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We study topological charge pumping in one-dimensional quasiperiodic systems. Since these systems lack
periodicity, we cannot use the conventional approach based on the topological Chern number defined in the
momentum space. Here, we develop a general formalism based on a real-space picture using the so-called Bott
index. We extend the Bott index that was previously used to characterize quantum Hall effects in quasiperiodic
systems, and apply it to topological charge pumping in quasiperiodic systems. The Bott index allows us to
systematically compute topological indices of charge pumping, regardless of the detail of quasiperiodic models.
We apply this formalism to the Fibonacci-Rice-Mele model which we made from a Fibonacci lattice, a well-
known quasiperiodic system, and Rice-Mele model. We find that these quasiperiodic systems show topological
charge pumping with a multilevel behavior due to the fractal nature of the Fibonacci lattice. Such multilevel
pumping behaviors can be understood by a real-space renormalization group analysis.
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I. INTRODUCTION

Topology has played a central role in recent studies of
quantum materials [1–3]. Topological phases of matter arise
from the nontrivial topology of electron wave functions in
crystals, and exhibit characteristic quantized response phe-
nomena. The quantum Hall effect (QHE) is the canonical
example where the Hall conductivity shows quantization into
the Chern number [4]. The Chern number is a topologi-
cal quantity consisting of Berry curvature of Bloch wave
functions that quantifies the nontrivial geometry of momen-
tum space. Topological charge pumping in one dimension
is closely related to the quantum Hall effect in a sense that
it is also characterized by the Chern number and the Berry
curvature [5,6]. In the case of charge pumping, the corre-
sponding Berry curvature measures nontrivial geometry in the
two-dimensional space spanned by the momentum and the
pumping parameter.

Quasiperiodic systems are the systems that possess long-
range order without the translational symmetry. An early
example of quasiperiodic structure was discovered in the
system of alloys [7] and quasiperiodicity was later found
in various systems [8–12]. The structure of quasiperiodic
crystals can be regarded as a projection of a higher-
dimensional-crystalline structure [13,14] and would allow us
to access the physics of higher-dimensional space that is
usually inaccessible in three-dimensional crystals. Recently, a
van der Waals (vdW) heterostructure of two-dimensional thin
films was realized and intensively studied, including twisted
bilayer graphenes [15–17] and the interface of transition metal
dichalcogenides [18,19]. The vdW heterostructures made of
different crystals can also be considered as quasiperiodic
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systems [19,20], which provides an interesting platform for
quasiperiodic structures due to their controllability and a rich
variety of material combinations.

Topology and geometry in quasiperiodic systems are
an interesting subject. The conventional characterization of
topological phases relies on the momentum space that re-
quires translation symmetry and is not directly applicable
to quasiperiodic systems that lack translation symmetry.
Therefore, an alternative description for topological phases
is required for quasiperiodic systems. Indeed, several ap-
proaches have been proposed. For example, Kitaev proposed
a method to calculate the Chern number from real space in
Ref. [21], which has been applied to a quasicrystalline Chern
insulator [22]. Another approach utilizes the so-called Bott
index, which is a real-space index for Chern insulators and
is used to characterize QHE in disordered systems [23]. The
Bott index has been applied to two-dimensional quasiperiodic
systems [24–27].

Topological charge pumping in quasiperiodic structures
has been experimentally observed in photonic quasicrys-
tals [28] and ultracold atoms [29]. For theoretical studies,
charge pumping in the Fibonacci lattice has been studied,
for example, by using an interesting connection between a
Fibonacci lattice and Harper model [8] or by approximat-
ing quasiperiodic systems with periodic systems with a large
period [30,31]. However, a systematic understanding of topo-
logical charge pumping in quasiperiodic systems that is based
on a general procedure to compute topological index is still
missing.

In this paper, we generalize the Bott index to characterize
the charge pumping system and apply it to the quasiperiodic
system. The Bott index allows us to compute the topological
indices of charge pumping regardless of the detail of the
models. We apply our method to two toy models that are based
on the Fibonacci lattice and the Rice-Mele model [32], which
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is a famous model of charge pumping. We demonstrate the
topological pumping in these models and study the details of
their pumping behaviors.

The rest of this paper is organized as follows. In Sec. II, we
explain the Fibonacci lattice as an example of the quasiperi-
odic system. In Sec. III, we introduce two toy models made of
the Fibonacci lattice and the Rice-Mele model. In Sec. IV, we
briefly review the Bott index and present our generalization
of the Bott index for charge pumping. In Sec. V, we show the
result in the Rice-Mele (RM) model and our two models and
discuss their pumping behaviors. In Sec. VI, we present a brief
discussion.

II. FIBONACCI LATTICE

In this paper, we adopt the Fibonacci lattice as a typical
example of quasiperiodic systems. A Fibonacci sequence is
the sequence of numbers which follows the recursion equation

Fn+1 = Fn−1 + Fn, (1)

and the initial conditions F0 = 1, F1 = 1. A Fibonacci lattice
[33,34] is obtained by extending this sequence of numbers
to a sequence of characters. It follows the recursion equation
Ln+1 = Ln−1 + Ln and the initial conditions L0 = a, L1 = b,
where the addition of characters is introduced as a + b = ab.
For example, the first five generations of the Fibonacci lattice
are given as

L0 = a,

L1 = b,

L2 = ab,

L3 = bab,

L4 = abbab,

L5 = bababbab.

This sequence of the Fibonacci lattice can also be obtained
by the inflation rule,

a
inflation−−−−→ b, (2)

b
inflation−−−−→ ab. (3)

From this rule, we can notice that aa never appears in the
Fibonacci lattice. As we see in Sec. V F, the inflation rule
plays an important role in the renormalization group analysis
of the quasiperiodic system.

In the limit of n → ∞, the ratio of a and b is described by
the golden ratio,

#Ln : #a : #b =Fn : Fn−2 : Fn−1 (4)

=1 : τ 2 : τ, (5)

where τ = (
√

5 − 1)/2 denotes the inverse of the golden
ratio.

III. MODELS

In this section, we construct two quasiperiodic models
based on the Rice-Mele (RM) model [32] and the Fibonacci

FIG. 1. Schematic illustration of three models. (a) Original Rice-
Mele model. The blue component is related to a of the Fibonacci
lattice, and red is b. Triangles are staggered potentials. The thick
black bars are unit cells. (b) Fibonacci-Rice-Mele model at the sixth
generation of the Fibonacci lattice. The blue and red lines are follow-
ing the Fibonacci lattice. (c) Double-Fibonacci-Rice-Mele model at
the fifth generation of the Fibonacci lattice. The thick red and blue
lines indicate the blocks which follow the Fibonacci lattice.

lattice. The RM model is a one-dimensional tight-binding
model with a staggered potential h and bond alternation δ.
Namely, the Hamiltonian is given as

H (t ) =
∞∑

i=1

({[� − (−1)iδ(t )]c†
i+1ci + H.c.}

− (−1)ih(t )c†
i ci ), (6)

δ(t ) = δ0 cos
(

2π
t

T

)
, h(t ) = h0 sin

(
2π

t

T

)
, (7)

where � is a uniform component of the nearest-neighbor
hopping. Here, we consider modulating h and δ in time with
a period T to pump charges. The model has no inversion
symmetry when �, δ, and h are nonzero. This model is known
to show a quantized charge pump characterized by the Chern
number C = 1 as the parameter set (δ, h) winds around the
origin of the parameter space.

