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Resolving the heavy fermion band in the conduction electron momentum resolved spectral function of the
Kondo lattice model is challenging since, in the weak coupling limit, its spectral weight is exponentially small.
In this article we consider a composite fermion operator, consisting of a conduction electron dressed by spin
fluctuations that shares the same quantum numbers as the electron operator. Using approximation free auxiliary
field quantum Monte Carlo simulations we show that, for the SU(2) spin-symmetric model on the square lattice
at half filling, the composite fermion acts as a magnifying glass for the heavy fermion band. In comparison to the
conduction electron residue that scales as e−W/Jk with W the bandwidth and Jk the Kondo coupling, the residue
of the composite fermion tracks Jk . This result holds down to Jk/W = 0.05 and confirms the point of view
that magnetic ordering, present below Jk/W = 0.18, does not destroy the heavy quasiparticle. We furthermore
investigate the spectral function of the composite fermion in the ground state and at finite temperatures, for
SU(N) generalizations of the Kondo lattice model, as well as for ferromagnetic Kondo couplings, and compare
our results to analytical calculations in the limit of high temperatures, large-N , large-S, and large Jk . Based
on these calculations, we conjecture that the composite fermion operator provides a unique tool to study the
destruction of the heavy fermion quasiparticle in Kondo breakdown transitions. The relation of our results to
scanning tunneling spectroscopy and photoemission experiments is discussed.
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I. INTRODUCTION

A quasiparticle excitation is defined by its quantum num-
bers, spin-1/2, unit charge, and crystal momentum for the
electron, and infinite lifetime. This leads to the generic form
of the single particle retarded Green’s function:

G(k, ω) = Zk

ω + i0+ − E (k)
+ Ginc(k, ω), (1)

where Zk is the quasiparticle residue, E (k) the dispersion
relation, and Ginc the incoherent background. Generically,
one expects any operator, ψ̂

†
k,σ

, carrying the same quan-
tum numbers as the quasiparticle, to reveal the same
dispersion relation. However, the quasiparticle residue, Zk ≡
|〈�n+1

0 (k)|ψ̂†
k,σ

|�n
0 〉|2, corresponding to the overlap between

the ground state in the n-particle sector with an additional
quasiparticle of momentum k and the ground state in the
n + 1 particle sector and and momentum k, will depend on the
specific form of the operator ψ̂

†
k,σ

. For example, for an antifer-
romagnetic insulator, the quasiparticle should be understood
in terms of a fermion dressed with spin fluctuations, a spin
polaron [1,2], or alternatively by a bound state of a spinon
and holon [3,4]. If Zk is small, then measuring the Green’s
function of the electron may not be an optimal strategy. A
workaround is to optimize the specific form of ψ̂

†
k,σ

so as
to maximize Zk [5]. Such an approach is appealing since,
provided that single particle excitations exist, it allows one
to zoom in on them and understand the nature of the dressing

of the bare electron. The failure to find an operator ψ̂
†
k,σ

with
Zk > 0 is even more interesting since it signals the breakdown
of the quasiparticle picture. In one dimensions, this is generic
[6]. In higher dimensions, notions such as orthogonal metals
with fractionalized fermions can be put forward [7–9].

In this article, we will concentrate on the heavy fermion
state as realized for example in CeCu6 [10]. These materials
can be understood in terms of a lattice of magnetic impurities,
stemming from the localized Ce-4 f electrons, embedded in
a metallic host. In the local moment regime where charge
fluctuations of the Ce-4 f electron can safely be omitted,
the adequate model to describe these materials is the Kondo
lattice model (KLM), with Kondo coupling Jk between the
localized spins and the spin degree of freedom of the con-
duction electrons. CeCu6 has an effective mass that exceeds
by many orders the magnitude of the bare electron mass.
Numerical simulations [11] as well as large-N calculations of
the KLM [12] show that the enhancement of the effective mass
stems from the frequency dependence of the self-energy of
the bare electron retarded Green’s function. In particular, the
quasiparticle residue in the small Jk/W limit tracks the Kondo
scale Zk � e−W/Jk . Here W corresponds to the bandwidth.

The question we will ask here is if we can define a fermion

operator ψ̂
†
k that enhances the spectral weight of the heavy

fermion band. Let us first assume that the KLM can be derived
from a periodic Anderson model (PAM) describing the same
conduction electron band hybridizing with a narrow f band.
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In the local moment regime, a canonical Schrieffer-Wolff [13]
transformation provides a mapping between both models. In
the paramagnetic phase [14], the conduction electron spectral
function will exhibit heavy bands but with very low spectral
weight. Since the heavy band has f character, one should
actually consider the f -single particle spectral function to
resolve it. The mapping between the Kondo lattice and peri-
odic Anderson models provides a simple scheme to derive the
fermion operator that one should compute in the realm of the
KLM to resolve the heavy band. It merely corresponds to the
Schrieffer-Wolff canonical transformation of the f -fermion
operator in the PAM [15]. For a conduction ĉ†

i and impurity
spin Ŝi in the unit cell i, it reads

ψ̂
†
i = ĉ†

i σ · Ŝi (2)

and corresponds to the form put forward in Refs. [16,17].
This fermion operator is relevant for the understanding of
scanning tunneling microscopy (STM) spectra of magnetic
adatoms on metallic surfaces [15,18–21] and Kondo lattice
materials [22–25]. In particular, within the single impurity
Kondo model, it reveals the Kondo resonance [15,16]. Ander-
son and Appelbaum used ψ̂

†
i to explain the zero-bias tunneling

anomalies in s − d exchange models [26–28]. The aim of
this article is to take the step from the impurity to the lattice
and compute, with approximation free quantum Monte Carlo
methods, the momentum resolved spectral function of the
composite fermion.

The richness of phenomena that can be captured by con-

sidering the fermion operator ψ̂
†
i is remarkable and can be

investigated by considering several limiting cases. First of all,

ψ̂
†
i is a composite object of a spin and fermion degrees of

freedom. Hence, if one neglects interactions between these
two entities, the spectral function Aψ (k, ω) will show a broad
continuum of excitations corresponding to the convolution of
the conduction electron spectral function and spin susceptibil-
ity of the impurity spins (see Sec. III B). Poles in the spectral
function of the composite fermion operator correspond to
bound states of spins and conduction electrons. In fact, in the
zero temperature and large-N limits [29] one will show that
Aψ (k, ω) exhibits quasiparticle poles akin to the hybridized
band picture of heavy fermions. The weight of these poles
is proportional to the square of the hybridization mean-field
order parameter V (see Sec. III C). Hence, within this ap-
proximation, the Kondo breakdown transition, characterized
by V = 0, is revealed by the vanishing of the heavy fermion
pole in the composite fermion spectral function. Momentum
integrated calculations of this quantity for a spin chain on a
semimetallic surface support this point of view [30]. In the
strong coupling limit, Aψ (k, ω) can be computed and equally
shows a pole structure (see Sec. III D). Furthermore, one fun-
damental question in the realm of heavy fermion systems is
the fate of Kondo screening in the magnetically ordered phase
triggered by the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction [31–33]. At the mean-field level the question boils
down to a finite or vanishing value of the hybridization mean-
field order parameter V , that is again revealed by the weight of
the quasiparticle pole in Aψ (k, ω). Finally, if Kondo screening
is not present in the magnetically ordered phase, one can adopt
a large-S approximation (see Sec. III E). In leading order in S,

t
Jk

a1

a2

Unit  
cell

(a)

X

M
(b)

FIG. 1. (a) Sketch of the square KLM with the nearest neighbor
hopping t and Kondo exchange coupling Jk : the conduction and
localized orbitals are indicated by red and blue dots. (b) First Bril-
louin zone and its high symmetry points: � = (0, 0), X = (π, 0), and
M = (π, π ).

the spectral function Aψ (k, ω) will correspond to the conduc-
tion electron spectral function shifted by the ordering wave
vector Q.

