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The study of charge-density wave (CDW) distortions in Weyl semimetals has recently returned to the forefront,
inspired by experimental interest in materials such as (TaSe4)2I. However, the interplay between collective
phonon excitations and charge transport in Weyl-CDW systems has not been systematically studied. In this paper,
we examine the longitudinal electromagnetic response due to collective modes in a Weyl semimetal gapped by
a quasi-one-dimensional CDW order, using both continuum and lattice-regularized models. We systematically
compute the contributions of the collective modes to the linear and nonlinear optical conductivity of our models,
both with and without tilting of the Weyl cones. We discover that, unlike in a single-band CDW, the gapless
CDW collective mode does not contribute to the conductivity unless the Weyl cones are tilted. Going further, we
show that the lowest nontrivial collective mode contribution to charge transport with untilted Weyl cones comes
in the third-order conductivity for a single collective mode. This third-order process is mediated by the gapped
amplitude mode. We show that this leads to a sharply peaked third-harmonic response at frequencies below the
single-particle energy gap. We discuss the implications of our findings for transport experiments in Weyl-CDW
systems.
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I. INTRODUCTION

The interplay between electronic band topology and
symmetry-breaking order is at the forefront of modern con-
densed matter physics. Recent progress in the search for
topological materials has revealed topological insulators and
semimetals with local magnetic order, as well as highlight-
ing the link between phonon-driven structural distortions
and changes in electronic topology. One particularly illus-
trative material class is the bismuth halides Bi4X4 [1–5],
where a structural phase transition drives a band inversion be-
tween trivial and weak or higher-order topological insulating
phases. Additionally, several topological semimetals such as
(TaSe4)2I [6–11] and ZrTe5 [12] in a magnetic field, TaTe4

[13], and GdSbTe [14] undergo charge-density wave (CDW)
distortions that can drastically change the electronic structure
and band topology. It is then a compelling theoretical and
experimental question as to how the CDW distortion in these
systems influences dynamical properties, such as electronic
transport.

Due to the spontaneous symmetry breaking, the low-
energy excitations in a CDW consist not only of single-
particle electronic degrees of freedom but also involve
collective excitations of the mean-field order parameter. In
the case of a CDW distortion, these are the gapped ampli-
tude mode, and the nominally gapless phase mode [15]. As
their names imply, excitations of the amplitude mode create
spatiotemporal variations of the amplitude of the density wave
distortion; excitations of the phase mode create spatiotempo-
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ral variations of the phase of the density-wave modulation.
The zero-wave-vector phase excitation, which corresponds to
a uniform shift of the CDW phase, is conventionally referred
to as the CDW sliding mode. Because they directly modulate
the charge density, the collective modes in a CDW can impact
low-frequency (subgap) charge transport in these systems. In
a classic result [16], Fröhlich argued that the sliding mode in
a one-dimensional (1D) CDW, if not pinned, could carry a 1D
supercurrent. Further work on CDW transport focused on the
contribution of the sliding mode to the low-frequency con-
ductivity of quasi-1D CDWs, both with and without disorder
[17–27].

Until recently, this work on CDW transport was focused
on quasi-1D systems, where the single-particle gap could
be viewed as originating from nesting of a single-band
Fermi surface. However, the discovery of Weyl semimetals
[28–35] and their anomalous transport properties [36–44] has
sparked interest in the phenomena that emerges when the
CDW order opens a gap between Weyl fermions of opposite
chirality [38,45–51]. Theoretically, it has been shown that
for a magnetic Weyl-CDW, the CDW phase couples to the
electromagnetic field as a dynamical electromagnetic theta
angle. This implies, for instance, that the sliding mode in
a magnetic Weyl-CDW can induce a chiral magnetic effect
and modulate the anomalous Hall conductance. Signatures
of similar coupling of the sliding mode to magnetoelec-
tric response has recently been seen in the nonmagnetic
Weyl-CDW (TaSe4)2I, where magnetoconduction due to the
sliding mode was responsible for an observed negative
quadratic magnetoresistance [52]. Further study of this ma-
terial has provided increasing evidence that the CDW state
emerges from a high-temperature Weyl semimetallic phase
[8,53,54].
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A full understanding of these experiments requires an
analysis of the collective mode contribution to longitudi-
nal conductivity in Weyl-CDW systems. Additionally, the
recently discovered large nonlinear optical response of chi-
ral Weyl semimetals may leave an imprint on the response
functions in chiral CDWs such as (TaSe4)2I [55–62]. To
that end, we study the collective mode contributions to the
linear and nonlinear conductivity in simple minimal mod-
els of three-dimensional (3D) Weyl-CDWs. We focus on
models with low-energy Weyl fermions that are gapped by
a CDW distortion driven by electron-phonon coupling, and
we will consider transport processes up to second-order in
the coupling strength (i.e., only involving a single collective
mode). Consistent with recent interest in magnetic topo-
logical materials [63–75], we analyze a minimal magnetic
Weyl-CDW with two Weyl points in the normal state. Ex-
tending the formalism of Lee, Rice, and Anderson (LRA)
[17], we first derive expressions for the zero wave-vector
amplitude and phase-mode propagator in 3D. Using these,
we are able to extend the diagrammatic technique for com-
puting the nonlinear optical conductivity from Ref. [76]
to include contributions from the CDW collective modes.
Crucially, we find that the involvement of multiple bands
in Weyl-CDWs fundamentally changes the way collective
modes enter into the conductivity calculation when compared
with the simple single band formalism of Refs. [17–21].
In particular, we show that the massless collective mode
only contributes to the linear conductivity when the Weyl
cones are tilted. For an untilted Weyl semimetal, we do
not find any zero-frequency (linear or nonlinear) conduc-
tivity due to the sliding mode. On the contrary, we find
that the lowest-order collective mode contribution to opti-
cal response in the untilted case comes at third order from
the massive collective mode. This leads to an enhancement
of the third-harmonic response at half the resonant frequency
of the massive mode, which is well below the single-particle
band edge.

The structure of this paper is as follows. First, we start by
introducing our minimal model for a Weyl-CDW system in
Sec. II. We consider both a full tight-binding model as well
as a low-energy k · p approximation, both with and without
tilting the Weyl cones. In Sec. III, we calculate the mean-field
gap equation, electron propagators, and phonon propagators
in the CDW phase. We also introduce the Feynman rules for
diagrammatic perturbation theory in the CDW. In Sec. IV,
we introduce our diagrammatic scheme for calculating the
contributions of the collective phonon contributions to the
conductivity through third order. We pay particular attention
to the regularization of contact, or diamagnetic, contributions
to the conductivity. We employ both a minimal subtraction
regularization as well as a lattice completion. We show the
first nonzero collective conductivity for an untilted Weyl
semimetal mediated by a single collective phonon comes from
third-order processes. We further show that tilting the Weyl
nodes leads to a nonzero DC linear conductivity mediated
by the sliding mode of the CDW. We conclude in Sec. V
with a summary of our results and an outlook toward fu-
ture experimental applications. We include several appendices
containing details of the calculations and a review of the
calculation of the conductivity for 1D CDWs.

II. MODELS

A. Lattice model

Our starting point is a simple (spinless) two-band model
for a Weyl semimetal adopted from the time-reversal-breaking
model of Refs. [77–79]. The electronic part of the tight-
binding Hamiltonian is

H0 =
∑

k

�c†
k[2(−txσx sin(kxa) − tyσy sin(kyb)

+ tz(cos(kzc) − cos(k f c))σz )

− m(2 − cos(kxa) − cos(kyb))σz]�ck, (1)

where σx, σy, σz are Pauli matrices acting in the orbital space,
and m, tx, ty, and tz are energy parameters of the model.
The parameter m acts to lift additional nodal degeneracies
at the edges of the Brillouin zone. Also, a, b, c are charac-
teristic lengths between neighboring sites. For the remainder
of this paper, we take kx, ky, and kz in units of 1/a, 1/b,
and 1/c, respectively. The model features two Weyl nodes at
(0, 0,±k f ), and we denote the Weyl node separation vector as
Q = (0, 0, 2k f ).

Following Ref. [38], we now consider electron-phonon
coupling in this model. We assume the model to be quasi-1D
along the direction of Q, meaning the electron-phonon cou-
pling strength is only non-negligible for phonons propagating
along the k̂ f = ẑ direction.

The terms in the Hamiltonion responsible for the free
phonon dispersion and the electron-phonon interaction are
respectively given by

H1 =
∑

q

ωqb†
qbq,

H2 = g
∑
k,q

bq�c†
k+qσz�ck + b†

q�c†
kσz�ck+q. (2)

As we will see, this interaction term can couple Weyl nodes
of opposite chirality [38,47,48].

To proceed further, we expand the electronic creation and
annihilation operators around the two Weyl nodes as �c†

k+Q/2

and �c†
k−Q/2, where Q ≡ 2k f [16,17,22]. We will now examine

a CDW transition that couples the two Weyl nodes. We de-
fine a new two-component operator as �c ′

k ≡ (�ck+Q/2, �ck−Q/2).
The corresponding Pauli matrices in this ±Q/2 subspace
are denoted by τi∈{x,y,z,0}. When phonons of wave vector Q
condense, the phonon annihilation operator acquires a transla-
tion symmetry-breaking expectation value defined by g〈bQ〉 =
�e−iφ , which opens a gap in the single-particle spectrum
[16,17,36]. Note that although our choice of coupling constant
g is consistent with Refs. [18,19], it differs from LRA by a
factor of i. This only affects the mean-field dynamics via a
phase shift of φ + π/2, which, as we show in the following
sections, does not impact our results. This choice of symmetry
breaking means momentum is only conserved modulo Q for
the electronic part of the Hamiltonian. Our focus will be on
the effect of zero-momentum fluctuations

bQ = (�/g + δb)ei(δθ−φ) (3)
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FIG. 1. The spectra for the lattice model with mean-field electron-phonon interactions in the shifted Brillouin zone scheme, with tx = ty =
tz and � = 0.5tx . (a) is a cut through kx = ky = 0, which shows the gapped Weyl nodes at kzc = 0. (b)–(d) are cuts through (kx, ky ) = (π, π ),
illustrating that the parameter m lifts the band degeneracy near the Brillouin zone edge. At m = 0, three additional pairs of Weyl points exist
at the Brillouin zone edge, which are gapped by the electron-phonon interaction as can be seen in (b) at kzc = 0. Plots (e)–(g) show a different
slice of the spectra at (kxa, kyb) = (π, 0), and the green arrows signify excitations described in Sec. IV C 2.

on the response of this system to electric fields. Here δb repre-
sents the amplitude fluctuations of the CDW and δθ represents
the phase fluctuations.