One way to construct a quasiperiodic version of the RM
model based on the Fibonacci lattice is to regard the building
blocks a and b of the Fibonacci sequence (abbab . . . ) as the
two sublattices (A and B) that constitute the RM model. While
we need to assign a, b to the bonds as well, here we assign the
same character as the site i to the bond at the right side of the
site i, as depicted in Fig. 1(a). Namely, we interpret the factor
−(−1)i in Eq. (6) as a sign factor depending on the assigned
character. The model corresponding to the character sequence
of the Fibonacci lattice, which we call the Fibonacci-Rice-
Mele (FRM) model [Fig. 1(b)], can be obtained by replacing
the sign factor as

H (t ) =
L∑

i=1

({[� − (−1) fiδ(t )]c†
i+1ci + H.c.}

− (−1) fi h(t )c†
i ci ), (8)

where L is the system size and we take the lattice constant to
be 1 in this model. In the case of open boundary conditions,
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we drop the terms involving c†
L+1cL and its Hermitian conju-

gate. In the case of periodic boundary conditions, we use the
convention cL+1 = c1. Here, fi for the nth generation of the
Fibonacci lattice is defined as

fi =
{

1 if ith character of Ln is a
0 if ith character of Ln is b.

(9)

Another quasiperiodic extension of the RM model is based
on translation of the unit cell rather than the sublattice. The
unit cell of the (periodic) RM model can be chosen as either
block AB or block BA. By translating the Fibonacci char-
acters a and b to these two choices of the unit cell, we can
construct another Fibonacci extension of the RM model out
of the Fibonacci sequence. (Namely, the RM model can be
represented as aaa . . . or bbb . . . .) We call this Fibonacci
lattice counterpart of the RM model the Double-Fibonacci-
Rice-Mele (DFRM) model [Fig. 1(c)], whose tight-binding
Hamiltonian is given as

H (t ) =
L∑

i=1

({[� − (−1) fiδ(t )]c†
2ic2i−1

+ [� + (−1) fiδ(t )]c†
2i+1c2i + H.c.}

− (−1) fi [h(t )c†
2i−1c2i−1 − h(t )c†

2ic2i]). (10)

IV. BOTT INDEX

In this section, we explain the Bott index, a real-space
index that characterizes Hall insulators in disordered systems,
and generalize the Bott index for application to topological
charge pumping in quasiperiodic systems.

When the momentum k is well defined, charge pumping
has a conventional characterization by the Chern number that
is defined in the momentum space as

C = 1

2π

∑
n∈occ

∫ T

0
dt
∫

BZ
dk F n

t,k, (11)

where n labels the eigenstate below the energy gap and F n
t,k is

the Berry curvature. The subscripts t and k denote the time and
the momentum, respectively. In contrast, the quasiperiodic
systems lack translational symmetry, where the momentum
becomes ill defined and one cannot use Chern numbers to
characterize charge pumping. To avoid this difficulty, here we
develop the characterization of topological charge pumping
based on the Bott index that does not rely on the momentum
space.

A. A brief overview of the Bott index

The Bott index is a K-theoretic index [23] defined on the
real space. This index measures the noncommutativity of two
operators and can be defined in finite-size lattice systems. It
is known to be equivalent to the Chern number in the ther-
modynamic limit (TDL) [23,35]. Therefore, in this study, we
try to characterize charge pumping in the finite-size system
to deduce the behavior in the TDL. In this section, we briefly
explain the Bott index. You can also find mathematical and

pedagogical explanations in Refs. [35–37]. For a rectangular
system of Lx × Ly, the Bott index is defined as

IBott = 1

2π

∑
i=i

Im ln λi, (12)

{λ1, λ2, . . . , . . .} = Spec{V̂ ÛV̂ †Û †}, (13)

where Spec{. . . } indicates the set of eigenvalues, and Û and V̂
are the operators defined from Fermi projector P̂ and position
operators x̂ and ŷ as follows:

P̂ =
∑

n∈occ

|ψn〉〈ψn|, (14)

(
0 0
0 Û

)
= P̂ exp

(
2π i

x̂

Lx

)
P̂, (15)

(
0 0
0 V̂

)
= P̂ exp

(
2π i

ŷ

Ly

)
P̂. (16)

Here, n is the label of the energy eigenstate |ψn〉, and we
take the basis of P̂ exp(2π ix̂/Lx )P̂ and P̂ exp(2π iŷ/Ly)P̂ to
be eigenstates |ψn〉.

In the periodic boundary conditions (PBCs), the position
operators x̂ and ŷ are ill defined because we cannot distinguish
x̂ and x̂ + Lx. In contrast, Û and V̂ can be defined uniquely
since it is unchanged under the translation by Lx or Ly.

B. Physical interpretation of the Bott index

While we explained the mathematical definition of the Bott
index above, the physical interpretation of the index described
below is useful for considering the extension to the charge
pumping.

Let us assume the lattice constant to be one. The exponen-
tial factor of Û † is expressed in the coordinate basis as

exp

(
−2π i

x̂

Lx

)
=

Lx∑
l=1

e−2π i l
Lx |l〉〈l|, (17)

where |l〉 is a state in site l and the lattice constant is one. In
the periodic system, we can expand the state in the plane-wave
basis as

|l〉 = 1√
Lx

2π∑
kn=2π/Lx

eiknl |kn〉, (18)

where kn = 2πn/Lx is the wave number. Inserting Eq. (18)
into Eq. (17), we obtain the following expression:

exp

(
−2π i

x̂

Lx

)
= 1

Lx

∑
l

∑
kn,k′

n

ei(kn−k′
n− 2π

Lx
)l |kn〉〈k′

n| (19)

=
∑

kn

∣∣∣kn

〉〈
kn − 2π

Lx

∣∣∣∣. (20)

Therefore, we can understand that Û † translates a projected
wave function P̂|ψ〉 = |ψP〉 by 2π/Lx in the momentum
space, and projects it again by P̂.

As a consequence, the product of operators V̂ ÛV̂ †Û †

represents a translation of the wave function along the perime-
ter of the rectangle [kx, kx + 2π/Lx] × [ky, ky + 2π/Ly] in k
space. As this path forms a closed loop in k space, the re-
sulting operator is gauge invariant. Thus, the Bott index is
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given by the sum of the acquired phases over such translation
processes.