The organization of the article is as follows. In Sec. II
we introduce the Kondo lattice Hamiltonian. Section III
is devoted to a detailed discussion of the fermion ψ̂

†
i

operator. We will first discuss its symmetry properties
and then make predictions concerning its spectral prop-
erties based on the high temperature, large-N [12,34],
strong coupling [35,36], and large-S limits. In Sec. IV
we summarize the details of the auxiliary field quantum
Monte Carlo (QMC) simulations. In Sec. V we present
our QMC results for the SU(2) and SU(N) antiferro-
magnetic Kondo lattice models as well as for the SU(2)
ferromagnetic KLM. In Sec. VI we conclude and provide
outlooks.

II. MODEL HAMILTONIAN

We start with the Kondo lattice Hamiltonian

ĤKLM =
∑
k,σ

εkĉ†
k,σ

ĉk,σ + Jk

∑
i

Ŝ
c
i · Ŝi. (3)

Here, the operator ĉ†
k,σ

creates an electron with a wave vector
k and z component of spin 1/2(−1/2), εk describes the band
dispersion energy, and Jk is the Kondo exchange coupling
between conduction electron spins Ŝ

c
i = 1

2

∑
σσ ′ ĉ†

i,σσσ,σ ′ ĉi,σ ′

and localized magnetic moments Ŝi with σ being the Pauli
matrices. Specifically, we have considered a square KLM with
the hopping amplitude t restricted to nearest neighbors; see
Fig. 1. Our aim is elucidate the response of the composite
fermion operator in different parts of the phase diagram il-
lustrated in Fig. 2.

III. COMPOSITE FERMION OPERATOR

To introduce the composite fermion operator, it is conve-
nient to take a step back and assume that the KLM can be
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Jk/t=0 Jk/t=∞

KondoKondo 
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RKKY
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FIG. 2. Conjectured ground state phase diagram for a square
KLM at half filling. For Jk/t > 0, a quantum critical point (red
dot) separates the Kondo-screened and antiferromagnetically ordered
phases. In the latter, the composite fermion spectral function is
consistent with the coexistence of Kondo screening and the RKKY
interaction; for Jk/t < 0, the RKKY interaction is the only relevant
energy scale.

derived from a periodic Anderson model (PAM):

ĤPAM =
∑
k,σ

εkĉ†
k,σ

ĉk,σ + V
∑
i,σ

(ĉ†
i,σ f̂i,σ + H.c)

+ U

2

∑
i

(
n̂ f

i − 1)2. (4)

The Hamiltonian ĤKLM in Eq. (3) is obtained in the limit of
strong Hubbard interaction U on the f orbitals by carrying out
a canonical Schrieffer-Wolff [13] transformation of the PAM,
ĤPAM . Hence eŜĤPAMe−Ŝ = ĤKLM with Ŝ† = −Ŝ. Then, the
composite fermion operator is given by

eŜ f̂ †
i,σ ′e−Ŝ � 2V

U

(
ĉ†

i,−σ ′ Ŝσ ′
i + σ ′ĉ†

i,σ ′ Ŝz
i

) ≡ 2V

U
ψ̂

†
i,σ ′ . (5)

In the above, it is understood that σ ′ takes the value 1 (−1) for
up (down) spin degrees of freedom, that Ŝσ ′

i = f̂ †
i,σ ′ f̂i,−σ ′ , and

that Ŝz
i = 1

2

∑
σ ′ σ ′ f̂ †

i,σ ′ f̂i,σ ′ . This form matches that derived
in Ref. [16] and a calculation of the former equation can
be found in Ref. [15]. An equivalent, but more transparent
formulation is given in Ref. [17] and reads

ψ̂
†
i,σ =

∑
σ ′

ĉ†
i,σ ′σσ ′,σ · Ŝi, (6)

where σ denotes the vector of Pauli spin matrices.

A. Symmetry properties of the composite fermion

As the composite fermion operator stems from a canon-
ical transformation of the f -fermion operator, it must share
identical symmetry properties. However, since the canonical
transformation was carried out within perturbation theory, the
statement is not exact and a calculation will show that the
anticommutation rules for the composite fermion operator
read

{ψ̂†
i,σ , ψ̂ j,σ ′ } = δi, j (iŜi · [(ĉ†

i σ )σ × (σĉi )σ ′]

− σσ,σ ′ · Ŝi + δσ,σ ′S(S + 1)) (7)

and

{ψ̂†
i,σ , ψ̂

†
j,σ ′ } = δi, j (iŜi · [(ĉ†

i σ )σ × (σĉ†
i )σ ′]). (8)

The above holds for the spin S = 1/2 case. As a conse-
quence the sum rule for a composite fermion spectral function

defined as

Aψ (k, ω) = − 1

π
ImGret

ψ (k, ω), (9)

with

Gret
ψ (k, ω) = −i

∫ ∞

0
dt eiωt

∑
σ

〈{ψ̂k,σ (t ), ψ̂†
k,σ

(0)}〉 (10)

reads∫
dω Aψ (k, ω) =

∑
σ

〈{ψ̂†
k,σ

, ψ̂k,σ
}〉

= − 2

Nu

∑
i

〈Ŝi · ĉ†
i σĉi 〉 + 2S(S + 1). (11)

Since −3/2 < 〈Ŝi · ĉ†
i σĉi〉 < 1/2 the sum rule is, as expected,

positive and is maximal for the antiferromagnetic alignment
of impurity and conduction electron spins. Hence the sum rule
lies in the interval [0.5, 4.5] and is hence very comparable to
that of the conduction electron that takes a value of two.

We now show that the composite fermion transforms as an
SU(2) spinor under global spin rotations. The generator for
global spin rotations corresponds to the total spin:

Ŝtot =
∑

i

(
Ŝi + 1

2
ĉ†

i σĉi

)
, (12)

such that for

Û (e, θ ) = e−iθe·Ŝtot , (13)

with e a unit vector in R3 and θ a real angle,

Û −1(e, θ )ĉ†
i Û (e, θ ) = ĉ†

i ei θ
2 e·σ (14)

and

Û −1(e, θ )ŜiÛ (e, θ ) = R(e, θ )Ŝi. (15)

In the above, R(e, θ ) is an SO(3) rotation around axis e with
angle θ . Since ei θ

2 e·σσ e−i θ
2 e·σ = R(e, θ )σ, one will show that

ψ̂
†
i transforms as an SU(2) spinor:

Û −1(e, θ )ψ̂
†
i Û (e, θ ) = ψ̂

†
i ei θ

2 e·σ . (16)

We will now discuss the behavior of the composite fermion
spectral function upon neglecting vertex corrections in the
large-N and large-S limits.