Our goal will be to analyze the collective modes and con-
ductivity of an incommensurate CDW, i.e., when Q is not a
rational multiple of a reciprocal lattice vector. While there is
no lattice periodicity in this case, it will be convenient to start
from a model with a bounded spectrum to eliminate spurious
divergences in our subsequent transport calculations. To do
so, we will introduce a convenient lattice regularization of
an incommensurate Weyl-CDW, taking inspiration from the
lattice model Eq. (5). We use a convenient shifted Brillouin
zone scheme, where the Weyl fermions are recentered at the
origin of the shifted zone. We give the details of how this
is implemented in Appendix A. When Q = π , we can de-
rive a simple four-band model that is suitable for a lattice
regularized starting point for further analysis. We first apply
our mean-field ansatz Eq. (3) to the interaction Hamiltonian
Eq. (2) to obtain the mean-field Hamiltonian H2. For Q =
π , we have H2 = �c† ′

k {2|�|σz ⊗ (cos φτx )}�c ′
k. Note that H̄2

would produce a strong pinning of the phase of the CDW, as
the electronic band structure depends strongly on φ. For an
incommensurate CDW, we expect there to be an unpinned—-
and therefore massless—dynamical sliding mode; this implies
that the single-particle energy spectrum should be indepen-
dent of the phase φ in Eq. (3). To simulate an incommensurate
modulation within the context of our lattice regularized four-

band model, we can replace the mean field Hamiltonian H̄2

with

H ′
2 =

∑
k

�c† ′
k [2|�|σz ⊗ (cos φτx + sin φτy)]�c ′

k, (4)

which is the form of the mean-field electron-phonon inter-
action we would expect for the low-energy theory of an
incommensurate Weyl-CDW [38,46] (i.e., what we would
obtain following our mean-field decomposition with Q 	=
π ). Since we are primarily interested in the properties of
unpinned, incommensurate CDWs, we will use H ′

2 as our
mean-field Hamiltonian throughout this paper.

From Eq. (1), moving to the shifted Brillouin zone with
Q = π ẑ gives the Hamiltonian

H0,lat + H ′
2 =

∑
k

�c† ′
k {−2(tx sin(kx )σx + ty(sin(ky))σy) ⊗ τ0

+ 2tz sin(kz )σz ⊗ τz

− m(2 − cos(kx ) − cos(ky))σz ⊗ τ0

+ 2|�|σz ⊗ (cos φτx ) + 2|�|σz ⊗ (sin φτy)}�c ′
k.

(5)

In this shifted Brillouin zone, the boundaries are kx ∈
[−π, π ], ky ∈ [−π, π ], and kz ∈ [−π/2, π/2]. Several slices
of the spectra in the shifted Brillouin zone scheme for different
values of m are given in Fig. 1.
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FIG. 2. Spectrum of the idealized Weyl semimetal model in a cut
of the shifted Brillouin zone at kx = ky = 0. The parameter values
are tx = ty = tz and � = 0.5tx . The Weyl nodes, which are shifted
onto each other, are gapped by the nonzero �.

In this paper, we will consider the low-energy physics not
only for a lattice model but also for an ideal model linearized
about the untilted Weyl cones, as well as a titled lattice Weyl
Hamiltonian. In the remaining subsections, we give explicit
forms for the Hamiltonians for both cases.

B. Ideal model

To obtain our ideal Weyl semimetal, we perform a k · p
expansion near the Weyl nodes of the lattice model. Near these
points, the idealized electronic Hamiltonian becomes

H0,ideal + H2 ≈
∑

k

�c† ′
k [−(2txkxσx + 2tyσyky) ⊗ τ0

+ 2tzkzσz ⊗ τz

+ 2|�|σz ⊗ (cos φτx + sin φτy)]�c ′
k. (6)

It will also be convenient to define symbols for the two
positive eigenvalues of H0,ideal and H0,ideal + H2:

εk ≡
√

(2txkx )2 + (2tyky)2 + (2tzkz )2,

Ek ≡
√

ε2
k + 4|�|2.

A slice of Ek is shown in Fig. 2.

C. Tilted lattice model

Implementing a tilted Weyl model will be useful to explore
the effects of inversion and particle-hole symmetry breaking.
To induce a tilt in the unshifted Brillouin zone [77], we
add

∑
k �c†

kγ (cos kz − cos Q/2)σ0�ck to the lattice Hamiltonian.
The parameter γ controls the degree of tilt. In the shifted
Brillouin zone scheme with Q = π ẑ, this term can be written

Htilt =
∑

k

�c† ′
k [γ σ0 ⊗ τz sin(kz )]�c ′

k. (7)

When we consider a tilt along with the mean-field CDW
Hamiltonian, large enough tilts can lead to the emergence
of electron and hole Fermi surfaces. To avoid complications
due to Fermi surface carriers, we restrict our attention in this
paper to 0 � γ � 2. A plot of the gapped CDW spectrum for
different tilts is given is Fig. 3.

III. CALCULATION OF PROPAGATORS

Next, we move on to consider the dynamical effects of
phonon fluctuations in the ordered phase, with a particular
focus on the computation of propagators and vertices that will
enter into the conductivity calculations. To begin, we will
derive the self-consistent gap equation relating the phonon
frequency ωQ at the CDW wave vector to the amplitude |�|
of the gap. To do so, we will first introduce the bare (unper-
turbed) electron and phonon propagators.

A. Bare propagators

To perform the Kubo formula calculations, we will
need the bosonic collective mode propagator and the
fermionic electron propagator. We will calculate these
in the imaginary time Matsubara formalism. The equa-
tion of motion for the Wick-rotated Schrödinger Green’s
function equation is sufficient to calculate the bare elec-
tronic propagator: (δn1ξ1n2ξ2∂T − H0,n1ξ1n2ξ2 )Gn2ξ2n3ξ3 (t, x) =
δ(t )δ(x)δn1ξ1n3ξ3 . The Fourier-transformed version of this
equation will be more useful. For concreteness, for the ideal
Weyl semimetal Eq. (6), this yields

G(iν, k) = (kνγ
0γ ν + 2� cos φγ 0γ5 + i2� sin φγ 0)

E2 + ν2

= γ 0/k + 2� cos φγ 0γ5 + i2� sin φγ 0

E2 + ν2
. (8)

Since T is defined in Euclidean space, ν is a fermion Mat-
subara frequency, given as ν = π (2n + 1)/β for n ∈ Z. Also,
kν is defined to be the scaled version of the four-component
momentum, k ≡ (iν, 2txkx, 2tyky, 2tz sin(Q/2)kz ).

The corresponding gamma matrices are

γ0 = iσz ⊗ τy, γ1 = σy ⊗ τy,

γ2 = −σx ⊗ τy, γ3 = −σ0 ⊗ τx,

γ5 = iγ0γ1γ2γ3. (9)

The other bare propagator we will need is that of the phonon.
This will be defined as D0(T , q) = −〈TT Aq(T )A†

q〉 where

Aq ≡ bq + b†
−q [Note that this is the operator which couples

to c†
k+qσzck in Eqs. (2).] In Matsubara space, this becomes

D0(iω, q) = − 2ωq

ω2 + ω2
q
. (10)

The full derivation is provided in Appendix C.
Since we will be interested in the conductivity at zero wave

vector, we will only need to focus on the effects of phonons
with wave vector q ≈ Q. We can thus make the approximation
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FIG. 3. Spectra for the tilted lattice model with mean-field order in the shifted Brillouin zone scheme. Each plot has tx = ty = tz, � =
0.5tx and m = 0. Plots (a)–(c) show the line kx = ky = 0 for the tilts γ = 0.3tx , γ = 0.4tx , and γ = 0.5tx , respectively. Notice the bands are
nondegenerate away from kz = 0.

ωQ+δq ≈ ωQ [17,21] yielding, in the δq → 0 limit,

D0(iω) = − 2ωQ

ω2 + ω2
Q

, (11)

which will enter into our subsequent calculations. This ap-
proximation will be valid at sufficiently low temperatures in
the CDW phase, where we are interested in the effect of
low-energy excitations at wave vector Q.

B. Gap equation

The gap equation provides us with a self-consistent equa-
tion for the order parameter �. We will see in the T → 0
limit, the gap equation takes the form as a constraint between
the phonon frequency ωQ and the electron-phonon coupling
constant g. The gap equation can be found by minimizing
the free energy with respect to the CDW order parameter
[17]. That is, from the free energy, F = − 1

β
ln Tre−βH , the

variational derivative may be taken with respect to δ
δ�

or
δ

δ�∗ . To minimize the free energy, these variational derivatives
are set equal to zero. In the low temperature limit, T → 0,
where ωq ≈ ωQ and �(T ) ≈ �, the gap equation reduces to
a statement on ωQ. For a general Hamiltonian, which also
applies to the previous tiltless and tilted lattice models, con-
sider Hgen = d1(k)σx ⊗ τ0 + d2(k)σy ⊗ τ0 + d3(k)σz ⊗ τz +
d4(k)σz ⊗ τ0 + d5(k)σ0 ⊗ τz + d6(k)σ0 ⊗ τ0. We consider
this generalized Hamiltonian because it not only allows for
the tilting term from Eq. (7) but it is also general enough to
extend beyond the Weyl semimetal model. To find the value
of �, we minimize the free energy

F = − 1

β
ln

∑
i

e−βEi + ��∗

g2
ωQ (12)

with respect to �. The easiest way to do this is to rewrite the
Free energy in terms of a Euclidean effective action [80,81]

Seff = −
∫

[dk]
i

2
Tr[ln (iν − Hgen − H2,lat )] −

∫
[dk]

��∗

g2
ωQ, (13)

where [dk] = d (ν)dk. Taking the variational derivative and minimizing this effective action results in

�∗ωQ = −2g2
∫

[dk]Tr

{[
δ

δ�
(iν − Hgen − H2,lat )

]
[iν − Hgen − H2,lat]

−1

}
. (14)

Upon integrating over the Matsubara frequency ν, this generates a gap equation

ωQ = 4g2
∫

[dk]

(
1

E1,k
− 1

E2,k

)[
(E1,k − d6(k))2

(E1,k + E3,k )(E1,k + E4,k )
− (E2,k − d6(k))2

(E2,k + E3,k )(E2,k + E4,k )

+ [
(2�)2 + d2

1 (k) + d2
2 (k) + d2

3 (k) − d2
4 (k) + d2

5 (k)
]( −1

(E1,k + E3,k )(E1,k + E4,k )
+ 1

(E2,k + E3,k )(E2,k + E4,k )

)]
.

(15)

The quantities Ei,k are the eigenvalues lower eigenval-
ues Hgen + H2,lat, ordered in terms of increasing energy.
We also assumed that � is sufficiently large such that
the CDW bands do not produce Fermi surfaces at the
Fermi energy. The value of φ will switch the eigenstates

corresponding to each of the Ei,k. However, regardless
of the choice of φ, the final result will come out the
same.