C. QHE to charge pumping

While the Bott index introduced above is defined for
two-dimensional systems, we would like to study the charge
pumping in one-dimensional systems in the present study.
To characterize the topological charge pumping, we utilize
the interpretation that Û and V̂ are translation operators and
convert the Bott index. As the operator V̂ is the translation
operator for the ky direction, we convert it to the translation
operator for time t . Namely, we replace the translation

V † : ky
translation−−−−−→ ky + 2π

Ly
(21)

with

V † : t
translation−−−−−→ t + �t, (22)

where �t is a small displacement of t . We should choose �t
sufficiently small to reduce the error from the value in the
TDL. This transformation enables us to obtain the Bott index
for the charge pumping.

D. Bott index for the charge pumping

As we have formulated the Bott index for the charge
pumping, let us discuss how the interpretation of the index
should be modified. We show below that the Bott index for
the charge pumping can be interpreted as the polarization cur-
rent. In the following, we adopt the tight-binding form of the
Hamiltonian.

In the two-dimensional system, two directions x and y are
coupled together with hopping matrix elements as

Ĥ =
∑
x′,x

∑
y′,y

[H]x′,y′;x,yĉ†
x′,y′ ĉx,y. (23)

Hence, it is necessary to diagonalize the entire matrix. In con-
trast, in the case of charge pumping in one-dimensional (1D)
systems, the “hopping” matrix elements of different times
are zero, and the Hamiltonian is readily in a block-diagonal
form as

Ĥ = ⊕t Ĥt = ⊕t

∑
x,x′

[Ht ]x′,xĉ†
x′,t ĉx,t . (24)

This means that we just need to diagonalize the block Hamil-
tonian for each time t to compute the Bott index, which
reduces the computational cost from O(L3T 3) to O(L3T ),
where L is the lattice size.

Next, we construct the projector P̂t from the instantaneous
Hamiltonian Ĥt . Then, we can rewrite the total projector P̂
in the effective two-dimensional system (spanned by x and t)
into

P̂ = ⊕t P̂t . (25)

Accordingly, Û and V̂ are also rewritten as

Û =

⎡
⎢⎢⎢⎣

Pt1 e2π i x̂
Lx Pt1 · · · 0

Pt2 e2π i x̂
Lx Pt2

...
. . .

...

· · · PtN e2π i x̂
Lx PtN

⎤
⎥⎥⎥⎦,

(26)

V̂ =

⎡
⎢⎢⎢⎢⎣

0 Pt1 Pt2 · · · 0
0 Pt2 Pt3

...
. . .

...

PtN−1 PtN
PtN Pt1 · · · 0

⎤
⎥⎥⎥⎥⎦. (27)

Thus the spectrum of V̂ ÛV̂ †Û † is obtained from

V̂ ÛV̂ †Û † ∼
∑

t

P̂t+�t exp

(
2π i

x̂

Lx

)
P̂t+�t P̂t

× exp

(
−2π i

x̂

Lx

)
P̂t , (28)

where ∼ means that the spectra are the same on both sides.
This can be easily seen by writing Pt using the eigenvectors
{|ψi(t )〉} of Ht as

P̂t =
∑

n

|ψn(t )〉〈ψn(t )|. (29)

Using the wave function |ψ〉, we define new matrices Ũt and
Ṽt,t+�t as

[Ũt ]n,m = 〈ψn(t )| exp

(
2π i

x̂

Lx

)
|ψm(t )〉, (30)

[Ṽt,t+�t ]n,m = 〈ψn(t )|ψm(t + �t )〉. (31)

Then, we can rewrite V̂ ÛV̂ †Û † as

V̂ ÛV̂ †Û † ∼
∑

t

[Ṽt,t+�tŨt+�tṼ
†

t,t+�tŨ
†
t ], (32)

which leads to the expression of the Bott index IBott for charge
pumping as

IBott =
∑

t

1

2π
Arg[Ṽt,t+�tŨt+�tṼ

†
t,t+�tŨ

†
t ]. (33)

Here, Arg[A] is a shorthand notation for Im Tr ln[A].

E. Difference from other characterizations

In this section, we compare the present formalism with var-
ious approaches to characterize topological pumping adopted
in previous studies [31,38–41].

One is the approach based on the position expectation
value 〈x̂〉,

〈x(t )〉 = 〈ψ (t )|x̂|ψ (t )〉. (34)

In the open boundary conditions (OBCs), the position opera-
tors are well defined, so we can observe pumping behavior by
tracking the position of the wave function |ψ (t )〉.

Another is an approach proposed in Ref. [42], which can
be expressed as

〈x(t )〉 = Lx

2π
ArgŨt . (35)
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FIG. 2. Results of numerical calculations in the Rice-Mele model of 1500 sites. We take � = 2, δ0 = 1, h0 = 1. (a) Region where energy
spectra go through during the pumping under the PBC. The horizontal axis indicates an effective filling factor for the energy level. There
is no state around E ∈ [−1, 1], during a cycle, which implies that this region is a gap in any t . (b) Energy spectrum at t = T/4 under the
OBC. Two states around the half filling are the effect of the boundary and correspond to the edge mode. [The energy spectra are color coded
continuously from blue to green as the energy increases in (a) and (b)]. (c),(d) Pumping behavior of the half-filled Rice-Mele model of 1500
sites. (c) Polarization current j(t ) as a derivative of the Bott index. (d) Pumped charge N (t ) vs t , which is obtained by accumulating j(t ).

As we mentioned in Sec. IV A, the position operators be-
come ill defined in the periodic system, but we can define Ũt .
Namely, Eq. (35) is well defined under the periodic boundary
condition ψ (x + Lx ) = ψ (x).

In disordered systems, the index called the local Chern
marker (LCM) has been utilized to characterize the topolog-
ical charge pumping [39]. In our convention, the LCM is
expressed as

N (T ) = 1

π

N−1∑
n=0

Tr
[
e− 2π i

Lx
x̂Ptn e

2π i
Lx

x̂(1 − Ptn

)
Ptn+1 Ptn

]
. (36)

Here, N (T ) is pumped charge in one period. The LCM can
also be applied to the charge pumping quasiperiodic systems
as it is expressed as the projection operators and the exponen-
tial of the position operator. The LCM in Eq. (36) effectively
measures x̂ at the time slice tn twice. This contrasts with our
index based on the Bott index that effectively measures the
difference of the position (x̂) between the two adjacent time
slices tn+1 and tn. In this sense, one advantage of using the Bott
index is that the connection to the Berry flux is clear in the
discretized expression, although the two approaches should
coincide when the time step is sufficiently small.

