and P. Zoller, Topological quantum
matter with ultracold gases in optical lattices, Nat. Phys. 12, 639
(2016).

[7] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).

[8] M. Hohenadler and F. F. Assaad, Correlation effects in two-
dimensional topological insulators, J. Phys.: Condens. Matter
25, 143201 (2013).

[9] J. He, S.-P. Kou, Y. Liang, and S. Feng, Chiral spin liquid
in a correlated topological insulator, Phys. Rev. B 83, 205116
(2011).

[10] J. He, Y.-H. Zong, S.-P. Kou, Y. Liang, and S. Feng, Topological
spin density waves in the Hubbard model on a honeycomb
lattice, Phys. Rev. B 84, 035127 (2011).

[11] C. Hickey, P. Rath, and A. Paramekanti, Competing chiral
orders in the topological Haldane-Hubbard model of spin-1/2
fermions and bosons, Phys. Rev. B 91, 134414 (2015).

[12] W. Zheng, H. Shen, Z. Wang, and H. Zhai, Magnetic-order-
driven topological transition in the Haldane-Hubbard model,
Phys. Rev. B 91, 161107(R) (2015).

[13] V. S. Arun, R. Sohal, C. Hickey, and A. Paramekanti, Mean field
study of the topological Haldane-Hubbard model of spin-1/2
fermions, Phys. Rev. B 93, 115110 (2016).

[14] J. Maciejko and A. Rüegg, Topological order in a correlated
Chern insulator, Phys. Rev. B 88, 241101(R) (2013).

[15] C. Hickey, L. Cincio, Z. Papić, and A. Paramekanti, Haldane-
Hubbard Mott Insulator: From Tetrahedral Spin Crystal to
Chiral Spin Liquid, Phys. Rev. Lett. 116, 137202 (2016).

[16] T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and P.
Törmä, Topological Phase Transitions in the Repulsively Inter-
acting Haldane-Hubbard Model, Phys. Rev. Lett. 116, 225305
(2016).

[17] J. Wu, J. P. L. Faye, D. Sénéchal, and J. Maciejko, Quantum
cluster approach to the spinful Haldane-Hubbard model, Phys.
Rev. B 93, 075131 (2016).

[18] J. Imriška, L. Wang, and M. Troyer, First-order topological
phase transition of the Haldane-Hubbard model, Phys. Rev. B
94, 035109 (2016).

[19] S. A. Parameswaran, R. Roy, and S. L. Sondhi, Fractional
quantum Hall physics in topological flat bands, C. R. Phys. 14,
816 (2013).

[20] E. J. Bergholtz and Z. Liu, Topological flat band nodels and
fractional Chern insulators, Int. J. Mod. Phys. B 27, 1330017
(2013).

[21] T. Neupert, C. Chamon, T. Iadecola, L. H. Santos, and C.
Mudry, Fractional (Chern and topological) insulators, Phys. Scr.
2015, 014005 (2015).

[22] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional
Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett.
106, 236804 (2011).

[23] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly Flatbands
with Nontrivial Topology, Phys. Rev. Lett. 106, 236803 (2011).

[24] E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature Frac-
tional Quantum Hall States, Phys. Rev. Lett. 106, 236802
(2011).

[25] D. N. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Fractional quan-
tum Hall effect in the absence of Landau levels, Nat. Commun.
2, 389 (2011).

[26] N. Regnault and B. A. Bernevig, Fractional Chern Insulator,
Phys. Rev. X 1, 021014 (2011).

[27] B. Andrews and A. Soluyanov, Fractional quantum Hall states
for moiré superstructures in the Hofstadter regime, Phys. Rev.
B 101, 235312 (2020).

[28] B. Andrews, M. Mohan, and T. Neupert, Abelian topological
order of ν = 2/5 and ν = 3/7 fractional quantum Hall states in
lattice models, Phys. Rev. B 103, 075132 (2021).

[29] T. Neupert, L. Santos, S. Ryu, C. Chamon, and C.
Mudry, Topological Hubbard Model and Its High-Temperature
Quantum Hall Effect, Phys. Rev. Lett. 108, 046806 (2012).

[30] R. L. Doretto and M. O. Goerbig, Flat-band ferromagnetism
and spin waves in topological Hubbard models, Phys. Rev. B
92, 245124 (2015).

[31] X.-F. Su, Z.-L. Gu, Z.-Y. Dong, S.-L. Yu, and J.-X. Li, Ferro-
magnetism and spin excitations in topological Hubbard models
with a flat band, Phys. Rev. B 99, 014407 (2019).