For the idealized model, we have that d4(k) = d5(k) =
d6(k) = 0 and (d1(k), d2(k), d3(k)) = (2txkx, 2tyky, 2tzkz ). In

155120-5



ROBERT C. MCKAY AND BARRY BRADLYN PHYSICAL REVIEW B 104, 155120 (2021)

this limit, the gap Eq. (15) reduces to

ωQ =
∫

[dk]
2g2√

(2txkx )2 + (2tyky)2 + (2tzkz )2 + (2�)2
,

(16)
which implicitly determines |�| in terms of the phonon fre-
quency ωQ at T = 0.

C. Feynman rules

To calculate the linear and nonlinear conductivities, we
will make use of diagrammatic perturbation theory, gener-
alizing the formalism of Ref. [76] to include contributions
from dynamical collective excitations. First, consider the
phonon propagator expanded about the CDW wave vector
Q: Dd1,d2 (q,T ) = i〈TT Aq+d1Q(T )A†

q+d2Q(0)〉, where TT is
the time-ordered operator for the Wick-rotated imaginary
time, T , and d1, d2 takes either (+) or (−). The value of
Dd1,d2 (q,T ) is determined by a set of coupled Dyson equa-
tions involving the bare (g = 0) phonon propagator and the
electron propagator. We will focus solely on one-loop contri-
butions to the collective phonon self-energy, since this is the
leading contribution.

The Feynman rules that account for the interactions are
(1) The free electron propagator is denoted by

..
(2) The free phonon propagator is denoted by ..
(3) The electromagnetic field is denoted by ..
(4) Each electron-phonon vertex provides a contribution

of g.
(5) Each electron-electromagnetic field vertex in the α

direction provides a contribution of ie
iωα h̄ with an outgoing field

denoted by and an incoming field denoted by ..
(6) The momentum must also be indexed by ξ = ±1 for

particle propagators, since momentum is only conserved mod-
ulo ξQ. Similarly, d = ±1 indexes the phonon propagators
with momentum modulo dQ. Each phonon vertex will specify
(+) or (−).

(7) The orbital index will be denoted by n, which can take
values 1 and 2.

(8) To avoid double counting, only topologically unique
diagrams should be considered. Particularly, if the exchange
of two or more frequencies is not unique, then an appropriate
multiplicity factor must be included.

It is useful to introduce a rank-3 tensor for the electron-
phonon vertex. In the mean-field approximation, the input
vertex (one phonon to two electrons) extracted by applying
the shifted zone scheme to Eqs. (2) is

Pn1ξ1,n2ξ2;d1 = gδd1,ξ1 (σz ⊗ τx )n1ξ1,n2ξ2
. (17)

Similarly, the output vertex (two electrons to one phonon) is

Pd1;n1ξ1,n2ξ2 = gδd1,ξ2 (σz ⊗ τx )n1ξ1,n2ξ2
. (18)

These vertex tensors take a set of rank-2 tensors from particle
Green’s functions, denoted by the combined indices n and ξ

for the orbital and momentum bases, respectively, and output
a rank-1 phonon propagator of momentum basis, d1.

FIG. 4. The possible single-particle interactions for the interact-
ing phonon propagator.

D. Collective propagators

As phonons propagate through a material, they repeat-
edly interact with electron-hole pairs and are renormalized by
the electron-phonon interaction. Due to the presence of the
CDW condensate, the electron-phonon interaction can lead to
a nonzero value of the off-diagonal propagator D+−(q,T )
[17,19]. Using our Feynman rules, we show in Fig. 4 the
one-loop diagrams that contribute to the renormalized phonon
propagator. We can represent the recursive effects of the
electron-phonon interaction through a Dyson equation, as
represented in Fig. 5. Converting from diagrams to symbols,
let Dd1d2 (iω) represent the collective phonon propagator in
Matsubara space. Then the Dyson equation reads

Dd1d2 (iω)

=
(
δd1d6 +

∫
[dk](D0(iω))d1d3

Pd3;n7ξ7,n3ξ3

× G(iω + iν, k)n3ξ3,n4ξ4 Pn4ξ4,n5ξ5;d6 G(iν, k)n5ξ5,n7ξ7

)−1

× (D0(iω))d6d2
, (19)

where we remind the reader we have specialized to the zero-
momentum phonon propagator, which is sufficient for our
forthcoming calculation of the conductivity. The computation
of D−1(iω) applied to the ideal Weyl model reduces to

D−1(iω) =
[

D−1
++(iω) D−1

+−(iω)

D−1
−+(iω) D−1

−−(iω)

]

= D−1
0 (iω)σ0 − 2g2

∫
[dk]

×
⎡
⎣−2E2

k +(2�)2

Ek (4E2
k +ω2 )

(2�)2e−2iφ

Ek (4E2
k +ω2 )

(2�)2e2iφ

Ek (4E2
k +ω2 )

−2E2
k +(2�)2

Ek (4E2
k +ω2 )

⎤
⎦. (20)

The linear combinations D++(ω) + e2iφD+−(ω) and
D++(ω) − e2iφD+−(ω) are more important to later
calculations. These two linear combinations can be interpreted
as the massive amplitude and massless phase collective
excitations, respectively [17–19,21,22,84]. To see this, note
that after a Wick rotation from Matsubara frequency space to
real frequency space we have

D++(ω) − e2iφD+−(ω) = −1
−ω2+ω2

Q

2ωQ
− g2

∫
[dk] 4Ek

4E2
k −ω2

= −1

− ω2

2ωQ
+ g2

∫
[dk] −ω2

Ek (4E2
k −ω2 )

,

(21)
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FIG. 5. The Dyson equations for the collective mode propagators. The bold dotted line denotes the recursively defined collective phonon.
The bottom diagram generalizes the above diagrams [17,18,82,83].

D++(ω) + e2iφD+−(ω) = −1
−ω2+ω2

Q

2ωQ
− g2

∫
[dk] 4(E2

k −(2�)2 )
Ek (4E2

k −ω2 )

= −1

− ω2

2ωQ
+ g2

∫
[dk] 4(2�)2−ω2

Ek (4E2
k −ω2 )

.

(22)

The frequency ωQ is related to � through the gap equation.
Substituting the mean-field ansatz Eq. (3) into the definition
of D(ω) reveals that Eq. (21) is proportional to the propagator
for δθ , while Eq. (22) is proportional to the propagator for δb.
Using the ideal gap Eq. (16), we see that the massless mode
propagator Eq. (21) becomes singular as ω → 0 while the
massive mode propagator Eq. (22) is singular at a nonzero res-
onant frequency ωres, approximated in Appendix E. Note that
in the weak coupling limit, we will generally have ωres < |�|.

IV. CONDUCTIVITY

Having constructed the propagators for the collective mode
and electronic excitations in the CDW phase, we can now
compute the electromagnetic response for our models, fo-
cusing on the role of the collective modes. We will follow
the diagrammatic approach to nonlinear optical conductivity
outlined in Ref. [76]. To begin, recall that from the Kubo
formula, the nth order optical conductivity can be expressed
in terms of a correlation function of n velocity operators. To
define the velocity operator, we can use the velocity gauge
minimal coupling k → k − qA(t ), where E(t ) = E0eiωt =
−iωA(t ). Any Hamiltonian can naïvely be expressed as an
expansion in the vector potential: H (k + e

h̄ A(t )) = H (k) +∑∞
n=1

1
n!�i[ e

h̄ Aαi∂
αi
k H (k)]. However, instead of applying the

ordinary derivative in this expansion, the covariant deriva-
tive should be used to ensure the result is gauge invariant
with respect to k-dependent changes of basis for the occu-
pied Bloch functions. This amounts to defining the velocity

as the time-derivative of the position operator, expressed in
terms of the Berry connection [76]. Therefore, an arbitrary
operator’s derivative should be replaced by the following co-
variant version: ∂kαi Ôab → ∂kαi Ôab − i[Aαi

, Ô]ab ≡ D̂αiOab,
where A is the Berry connection. The derivation of how the
Berry connection shows up in the velocity operator is given in
Appendix B. We can then expand the Hamiltonian as H (k +
e
h̄ A) = H (k) + V̂E (k), where V̂E (k) includes all (Berry)
gauge invariant coupling terms to the vector potential. In
general,

V̂E (k) = e

h̄
Aα[D̂α, H (k)] + 1

2

e2

h̄2 AαAβ[D̂β, [D̂α, H (k)]]

+ 1

6

e3

h̄3 AαAβAγ [D̂γ , [D̂β, [D̂α, H (k)]]] + · · · .

(23)

Note that the quadratic term in this expansion gives the
diamagnetic current. We will see that this diamagnetic con-
tribution is critical for regularizing the singularities from the
ideal Weyl model [85]. More generally, we will use this defi-
nition of V̂E (k) to define the diagrammatic electronic velocity
vertices, hα1α2···αn = δn

δAα1 δAα2 ···δAαn V̂E (k).
To apply this formalism to our present case, we must

carefully treat dx̂
dt , in the presence of the electron-phonon

interaction. Consider the current operator, ĵq obeying the con-
tinuity equation, e[H,

∑
p �c†

q�cp+q′] = q′ ĵq′ . Expanding this
current operator provides a consistent definition of the veloc-
ity operator, which is derived in Appendix B. Notably, there
are no tricky contributions coming from the chosen basis us-
ing ck±Q. Thus, the relation 〈n1, ξ1| dx̂μ

dt |n2, ξ2〉 = v̂
μ
E ,n1ξ1,n2ξ2

=
[D̂μH0(k + e

h̄ A(t ))]n1ξ1,n2ξ2 above still holds.
Having worked out the appropriate velocity operator, we

can now diagrammatically compute the nth order conductivity
using a generating function approach [76]. The expectation
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value of the electric current is given by

〈Ĵμ〉 = 1

Z
Tr

[
Tt ev̂

μ
E e−i

∫
dt ′Ĥ0(t ′ )+Ĥ1(t ′ )+Ĥ2(t ′ )], (24)

where Tt denotes time ordering of the exponential. The defini-
tion of the nonlinear conductivity includes contributions from
multiple electric field sources and so is specified as

〈Ĵμ(t )〉 =
∞∑

n=1

∫ (
n∏

j=1

dt j

)
σμα1···αn (t, t1, t2, . . . , tn)

×
n∏

i=1

Eαi (ti ). (25)

Therefore, taking functional derivatives and Fourier trans-
forming gives the (n)th order conductivity as [86–88]

σμα1···αn (ω,ω1, · · · , ωn)

=
∫

[dt]eiωt
n∏

i=1

∫
[dti]e

iωiti
δ

δEαi (ti )
〈Ĵμ〉

∣∣∣∣∣
E=0

. (26)

With this functional form, the current may be computed to
all orders in the electric field. Note that this method produces
time-ordered rather than the causal response functions that are
more conventional in condensed matter physics. To connect
these two, care must be taken in how we extend Eq. (26)
into the complex frequency domain. While this is a textbook
problem for the linear conductivity [89], it is not necessarily
trivial for the nonlinear collective response. In our framework,
we will follow the procedure outlined in Refs. [76,90] and
shift all frequencies ωα into the complex plane in an identical
way (i.e., ωα + ωβ → ωα + ωβ + 2iη for the small complex
part, iη). Since this issue does not affect our central results
as to the relative contributions of the collective contributions
to the conductivity, we will defer a systematic examination to
future work.