On the basis of Eq. (35), we can also understand
Ṽt,t+�tŨt+�tṼ

†
t,t+�tŨ

†
t as the change of the position expec-

tation value 〈x(t + �t ) − x(t )〉. Namely, we can interpret
this expression in the limit of �t → 0 as the polarization
current j(t ),

j(t )�t = 1

2π
Arg[Ṽt,t+�tŨt+�tṼ

†
t,t+�tŨ

†
t ], (37)

and the Bott index is expressed as the integral of j(t ),

IBott =
∫ T

0
dt j(t ). (38)

(Hereafter, we set the charge of an electron −e to be 1 for
simplicity). In this formula for IBott, we effectively take the
difference of the phases of determinants [U(1) parts] of Ũt+�t

and Ũt before taking the logarithm. Therefore, this approach
has an advantage that it avoids a jump of the position expec-
tation value coming from the branch cut of Arg. In addition,
as the original Bott index is known to be equivalent to the
Chern number in the TDL, the topological nature of charge
pumping in quasiperiodic systems is guaranteed in our Bott
index approach.

V. APPLICATION TO THE FIBONACCI MODELS

In this section, we apply the index defined in Sec. IV D to
the three models in Sec. III.

A. Rice-Mele model

First, we apply our method to the original RM model. The
energy spectrum of this model is shown in Figs. 2(a) and
2(b). In Fig. 2(a), we use the periodic boundary condition
(PBC) and the filled region indicates the energy window that
is occupied by the ith lowest energy level during the cycle.
The horizontal axis indicates an effective filling factor i/N
with the total number of the states, N . We can observe an
energy gap at the half-filling state. In Fig. 2(b), we plot the
instantaneous energy spectrum at t = T/4 under the open
boundary condition (OBC). We can find two in-gap levels
around the half filling which are the edge states and are absent
in the PBC.

Let us look at the behavior of the Bott index for the half-
filling state. As we have shown in Eq. (38), the Bott index is
expressed as the accumulation of the polarization current j(t ),
during one cycle of pumping. In Fig. 2(c), we show the tem-
poral profile of the polarization current, which is calculated
with �t = T/128. We can observe peaks at t = T/4, 3T/4.
Figure 2(d) shows the pumped charge N (t ) defined as

N (t ) =
∫ t

0
dt ′ j(t ′), (39)

where we can observe that one particle is pumped during a
cycle. This result agrees with the result from the well-known
result for the Chern number C = 1.

B. Fibonacci-Rice-Mele model

Next, we conduct a similar analysis in the FRM model.
Here we adopt the 16th generation of the Fibonacci lattice.
As in the original RM model, the topological charge pumping
appears when � > |δ0|, |h0|. The energy spectrum of this
model is shown in Figs. 3(a) and 3(b) in a similar manner as
in Sec. V A.

As we explained in Sec. II, for sufficiently large n, the
relation

Fn−l

Fn
≈ τ l (l = 0, 1, 2, . . .) (40)
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FIG. 3. Results of numerical calculations in the Fibonacci-Rice-Mele model of the 16th generation of the Fibonacci lattice. (a),(b) Energy
spectra as a function of the effective filling factor for the energy levels. Vertical lines represent fillings related to the power of τ , corresponding
to the Fibonacci levels. (We take � = 2, δ0 = 1, and h0 = 1). (a) Region where energy spectra go through during the pumping under the PBC.
The horizontal axis indicates an effective filling factor for the energy level. Gaps at fillings of τ and τ 2 do not close during a cycle. (b) Energy
spectrum at t = T/8 under the OBC. There are also gaps in the Fibonacci levels. These gaps are large when they are close to the half-filling
state and small when close to filling 0 and 1. [Energy spectra are color coded continuously from blue to green as the energy increases in (a) and
(b)]. (c),(d) Pumping behavior of the Fibonacci-Rice-Mele model at the fillings of τ l . Data for larger l are represented with lighter colors as
shown in the color bar. (c) Polarization current j(t ). (d) Pumped charge N (t ) vs time t . We used the parameters � = 10, δ0 = 1, and h0 = 1.

holds. With this relation, we can specify the Fn−l th lowest
eigenstate by the filling factor τ l , which is independent of the
generation n. In the following, we refer to the filling τ l as
“Fibonacci levels.” In Fig. 3(a), we consider the PBC and fill
the region where the energy levels go through during a cycle.
It clearly shows the existence of gaps at the filling factor of
τ and τ 2 = 1 − τ throughout the pumping. In Fig. 3(b), we
plotted an instantaneous energy spectrum at t = T/8 under
the OBC. This plot suggests the existence of other gaps be-
sides τ, τ 2. These gaps are located at fillings of τ 3, τ 4, . . .

and 1 − τ 3, 1 − τ 4, . . . . This comes from the fractal nature
of the Fibonacci lattice. As we show in Appendix A, the
states at fillings of τ i and 1 − τ i are related to each other
under the time-reversal and particle-hole symmetry. Thus we
concentrate on the filling τ i below.

In Figs. 3(c) and 3(d), we show polarization currents and
pumped charges at the fillings of τ, τ 2, . . . , τ 15. The dark-blue
lines represent the pumping behaviors in the levels with small
l (i.e., the Fn−l th energy level with the large Fibonacci number
Fn−l ). We can see that the charge is gradually pumped in
this regime. On the other hand, for the states with larger l
(i.e., the Fn−l th lowest energy state with the smaller Fibonacci
number Fn−l ) shown by light-blue lines, the polarization cur-
rent becomes impulsive and the charge pumping occurs more
instantaneously. In addition, as the power of τ increases,
the time t at which polarization currents become maximum
converges to specific values. We call such behavior of the
topological charge pumping that depends on l the “multilevel
topological pumping.”

While we showed the cases of nontrivial charge pump-
ing here, we note that our approach can also be applied
to study the polarization current in a topologically trivial
phase and the phase transition between trivial and nontrivial
phases, by slightly modifying the FRM model, as we detail in
Appendix C.

Fibonacci levels are related to each other through inflation
and deflation. As we discuss in Sec. V F, by performing real-
space renormalization group analysis, we can map a state at
the filling of τ l to another state at the filling of τ l ′ (l ′ < l) with
modified model parameters. This implies that the topological
charge pumping at the filling of τ l is also related to the charge
pumping at τ l ′ in another model. Therefore, the multilevel

topological pumping above can be regarded as a consequence
of the fractality of the Fibonacci lattice.

C. Double-Fibonacci-Rice-Mele model

Finally, we analyze the DFRM model in this section. As
in the previous section, we adopted the 16th generation of
the Fibonacci lattice. In Fig. 4(a), we filled the region where
energy levels go through during the cycle under the PBC. The
instantaneous energy spectrum of this model under the OBC
is shown in Fig. 4(b), where we can observe many gaps.