B. Omission of vertex contributions

Omitting vertex corrections, the composite fermion spec-
tral function is given by a convolution of the spin suscepti-
bility and the single particle spectral function. In particular,
along the imaginary time, the bubble contribution to the cor-
relation function reads∑

σ

〈ψ̂i,σ ψ̂
†
j,σ (τ )〉 =

∑
σ

〈ŜiŜ j (τ )〉〈ĉi,σ ĉ†
j,σ (τ )〉. (17)

Transforming to real time and momentum space gives

Aψ (k, ω) = 1

Nu

∑
p

∫
d� Ac(p, ω)χ ′′(k − p, ω − �)

×[nB(ω − �) − nF (�)]. (18)
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In the above, χ ′′(k − p, ω − �) corresponds to the imagi-
nary part of the impurity spin susceptibility and Ac(p, ω)
is the spectral function of the conduction electrons. nB(ω −
�), nF (ω) correspond respectively to the Bose-Einstein
and Fermi-Dirac distributions at the considered temperature.
Generically, the above convolution should yield a broad com-
posite fermion spectral function. Consider, for example, a
temperature scale where the spins are disordered such that the
dynamical spin structure factor

S(q, ω) = χ ′′(q, ω)nB(ω) (19)

can be approximated by S(q, ω) ∝ δ(ω), such that χ ′′(q, ω) =
0 ∀ ω 
= 0. In this case,

Aψ (k, ω) ∝ 1

Nu

∑
p

Ac(p, ω) (20)

is k independent and corresponds to the density of states of the
conduction electrons. We will see that our high temperature
QMC data reproduce this form.

C. SU(N) generalization and the large-N limit

Here we generalize the SU(2) Kondo lattice model to
SU(N) in the totally antisymmetric self-conjugate represen-
tation. Let T a be the N2 − 1 generators of SU(N) that satisfy
the normalization condition:

Tr[T aT b] = 1
2δa,b. (21)

For the SU(2) case, T a corresponds to the T̂ = 1
2σ with σ a

vector of the three Pauli spin matrices. The SU(N) general-
ization of the KLM then reads

ĤN
KLM =

N∑
k,σ=1

εkĉ†
k,σ

ĉk,σ + 2Jk

N

∑
i,a

T̂ a,c
i T̂ a, f

i , (22)

where

T̂ a,c
i =

N∑
σ,σ ′=1

ĉ†
i,σ T a

σ,σ ′ ĉi,σ ′ , T̂ a, f
i =

N∑
σ,σ ′=1

f̂ †
i,σ T a

σ,σ ′ f̂i,σ ′ .

(23)

The fermionic representation of the SU(N) generators as well
as the constraint

N∑
σ=1

f̂ †
i,σ f̂i,σ ≡ n̂ f

i = N

2
(24)

define the self-adjoint totally antisymmetric representation. To
formulate the large-N approximation, we use the relation

∑
a

T a
α,βT a

α′,β ′ = 1

2

(
δα,β ′δα′,β − 1

N
δα,βδα′,β ′

)
(25)

to show that, in the constrained Hilbert space,

2Jk

N

N2−1∑
a=1

T̂ a,c
i T̂ a, f

i = − Jk

2N

∑
i

(D̂†
i D̂i + D̂i D̂†

i ) + Jk

4
, (26)

with

D̂†
i =

N∑
σ=1

f̂i,σ ĉ†
i,σ .

In the large-N limit, D̂†
i is of order N and fluctuations around

the mean field are of order one, such that the square of the
fluctuations can be neglected. The constraint

∑N
σ=1 f̂ †

i,σ f̂i,σ is
equally of order N and since fluctuations around the mean are
again of order one, it can be imposed on average.

The composite fermion operator is readily generalized to
SU(N) as

ψ̂
†
i,σ = 4

N

N∑
σ ′=1

N2−1∑
a=1

ĉ†
i,σ ′T a

σ ′,σ T̂ a, f
i , (27)

where the prefactor has to be chosen such that the above
equation matches Eq. (2) at N = 2. Using Eq. (25) and the
constraint, we obtain

ψ̂
†
i,σ = 2

N
[ f̂ †

i,σ (D̂†
i − f̂i,σ ĉ†

i,σ ) − ĉ†
i,σ ( f̂ †

i,σ f̂i,σ − 1/2)]. (28)

In the large-N limit, D̂†
i scales as N and fluctuations of order

one can be neglected such that

ψ̂
†
i,σ ∝ f̂ †

i,σ

2

N
〈D̂†

i 〉. (29)

In the heavy fermion state characterized by 〈D̂†
i 〉 
= 0 we

expect the composite fermion operator to resolve the heavy
fermion band since it is of dominant f character.

Specifically, in the large-N limit, the dispersion relation of
the f electron at finite hybridization V = 2

N 〈D̂†
i 〉 = 2

N 〈D̂i〉 is
given by

Ek,± = 1
2

(
εk ±

√
ε2

k + J2
k V 2

)
, (30)

with ε(k) = −2t (cos kx + cos ky). The f -electron spectral
function A f (k, ω) = − 1

π
ImGret

f (k, ω) reads

Gret
f (k, ω) = |uk|2

ω + i0+ − E−
k

+ |vk|2
ω + i0+ − E+

k

, (31)

with coherence factors

|uk|2 = 1

2

(
1 + εk√

ε2
k + (JkV )2

)
, (32)

|vk|2 = 1

2

(
1 − εk√

ε2
k + (JkV )2

)
. (33)

Figure 3 plots A f (k, ω) as a function of energy and momen-
tum. A dominant f character of the low energy heavy fermion
band can be noticed by thick black lines.

D. Strong coupling limit

An alternative way of understanding the composite fermion
operator that becomes very transparent in the strong coupling
limit is in terms of bond operators between conduction elec-
trons and spins [37,38]. We consider the states

ŝ†
i |0〉 = 1√

2
(ĉ†

i,↑ f̂ †
i,↓ − ĉ†

i,↓ f̂ †
i,↑)|0〉,

t̂†
i,0|0〉 = 1√

2
(ĉ†

i,↑ f̂ †
i,↓ + ĉ†

i,↓ f̂ †
i,↑)|0〉,

t̂†
i,σ |0〉 = ĉ†

i,σ f̂ †
i,σ |0〉,
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FIG. 3. Spectral weight Af (k, ω) as a function of momentum k
and energy ω/t for Jk/t = 2 as obtained in the large-N limit. The line
thickness reflects the f character of the band.

ĥ†
i,σ |0〉 = f̂ †

i,σ |0〉,
d̂†

i,σ |0〉 = ĉ†
i,↑ĉ†

i,↓ f̂ †
i,σ |0〉. (34)

Here, ŝ† and t̂†
1,0,−1 denote a singlet and three triplet states

(triplons) with one conduction electron per site and ĥ†
σ and d̂†

σ

denote holons and doublons of the conduction electrons. We
will assume that holons and doublons (singlets and triplets)
are independent fermionic (bosonic) excitations such that
{d̂#

i,σ , d̂#′
j,σ ′ } = {ĥ#

i,σ , ĥ#′
j,σ ′ } = (1 − δ#,#′ )δi, jδσ,σ ′ , [t̂i,m, t̂†

j,m′ ] =
δi, jδm,m′ , [ŝi, ŝ†

j ] = δi, j , and [t̂i,m, t̂ j,m′ ] = [ŝi, ŝ j] = 0. Here
# = ·, † and the fermion and boson operators commute. To
suppress the unphysical states, one then imposes the constraint

ŝ†
i ŝi +

∑
m=1,0,−1

t̂†
i,mt̂i,m +

∑
σ=↑,↓

(ĥ†
i,σ ĥi,σ + d̂†

i,σ d̂i,σ ) = 1. (35)

In this representation the conduction electron and the com-
posite fermion operators read

ĉ†
i,σ = σ√

2
(ŝ†

i + σ t̂†
i,0)ĥi,−σ + t̂†

i,σ ĥi,σ

− d̂†
i,σ√
2

(ŝi − σ t̂i,0) + σ d̂†
i,−σ t̂i,−σ , (36)