As we compute the conductivity below, it will be conve-
nient to separate the contributions into two categories: those
with and without contributions from the collective mode. The
collective contribution is understood to mean the contributions
to the conductivity mediated by a single collective mode prop-
agator via the electron-phonon interaction. We compute the
conductivity to order O(g2) in the electron-phonon coupling.
Furthermore, in the spirit of Migdal’s theorem, we neglect
vertex corrections [18,91]. In this way, we will explore to
what extent the massless and massive collective modes in
a 3D Weyl-CDW carry an electric current, generalizing the
classical Fröhlich result [16,17]. To make the calculation more
convenient, we will work in the orbital basis of the Hamil-
tonian rather than converting to the block diagonalized band
basis. The main reason for this is to avoid messy conversions
of the electron-phonon vertex. A secondary reason is that the
orbital basis basis leads to the absence of the Berry connec-
tion in the covariant derivative. That is, the Berry curvature
contributions to the current, which are invariant, are absorbed
into definitions of the Green’s function and particle velocity
vertices. A tertiary reason is that the orbital basis is generally
more computationally friendly than the energy band basis.
However, the final results for the conductivities are basis
independent.

FIG. 6. Feynman diagrams for the noncollective contributions to
the linear conductivity. (a) is the diamagnetic term. (b) is the single-
particle term.

Although we will write the response coefficients in their
general form, we will focus on longitudinal response. This is
because the transverse response relates back to the topological
features of the Weyl-CDW system, which has been thoroughly
studied [38,47,48]. The transverse response appears in our
field-theory definition of the current [92]. The longitudinal
response that we focus on here, on the other hand, has not
been extensively studied for the Weyl-CDW system.

In realistic materials, impurity scattering may be impor-
tant. Disorder in a CDW system will pin the massless mode,
shifting its resonant frequency away from 0 [17,18,49]. Ad-
ditionally, both the massless and massive modes will acquire
a finite lifetime in the presence of disorder. Disorder effects
on the electronic propagators can be reasonably modeled
by changing η, which may flatten sharp peaks. To leading
order, we expect that the effect of disorder can be phe-
nomenologically captured by making these replacements in
the propagators that appear in our conductivity expressions.
Here we will assume an extremely clean limit and leave a
detailed impurity treatment to a future work.

In the subsequent subsections, we compute the conductiv-
ity for the Weyl-CDW using two parallel approaches. First,
we use the low-energy, ideal Weyl model directly, where reg-
ularization of divergences in frequency is necessary. To obtain
finite results, we implement a minimal subtraction regulariza-
tion scheme. Second, we compute the conductivity for a lattice
completion of the Weyl-CDW. The full Weyl lattice model
is used, where the current vertices are defined as variational
derivatives of the generating function. The lattice completion
method acts to approximate the incommensurate lattice and
directly parallels the phenomenology of of the low-energy
regularization method. We will start by applying these meth-
ods to compute the linear conductivity in Sec. IV A, followed
by the second-order conductivity in Sec. IV B. Finally, we
examine the third-order conductivity in Sec. IV C.

A. Linear conductivity

We start by examining the linear conductivity. Since (as
we will see) the collective mode contributions only manifest
in the longitudinal conductivity σ zz(ω), we will focus our
attention primarily on these components.

1. Linear noncollective contributions [σzz
NC(ωβ )]

We start by considering the ordinary single-particle (non-
collective) contribution to the linear optical conductivity. The
sum of contributions from Fig. 6 and the application of the
Feynman Rules from Sec. III C gives the linear order contri-
bution. The noncollective conductivity, denoted by subscript
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NC, is

σ
αβ

NC(iωβ ) = ie2

h̄iωβ

∫
[dk]

[
Gn1ξ1,n2ξ2 (iν, k)hαβ

n2ξ2,n1ξ1

+ Gn1ξ1,n2ξ2 (iν + iωβ, k)hβ

n2ξ2,n3ξ3

× Gn3ξ3,n4ξ4 (iν, k)hα
n4ξ4,n1ξ1

]
. (27)

Since our system of interest is a single-particle band insulator,
we expect σ zz

NC(iω) to vanish in the limit of low frequency.
Examining this in detail will shed light on the role of the two-
photon vertex hαβ .

a. Ideal Weyl model. We start by considering the linearized
ideal gapped Weyl model. Using the definition of the covariant
derivative, the one-photon velocity vertex is

hα = [−2
(
txσxδ

α
x + tyσyδ

α
y

) ⊗ τ0 + 2δα
z tzσz ⊗ τz

]
. (28)

For this system, it turns out that hαβ

n1ξ1,n2ξ2
is zero, since the

Hamiltonian is linear in k. However, this is clearly not the case
for any lattice completion of the model (which must describe
an insulator). In the ideal gapped Weyl linear response, a sin-
gularity exists in the noncollective response as ω → 0, which
is not present in the response from the lattice model with
m = 0, 2t , which is a band insulator with σαα

NC(ω → 0) = 0.
Furthermore, we expect the diagmagnetic contribution from
Fig. 6(a) to ensure the single particle part from Fig. 6(b) does
not diverge as ω → 0. To accomplish this, it must be true that
the integral from Eq. (27) conspires to be zero at iωβ = 0. To
recover this physics in the linearized model, we introduce a

regularizing velocity vertex, h
αβ

n1ξ1,n2ξ2
with the demand that

0 =
∫

[dν]
[
Gn1ξ1,n2ξ2 (iν, k)h

αβ

n2ξ2,n1ξ1

+ Gn1ξ1,n2ξ2 (iν + iωβ, k)hβ

n2ξ2,n3ξ3
Gn3ξ3,n4ξ4 (iν, k)

×hα
n4ξ4,n1ξ1

]
iωβ=0

. (29)

Note that since the integral here is only over frequency ν,
this is a stronger condition than the demand σαα

NC(ω → 0) = 0;
nevertheless, we find this allows for the simplest solution for

h
αβ

n1ξ1,n2ξ2
. Some constraints on h

αβ

n1ξ1,n2ξ2
derived from the lattice

model are that it should be block diagonal, not depend on the
integration frequency ν, and be Hermitian. Additionally, there

FIG. 7. Diagram for the collective mode contribution to the lin-
ear conductivity [17,18,22]. To alleviate crowding in the diagrams,
the indices to be summed over (n, ξ , and d) will be left implicit in
the diagram and in all the diagrams that follow.

are integration parity constraints on this vertex. For example,
the lattice model vertex hzz is odd in kz, so the regularized h

zz

should also be odd in kz. Upon solving Eq. (29), we find one
possible solution:

∑
n,ξ

sgn(ξ )(−1)nh
zz
nξ,nξ = 8tz

(
E2

k − (2kz )2
)

(kz )E2
k

. (30)

This choice of h
αβ

n1ξ1,n2ξ2
is not unique. There will always

exist a family of transformations, h
αβ

n1ξ1,n2ξ2
→ h

αβ

n1ξ1,n2ξ2
+

X
αβ

n1ξ1,n2ξ2
, each of which will satisfy Eq. (29) provided that∫

[dk]Tr(G(ν, k)X
αβ

) = 0. However, the ambiguity due to

X
αβ

will not affect the final answers in either Sec. IV A 1 or
IV B 1, since taking traces only requires Eq. (30).

b. Linear collective contributions [σ zz
coll(ωβ )]. Next we cal-

culate the contribution to the conductivity from the collective
modes, denoted by a subscript coll. Converting from the dia-
gram of Fig. 7 to a mathematical expression, we find

σ
αβ

coll(iωβ ) = ie2

h̄iωβ

∑ ∫
[dk1][dk2]Gn1,ξ1,n2;ξ2 (iν1, k1)

× hβ

n2,ξ2;n3,ξ3
Gn3,ξ3;n4,ξ4 (iν1 + iωβ, k1)

× Pn4,ξ4,n1,ξ1;d1 Dd1;d2 (iωβ )

× Pd2;n8,ξ8,n5,ξ5 Gn5,ξ5;n6,ξ6 (iν2 + iωβ, k2)

× hα
n6,ξ6;n7,ξ6

Gn7,ξ7;n8,ξ8 (iν2, k2). (31)

We will now evaluate this expression for the ideal linearized
model, the lattice model, and the tilted lattice model.

c. Ideal Weyl model. To analyze the collective conductivity
in the linearized model, we plug the Green’s functions from
Eq. (8) and the velocity vertex for the linearized model into
Eq. (31). The (not yet Wick-rotated) resulting equation is

σ
αβ

coll(iωβ ) = ie2

h̄iωβ

∫
[dk1][dk2]

32g2(D++(iωβ ) + e2iφD+−(iωβ ))
(

k
β

1 v
β

1

)(
k

α

2 vα
2

)
(2�)2(

E2
k1

+ ν2
1

)(
E2

k1
+ (ν1 + ωβ )2

)(
E2

k2
+ ν2

2

)(
E2

k2
+ (ν2 + ωβ )2

) , (32)

where v = (0, 2tx, 2ty,−2tz sin Q/2) is the scaled veloc-
ity vector. Since this result in linear in k1 and k2,
the integration will force σ

αβ

coll(ωβ ) to vanish. This van-
ishing is expected as the massive mode corresponds to
oscillations in the amplitude of the CDW modulation,
which should be unable to carry an electric charge in

an inversion- and particle-hole symmetric system at linear
order [17].

Importantly, note that the vanishing of the collective con-
tribution holds for all loops involving a single electric field
vertex, hμ

n1ξ1,n2ξ2
in the collective conductivity. Therefore, di-

agrams with loops having a single electric field vertex, as in
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Fig. 7, will be ignored in higher orders of the conductivity
when we examine the untilted Weyl models.

Let us briefly comment on the dependence of our result
on the choice of Fermi energy. Because the integrand in
Eq. (32) is an odd function, the collective contribution to the
conductivity will vanish for any Fermi energy in the gap. For
temperatures approaching zero, there is an implied Heaviside
step function in Eq. (32), �(±Ek − εF ), which comes about
from integrating the Matsubara frequency. Hence, for Fermi
energies in the gap, the integrand remains odd and vanishes.
Conversely, for Fermi energies above or below the gap, the
argument of the Heaviside function will disrupt the parity
of the integrand. However, the collective contribution to the
conductivity will be small for small Fermi surface volumes,
and will generally be overshadowed by the noncollective con-
tribution. A study of the response of systems with energies
above the gap is outside the scope of this paper.