As in the FRM model, these gaps are also related to the
golden ratio. These gaps appear at the filling of τ/2, τ 2/2, . . ..
The denominator 2 comes from the fact that the constituent
elements of this model are the blocks consisting of two sublat-
tices (AB or BA) [see Fig. 1(c)]. In these gaps, we can observe
that polarization currents are continuous functions of t .

In this model, the polarization current and the Bott index
behave as shown in Figs. 4(c) and 4(d). Up to l = 8, we can
see the quantization of charge pumping N (T ) = 1. The plot of
j(t ) also shows that the particle moves sharply as the power
of τ grows higher and higher.

We note that in this model, it becomes more difficult to
observe quantization of IBott for higher powers of τ , mainly
because energy gaps become narrower and the precision of
the numerical calculation decreases [35,43]. In order to suc-
cessfully observe quantized pumping in many levels, the
parameters �, δ0, h0 must be tuned more carefully than for the
RM and FRM models. Such conditions could be understood
from a detailed real-space renormalization group analysis that
we explain in Sec. V F.

D. Edge mode in the energy spectrum

Let us discuss the behavior of the edge states, which we
showed in Figs. 3(b) and 4(b), in more detail. We plot the
energy spectrum in Fig. 5 as a function of pumping parameter
t . In Figs. 5(a) and 5(b), blue lines for the OBC represent
the levels related to the Fibonacci number such as 1st, 2nd,
3rd, 5th, . . ., 987th, 1597th, and the levels just above. The
levels related to them under the particle-hole symmetry are
also colored blue. We can clearly see that these states form
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FIG. 4. Results of numerical calculations in the Double-Fibonacci-Rice-Mele model of the 16th generation of the Fibonacci lattice.
(a),(b) Energy spectra as a function of the effective filling factor for the energy levels. Vertical lines represent fillings related to the powers
of τ . (We take � = 2, δ0 = 1, and h0 = 1.) (a) Region where energy levels go through during a cycle under the PBC. Gaps at the fillings of
τ/2, τ 2/2, 1 − τ/2, and 1 − τ 2/2 do not close. (b) Energy spectrum at t = T/8 under the OBC. [Energy spectra are color coded continuously
from blue to green as the energy increases in (a) and (b).] (c),(d) Pumping behaviors of the Double-Fibonacci-Rice-Mele model at the fillings
of τ l/2. Data for larger l are represented with lighter colors, as shown in the color bar. (c) Polarization current j(t ). (d) Pumped charge N (t ).
We used the parameters � = 1000, δ0 = 1, and h0 = 1.

gapless edge modes in the OBC case. In addition, there are
more edge modes other than the Fibonacci levels. In this
paper, we concentrate only on the fillings of τ l , yet the levels
of such as τ l (1 − τm) (m = 1, 2, . . .) are also related with
fractality. This indicates that there are more topological charge
pumpings which come from fractality.

We also calculate the position expectation value 〈x̂〉 of
the lattice, and color the same energy spectrum following it

FIG. 5. Energy spectra vs time t under the OBC. (a),(c) Energy
spectra of the Fibonacci-Rice-Mele model. (b),(d) Energy spectra of
the Double-Fibonacci-Rice-Mele model. (a),(b) Fibonacci levels are
colored blue and the other levels are colored gray. (c),(d) The position
expectation value of the wave functions is shown with color. For the
f th level, 0 � 〈x̂〉/Lx < 1/ f is blue and 1 − 1/ f < 〈x̂〉/Lx � 1 is
orange.

in Figs. 5(c) and 5(d). Colors for the vertical lines at the
Fibonacci levels are determined by the following rules. For
Fibonacci numbers f larger than 3, if 〈x̂〉/Lx of the f th level is
in [0, 1/ f ), then the color is blue; if it is in (1 − 1/ f , 1], then
the color is orange and the other is white [44]. As we explain
in Sec.V F, the Fibonacci levels are related to each other under
the renormalization procedure. For example, the 610(=F14)th
lowest energy state and original lattice (F16 = 1597) are re-
lated to each other with one renormalization procedure. The
overall character of the wave function for the 610(=F14)th
lowest energy state is well captured with the renormalized
system with the lattice size 610, rather than the original lattice
with 1597 sites. Therefore, in the 610th level, we can regard
1597/610 sites as one renormalized site. Similarly, for the
general f th level, we can regard Lx/ f sites as one renormal-
ized site. If the wave function is localized at the edges, it
should localize at the edge of the renormalized lattice rather
than the original one. As we set Lx to be 1 in this section, the
edge of the f th state is expected to be localized in the regions
[0, 1/ f ) and (1 − 1/ f , 1]. Accordingly, blue or orange colors
of the states traversing the energy gaps indicates that they
are localized to the left or right boundaries, clearly showing
that they are edge modes. This shows that the principle of
the bulk-edge correspondence also holds for the topological
charge pumping in the quasiperiodic systems.

E. Size dependence of the Bott index

While the pumping behaviors in the previous sections are
quite close to the ones in the TDL, in this section, we further
check that the values we obtained converge precisely in the
TDL.

In Refs. [23,43], the finite-size effect for the case of a 2D
Chern insulator has already been studied by evaluating the
difference of the Bott index in the finite-size system of Lx × Ly

from the quantized value in the TDL, which shows that the de-
viation scales as O[(LxLy)−1]. In the present case, we convert
one direction as the time, and we translate the wave function
by �t using Ṽ . Therefore, we can expect the difference from
the value in TDL and �t → +0 to be O(�t/L).

We calculated the Bott indices under the PBC, changing the
system size with the other parameters fixed. The difference of
the values from one is plotted in Fig. 6, where we can see
that the difference is proportional to the inverse of the lattice
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FIG. 6. The difference of Bott indices from one plotted against the system size for the (a) Fibonacci-Rice-Mele model and (b) Double-
Fibonacci-Rice-Mele model, with the other parameters fixed. The difference is proportional to the inverse of the lattice size.

length. This result agrees with the statement of Refs. [23,43].
In conclusion, the values we obtained in the finite-size system
converge to one in the TDL.