2ψ̂
†
i,σ = − σ√

2
(ŝ†

i + σ t̂†
i,0)ĥi,−σ + (t̂†

i,σ + 2t̂†
i,−σ )ĥi,σ

− d̂†
i,σ√
2

(ŝi − σ t̂i,0) − σd†
i,−σ (t̂i,−σ + 2t̂i,σ ). (37)

As apparent both the conduction electron and composite
fermion creation operators have very similar forms. In both
cases a holon (triplon or singlet) can be annihilated to generate
a triplon or singlet (doublon). We will now show that, in
the strong coupling limit, both the composite fermion and
conduction electron spectral functions share the same features
consisting of valence and conduction bands. In the limit Jk →
∞ triplons can be neglected since in a given fixed particle
number Hilbert space the triplon cost is set by Jk . Adopting
this approximation,

2ψ̂
†
i,σ = − σ√

2
ŝ†

i ĥi,−σ − 1√
2

d̂†
i,σ ŝi (38)

and the Hamiltonian reads

ĤKLM = − t

2

∑
〈i, j〉,σ

(ŝ†
i ĥi,−σ ĥ†

j,−σ ŝ j + d̂†
i,σ ŝi ŝ

†
j d̂ j,σ + H.c.)

− 3Jk

4

∑
i

ŝ†
i ŝi . (39)

In the above, we have neglected terms such as d̂†
i,σ ĥ†

j,−σ ŝi ŝ j
that create holon doublon excitations since these processes,
in a given fixed particle-number Hilbert space, involve an
excitation gap of 3Jk/2. At T = 0 and at half filling where
the ground state corresponds to a product state of singlets, the
retarded Green’s function reads

4Gret
ψ (k, ω) = 1

ω − ( 3Jk
4 + ε(k)

2

) + i0+

+ 1

ω − ( − 3Jk
4 + ε(k)

2

) + i0+ , (40)

with ε(k) = −2t (cos kx + cos ky) the conduction electron dis-
persion relation. The valence and conduction bands are
separated by an indirect gap since the maximal (minimal)
energy of the valence (conduction) band is at k = (π, π ) [k =
(0, 0)]. An equivalent form can be obtained for the conduction
electron spectral function. The obtained dispersion relation
compares with the strong coupling expansion presented in
Ref. [39].

E. Large-S limit

We now consider the large-S limit. Here we systematically
enhance the dimension of the representation of the SU(2)
group of the impurity spins such that the Hamiltonian is iden-
tical to that of Eq. (3) but with

Ŝ
2
i = S(S + 1) (41)

for half integer spins. Since we are working on bipartite
lattices, we foresee antiferromagnetic order and choose the
following Holstein-Primakov representation of the spin alge-
bra on the A,

Ŝz
i = S − b̂†

i b̂i , Ŝ+
i =

√
2S − b̂†

i b̂i b̂i , (42)

and B sublattices,

Ŝz
i = b̂†

i b̂i − S, Ŝ+
i = b̂†

i

√
2S − b̂†

i b̂i . (43)

The Néel state corresponds to the vacuum of the boson op-
erator b̂i. Hence in the large-S limit and in the Néel state
we will assume that 〈b̂†

i b̂i 〉 << 2S, allowing one to expand
the square root. With this approximation, and including the
RKKY interaction,

JRKKY

∑
〈i, j〉

Ŝi · Ŝ j, (44)
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to the KLM, we obtain

Ĥ =
∑
k,σ

εkĉ†
k,σ

ĉk,σ + Jk

2
S

∑
i

eiQ·iĉ†
i σ

zĉi

+ JRKKY S

2

∑
i,δ

(2b̂†
i b̂i + b̂i b̂i+δ

+ b̂†
i b̂†

i+δ
)

+ Jk

√
S

2

∑
i∈A

(ĉ†
i,↑ĉi,↓b̂†

i + H.c.)

+ Jk

√
S

2

∑
i∈B

(ĉ†
i,↑ĉi,↓b̂i + H.c.) + · · · . (45)

In the above, the ellipsis corresponds to terms in lower order
in S, δ runs over the nearest neighbors of a given site, and eiQ·i
takes the value 1 (−1) on the A (B) sublattice.

We now turn our attention to the composite fermion opera-
tor. Using the Holstein-Primakov representation we obtain

ψ̂
†
i = Sĉ†

i σ
zeiQ·i +

√
S

2
ĉ†

i

1 + eiQ·i

2
(σ+b̂†

i + σ−b̂i )

+
√

S

2
ĉ†

i

1 − eiQ·i

2
(σ+b̂i + σ−b̂†

i ) + · · · . (46)

In the above, the ellipsis again refers to lower order terms in
S and σ± = σ x ± iσ y. Retaining terms only up to order S,
the Hamiltonian of Eq. (45) corresponds to electrons subject
to a static staggered magnetic field of magnitude JkS in the
z direction as well as spin waves. The composite fermion
operator reduces to the conduction electron operator with a
phase shift such that∑

σ

〈
ψ̂i,σ (0)ψ̂†

j,σ (τ )
〉 = S2

∑
σ

〈
ĉi,σ (0)ĉ†

j,σ (τ )
〉
eiQ·( j−i) + · · · .

(47)

Hence, in the large-S limit, the composite fermion Green’s
function should correspond to the c-Green’s function with a
momentum shift of Q. We note that the above equation can
also be motivated from Eq. (17) with 〈ŜiŜ j (τ )〉 ∝ S2eiQ·( j−i)

as appropriate for a long ranged antiferromagnetic state.

IV. QUANTUM MONTE CARLO

We consider the SU(N) generalization of the Kondo lattice
Hamiltonian given in Eq. (3):

Ĥ = Ĥt − Jk

4N

∑
i

{(ĉ†
i f̂ i + H.c.)2 + (iĉ†

i f̂ i + H.c.)2}

+ U

N

∑
i

(
f̂

†
i f̂ i − 1

2

)2
, (48)

where Ĥt = −t
∑

〈i, j〉(ĉ
†
i ĉ j + H.c.) and ĉ†

i and f̂
†
i are N fla-

vor fermion operators. Since the Monte Carlo sampling is
formulated in an unconstrained Hilbert space, to impose the
constraint Eq. (24) we have added above a Hubbard-U in-
teraction acting on the f electrons. Importantly, the Hubbard
interaction commutes with the Hamiltonian such that the con-
straint is very efficiently implemented.

Next, using the Hubbard-Stratonovich transformation the
partition function can be written as

Z ≡
∫

D{z, λ} e−NS{z,λ}, (49)

with the action

S{z, λ} = − ln[Tr T e− ∫ β

0 dτ Ĥ{z,λ}]

+
∫ β

0
dτ

∑
i

{
Jk

4
|z(i, τ )|2 + U

4
|λ(i, τ )|2

}

(50)

and time dependent Hamiltonian

Ĥ{z, λ} = Ĥt +
∑

i

{
− Jk

2
[z(i, τ )ĉ†

i f̂ i + H.c.]

− iUλ(i, τ )

(
f̂

†
i f̂ i − 1

2

)}
. (51)

In the above scalar field λ(i, τ ) enforces the constraint and
z(i, τ ) is a space and time dependent complex bond field. For a
particle-hole symmetric band the imaginary part of the action
takes the value nπ with n an integer resulting in no negative
sign problem for even N [14,29,40]. Note that the on-site Hub-
bard term commutes with the Hamiltonian. Hence for a given
U and inverse temperature β the unphysical even-parity states
are suppressed by a factor e−βU/N . The choice βU/N (� 10)
allows restriction of the Hilbert space to the odd parity sector
within our error bars.