Note crucially that unlike in the case of a 1D CDW, the
massless mode does not contribute to the linear conductivity
in the untilted Weyl model. The formative paper LRA
provided a 1D calculation showing why the massless mode
propagator contributes for a single, quadraticly dispersing
band [17,22], which has one degree of freedom at each Fermi
point. Here, however, we have two degrees of freedom per
Fermi point in each 1D z-directed slice of the Brillouin zone.
Furthermore, in the untilted model, each of these degrees of
freedom has the opposite velocity. The ideal Weyl model can
thus be thought of as an LRA model with velocity vz = ±v f

at each Fermi point, combined with a second anti-LRA model
with velocity vz = ∓v f at each Fermi point. Because the
two velocities are opposite on either Weyl node, the two
contributions cancel. A more detailed analysis is provided in
Appendix F.

To get some physical intuition for this, consider our ideal
Weyl model in the undistorted phase, with two small Fermi
pockets around each Weyl node, separated by wave vector
Q. When the CDW order parameter is nonzero, we condense
particle-hole pairs consisting of a hole in one Fermi pocket,
and an electron separated by momentum Q. In our ideal
Weyl model, these electron and hole states exhibit the same
velocity, unlike for a 1D CDW. Because of this, exciting the
phase mode does not produce a net velocity in the untilted
3D case; in the semiclassical picture of Bardeen [15,20],
every left-moving state that is depopulated at one pocket is
compensated by an extra left-moving state at the opposite
pocket (and vice versa for right moving states). Thus, for
the sliding mode to contribute to the DC conductivity in
a Weyl-CDW, we must have an asymmetry between the
velocities in different Weyl pockets.

There are a several symmetry-breaking terms that may
allow the collective modes to contribute to the conductivity at

linear order. For instance, our ideal model has inversion, mir-
ror, and particle-hole symmetry. If either inversion symmetry
or mirror symmetry Mz : z → −z is broken, then the integral
in Eq. (32) will not be forced to vanish due to integration
parity considerations. Furthermore, particle-hole symmetry
breaking can be introduced by including a term proportional to
σ0 in the Hamiltonian. The σ0 term modifies the Pauli matrix
structure and the traces in Eq. (31) (from Appendix F) to
allow for a nonvanishing contribution of the massless mode
to the conductivity. This can be accomplished by shifting the
nodes in energy or inducing a tilt to the Weyl nodes, which we
explore in the next sections.

d. Lattice Weyl model without tilt. The same arguments from
the ideal Weyl model still apply to the lattice model, namely,
there is no collective contribution to the conductivity in the
absence of tilt. This is due to a massive mode propagator
involving an integrand that is odd in kz, as in Eq. (32), and
the vanishing of diagrams involving the massless mode prop-
agator due to the trace identities outlined in Appendix F. The
conclusions are exactly the same as Sec. IV A 1.

e. Lattice Weyl Model with tilt. To avoid the exact cancel-
lation of the massless mode contribution to the conductivity,
we can introduce a tilt of the Weyl nodes via the Hamilto-
nian from Eq. (7). This ensures the velocity matrix at each
node has nonzero trace, and so the LRA contribution and
anti-LRA contribution described in Sec. IV A 1 do not cancel.
The result is the massless sliding mode acquires a nonzero
effective charge and carries a current. The inclusion of the
tilting term from Eq. (7) to the lattice model from Eq. (5) can
be numerically evaluated to find σ

αβ

coll(ωβ ), shown in Fig. 8.
There are several characteristics from the energy dispersion

that contribute to the features observed in σ zz
coll(ω):

(1) Only the massless phonon propagators contribute to
the linear collective conductivity in the tilted model. The
nonzero intercepts at ω = 0 in Figs. 8(a), 8(e) and 8(i) illus-
trate this. These reflect a divergence in the DC conductivity
characteristic of the unpinned CDW sliding mode.

(2) We expect to see a change of slope in the conductivity
at ω = 4�, when the electric field can excite an electron
across the gap. However, this feature is imperceptible for
this choice of m = 0. At m = 2tx, there is a slight change
in slope, discernible in Figs. 8(f) and 8(g). Note that when
we consider the total conductivity, including single-particle
contributions, we expect this effect to be small compared to
single-particle contributions to the charge response coming
from direct excitation of electron-hole pairs.

(3) The next distinguishable feature is when a photon is
able to excite an electron past the highest point of the first
valence band. Then, only the second valence band would be
accessible to excited states. This occurs when

h̄ω = 2

√
γ 2 − 4

√
((tx )2 + (ty)2 + (tz )2)γ 2 + 4((tx )2 + (ty)2 + (tz )2 + �2)

for m = 0.
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FIG. 8. Linear collective conductivity for the lattice model (m = 0 and m = 2tx respectively). We plot both −iωσ zz
coll(ω) [in (a), (b), (e),

and (f)] and σ zz
coll(ω) [in (c), (d), (g), and (h)]. (a), (c), (e), and (g) are the real parts of the function, while (b), (d), (f), and (h) are the imaginary

parts. In all cases � = 0.5tx . (i) gives the real part of −iωσ zz
coll(ω) as ω → 0 as a function of the tilt, γ .

(4) Finally, we expect a sharp feature when the fre-
quency is high enough to excite electrons across the highest
point of the second band. Since there are no available

states to excite to beyond here, this quenches the con-
ductivity. At m = 0, the frequency at which this occurs
is

h̄ω = 2

√
γ 2 + 4

√
((tx )2 + (ty)2 + (tz )2)γ 2 + 4((tx )2 + (ty)2 + (tz )2 + �2).

The results of Fig. 8(a)–8(h) may be compared to the re-
sults of the 1D cosine and quadratic dispersion models given
in Appendix G with Figs. 17 and 18, respectively. Espe-
cially at m = 0, many of the qualitative features are similar.
With m 	= 0, the bands are nondegenerate at the edges of the
Brillouin zone, causing additional spectral transitions for each
new band in that frequency region.

Since the massless contribution to the collective con-
ductivity diverges at low frequency, the physically relevant
observable is the residue of the pole at ω = 0, which we
can extract from limω→0 −iωσ zz

coll(ω). This is a property of
the massless mode propagator, D++(ω) − e2iφD+−(ω), which
peaks at ω → 0. We provide the details of this computation
in Appendix D. This intercept plays the role of the superfluid
density in the Fröhlich superfluid model of CDW conduction
[93]. At m = 2tx, the intercept value is small compared to the
m 	= 2tx intercepts, but still is nonzero.

In typical commensurate CDWs, the residual discrete
translational symmetry pins the sliding mode, and so the
massless propagator acquires a mass. As our four-band
model comes from a regularization of an incommensurate
CDW, we do not see this pinning effect here. We can
trace this back to the simple eiφ phase dependence in the
mean-field Hamiltonian. If we were instead to apply the
shifted-zone scheme to our Hamiltonian for generic com-
mensurate Q = 2πM/N , we would find that the energy
gap varies as a function of φ, containing harmonics of
the form cos nφ for n < N [17] [also recall our discus-
sion preceding Eq. (4)]. In all cases except N = 2, this
will lead to pinning of the CDW. For N = 2, however,
the phase mode and the amplitude mode become inex-
orably linked, since the mean-field Hamiltonian contains
only � cos φ = �′. In this case, there is only one collective
mode.
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FIG. 9. Feynman diagrams for the noncollective second-order
conductivity [76]. Diagram (d) is the only diagram that does not
require regularization, since all the vertices are linear in the electric
field. Diagrams (a)–(c) exist to regulate diagram (d) as ωγ and ωβ hit
various singularities.

Now, we will move on to examine the contributions of the
collective mode to the second- and third-order conductivities.

For numerical simplicity, we will focus primarily on the un-
tilted case.

B. Second-order conductivity

To examine the second-order collective conductivity, we
will first review the calculation of the noncollective second-
order conductivity. This will serve to introduce the diagrams
that will appear in the calculation of the collective conductiv-
ity at both second- and third-order.

1. Second-order noncollective contributions [σzzz
NC(ωβγ ; ωβ,ωγ )]

The Feynman diagrams contributing to the single-particle
conductivity at second order are provided in Fig. 9. These
diagrams, in respective order, translate to

σ
αβγ

NC (iωβγ ; iωβ, iωγ ) = e(ie)2

h̄2(iωβ )(iωγ )

∫
[dk]

[
1

2

(
Gn1ξ1,n2ξ2 (iν, k)hγ βα

n2ξ2,n1ξ1

)
+ 1

2

(
hγ β

n1ξ1,n2ξ2
Gn2ξ2,n3ξ3 (iν + iωβγ , k)hα

n3ξ3,n4ξ4
Gn4ξ4,n1ξ1 (iν, k)

)
+ (

hγ

n1ξ1,n2ξ2
Gn2ξ2,n3ξ3 (iν + iωγ , k)hβα

n3ξ3,n4ξ4
Gn4ξ4,n1ξ1 (iν, k)

)
+ (

hγ

n1ξ1,n2ξ2
Gn2ξ2,n3ξ3 (iν + iωγ , k)hβ

n3ξ3,n4ξ4
Gn4ξ4,n5ξ5 (iν + iωβγ , k)hα

n5ξ5,n6ξ6
Gn6ξ6,n1ξ1 (iν, k)

)]
(33)

+ (β, iωβ ) ←→ (γ , iωγ ).

The last term symmetrizes over the two possible input
frequencies, iωβ and iωγ .

a. Ideal Weyl model. As in the linear case from Sec. IV A 1,
both the two-photon vertex and three-photon vertex are zero

for the ideal Weyl model without tilt. Thus, both h
αβ

and

h
αβγ

need to be fixed, and h
αβ

needs to be in a gauge
that respects the regularized solution in Sec. IV A 1. With

regard to the previous process, h
αβγ

takes care of the sin-
gularity as ωβ = ωγ = 0 since the integrand in Fig. 9(a) is
independent of frequency. Furthermore, Figs. 9(b) and 9(c)
reduce to the linear conductivity diagrams of Fig. 6 as ei-

ther ωβ → 0 or ωγ → 0. Since h
αβγ

is not necessary for the
collective conductivity, we will not compute its mathematical
form.

Although a concrete calculation of the noncollective con-
ductivities is outside the scope of this paper, we remark
here that for our ideal Weyl model, we have that inversion
symmetry guarantees by integration parity that all terms in
Eq. (33) are zero, and hence σ

αβγ

NC = 0. This statement can be
generalized: any Hamiltonian that preserves inversion sym-

metry necessarily has vanishing second-order noncollective
conductivity.