F. RSRG and multilevel-charge pumping

In this section, we investigate the origin of the “multilevel
topological pumping” and the changes in pumping behaviors.
As explained in Sec. II, we can change the generation of the
Fibonacci lattice through inflation and deflation procedures.
In particular, deflation is an operation to combine a group of
sites into a single new site. It is quite similar to the real-space
renormalization group (RSRG) studied in Refs. [45,46]. As
we explain in Appendix B, we can apply the same procedure
for the FRM model, at t = 0 and t = T/2. At t = 0, there are
three types of renormalization. One is the so-called “atomic
renormalization,” which reduces the Fibonacci generation by
three. The others are “molecular renormalization” and re-
duce the generation by two, where the antibonding state and
the bonding state appear after renormalization. As shown in
Appendix B, at t = 0, the energy eigenstates in the FRM
model of the nth generation are renormalized into the three
groups (bonding, atomic, and antibonding), where the triplet
of parameters, i.e., energy shift, Tw = � − δ0, and Ts = � +
δ0, is renormalized as

(0, Tw, Ts)
deflation−−−−→

⎧⎪⎨
⎪⎩

(
Ts,

ρ

2 Tw,
ρ

2 Ts
)

bonding,(
0, ρ2Tw,−ρ2Ts

)
atomic,(− Ts,

ρ

2 Tw,− ρ

2 Ts
)

antibonding,

(41)

for each group with ρ = Tw/Ts.
We can find three groups in the renormalization process in

a fractal structure of the energy spectrum. Let us consider the
renormalization in the FRM model of the nth generation. The
group of states that is renormalized into antibonding states
corresponds to the Fn−2 lowest energy levels in the energy
spectrum due to the negative energy shift. The group of states
that is renormalized into the bonding states corresponds to the
Fn−2 highest energy levels due to the positive energy shift.
Those associated with the atomic states form the energy levels
that appear in the middle of the energy spectrum. As we show
in Fig. 5(b), energy gaps exist between the states of atomic
renormalization and the states of molecular renormalization,

and these gaps do not close at any time t . This clearly indicates
that the multilevel topological pumping, which take place in
these energy gaps, is closely related to the inflation/deflation
processes in the Fibonacci lattice.

In summary, the RSRG procedure transforms the original
FRM model into other models in lower generations with dif-
ferent parameters, which allows a mapping of the eigenstates
to those of the FRM model in a lower generation effectively.
This map also connects the topological charge pumpings at
different Fibonacci levels. This is the origin of the frac-
tal structure of the energy levels and multilevel topological
pumping.

VI. DISCUSSIONS

In this paper, we studied charge pumping in the one-
dimensional quasicrystals using the Bott index. We gen-
eralized the Bott index to characterize charge pumping in
one-dimensional systems. In this formulation, the Bott index
is directly connected to a time integral of polarization cur-
rent, and its computational cost is reduced from O(L3T 3) to
O(L3T ).

By applying our method to the two Fibonacci models,
we observed multilevel topological pumping. In both models,
there are charge pumpings in the energy levels related to the
golden ratio. This is a result of fractality and bifurcation of
the energy spectrum caused by renormalization, inherent
to the quasiperiodic crystal structure. This implies that
quasicrystals can generally support multilevel topological
phenomena with fractality. Since charge pumping in a
quasiperiodic structure is already realized in photonic qua-
sicrystals [28], photonic crystals would provide a platform for
observing fractality and multilevel topological pumping once
a Fibonacci sequence is implemented. For example, multilevel
pumping could be observed as various edge-localized modes
at different photon energies that are related to each other by
the renormalization rules.

Our method for topological pumping based on the Bott
index is applicable to other pumping phenomena in quasiperi-
odic systems. For example, it can be used to study topological
spin pumping in spinful electron systems or in topological
magnets. It can also be applicable to higher-dimensional sys-
tems where unidirectional topological charge pumping takes
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place, e.g., realizable in the polar heterostructure of two-
dimensional thin films.
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APPENDIX A: SYMMETRY OF PUMPING BEHAVIORS IN
THE FIBONACCI-RICE-MELE MODEL

As we show in Fig. 7, the pumping behaviors in the filling
of τ and τ 2 = 1 − τ are time-reversal (TR) symmetric (t →
T − t ) to each other about t = T/2 in the FRM model. This
is the consequence of the TR transformation and particle-hole
(PH) transformation as we show below.

First, we demonstrate how the Hamiltonian and the projec-
tion operators are transformed. The FRM model in the present
study is written as

H (t ) =
Fn∑

i=1

({[
� − (−1) fiδ0 cos

(
2π

T
t

)]
c†

i+1ci + H.c.

}

− (−1) fi h0 sin

(
2π

T
t

)
c†

i ci

)
. (A1)

For later convenience, we approximated an infinite-size lattice
system by a finite-size lattice system of lattice length is Fn. Its
time-reversal counterpart (t → T − t) reads

H (T − t ) =
Fn∑

i=1

({[
� − (−1) fiδ0 cos

(
2π

T
t

)]
c†

i+1ci

+ H.c.

}
+ (−1) fi h0 sin

(
2π

T
t

)
c†

i ci

)
. (A2)

By further applying the PH transformation (H → −H), we
obtain

−H (T − t ) =
Fn∑

i=1

(
−
{[

� − (−1) fiδ0 cos

(
2π

T
t

)]
c†

i+1ci

+ H.c.

}
− (−1) fi h0 sin

(
2π

T
t

)
c†

i ci

)
. (A3)

In this Hamiltonian, only the sign of h changes from the
original one. Namely, H (t ) and H (T − t ) are related under

FIG. 7. Pumping behavior of the Fibonacci-Rice-Mele model at
fillings τ (blue) and τ 2 (red) as a function of t .

the unitary transformation

H (t ) = −M†H (T − t )M, (A4)

M = diag{1,−1, 1,−1, . . .}. (A5)

Let us calculate the polarization current. From Eq. (38), the
polarization current up to the Sth level is defined as follows:

j(t ; [1, S])�t = 1

2π
Arg[Ṽt,t+�tŨt+�tṼ

†
t,t+�tŨ

†
t ]. (A6)

The argument [a, b] means j is calculated using the state from
the ath lowest eigenstate to the bth lowest eigenstate. Through
the TR and PH transformation, the right-hand side of Eq. (A6)
is equivalent to

1

2π
Arg[ṼT −t,T −t−�tŨT −t−�tṼ

†
T −t,T −t−�tŨ

†
T −t ], (A7)

once evaluated for PH transformed states. Specifically, as
the nth lowest eigenstate of the original Hamiltonian H (t ) is
transformed into the nth highest eigenstate of the H (T − t ) by
M, we take the eigenstates from the highest eigenstate to the
Sth highest eigenstates. By taking �t � 1, we obtain

− j(T − t ; [Fn − S + 1, Fn])�t

= 1

2π
Arg[ṼT −t,T −t−�tŨT −t−�tṼ

†
T −t,T −t−�tŨ

†
T −t ]. (A8)

Thus, we can relate the polarization current before and after
the transformation as

j(t ; [1, S])�t = − j(T − t ; [Fn − S + 1, Fn])�t . (A9)

Since the polarization current of the full-filled state is 0, i.e.,
j(T − t ; [1, S]) + j(T − t ; [S + 1, Fn]) = 0, we obtain

j(T − t ; [1, Fn − S]) = − j(T − t ; [Fn − S + 1, Fn]). (A10)

Therefore, we can also relate the polarization current before
and after the transformation as

j(t ; [1, S]) = j(T − t ; [1, Fn − S]). (A11)

As a result, the polarization current up to the Sth level at time
t and the polarization current up to the Fn − Sth level of the
Hamiltonian at time T − t are equivalent.