We have used both the finite temperature [41,42] as well as
the zero temperature auxiliary field QMC methods [40,43,44].
For the SU(2) invariant KLM we have mainly used the finite
temperature algorithm. In that case, it is possible to perform
simulations at low enough temperatures to address the inter-
play between strong antiferromagnetic spin correlations and
Kondo screening. Given that the RKKY scale varies as 1/N
in the SU(N) generalization of the KLM, we have opted
for N > 2 for a projective QMC technique based on the
imaginary-time evolution of a trial wave function |�T〉, with
〈�T|�0〉 
= 0, to the ground state |�0〉:

〈�0|Ô|�0〉
〈�0|�0〉 = lim

�→∞
〈�T|e−�ĤÔ e−�Ĥ|�T〉

〈�T|e−2�Ĥ|�T〉 , (52)

where the projection parameter � is chosen to be suffi-
ciently large (up to 2�t = 400 for our largest N = 8) to reach
the antiferromagnetic ground state even at a small value of
Jk/t = 0.4. Finally, taking into account the phase diagram
presented in Refs. [14,29,40] we have considered values of
Jk/t representative of both the magnetically ordered RKKY
and disordered Kondo screened phases.

The SU(N) KLM is one of the standard Hamiltonians
implemented in the ALF2.0 library [45]. We have used this
library to produce our results and refer the reader to Ref. [45]
for further details of the implementation. We also note that the
measurement of the composite fermion time displaced corre-
lation functions is implemented in ALF2.0 so that no add-ons
to the library are required to reproduce the data presented in
this paper.
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V. QUANTUM MONTE CARLO RESULTS

Our main goal is to compute the momentum resolved com-
posite fermion spectral function defined in Eqs. (9) and (10).
The motivation of doing so stems from the fact that the low
energy heavy fermion band has predominantly f character
and thus the composite fermion Eq. (2) may provide a bet-
ter possibility to resolve heavy quasiparticles as compared
with the spectral function on conduction electrons, Ac(k, ω) =
− 1

π
ImGret

c (k, ω), where

Gret
c (k, ω) = −i

∫ ∞

0
dt eiωt

∑
σ

〈{ĉk,σ (t ), ĉ†
k,σ

(0)}〉. (53)

To extract the real frequency data from the imaginary time
data of QMC we have used the stochastic analytical con-
tinuation algorithm [46] of the ALF2.0 [45] library. In the
following we present and discuss our results considering sepa-
rately antiferromagnetic Jk/t > 0 and ferromagnetic Jk/t < 0
exchange couplings.

A. Antiferromagnetic Kondo lattice

As proposed by Doniach [47], the antiferromagnetic
Kondo coupling in the KLM leads to two energy scales set by
Kondo and RKKY exchange interactions. The Kondo scale
is given by a single impurity Kondo scale Tk ∼ W e−W/Jk ,
where W denotes the bandwidth of the conduction electrons.
The RKKY scale is given by JRKKY (q) = J2

k χ c(q, ω = 0),
where χ c is the spin susceptibility of the conduction electrons.
Depending on the magnitude of the exchange coupling, the
physics is dominated by one of these two energy scales. For
large Kondo couplings, the Kondo effect is the dominant ef-
fect and stabilizes the spin-gapped Kondo singlet phase. For
small Kondo couplings, the RKKY interaction is the largest
scale and thus magnetic order of local moments occurs. This
competition leads to a quantum phase transition which for
the SU(2) KLM on the square lattice is shown to arise at the
critical point Jc

k /t � 1.45 [14,40]. The location of the mag-
netic transition shifts with increasing number of flavors N in
the SU(N) generalization of the KLM towards smaller values
of Jk/t [29]. Keeping in mind these two competing energy
scales, we proceed to discuss their signature in the momen-
tum resolved composite fermion spectral function Aψ (k, ω).
By comparing the latter with the single particle spectrum
of conduction electrons Ac(k, ω) we will directly show the
advantage of usage of Aψ (k, ω) in detecting the existence of
heavy quasiparticles especially in the weak coupling region of
the phase diagram.

1. SU(2) Kondo lattice model

We start with finite but low temperature T = t/36 data
of the SU(2) invariant KLM in the Kondo-screened phase.
The Kondo-screened phase is adiabatically connected to the
strong coupling limit, where each spin binds with a conduc-
tion electron into a spin singlet. As discussed in Sec. III D, the
composite fermion spectral function Aψ (k, ω) should show a
well defined quasiparticle band. Figures 4(a) with Jk/t = 2
and 4(c) with Jk/t = 1.6 confirm this point of view. Fur-
thermore, although no actual symmetry breaking occurs in
the QMC simulations, the low energy excitation spectrum
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(a)
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Jk/t=1.6

t=36
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 4

kk MXX M

(g) (h)

(e)

Jk/t=1.2

Jk/t=1

/t

/t

(f)

Jk/t=1.2

Jk/t=1

FIG. 4. Composite fermion Aψ (k, ω) (left) and conduction elec-
tron Ac(k, ω) (right) spectral functions in the 12 × 12 KLM at βt =
36 with (a),(b) Jk/t = 2, (c),(d) Jk/t = 1.6, (e),(f) Jk/t = 1.2, and
(g),(h) Jk/t = 1.

is consistent with that found in a simple large-N picture in
which the hybridization gap opens up in the presence of a
finite hybridization parameter V ; see Fig. 3. Given the sum
rule |uk|2 + |vk|2 = 1 of mean-field coherence factors defined
in Eqs. (32) and (33), the low energy part of the spectrum
with the dominant f character is poorly represented in the
large-N conduction electron spectral function Ac(k, ω). As
is apparent in Figs. 4(b) and 4(d) the same holds for the
QMC data: the intensity of a weakly dispersive heavy fermion
band in Ac(k, ω) quickly drops upon approaching the M point
while being much more pronounced in the composite fermion
spectral function Aψ (k, ω).

To illustrate further a superior quality of the composite
fermion as a tool in tracing heavy fermon excitations, we plot
in Figs. 4(e) and 4(g) its spectra in the RKKY dominated part
of the phase diagram with Jk/t = 1.2 and Jk/t = 1. To make
sure that the used temperature T = t/36 is low enough to
access the interplay between Kondo screening and the RKKY
interaction, we plot in Fig. 5 the corresponding temperature
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FIG. 5. Static spin structure factor S(Q) at Q = (π, π ) for the
localized spins as a function of temperature T/t .

dependence of a static spin structure factor

S(Q) = 1

Nu

∑
i, j

e−iQ(i− j)〈Ŝz
i Ŝz

j

〉
(54)

at the antiferromagnetic wave vector Q = (π, π ). As can
be seen, the onset of antiferromagnetic fluctuations begins
already around T = t/12. Nevertheless, we easily note in
Aψ (k, ω) the continued existence of the flat heavy fermion
band around the M, in striking contrast with its barely visible
fingerprint in the c-electron spectra; see Figs. 4(f) and 4(h).

A closer inspection of Aψ (k, ω) reveals additional low
energy band features located near the � (M) momentum in
the lower ω/t < 0 (upper ω/t > 0) part of the spectrum, re-
spectively. These shadow features emerge from the scattering
of the heavy quasiparticle off the magnetic fluctuations with
the wave vector Q = (π, π ). Another consequence of strong
antiferromagnetic spin correlations seen in Aψ (k, ω) is a faint
image of the c-electron band with a momentum shift of Q;
see Fig. 4(g). The emergence of this feature becomes clear
by considering a simplified form of the composite fermion
Green’s function in Eq. (47) valid in the large-S limit.