2. Second-order collective contributions [σzzz
coll(ωβγ ; ωβ, ωγ )]

b. Ideal and lattice Weyl model without tilt. As mentioned
in Sec. IV A 1, any loop containing only a single electric field
line and a single phonon line sums to zero for the untilted
lattice and ideal Weyl models. There are no diagrams to order
O(g2) that can be drawn where the loop integrates to a nonzero
value in the second-order optical response. Thus, there is no
collective mode contribution to the second-order conductivity
in the untilted models.

c. Lattice Weyl model with tilt. Initially, the tilted model
might seem promising for yielding a nonzero collective
second-order response, given its nonzero contribution from
the linear result. However, the second-order collective re-
sponse is zero for this model as well. This time, the diagrams
in Fig. 10 show that each single photon vertex loop is ac-
companied by either a double photon vertex loop or a single
photon vertex triangle. To codify this, consider the simplified
expression

σ
αβγ

coll (iωαβγ ; iωβ, iωγ ) = e(ie)2

h̄2(iωβ )(iωγ )

(
(Gdouble)βγ

d1
(ωβγ ) + (Gtri )βγ

d1
(ωβ, ωβγ )

)
Dd1d2 (ωβγ )(Gsingle)αd2

(ωβγ )

+ (Gsingle)γd1
(ωγ )Dd1d2 (ωγ )

(
(Gdouble)αβ

d2
(ωβγ ) + (Gtri )αβ

d2
(ωγ , ωβγ )

)
, (34)

where the superscripts single, double, and tri denote the single
photon vertex loop, the double photon vertex loop, and the sin-

gle photon vertex triangle as illustrated in Fig. 10. Here, recall
that d1,2 = ± denotes components of the ±Q/2 subspace.
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FIG. 10. Feynman diagrams for collective mode contributions
to the second-order conductivity. Each diagram has a single-photon
vertex loop contribution.

Notice that (Gdouble)βγ

1 (ωβγ ) = (Gdouble)βγ

2 (ωβγ ) and
(Gtri )βγ

1 (ωβ, ωβγ ) = (Gtri )βγ

2 (ωβ, ωβγ ), meaning that the
double photon vertex loop and single photon vertex
triangle are symmetric under d1 ↔ d2. On the other
hand, the single photon vertex loop is antisymmetric, i.e.,
(Gsingle)γ1 (ωγ ) = −(Gsingle)γ2 (ωγ ). This parity argument stems
from the parity of the velocity vertex, which comes from the
tilt contribution in the Hamiltonian. Since momentum
conservation is broken, this allows for exact cancellations
between contributions from the conductivity in different
valleys, even in the absence of inversion symmetry.

In Sec. IV A 1, the linear response depended on the mass-
less collective mode, which was the result of the single photon

FIG. 11. Feynman diagrams for the noncollective contributions
to the third-order conductivity [76]. Diagram (h) is the only diagram
that does not require regularization. Diagrams (a)–(g) exist to regu-
late diagram (h) as ωδ , ωγ , and ωβ hit various singularities.

vertex loop being componentwise odd. In the next section,
we will see that at third order, the massive mode contributes
to the collective conductivity when both left- and right-hand
sides of the phonon propagator can be contracted against
componentwise even diagrams. However, when the left- and
right-hand diagrams have different componentwise parity, as
in all the diagrams of Fig. 10, then the resulting contribution
will always cancel when contracted against the collective
phonon diagram. Thus, we see that our single tilting term
is not sufficient to allow for a collective contribution to the
second-order conductivity. In Sec. V, we remark on the effect
of more general symmetry-breaking terms.

C. Third-order conductivity

1. Third-order noncollective contributions [σzzzz
NC (ωβγδ; ωβ, ωγ, ωδ)]

At third order, we encounter both diagrams containing pre-
viously defined vertices and a new four-photon vertex, hαβγ δ .
With brevity in mind, the orbital and ±Q/2 indices will be
left implicit in the following explicit expressions. The set
of diagrams from Fig. 11 gives a noncollective conductivity
[87] of

σ
αβγ δ

NC (iωβγ δ; iωβ, iωγ , iωδ ) = e(ie)3

h̄3(iωβ )(iωγ )(iωδ )

∫
[dk]

[
1

6
(G(iν, k)hδγ βα ) + 1

6
(hδγ βG(iν + iωβγ δ, k)hαG(iν, k))

+ 1

2
(hδG(iν + iωδ, k)hγ βαG(iν, k)) + 1

2
(hδγ G(iν + iωγδ, k)hβαG(iν, k))

+ 1

2
(hδG(iν + iωδ, k)hγ βG(iν + iωβγ δ, k)hαG(iν, k))

+ 1

2
(hδγ G(iν + iωγδ, k)hβG(iν + iωβγ δ, k)hαG(iν, k))

+ (hδG(iν + ωδ, k)hγ G(iν + iωγδ, k)hβαG(iν, k))

+ (hδG(iν + iωδ, k)hγ G(iν + iωγδ, k)hβG(iν + iωβγ δ )hαG(iν, k))

]
+ 5 permutations of (iωβ, β ), (iωγ , γ ), and (iωδ, δ). (35)
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a. Ideal Weyl model. To regularize this expression, we may
use the same bootstrapping methods from Secs. IV A 1 and

IV B 1 to find the regularized vertex h
αβγ δ

for the idealized
Weyl model. The condition that must be obeyed is that this
conductivity does not diverge as ωi → 0 for all i ∈ {β, γ , δ}.
However, since the collective conductivity is devoid of dia-

grams that would require h
αβγ δ

, we leave the detailed study
of this expression for future work and instead move on to
examine the contributions of the collective mode to the third-
order conductivity.

2. Third-order collective contributions [σzzzz
coll (ωβγδ; ωβ, ωγ, ωδ)]

This is the lowest order in the electric field where
the collective conductivity is non-vanishing for the untilted

models up to order O(g2). The diagrams contributing to this
response are illustrated in Fig. 12. The main diagrams are
the triangle diagrams Figs. 12(a), 12(c) and 12(d), whereas
the loop diagrams will regulate the triangle diagram. There
is a parallel to this process in high energy physics, where
the triangle diagram [see Figs. 12(a), 12(c) and 12(d)] is
reminiscent of the bosonic contribution to the gluon-gluon
scattering matrix arising via the Higgs mechanism [94–99].
The electric fields take up the role of the gluons and the
outgoing collective phonon takes up the role of the Higgs
boson.

For the sake of convenience, the triangle and loop
diagrams can be separately integrated. We start by
defining

(Gtri in)δγd1
(iω1, iω12) =

∫
[dk]hδ

n1ξ1,n2ξ2
G(iν + iω1, k)n2ξ2,n3ξ3 hγ

n3ξ3,n4ξ4
G(iν + iω12, k)n4ξ4,n5ξ5 Pn5ξ5,n6ξ6;d1 G(iν, k)n6ξ6,n1ξ1 ,

(G tri out )βα

d2
(iω12, iω123) =

∫
[dk]Pd2;n7ξ7,n8ξ8 G(iν + iω12, k)n8ξ8,n9ξ9 hβ

n9ξ9,n10ξ10
G(iν + iω123, k)n10ξ10,n11ξ11

× hα
n11ξ11,n12ξ12

G(iν, k)n12ξ12,n7ξy . (36)

Although there are two types of topologically distinct output triangles, shown in Figs. 12(a) and 12(b) as well as 12(d) and 12(e),
they are numerically equal after integrating over Matsubara frequencies. Therefore, we will denote the single output triangle as
G tri out and count it twice in the collective conductivity. Similarly, we define

(Gloop in)δγd1
(iω12) =

∫
[dk]hδγ

n1ξ1,n2ξ2
G(iν + iω12, k)n2ξ2,n3ξ3 Pn3ξ3,n4ξ4;d1 G(iν, k)n4ξ4,n1ξ1 ,

(Gloop out )βα

d2
(iω12) = 1

2

∫
[dk]Pd2;n5ξ5,n6ξ6 G(iν + iω12, k)n6ξ6,n7ξ7 hβα

n7ξ7,n8ξ8
G(iν, k)n8ξ8,n5ξ5 . (37)

The collective conductivity may be compactly written as

σ
αβγ δ

coll (iωαβγ δ; iωβ, iωγ , iωδ ) = e(ie)3

h̄3(iωδ )(iωγ )(iωβ )

[
(Gtri in)δγd1

(iωδ, iωγδ ) + 1

2
(Gloop in)δγd1

(iωγδ )

]
Dd1d2 (iωγδ )

× [
2(Gtri out )βα

d2
(iωγδ, iωβγ δ ) + (Gloop out)βα

d2
(iωγδ )

]
+ five permutations of (iωβ, β ), (iωγ , γ ), and (iωδ, δ). (38)

For this calculation, only α = β = γ = δ = z is nonzero. This makes sense since the CDW distortion and hence the collective
mode is oriented along the ẑ direction; this is mathematically guaranteed by the parity of the k integration.

a. Ideal Weyl model. For the ideal model, we can compute the third-order collective conductivity analytically. For the diagrams
defined in Eqs. (36) and (37), and using Eq. (30) for regularization, we find

(Gloop in)zz(ω12) = [(Gloop out )zz(ω12)]∗ = 16tzg�
∫

[dk]

[
eiφ

e−iφ

]
E2

k − (2kz )2

E3
k

(
4E2

k − ω2
12

) (39)

(Gtri in)zz(ω1, ω1 + ω2)

= −8tzg�
∫

[dk]

[
eiφ

e−iφ

]
16

(
E2

k − 3(2kz )2
)
E2

k − 4ω2
1

(
E2

k − (2kz )2
) − ω1ω2

(
12E2

k − 4(2kz )2
z − ω2

2

) − 2ω2
2

(
2E2

k − 2(2kz )2 − ω2
1

)
Ek

(
4E2

k − ω2
1

)(
4E2

k − ω2
2

)(
4E2

k − ω2
12

) ,

(40)

(Gtri out )zz(ω12, ω123) = [
(Gtri in)δγd1

(ω12, ω3)
]∗ − 8tzg

∫
[dk]

[
e−iφ

eiφ

]
ω3(2ω12 + ω3)

(
8E2

k − ω12(ω123)
)

Ek
(
4E2

k − ω2
12

)(
4E2

k − ω2
3

)(
4E2

k − ω2
123

) , (41)

where the entries of the column vector correspond to d = ±1.