APPENDIX B: DETAILS OF THE REAL-SPACE
RENORMALIZATION GROUP ANALYSIS

Here, we explain the renormalization procedure studied in
Refs. [45,46]. Before going into the details of the RSRG, we
explain the Brillouin-Wigner perturbation theory.

1. Brillouin-Wigner perturbation theory

In the following renormalization, we use the Brillouin-
Wigner perturbation theory (BWPT). In this Appendix, we
briefly explain it. First, we split the original Hamiltonian H
into unperturbed term Ĥ0 and perturbation Ĥ1. The eigenequa-
tion E |ψ〉 = Ĥ |ψ〉 is rewritten as

(E − Ĥ0)|ψ〉 = Ĥ1|ψ〉. (B1)
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FIG. 8. RG transformation in Case A of [45]. The thick blue lines represent bonds related to a of the Fibonacci lattice and the thin red lines
represent bonds of b.

Using eigenstates of Ĥ0, we can also construct projector P̂,
and split the identity 1 into P̂ and Q̂ = 1 − P̂. Rewriting the
eigenequation by the projectors, we obtain

(E − Ĥ0)P̂|ψ〉 = P̂Ĥ1P̂|ψ〉 + P̂Ĥ1Q̂|ψ〉, (B2)

(E − Ĥ0)Q̂|ψ〉 = Q̂Ĥ1P̂|ψ〉 + Q̂Ĥ1Q̂|ψ〉. (B3)

To obtain effective Hamiltonian Heff for the projected state
|ψP〉 = P̂|ψ〉, we express Q̂|ψ〉 from Eq. (B3) as

Q̂|ψ〉 = 1

E − Ĥ0 − Q̂Ĥ1Q̂
Q̂Ĥ1P̂|ψ〉. (B4)

Substituting this into Eq. (B2) and multiplying P̂ from left, we
obtain

E |ψP〉 =
(

P̂Ĥ P̂ + P̂Ĥ1Q̂
1

E − Ĥ0 − Q̂Ĥ1Q̂
Q̂Ĥ1P̂

)
|ψP〉.

(B5)

Up to here, there is no approximation.
Expanding (E − Ĥ0 − Q̂Ĥ1Q̂)−1 using (1 − x)−1 = 1 +

x + x2 + · · · , Eq. (B5) is deformed into

E |ψP〉 =
(

P̂Ĥ P̂ + P̂Ĥ1Q̂
1

E − Ĥ0
Q̂Ĥ1P̂ + P̂Ĥ1Q̂

1

E − Ĥ0
Q̂Ĥ1Q̂

1

E − Ĥ0
Q̂Ĥ1P̂ + · · ·

)
|ψP〉. (B6)

It is hard to know E as it is the eigenvalue of the original Hamiltonian Ĥ . In the following, we approximate it by the eigenvalues
of P̂Ĥ0P̂ and (1 − x)−1 by 1 + x + x2. In conclusion, we obtain an approximated effective Hamiltonian,

Heff =
(

P̂HP̂ + P̂Ĥ1Q̂
1

E − Ĥ0
Q̂Ĥ1P̂ + P̂Ĥ1Q̂

1

E − Ĥ0
Q̂Ĥ1Q̂

1

E − Ĥ0
QĤ1P̂

)
. (B7)

2. Detail of the renormalization procedure

Here, we derive Eq. (41) and explain the renormalization
procedure in detail. The outline of the calculation is as fol-
lows. First, we split the Hamiltonian into the unperturbed term
Ĥ0 and the perturbation Ĥ1. From Ĥ0, we calculate the eigen-
values and corresponding eigenstates. After that, we construct
the effective Hamiltonian Heff using BWPT. By sandwiching
Heff by the eigenstates of Ĥ0, we obtain the renormalized
values of couplings and staggered potentials.

In Ref. [45], two models, called the diagonal model and
the off-diagonal model, are studied. The diagonal model cor-
responds to the FRM model at t = 0 [δ(0) = δ0, h(0) = 0]
and t = T/2 [δ(0) = −δ0, h(0) = 0], while the off-diagonal
model corresponds to the FRM model at t = T/4 [δ(0) =
0, h(0) = h0] and t = 3T/4 [δ(0) = 0, h(0) = −h0].

In this Appendix, we focus only on Case A of Ref. [45],
which corresponds to the case of t = 0 in the FRM model. For
convenience, we label the sites |1〉, |2〉 . . . from left as shown
in Fig. 8. At t = 0, δ(0) = δ0 and h(0) = 0. Namely, there
are no on-site potentials and only bond modulation δ changes
according to the Fibonacci sequence. We express bonds for
a as Ts = � + δ0 and bonds for b as Tw = � − δ0. In the
following, we take �, δ0 > 0 and treat Tw as a perturbation.

Then, the unperturbed Hamiltonian H0 becomes block diago-
nal, as only the bonds with a have nonzero matrix elements.
Since aa does not appear in the Fibonacci sequence (see
Sec. II), the unperturbed Hamiltonian is composed of 1 × 1
block matrices 0 and 2 × 2 block matrices,(

0 Ts

Ts 0

)
. (B8)

The eigenvalues and eigenvectors of this matrix are ±Ts and
|ψ±〉 = 1√

2
(|1〉 ± |2〉). Here, we call |ψ+〉 the bonding state

and |ψ−〉 the antibonding state. We refer to these states lying
on two sites connected to each other with Ts as the molecular
states. We call the eigenstates of 0 block matrices, which are
localized to a site not connected to other sites, the atomic
states.

As we see in the following, we can obtain two different
types of renormalizations, the atomic renormalization and
the molecular renormalization, according to the choice of
projector P̂.

a. Atomic renormalization

In the atomic renormalization, we renormalize bonds be-
tween atomic sites into new bonds. The projector P for this
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renormalization is

P =
∑

i∈atomic

|i〉〈i|, (B9)

where the summation is taken over all atomic sites of H0, and
|i〉 is an atomic state of H0. This renormalization is illustrated
in Figs. 8(a) and 8(b).