[32] For reviews on flat-band ferromagnetism see, e.g., H. Tasaki,
From Nagaoka’s FM to flat band FM and beyond, Prog. Theor.
Phys. 99, 489 (1998); Hubbard model and the origin of ferro-
magnetism, Eur. Phys. J. B 64, 365 (2008).

[33] R. L. Doretto, A. O. Caldeira, and S. M. Girvin, Lowest Landau
level bosonization, Phys. Rev. B 71, 045339 (2005).

[34] R. L. Doretto and C. M. Smith, Quantum Hall ferromagnetism
in graphene: SU(4) bosonization approach, Phys. Rev. B 76,
195431 (2007).

[35] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Two-
Dimensional Density-Matrix Topological Fermionic Phases:
Topological Uhlmann Numbers, Phys. Rev. Lett. 113, 076408
(2014).

[36] For a discussion about the stability of a ferromagnetic ground
state in the completely flat-band limit of an interacting model,
we refer the reader to the Supplemental Material from Ref. [60].
More detailed discussions can be found in Refs. [32,45].

[37] For instance, the phase diagram U/t1 vs t2/t1 of a square lattice
topological Hubbard model was determined within exact diago-
nalization calculations;see Fig. 2(a) from Ref. [31]. For a fixed
on-site repulsion energy U , it was found that the ferromagnetic
ground state is stable for t2,c1 � t2 � t2,c2 in the vicinity of the
corresponding nearly flat band limit.

[38] Z.-L. Gu, Z.-Y. Dong, S.-L. Yu, and J.-X. Li, Itinerant topo-
logical magnons in Haldane-Hubbard model with a nearly flat
electron band, arXiv:1908.09255.

[39] The fact that ε01
q = ε10

q = 0 for the square lattice π -flux model
was not clearly stated in Ref. [30]. This feature was indeed
properly taken into account, and therefore, the spin-wave spec-
trum shown in Fig. 4 from Ref. [30] is correct.

[40] The diagonalization procedure employed in Ref. [30] for the
harmonic Hamiltonian is not correct, and therefore, Eq. (63)
from Ref. [30] is wrong. As mentioned in [39], such a mistake
does not alter the results for the square lattice π -flux model
derived within the bosonization scheme since ε01

q = ε10
q = 0.

[41] Z.-L. Gu and J.-X. Li, Itinerant topological magnons in SU(2)
symmetric topological Hubbard models with nearly flat elec-
tronic bands, Chin. Phys. Lett. 38, 057501 (2021).

[42] K. Kusakabe and H. Aoki, Ferromagnetic Spin-Wave Theory in
the Multiband Hubbard Model Having a Flat Band, Phys. Rev.
Lett. 72, 144 (1994).

[43] K. Kusakabe and H. Aoki, Robustness of the Ferromagnetism
in Flat Bands, Phys. B (Amsterdam) 194, 215 (1994).

155129-16

https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1088/0953-8984/25/14/143201
https://doi.org/10.1103/PhysRevB.83.205116
https://doi.org/10.1103/PhysRevB.84.035127
https://doi.org/10.1103/PhysRevB.91.134414
https://doi.org/10.1103/PhysRevB.91.161107
https://doi.org/10.1103/PhysRevB.93.115110
https://doi.org/10.1103/PhysRevB.88.241101
https://doi.org/10.1103/PhysRevLett.116.137202
https://doi.org/10.1103/PhysRevLett.116.225305
https://doi.org/10.1103/PhysRevB.93.075131
https://doi.org/10.1103/PhysRevB.94.035109
https://doi.org/10.1016/j.crhy.2013.04.003
https://doi.org/10.1142/S021797921330017X
https://doi.org/10.1088/0031-8949/2015/T164/014005
https://doi.org/10.1103/PhysRevLett.106.236804
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1038/ncomms1380
https://doi.org/10.1103/PhysRevX.1.021014
https://doi.org/10.1103/PhysRevB.101.235312
https://doi.org/10.1103/PhysRevB.103.075132
https://doi.org/10.1103/PhysRevLett.108.046806
https://doi.org/10.1103/PhysRevB.92.245124
https://doi.org/10.1103/PhysRevB.99.014407
https://doi.org/10.1143/PTP.99.489
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1103/PhysRevB.71.045339
https://doi.org/10.1103/PhysRevB.76.195431
https://doi.org/10.1103/PhysRevLett.113.076408
http://arxiv.org/abs/arXiv:1908.09255
https://doi.org/10.1088/0256-307X/38/5/057501
https://doi.org/10.1103/PhysRevLett.72.144
https://doi.org/10.1016/0921-4526(94)90437-5


FLAT-BAND FERROMAGNETISM AND SPIN WAVES IN … PHYSICAL REVIEW B 104, 155129 (2021)

[44] P. Müller, J. Richter, and O. Derzhko, Hubbard models with
nearly flat bands: Ground-state ferromagnetism driven by
kinetic energy, Phys. Rev. B 93, 144418 (2016).