Notice, however, that the regularized Eq. (39), along with
Eqs. (40) and (41), does not force Eq. (38) to converge as
all frequencies are taken to zero. Although the choice of

h
αβ

works to regularize the noncollective first-order con-
ductivity in the same frequency limit, the switching from
electron-photon vertices to electron-phonon vertices changes
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the effect of this regularization. Even though h
αβ

produces de-
cent results away from ωδ = ωγ = ωβ = 0, a different choice
for the two-photon vertex is necessary to get the third-order
collective conductivity to converge at zero frequency. More
generally, as pointed out in Refs. [76,90], this is due to the fact

that the minimal subtraction regularization using h
αβ

requires
the ordinary conductivity sum rule to be satisfied but does not
properly satisfy higher-order sum rules.

One method to circumvent this and obtain convergent re-
sults for the third-order conductivity is to use an alternative
scheme guaranteed to satisfy these higher-order sum rules
(possibly at the expense of the linear conductivity sum rule).
To this end, we can take Eqs. (40) and (41) in Eq. (38) and

solve for h
αβ

as defined in Eqs. (37) to force the third-order
conductivity to vanish as all frequencies are taken to zero. This
generates a slightly different choice of regularization, denoted
by (hcoll )αβ :

∑
n,ξ

sgn(ξ )(−1)n(hcoll )
zz
nξ,nξ = 8tz

(
E2

k − 3(2kz )2
)

(kz )E2
k

. (42)

An alternative method to regularize the nonlinear conduc-
tivity is to compute it using our lattice completion of the ideal
linearized model. In the lattice model, both the first-order
vertex hα and the second-order vertex hαβ are modified at
order O(k2) and higher in order to ensure that the nonlinear
conductivity is vanishing as all frequencies go to zero (as is
appropriate for an insulator), that is, the lattice model reg-
ularizes the ideal Weyl model in a way that guarantees all
sum rules are satisfied. We will consider both the collective
minimal subtraction and lattice regularization in what follows
below.

We will next consider two experimentally relevant fre-
quency regimes: harmonic generation and self-focusing. We
will show that the collective mode contributes to the third-
order conductivity, yielding distinct features below the energy
scale set by the single particle gap.

b. Harmonic generation: Comparing the tiltless ideal
case to the lattice model. Harmonic generation [76,86]
is the case where ωδ = ωγ = ωβ = ω. The harmonic gen-
eration response results in a current at three times the
incident photon frequency. The harmonic generation will
show resonances for one-photon, two-photon, and three-
photon processes. Additionally, the massive collective mode
propagator will contribute a single resonance when ω is
equal to the mass of the mode. Since the massless mode
does not contribute to the lattice collective conductivity,
limω→0 dn/dωn[ω3σ zzz

coll(3ω; ω,ω,ω)] must be zero for our
insulating system for 0 � n � 3. This ensures the collective
conductivity is zero in the ω → 0 limit. Although the numer-
ical treatment for generating Fig. 13 appears to obscure this
fact, a more complete analysis is provided in Appendix H
[100].

We can numerically compute the third-order conductiv-
ity σ zzz

coll(3ω; ω,ω,ω) from the full lattice model Eq. (5) and
compare this with our analytical results for the ideal model
from Eqs. (39)–(41). However, in the lattice model, when
m = 0, four additional Weyl points exist along the edges of
the Brillouin zone. Therefore, compared with the ideal model,

we expect the results in the m = 0 lattice model to be approx-
imately four times as large. Additionally, a cutoff momentum
of � = π is chosen, as this is approximately where quadratic
corrections to the lattice model dispersion become important.
We show our results in Fig. 13. There are several distinct
processes to explain this plot:

(1) Since the massive mode propagator diverges at a reso-
nant frequency ωres, there exists a peak in the conductivity at
2ω = ωres, which is most evident in ideal and m = 0 models
in Figs. 13(e) and 13(f).

(2) When 3ω = 2(2�), three photons can excite an elec-
tron across the gap between the valence and conduction bands.
This process is only allowed in the triangle diagrams and
constitutes two-photon interactions converting into a phonon
before a third photon adds enough energy to cross the gap
(when the diagrams are read left to right). This is most evident
in Figs. 13(c) and 13(d), where the real and imaginary parts
of the conductivity have extrema at the boundary between
regions (i) and (ii).

(3) At 2ω = 2(2�), two photons are able to excite an
electron across the gap. We again see sharp features in the

FIG. 12. Feynman diagrams for the nonvanishing contributions
to the third-order collective conductivity in the untilted models. The
circular diagrams serve to regularize the singularities in the triangle
diagrams.
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FIG. 13. Plots of the collective mode contribution to third harmonic generation. The real and imaginary parts are labeled in (a), (c), (e)
and (b), (d), (f), respectively. Plots (a) and (b) are of (−iω)3σ zzzz

coll , (c) and (d) are of σ zzzz
coll , and (e) and (f) are zoomed windows of (c) and

(d). The parameters g = tx , tx = ty = tz, and � = 0.5tx were used. A cutoff of � = π was also used in the ideal model, since this is the scale
where the bands are approximately linear in the m = 0 lattice model. The ideal model conductivity is scaled up by a factor of 4 to illustrate the
similarity with the m = 0 case, which has four times as many Weyl nodes. Region (i) indicates the region where three photons are not yet able
to excite electrons across the gap. Region (ii) marks where three photons can excite electrons across the gap but two photons cannot. Region
(iii) indicates where two photons can excite electrons across the gap but one photon cannot. Region (iv) is where one photon is sufficient to
excite electrons across the gap.

real and imaginary parts of the conductivity in Figs. 13(a),
13(c) and 13(b), 13(d), this time at the boundary between re-
gions (ii) and (iii). Above this frequency, both the two-photon
loops and the two-photon triangle processes contribute to the
conductivity.

(4) A single photon is able to excite an electron-hole pair
when ω = 2(2�). The real part of [(−iω)3 times] the conduc-
tivity is nearly zero and the imaginary part has a minimum

in Figs. 13(a) and 13(b), respectively, which we see at the
boundary between regions (iii) and (iv) in Fig. 13.

(5) Three photons are able to excite electrons across the
gap at the (shifted) Brillouin zone boundary when 3ω =
4|

√
(tz )2 + (�)2 ± m|. This transition is illustrated by the

green arrows in Figs. 1(e)–1(g). The real part of [(−iω)3

times] the conductivity has a minimum, and the imaginary
part transitions between two peaks, such as in Figs. 13(a) and
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13(b). For example, this occurs near ω ≈ 1.49tz for the m = 0
plot.

(6) Two-photon processes are able to excite elec-
trons across the gap at the zone boundary when 2ω =
4|

√
(tz )2 + (�)2 ± m|. This is demarcated by a change in

slope in the real part of [(−iω)3 times] the conductivity, as ob-
served in Fig. 13(a) at m = 0, which occurs near ω ≈ 2.23tx.

(7) One-photon processes are able to excite elec-
trons across the gap at the zone boundary when ω =
4|

√
(tz )2 + (�)2 ± m|. A smaller local minimum character-

izes this in plots of the real part. An example of this transition
at m = 0 in Fig. 13(a) occurs at ω ≈ 4.47tx.

(8) Points 2–4 also generalize to the case when m 	= 0.
However, for nonzero m, the gaps at the Brillouin zone
boundary are given by 2(m ± �). Hence, interband transi-
tions become active when nω = 4(m ± �) for n = 1, 2, 3.
For example, there is a clear local minimum in Fig. 13(b)
at ω = 2.4tx for m = 0.7tx. This corresponds to the resonant
frequency of the two-photon transition [i.e., 2ω = 4(m + �)].

We expect that the ideal Weyl model will yield a simi-
lar conductivity to the lattice model, provided we focus on
frequency regimes where the Brillouin zone boundaries can
be neglected. Moreover, a single pair of Weyl nodes in the
linear model is most similar to the lattice model when m = 0,
which contains four pairs of Weyl nodes. As shown in Fig. 13,
the additional Weyl node pairs contribute approximately ad-
ditively, scaling each diagram of the m = 0 lattice model
by approximately 4 in comparison to the ideal Weyl model.
Hence, in more realistic materials, which may posses many
Weyl nodes, we can expect each node to have a multiplying
factor compared to a simple single nodal pair model.

The ideal and lattice conductivities becomes dissimilar
once transitions at the Brillouin Zone edge are involved or
multiband transitions become appreciable. Additionally, once
the parameter m becomes comparable to tx, quadratic terms
in the dispersion start becoming important, making m = 0
the best fit for the ideal model. In particular, responses with
ω � �/3, which are dominated by the effects of the collective
mode, are qualitatively insensitive to the details of the lat-
tice regularization. As we expect no single-particle response
at these subgap frequencies (consistent with a band insula-
tor), this means that the low-frequency harmonic generation
response will be dominated by the effect of the massive col-
lective mode illustrated in Figs. 13(e) and 13(f). Figure 13
corroborates these statements.

c. Self-focusing: Comparing the tiltless ideal case to the
lattice model. Self-focusing refers to the situation where the
magnitudes of the frequencies are all the same but two of
the three frequencies are opposite in sign [76]. These op-
posite frequencies exactly cancel, yielding a current with
the same frequency as the applied electric field. This re-
sults in an effective correction to the linear conductivity,
since contracting electric fields with opposite frequencies,
σαβγ δ (ω)Eγ (ω)Eδ (−ω), gives an effective response to the
third uncontracted electric field. As in the harmonic case,
limω→0 ω3σ zzz

coll(ω; −ω,ω,ω) = 0, and this also holds true for
the first three derivatives of this quantity. More information on
the zero-frequency limit can be found in Appendix D.

For the collective mode contribution to the conductivity, we
will then find contributions from the collective mode at zero

frequency and at frequency 2ω. The propagator D++(0) +
e2iφD+−(0) for the amplitude mode at ω = 0 enters into
the diagrammatic calculation when two photons of opposite
frequency excite a virtual electron-hole pair, which then re-
combines to excite a virtual massive collective excitation (see
Fig. 12). Since the massive mode propagator is nonzero at
ω = 0, it gives a frequency-independent contribution to the
conductivity, entering as an overall constant scale factor.

In contrast, D++(2ω) + e2iφD+−(2ω) appears in the cal-
culation when the electric fields excite a virtual electron-hole
pair at the doubled frequency 2ω. This enters into the collec-
tive conductivity as a frequency-dependent scale factor, which
we expect to have a large effect when 2ω ≈ ωres, the resonant
frequency of the massive mode.

Similar to the harmonic case, we can explain the behavior
of the self-focus conductivity in terms of (virtual) electron-
photon processes. Several excitation mechanisms are identical
to the harmonic processes, such as the two-photon loop with
the same frequencies, so only the new features from triangle
and loop diagrams are itemized below.

(1) For two-photon processes where the incident pho-
tons have opposite frequencies, the zero-frequency amplitude
mode propagator enters the calculation. This provides a con-
stant rescaling of the collective conductivity. For small values
of the coupling constant g (i.e., for small values of the resonant
frequency ωres of the collective mode), this contribution can be
quite large. This accounts for the large features in Fig. 14 for
large ω when compared to the response near small ω.