Altogether, our finite-T spectral data point towards the co-
existence of Kondo screening and antiferromagnetism also in
the broken spin symmetry phase that occurs at T = 0. We will
confirm using the projective QMC method in Sec. V A 2 that
this conjecture remains valid down to our smallest considered
value Jk/t = 0.4.

We turn now to the discussion of how the electronic states
in Aψ (k, ω) emerge and rearrange on passing through pro-
gressively lower energy scales upon cooling the system. For
concreteness, let us focus on the Jk/t = 1 case illustrated in
Fig. 6. In the high temperature limit, it is legitimate to expect
that the local moments do not interact with the spin degrees of
freedom of the conduction electrons and are fully disordered.
Consequently, Aψ (k, ω) should have a k-independent form
given by the density of states of the conduction electrons; see
Eq. (20). This is precisely observed in Fig. 6(a) at T = t/2:
a faint featureless cloud of the composite spectral weight is
discernible only in a narrow window around the Fermi level
reflecting the saddle point in Ac(k, ω). As shown in Fig. 6(b),
the latter approaches that of the tight-binding model with the
van Hove singularity in the density of states at ω = 0 yielding
in turn the strongest signal in Aψ (k, ω � 0).
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0 1 2 3 4 5 0 1 2 3 4 5

-4

-2

 0

 2

 4

-4

-2

 0

 2

 4

kk MXX M

)h()g(

(e)

/t

/t

(f)

t=12 t=12

t=24 t=24

FIG. 6. Emergence of the heavy fermion band structure as seen in
Aψ (k, ω) (left) and Ac(k, ω) (right) upon decreasing temperature in
the 12 × 12 KLM at Jk/t = 1: (a),(b) βt = 2, (c),(d) βt = 6, (e),(f)
βt = 12, and (g),(h) βt = 24.

Upon lowering T , the screening of magnetic impurities
becomes progressively important as signaled by a decreasing
behavior of the local spin-spin correlation function Sc f =
1

Nu

∑
i〈Ŝ

c
i · Ŝi〉; see Fig. 7(a). The formation of bound states

between conduction electrons and the f spins gives rise to
quasiparticle poles in the composite fermion Green’s function.
As a result, the hybridized band structure becomes apparent in
Aψ (k, ω), see Figs. 6(c) and 6(e), with a concomitant suppres-
sion of the conduction electron spectral weight at the Fermi
level. Finally, around T = t/24, Sc f begins to saturate and
thus the sum rule for the composite fermion spectral weight in
Eq. (11) attains its maximum. As seen in Fig. 6(g), Aψ (k, ω)
is exhausted mainly by the intense heavy fermion band, while
the rest of the weight forms the shadow features.

We conclude this section with pointing out that the
crossover from free to screened magnetic impurities at low
T can be equally resolved in local density of states at the
Fermi level Aψ (ω = 0). This quantity is directly related to
the zero-bias differential conductance dI(V =0)/dV in STM
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FIG. 7. (a) Local spin-spin correlation function Sc f = 1
Nu

∑
i〈Ŝ

c
i ·

Ŝi〉 and (b) estimate of the local density of states at the Fermi level
Aψ (ω = 0) ≈ 1

π

β

Nu

∑
k Gψ (k, τ = β/2) as a function of temperature

T/t and for various Kondo couplings Jk/t . The formation of local
singlets seen as a decrease in Sc f induces a depletion of the spectral
weight and opens a gap in Aψ (ω = 0) in the low-T limit.

experiments. We compute it using an approximate form

Aψ (ω = 0) ≈ 1

π

β

Nu

∑
k

Gψ (k, τ = β/2) (55)

and plot its temperature dependence in Fig. 7(b). As is appar-
ent, the formation of local singlets induces a depletion of the
spectral weight and opens a gap in Aψ (ω = 0) in the low-T
limit. We confirm this in Fig. 8, which plots the tempera-
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FIG. 8. Temperature evolution of the momentum integrated
composite fermion spectral function Aψ (ω) = 1

Nu

∑
k Aψ (k, ω) at

Jk/t = 1.
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FIG. 9. Composite fermion Aψ (k, ω) (left) and conduction elec-
tron Ac(k, ω) (right) spectral functions at T = 0 of the 12 ×
12 SU(N) KLM in the Kondo-screened phase at Jk/t = 2:
(a),(b) N = 2, (c),(d) N = 4, (e),(f) N = 6, and (g),(h) N = 8.

ture evolution of a momentum integrated composite fermion
spectral function Aψ (ω) = 1

Nu

∑
k Aψ (k, ω) obtained with the

analytical continuation of the imaginary time QMC data. By
lowering temperature one observes first an enhancement of
the weight at the Fermi level followed, below T = t/6, by its
transfer to symmetrically developed about ω = 0 finite fre-
quency peaks. In combination with the momentum resolved
data in Fig. 6(g), the sharp peaks at the lowest T = t/24 can
be identified as upper and lower heavy fermion bands.

2. SU(N) Kondo lattice model

We proceed now to discuss spectral properties of the com-
posite fermion in the SU(N) generalization of the KLM.
Figures 9(a) and 9(b) plot the zero temperature Aψ (k, ω) and
Ac(k, ω) spectra for N = 2 obtained in the Kondo insulating
phase at Jk/t = 2. Comparing with the corresponding finite-T
data, one easily recognizes the main spectral features whose
momentum and frequency dependence as well as the intensity
match well those found at T = t/36; see Figs. 4(a) and 4(b).
Furthermore, we note that increasing N has a double effect;
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FIG. 10. Same as in Fig. 9 but in the magnetically ordered phase
at Jk/t = 0.4.

see Figs. 9(c)–(h): (i) the quasiparticle gap is reduced and
(ii) overall both the Aψ (k, ω) and Ac(k, ω) spectra become
more coherent. This is a natural result given that larger N
(i) enhances the domain of stability of a magnetically disor-
dered Kondo phase [29] bringing its description in line with
a strong coupling picture and (ii) reduces the effect of anti-
ferromagnetic spin fluctuations on the self-energy such that it
approaches the k independent large-N limit.

We have equally plotted both Aψ (k, ω) and Ac(k, ω) at
smaller values of Jk/t = 0.4 as a function of N . This cou-
pling strength is located in the phase diagram deeply in the
antiferromagnetically ordered phase. As evident in Fig. 10(a),
the composite fermion spectrum Aψ (k, ω) at N = 2 shares
aspects of the large-N and large-S limits. On the one hand,
one observes a low energy flat heavy fermion band with
a renormalized weight accompanied by the shadow bands
around the � and M momenta. These shadows display roughly
the same intensity as the original heavy quasiparticles, thus
reflecting robust magnetic order. On the other hand, a nearly
fully polarized staggered magnetic moment results in a pro-
nounced image of the c-band consistent with the large-S limit.
This image loses its intensity at larger N ; see Figs. 10(c),
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G
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FIG. 11. Zero temperature composite fermion Gψ (k, τ ) and con-
duction electron Gc(k, τ ) Green’s functions at k = (π, π ) in the
SU(N) KLM with Jk/t = 0.4. Both Gψ (k, τ ) and Gc(k, τ ) follow
at large values of τ t an exponential law Z e−�qpτ (solid lines), thus
indicating the existence of the heavy fermion band in their respective
spectral functions. The latter have identical supports set by �qp

but differ, by nearly three orders of magnitude, in the quasiparticle
weights Zψ

k and Zc
k .