[45] H. Tasaki, Stability of ferromagnetism in Hubbard models with
nearly flat bands, J. Stat. Phys. 84, 535 (1996).

[46] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological magnon
insulator in insulating ferromagnet, Phys. Rev. B 87, 144101
(2013).

[47] M. Malki and G. S. Uhrig, Topological magnon bands for
magnonics, Phys. Rev. B 99, 174412 (2019).

[48] S. A. Owerre, A first theoretical realization of honeycomb topo-
logical magnon insulator, J. Phys.: Condens. Matter 28, 386001
(2016).

[49] S. A. Owerre, Topological honeycomb magnon Hall effect:
A calculation of thermal Hall conductivity of magnetic spin
excitations, J. Appl. Phys. 120, 043903 (2016).

[50] L. Chen, J.-H. Chung, B. Gao, T. Chen, M. B. Stone, A. I.
Kolesnikov, Q. Huang, and P. Dai, Topological Spin Excita-
tions in Honeycomb Ferromagnet CrI3, Phys. Rev. X 8, 041028
(2018).

[51] A. Mook, K. Plekhanov, J. Klinovaja, and D. Loss, Interaction-
Stabilized Topological Magnon Insulator in Ferromagnets,
Phys. Rev. X 11, 021061 (2021).

[52] T. Li, Spontaneous quantum Hall effect in quarter-doped
Hubbard model on honeycomb lattice and its possible real-
ization in doped graphene system, Europhys. Lett. 97, 37001
(2012).

[53] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[54] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,
Al. H. MacDonald, and D. K. Efetov, Superconductors, orbital
magnets and correlated states in magic-angle bilayer graphene,
Nature (London) 574, 653 (2019).

[55] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. Kastner, and D. Goldhaber-Gordon, Emergent
ferromagnetism near three-quarters filling in twisted bilayer
graphene, Science 365, 605 (2019).

[56] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and
Z. Barticevic, Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations, Phys. Rev. B 82, 121407(R)
(2010).

[57] C. Xu and L. Balents, Topological Superconductivity in Twisted
Multilayer Graphene, Phys. Rev. Lett. 121, 087001 (2018).

[58] F. Wu, A. H. MacDonald, and I. Martin, Theory of Phonon-
Mediated Superconductivity in Twisted Bilayer Graphene,
Phys. Rev. Lett. 121, 257001 (2018).

[59] K. Seo, V. N. Kotov, and B. Uchoa, Ferromagnetic Mott state
in Twisted Graphene Bilayers at the Magic Angle, Phys. Rev.
Lett. 122, 246402 (2019).

[60] Y. Alavirad and J. Sau, Ferromagnetism and its stability from
the one-magnon spectrum in twisted bilayer graphene, Phys.
Rev. B 102, 235123 (2020).

[61] C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Ferromag-
netism in Narrow Bands of Moiré Superlattices, Phys. Rev. Lett.
124, 187601 (2020).

[62] B.-B. Chen, Y. D. Liao, Z. Chen, O. Vafek, J. Kang, W. Li,
and Z. Y. Meng, Realization of topological Mott insulator in a
twisted bilayer graphene lattice model, Nat. Commun. 12, 5480
(2021).

155129-17

https://doi.org/10.1103/PhysRevB.93.144418
https://doi.org/10.1007/BF02179652
https://doi.org/10.1103/PhysRevB.87.144101
https://doi.org/10.1103/PhysRevB.99.174412
https://doi.org/10.1088/0953-8984/28/38/386001
https://doi.org/10.1063/1.4959815
https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1103/PhysRevX.11.021061
https://doi.org/10.1209/0295-5075/97/37001
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevB.102.235123
https://doi.org/10.1103/PhysRevLett.124.187601
https://doi.org/10.1038/s41467-021-25438-1