In the atomic renormalization, we have two types of bond
configurations, and the other configurations are prohibited by
the inflation rule. Specifically, the configuration which has
three molecule states between two atomic sites (bababab) is
prohibited, as it does not follow the inflation rule if we deflate
it twice. The first is bab, shown in Fig. 8(a). In this case, the
unperturbed Hamiltonian is

H0 =

⎛
⎜⎝

0 0 0 0
0 0 Ts 0
0 Ts 0 0
0 0 0 0

⎞
⎟⎠. (B10)

The eigenvectors of H0 are |1〉, 1√
2
(|2〉 ± |3〉), |4〉. H1 is the

remaining components Tw,

H1 =

⎛
⎜⎝

0 Tw 0 0
Tw 0 0 0
0 0 0 Tw

0 0 Tw 0

⎞
⎟⎠. (B11)

By constructing an approximated effective Hamiltonian Heff

using Eq. (B6), we can calculate the effective coupling as

〈1|Heff|4〉 = −T 2
w

Ts
= −ρ2Ts. (B12)

Here, ρ = Tw/Ts.
The next is babab, shown in Fig. 8(b). The unperturbed

Hamiltonian is expressed as

H0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 Ts 0 0 0
0 Ts 0 0 0 0
0 0 0 0 Ts 0
0 0 0 Ts 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (B13)

while the perturbation is given as

H1 =

⎛
⎜⎜⎜⎜⎜⎝

0 Tw 0 0 0 0
Tw 0 0 0 0 0
0 0 0 Tw 0 0
0 0 Tw 0 0 0
0 0 0 0 0 Tw

0 0 0 0 Tw 0

⎞
⎟⎟⎟⎟⎟⎠

. (B14)

By constructing an approximated effective Hamiltonian Heff

using Eq. (B6), we can calculate the effective coupling as

〈1|Heff|6〉 = T 3
w

T 2
s

= ρ2Tw. (B15)

Here, let us consider how the generation of the Fibonacci
lattice changes. From the two calculations above, groups of
bab are renormalized to stronger couplings −ρ2Ts, and groups
of babab are renormalized to weaker couplings ρ2Tw. Groups
of three bonds are renormalized to bonds a and groups of

five bonds are renormalized to bonds b. These correspond to
F3 = 3 → F0 = 1 and F4 = 5 → F1 = 1, so the generation is
reduced by three.

b. Molecular renormalization

In the molecular renormalization, we renormalize the hop-
ping from one molecular state to another molecular state into
a new hopping. Since we have bonding state |ψ+〉 and anti-
bonding state |ψ−〉, we can choose whether we renormalize to
the bonding state or antibonding state. Namely, we have two
choices for the projector,

P± =
∑

i∈molecular

|ψ±, i〉〈ψ±, i|, (B16)

where |ψ±, i〉 = 1√
2
(|i〉 ± |i + 1〉) denotes the bonding (+)

and antibonding (−) state, and the summation is taken over
all (anti)bonding sites of H0.

The first case is aba, shown in Fig. 8(c). The unperturbed
Hamiltonian is

H0 =

⎛
⎜⎝

0 Ts 0 0
Ts 0 0 0
0 0 0 Ts

0 0 Ts 0

⎞
⎟⎠, (B17)

whose eigenvectors are |ψ±L〉 = 1√
2
(|1〉 ± |2〉) and |ψ±R〉 =

1√
2
(|3〉 ± |4〉). The remaining component of the original

Hamiltonian is the perturbation,

H1 =

⎛
⎜⎝

0 0 0 0
0 0 Tw 0
0 Tw 0 0
0 0 0 0

⎞
⎟⎠. (B18)

By constructing an approximated effective Hamiltonian Heff

using Eq. (B6), we can calculate effective coupling as

〈ψ±L|Heff|ψ±R〉 = ±ρ

2
Ts. (B19)

The next is abba shown in Fig. 8(d). In this case, the
unperturbed Hamiltonian H0 is

H0 =

⎛
⎜⎜⎜⎝

0 Ts 0 0 0
Ts 0 0 0 0
0 0 0 0 0
0 0 0 0 Ts

0 0 0 Ts 0

⎞
⎟⎟⎟⎠, (B20)

and the eigenvectors are |ψ±L〉 = 1√
2
(|1〉 ± |2〉), |ψ0〉 = |3〉,

and |ψ±R〉 = 1√
2
(|4〉 ± |5〉). The perturbation H1 is

H1 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 Tw 0 0
0 Tw 0 Tw 0
0 0 Tw 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠. (B21)

By constructing an approximated effective Hamiltonian Heff

using Eq. (B6), we can calculate the effective coupling as

〈ψ±L|Heff|ψ±R〉 = ρ

2
Tw. (B22)
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FIG. 9. Pumping behaviors of the FRM model for different values of δ̄. We consider the FRM model of the 16th generation and use the
parameters � = 2, δ0 = 1, and h0 = 1. (a) The Bott index as a function of δ̄. We can find the topological phase transition at δ̄ = 1. The
pumping in δ̄ < 1 is topologically nontrivial and the pumping δ̄ > 1 topologically trivial. (b),(c) Time dependence of the pumped charge in the
FRM model, (b) in the nontrivial phase with δ̄ = 0.5 and (c) in the trivial phase with δ̄ = 1.5.

In this molecular renormalization, the left-most bond and
the right-most bond are shared with the neighboring groups.
Hence the size of the groups depicted in Fig. 8(c) is F2 = 2
and Fig. 8(d) is F3 = 3. Therefore, the generation is reduced
by two.

In summary, the triplet of parameters, i.e., energy shift, Tw,
and Ts, of the FRM model at t = 0 is renormalized as

(0, Tw, Ts)
deflation−−−−→

⎧⎪⎨
⎪⎩

(
Ts,

ρ

2 Tw,
ρ

2 Ts
)

bonding,(
0, ρ2Tw,−ρ2Ts

)
atomic,(− Ts,

ρ

2 Tw,− ρ

2 Ts
)

antibonding.

(B23)

The Fn eigenstates of the FRM model of nth generation are
divided into Fn−2 bonding states, Fn−3 atomic states, and Fn−2

antibonding states, which is consistent with Fn = 2Fn−2 +
Fn−3.

APPENDIX C: PARAMETER DEPENDENCE OF PUMPING
QUANTIZATION

In this Appendix, we demonstrate that the Bott index can
capture the phase transition between topologically trivial and
nontrivial phases in the FRM model.

To study the phase transition in the FRM model, we first
modify the time-dependent bond alternation δ(t ) in Eq. (8) by
introducing an offset δ̄ as

δ(t ) = δ̄ + δ0 cos

(
2π

t

T

)
. (C1)

We show the result of the charge pumping in the modified
FRM model in Fig. 9. In Fig. 9(a), we plot the Bott in-
dex as a function of δ̄. (Specifically, we took the average
of the Bott index at the fillings of τ, τ 2, . . . , τ 10). We can
find a topological phase transition at δ̄ = δ0. When δ̄ < δ0,
the parameter set [δ(t ), h(t )] encircles the origin (0,0) once
during the pumping cycle, and hence the charge pumping
takes place as shown in Fig. 9(b). In contrast, when δ̄ > δ0,
the sign of δ(t ) does not change during the pumping cy-
cle and the parameter set [δ(t ), h(t )] does not encircle the
origin. As a result, the topological charge pumping does
not occur as show in Fig. 9(c). These results clearly show
that the Bott index is able to capture the topological phase
transition in charge pumping phenomena in quasiperiodic
systems.
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