10(e), and 10(g). Seemingly, that could be a consequence of
a reduced, as a function of growing values of N , distance
to the magnetic order-disorder transition point that scales as
Jc(N ) ∝ 1

ln(N ) [29]. However, given that the f -local moment
was found in Ref. [29] to be next to saturated at Jk/t = 0.4
for each considered N , we find it more appropriate to as-
sume that the loss in intensity originates from the scattering
between a growing number of Goldstone modes associated
with the SU(N) spin symmetry breaking in the Néel phase.
This produces relatively broad spin wave excitations seen in
the dynamical spin structure factor [29], clearly beyond the
lowest order approximation in S that leads us to a simplified
form of the composite fermion Green’s function in Eq. (47).
Strictly speaking, large-S theory does not apply here and one
should use flavor wave theory as done in Ref. [48].

In stark contrast to Aψ (k, ω), the corresponding conduction
electron spectra Ac(k, ω), see right panels of Fig. 10, display
merely a direct hybridization gap without any discernible sig-
nature of the heavy fermion band. As we argue below, due to
its extremely low intensity, the latter can only be resolved on
a logarithmic scale.

To quantify the difference in quasiparticle weights of the
heavy fermion band, we plot in Fig. 11 raw data of the
composite fermion Gψ (k, τ ) and conduction electron Gc(k, τ )
Green’s functions at k = (π, π ) obtained from QMC simula-
tions of the SU(N) KLM with Jk/t = 0.4. The quasiparticle
residues Zψ

k and Zc
k of the doped hole at momentum k can be

estimated directly from the long-time behavior of the imagi-
nary time Green’s functions:

Gψ (k, τ )
τ→∞→ Zψ

k e−�qp(k)τ , (56)

Gc(k, τ )
τ→∞→ Zc

ke−�qp(k)τ . (57)
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FIG. 12. (a) Quasiparticle residue Zψ

(π,π ) and (b) single particle
gap �qp of the composite fermion spectral function obtained from
T = 0 QMC simulations of the SU(N) KLM. For comparison we
also show Zψ

(π,π ) predicted by the large-N approximation (dashed
line). Inset shows a second-order polynomial fit to the QMC data
in order to extract Zψ

(π,π ) in the N → ∞ limit; the extrapolated val-

ues Zψ

(π,π )(N → ∞) = 0.463(4) at Jk/t = 2 and Zψ

(π,π )(N → ∞) =
0.345(1) at Jk/t = 1.6 match well those obtained using the large-N
approximation (triangles).

As is apparent, both Gψ (k, τ ) and Gc(k, τ ) show the same
asymptotic behavior in the long-time limit, irrespective of N .
It implies the continued existence of a pole in their respective
spectral functions at the frequency ω = −�qp, thus confirm-
ing the presence of the heavy fermion band. In contrast, the
corresponding quasiparticle weights Zψ

k and Zc
k are predicted

to differ by nearly three orders of magnitude, explaining the
difficulty to resolve the heavy fermion band in Ac(k, ω); see
Fig. 10.

Next, we look at the evolution of the quasiparticle residue
Zψ

(π,π ) as a function of Jk/t . We summarize it in Fig. 12(a). It
conveys the main outcome of our study, i.e., numerical results
for Zψ

(π,π ) in the N = 2 case and in the large-N approach
exhibit an entirely different behavior in the small Jk limit.
This is a counterintuitive result, since, as shown in Eq. (29),
the composite fermion operator directly provides the measure
of hybridization, ψ̂

†
i,σ ∝ 2

N f̂ †
i,σV , where V is the hybridization

order parameter. Hence one could expect Aψ (k, ω) ∝ V 2|uk|2,
where |uk|2 is the coherence factor at the mean-field level;
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FIG. 13. Temperature dependence of Aψ (k, ω) (left) and
Ac(k, ω) (right) in the 12 × 12 KLM with ferromagnetic coupling
Jk/t = −3: (a),(b) βt = 6, (c),(d) βt = 12, (e),(f) βt = 24, and
(g),(h) βt = 36.

see Eq. (32). However, the spectral weight does not follow
the exponentially small Kondo scale, displaying a linear de-
pendency in Jk/t instead, in analogy to the linear behavior of
the quasiparticle gap; see Fig. 12(b). In the case of the quasi-
particle gap, the linear dependency was found to be a direct
consequence of particle-hole symmetry and the associated
Fermi surface nesting-driven magnetism [49–51]. The ques-
tion then arises whether the same holds for the quasiparticle
residue Zψ

(π,π ). Given that the influence of the magnetism on
Aψ (k, ω) boils mainly down to the backfolding of the heavy
fermion band in the paramagnetic phase, we believe that the
observed enhancement of the spectral weight is unrelated to
the half-filled conduction band and stems instead from the
specific form of the composite fermion operator.

Another notable result is the abrupt reduction of Zψ

(π,π )
across the magnetic order-disorder transition point Jc in the
highly symmetric case with N > 2. The ability of Zψ

(π,π ) to
reflect the onset of long range magnetic order stems from the
sum rule for the composite fermion spectral function Eq. (11),
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FIG. 14. Static spin structure factor S(Q) at Q = (π, π ) for the
localized spins as a function of temperature T/t in the ferromagnetic
KLM.

which consists of the Kondo term 〈Ŝi · ĉ†
i σĉi〉. This quantity

was shown in Ref. [29] to display a discontinuous behavior at
Jc indicating a first-order nature of the transition for N > 2.
The latter is equally seen in the nonmonotonic behavior of the
single particle gap; see Fig. 12(b).

Finally, by extrapolating finite-N QMC data at Jk/t = 2
and at Jk/t = 1.6 to the N → ∞ limit, we were able to recover
the large-N value of Zψ

(π,π ); see the inset in Fig. 12(a). This
confirms that the large-N theory is the correct saddle point of
the SU(2) KLM in the Kondo regime.

B. Ferromagnetic Kondo lattice

The ferromagnetic KLM offers the possibility to retain the
RKKY interaction and switch off the Kondo effect. Figure 13
plots the temperature dependence of the composite fermion
and conduction electron spectral functions as a function of
temperature at Jk/t = −3. The relevant energy scale required
to interpret the plots is the magnetic scale below which antifer-
romagnetic fluctuations set in. From Fig. 14 we can estimate
TRKKY � 0.125t . At T � TRKKY , see Figs. 13(e)–(h), one
finds that the data are well reproduced by the large-S results.
In particular the single particle Green’s functions match well
the forms

Ac(k, ω) = 1

2

(
1 + ε(k)

E (k)

)
δ(ω − E (k))

+ 1

2

(
1 − ε(k)

E (k)

)
δ(ω + E (k)). (58)

Here ε(k) = −2t (cos kx + cos ky) is the noninteracting dis-
persion relation and E (k) =

√
ε(k)2 + �2, with � the gap.

Although the dispersion relation is independent of the shift of
the ordering wave vector Q = (π, π ), the coherence factors
are not. Hence the dominant weight in Ac(k, ω) [Aψ (k, ω)]
follows the noninteracting dispersion relation ε(k) [ε(k +
Q)]. This is consistent with the large-S relation of Eq. (47)
corresponding to Aψ (k, ω) � S2Ac(k + Q, ω).

At high temperatures, T > TRKKY , the magnetically in-
duced gap should vanish and, as argued in Eq. (20), the
composite fermion spectral function is expected to show no
k dependence. Figures 13(a) and 13(b) confirm the above
expectations.

The above demonstrates that the dominant effects of the
RKKY interaction can be understood in terms of a large-S or
mean-field approximation.

VI. SUMMARY AND CONCLUSIONS

The composite fermion operator we have considered in
this article is defined in Eq. (2) and is at best understood in
terms of a canonical Schrieffer-Wolff transformation of the
electron creation operator in a localized Wannier state of the
PAM. We have studied numerically the spectral function of
the composite fermion for the SU(N) antiferromagnetic and
SU(2) ferromagnetic KLM on a square lattice and provided a
number of insights based on analytical considerations in the
large-N , large-S, and strong coupling limits.

The key result of the paper is numerical. We observe that
for the antiferromagnetic SU(2) KLM on the square lattice the
spectral function of the composite fermion, Aψ (k, ω), reveals
the heavy fermion band and that the spectral weight tracks
Jk/t in the weak coupling limit. This should be contrasted
with the conduction electron spectral function, Ac(k, ω),
that also captures the heavy fermion band but with spectral
weight given by the Kondo scale e−W/Jk . Hence the compos-
ite fermion provides a remarkable enhancement of spectral
intensity in the weak coupling limit and greatly facilitates
investigations of the heavy fermion band in the realm of the
SU(2) KLM.

For model Hamiltonians that support quasiparticle exci-
tations, we generically expect the dispersion relation to be
revealed by the spectral function of any operator with ap-
propriate quantum numbers. Thereby, the effective mass of
charge carriers—corresponding to the inverse curvature of
the dispersion relation—is independent of the choice of the
fermion operator. In terms of the self-energy, the effective
mass is given by the inverse quasiparticle residue—that stems
from its frequency dependency—times a term that reflects its
momentum dependence [52]. Hence m∗ = m∗

k/Zk. Let us ap-
ply the above to the SU(2) KLM. Here m∗ ∝ eW/Jk in the weak
coupling limit [11]. Since Zψ

k=(π,π ) ∝ Jk we conclude that it
is the k dependence of the composite fermion self-energy
that captures the heavy fermion effective mass. More gener-
ally, optimization of the quasiparticle residue necessitates real
space fluctuations. Both in the large-N limit [12] and at N = 2
[11], the effective mass tracks the inverse Kondo temperature.
However, the quasiparticle residue of the composite fermion
varies from Zk ∝ e−W/Jk in the large-N limit to Zk ∝ Jk at
N = 2, thereby reflecting the buildup of spatial fluctuations as
a function of decreasing N . Clearly as a function of N , and at
sufficiently small values of Jk , we will encounter a magnetic
phase transition [29] such that the question arises if the ob-
served enhancement of the spectral weight is a consequence of
magnetic fluctuations. We believe that this is not the case since
the spectral function of the composite fermion is very well un-
derstood in terms of backfolding of the heavy fermion band in
the paramagnetic phase and concomitant opening of a single
particle gap set by Jk reflecting the particle-hole symmetry.
Accordingly, the composite fermion opens up the possibility
to track the fate of the fragile heavy fermion quasiparticle in
the KLM in any situation where competing instabilities lead to
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a significant suppression of the lattice Kondo effect and thus
to extremely low coherence temperatures [53–55].

The aforementioned growth of spectral weight between the
large-N and SU(2) limits can also be seen when building a
KLM by assembling magnetic adatoms on a metallic surface
[15]. In the single impurity limit the composite fermion local
spectral function reveals the Kondo resonance with spectral
weight tracking the Kondo scale. As magnetic adatoms are
assembled around this initial impurity so as to locally form
a half-filled Kondo lattice, the Kondo resonance develops a
gap and acquires substantial spectral weight. This is explicitly
seen in Fig. 1(c) of Ref. [15].

In the strong coupling limit, the Kondo effect corresponds
to the formation of a singlet between the conduction electron
and spin degree of freedom in a unit cell. In this limit the
half-filled ground state, |�n

0 〉, of the SU(2) KLM is a direct
product of such singlets. As apparent from Eqs. (36) and (37),
ĉi,↑|�n

0 〉 = −2ψ̂i,↑|�n
0 〉. Hence, in this limit, we observe, up

to a normalization factor, no difference between the c- and
ψ-spectral functions. The strong coupling limit is character-
ized by fast magnetic fluctuations on the time scale of the
motion of a doped electron. Thereby, the picture of a doped
hole moving in a Kondo singlet background is appropriate.
In the weak coupling limit, magnetic fluctuations are slow in
comparison to the hole motion, such that locally the doped
hole will perceive a static magnetic background. In this case
our results show that ĉk,↑|�n

0 〉 and ψ̂k,↑|�n
0 〉 differ substan-

tially. In particular, ψ̂k,↑ removes a conduction electron and
simultaneously adjusts the spin background, whereas ĉk,↑
merely destroys a conduction electron. Our result suggests
that Zψ

k=(π,π )/Zc
k=(π,π ) diverges in the weak coupling such

that ψ̂k,↑ captures the correct form of the heavy fermion
quasiparticle. In particular it corresponds to a bound state of
conduction electron and spin degrees of freedom. The energy
scale of the bound state is revealed by Aψ (k, ω), see Fig. 4, as
the energy scale above which the quasiparticle pole dissolves
into a continuum captured by the convolution of the spin
susceptibility and spectral function of the conduction electron.
To a first approximation, our results suggest that this energy
scale tracks Jk .

Aψ (k, ω) is a quantity of choice to study Kondo breakdown
transitions since at this transition we expect the destruction of
the aforementioned bound state. This statement is supported
by our large-N results, where the composite fermion operator
reveals the hybridization matrix element that vanishes at a
Kondo breakdown transition. It furthermore follows from the
very definition of the composite fermion operator in terms
of a Schrieffer-Wolff transformation of the electron creation
operator in a localized orbital in the PAM. In particular, in
the realm of the PAM and in the Kondo breakdown phase, the
localized electrons drop out from the low energy physics. For
Kondo breakdown critical points in metallic environments we

hence expect Aψ (k, ω) to develop a gap, thereby revealing the
orbital selective Mott nature of this transition [56]. This has
already been partially observed in Ref. [30]. However, even
in an insulating state, Kondo breakdown should correspond to
the destruction of the low lying quasiparticle pole in Aψ (k, ω).
The fact that we do not observe this for the square lattice
points to the fact that Kondo screening and magnetism coexist
down to our lowest considered value of Jk/t = 0.4.

The above can be checked by considering the ferromag-
netic Kondo lattice where the Kondo effect is absent. Here,
we have seen that the spectral function shows no low lying
bound states and that it can be very well understood within a
large-S expansion: at leading order in S the composite fermion
spectral function reduces to the conduction one shifted by the
momentum Q of the magnetic ordering.

The aforementioned derivation of the composite fermion
operator from the PAM in the local moment regime allows
us to link our results to experiments. The local compos-
ite fermion spectral function can be measured with STM
experiments of adatoms on metallic surfaces provided that
the current between the STM tip and metallic surface flows
through the correlated orbital of the adatom. This has been
achieved by capping a metallic surface with an insulating
layer on which adatoms reside [18]. Photoemission studies of
the 4 f levels of CePt5 surface alloys have been presented in
Ref. [57]. Since this compound is in the local moment regime,
one can conjecture that the appropriate spectral function re-
quired to capture the heavy fermion quasiparticle is Aψ (k, ω)
in the framework of a Kondo lattice modeling. Our results
suggest that the k dependence of the self-energy plays an
important role for the understanding of Aψ (k, ω). This may
explain why dynamical mean-field calculations in combina-
tion with a noncrossing approximation of the spectral function
in the realm of the PAM equally presented in Ref. [57] seem to
underestimate the spectral weight of the heavy fermion bands
in comparison to experiments.
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