(2) Similar to the harmonic case, there exists a resonance
in the self-focusing conductivity 2ω = ωres due to the diver-
gence of the massive mode propagator. This is most evident in
Figs. 14(e) and 14(f). The massive phonon resonant peaks are
smoothed out in comparison to the harmonic case. This is due
to symmetrically summing over frequency arguments, which
mixes the resonant massive term with D++(0) + e2iφD+−(0),
thereby obscuring the resonant peak.

(3) The first nontrivial resonance in the self-focusing con-
ductivity comes when one photon is able to excite an electron
across the gap with ω = 2(2�). The peaks in Fig. 14, which
occur at ω = 2tx, reflect this.

(4) Similar to item 3, resonant excitation of an electron-
hole pair by a single photon with ω = 4|

√
(tz )2 + (�)2 − m|

is possible at the Brillouin zone edge. This is apparent at
m = 0 in Figs. 14(b) and 14(d), where the imaginary part
reaches a local minimum near ω ≈ 4.47tx.

The self-focusing conductivity in the ideal model from
Fig. 14 deviates from the lattice model at larger ω. This
is most notable in comparison of the ideal model with the
m = 0 model, which agrees reasonably well for the harmonic
conductivity in Fig. 13. This discrepancy arises because the
idealized linear approximation is valid for low energies, where
the electronic states involved are close to the band minimum.
However, at high frequencies, the lattice model is sensitive to
the presence of states at the Brillouin zone boundary, which
are not found in the simplistic idealized Weyl model. This
amplifies features in the high-frequency self-focusing conduc-
tivity in the lattice model due to the zero frequency collective
mass term, D++(0) + e2iφD+−(0), which is large in the case
of g being small (see Appendix E for a discussion of the ex-
plicit form of the massive mode propagator). If g were larger,
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FIG. 14. Plots of the collective mode contribution to the self-focusing conductivity. The real and imaginary parts are labeled as (a), (c), (e)
and (b), (d), (f), respectively. Plots (a) and (b) are showing (−iω)3σ zzzz

coll , plots (c) and (d) are of σ zzzz
coll , and plots (e) and (f) capture a zoomed

window of (c) and (d). The parameters g = tx , tx = ty = tz, and � = 0.5tx were used. The cutoff for the ideal model was taken at � = π to
provide adequate agreement with the lattice model. The linear model was multiplied by a factor of 1/2 to better fit the comparison with that of
the lattice model. The higher energy contributions become dominate for g sufficiently small.

then higher order perturbations in g would become important
to this calculation. Hence, for g small enough to require only
a single collective mode propagator in the Feynman diagram,
the decaying tail of the massive mode propagator will hit the
zero-frequency intercept at a value inversely proportional to g.

V. CONCLUSION

In this paper, we have examined the nonlinear optical con-
ductivity of both the untilted and tilted Weyl lattice CDWs, as
well as the ideal linearized Weyl CDW. For the linear optical
conductivity, we showed the phase mode does not contribute

to the current in an untilted model, since the Fermi surface
nesting in a multiband model can couple electrons and holes
with the same velocity. Furthermore, the amplitude mode also
does not contribute to the conductivity due to the parity of
the momentum integrand in the perturbative expansion; this
is true for both the ideal and lattice Weyl models. To recover
a DC conductivity from the phase mode, as seen in a single
band CDW, we must introduce a tilt in the Weyl system which
allows the CDW to excite electron-hole pairs with nonzero net
velocity. At higher frequency, we found that the tilted model
yields a linear collective conductivity with features marking
when the frequency of the electric field is large enough to
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excite electrons across the single-particle gap as well as
features marking when the frequency approaches separation
between the band maxima and minima.

Next, for the untilted lattice and linearized models, we
showed that the first nontrivial collective contribution to the
conductivity due to a single collective phonon mode are at
the third order in the electric field, and only the amplitude
mode contributes at this order. For harmonic generation (ωα =
ωβ = ωγ ), we saw that there is a distinct peak in the optical
response near the resonant frequency of the amplitude mode.
We have shown that this feature is independent of how we
regularize our low energy model at large momentum, and
thus should be a universal feature in Weyl-CDW systems.
Additionally, when the frequency is such that one, two, or
three electrons can be excited across the gap, there is a peak
in either the real or imaginary conductivity. Other transitions
occur when these one, two, or three electrons are able to cross
the band gap at the Brillouin zone boundary. When the bands
are nondegenerate away the Weyl point, multiple transitions
are possible.

We also looked at the third-order self-focusing contribution
to the conductivity, (ωα = ωγ = −ωβ), which can be viewed
as a field-dependent correction to the linear conductivity.
Two of the incoming frequencies cancel, so this situation is
effectively a single photon process. Thus, the self-focusing
case does not show resonances associated with two or three
electron processes. This contrasts with the harmonic collective
conductivity, which exhibits peaks for these multiparticle pro-
cesses. Additionally, because the amplitude mode propagator
is finite as ω → 0, it provides a background that enhances
the peaks in the conductivity at larger frequencies. Since the
ideal Weyl model is primarily accurate for small frequencies,
we see the collective conductivity in the ideal model deviates
from the conductivity in the lattice model once states at the
Brillouin zone boundary become relevant.

Our results highlight the sensitivity of the collective mode
conductivity to symmetries of the Weyl system. In particular,
we saw that breaking inversion and particle-hole symmetry
with the tilting term Eq. (7) was necessary for the massless
mode to contribute to charge transport at linear order. We
did not, however, endeavor in this paper to give a systematic
exploration of the effects of symmetry-breaking perturbations
on collective mode charge transport; we leave this as a task for
future research. A first step in this direction is given in Fig. 15,
where we summarize the affect of alternative tilting terms on
the contributions to the collective mode conductivity. Note
that we see from the figure that breaking inversion symmetry
alone is not sufficient to generate a nonzero second-order
collective response, as the correct Pauli matrix structure must
also be chosen. Linear combinations of different tilt structures
may also produce nonvanishing contributions, illustrating the
balance between parity and matrix structure.

Our paper points out several experimentally relevant fea-
tures in the collective response of Weyl-CDW systems. Going
forward, our results also open up several avenues for future
research. First, our method allows for an extension beyond
minimal models of topological CDW materials. Extensions
to time-reversal invariant systems with multiple Weyl points
will allow for a direct application of transport in (TaSe4)2I. A
similar analysis could be undertaken for spin-density waves

FIG. 15. This table shows how adjusting the Pauli matrix struc-
ture and parity of the tilted Weyl Hamiltonian affects the massive and
massless collective mode contribution to the conductivity.

and superconducting Weyl systems system. This could al-
low for an exploration of transport signatures of competing
phase transitions in these materials [53]. Recall also that we
restricted our analysis here to the regime of small electron-
phonon coupling g. If g is large enough, additional diagrams
at higher orders in g may also be included. Additionally,
other aspects of renormalization may produce interesting
effects. Examples of such effects include renormalization of
the phonon-electron and photon-electron vertices [101] and
an exact analysis of the self-energy.
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APPENDIX A: LATTICE MODEL IN THE SHIFTED
BRILLOUIN ZONE

In this Appendix, we review our procedure for redefining
the Brillouin zone to shift the Weyl points to the origin anal-

ogous to LRA [17,18,21,22]. This is a convenient tactic for
treating systems with broken momentum conservation. We
start by reorganizing terms in the Fourier expansion of our
electron creation operators cR:

cR =
π,π,π∑

k=−π,−π,−π

eik·Rck =
(

π,π,0∑
k=−π,−π,−π

+
π,π,π∑

k=−π,−π,0

)
eik·Rck. (A1)

Henceforth, the sum over kx and ky will be implied, since the only sum being manipulated is kz. We also suppress the
normalization constant N of our Fourier sums, since all factors of N cancel at the end of the calculation. Applying two opposing
shifts to each sum by letting k′

z = kz + π/2 and k′′
z = kz − π/2, we have

cR =
π/2∑

k′
z=−π/2

ei(k′−π/2ẑ)·Rck′−π/2ẑ +
π/2∑

k′′
z =−π/2

ei(k′′+π/2ẑ)·Rck′′+π/2ẑ. (A2)

Now let k′ = k and k′′ = k as a change of dummy indices. Consider the interaction term H2 = 2
∑

R cos(QRz + φ)c†
RσzcR at

Q = π . Applying Eq. (A2) yields [17,48]

1

2

∑
R

(
ei(Rzπ+φ) + e−i(Rzπ+φ)

)
c†

RcR

=
∑

R

∑
k,k′′

1

2

(
ei(Rzπ+φ) + e−i(Rzπ+φ)

)(
e−i(k−π/2ẑ)·Rc†

k−π/2ẑ + e−i(k+π/2ẑ)·Rc†
k+π/2ẑ

)
× (

ei(k′−π/2ẑ)·Rck′−π/2ẑ + ei(k′+π/2ẑ)·Rck′+π/2ẑ
)

= 1

2

∑
R

∑
k,k′′

(
ei(Rzπ+φ) + e−i(Rzπ+φ)

)(
e−i(k−π/2ẑ)·Rc†

k−π/2ẑ + e−i(k+π/2ẑ)·Rc†
k+π/2ẑ

)
× (

ei(k′−π/2ẑ)·Rck′−π/2ẑ + ei(k′+π/2ẑ)·Rck′+π/2ẑ
)

= 1

2

∑
R

∑
k,k′′

(
ei(Rzπ+φ) + e−i(Rzπ+φ)

)(
ei(−k+k′ )·Rc†

k−π/2ẑck′−π/2ẑ + ei(−k+k′+π ẑ)·Rc†
k−π/2ẑck′+π/2ẑ

+ei(−k+k′ )·Rc†
k+π/2ẑck′+π/2ẑ + ei(−k+k′−π ẑ)·Rc†

k+π/2ẑck′−π/2ẑ
)

= 1

2

∑
k,k′′

((
eiφδk,k′+π ẑ + e−iφδk,k′−π ẑ

)
c†

k−π/2ẑck′−π/2ẑ + (
eiφδk,k′+2π ẑ + e−iφδk,k′

)
c†

k−π/2ẑck′+π/2ẑ

+(
eiφδk,k′+π ẑ + e−iφδk,k′−π ẑ

)
c†

k+π/2ẑck′+π/2ẑ + (
eiφδk,k′ + e−iφδk,k′−2π ẑ

)
c†

k+π/2ẑck′−π/2ẑ
)

=
∑

k

(
cos(φ)c†

k−π/2ẑck+π/2ẑ + cos(φ)c†
k+π/2ẑck−π/2ẑ

)
. (A3)

In the last step, recall the sum is between −π/2 and π/2, so only Kronecker deltas of the form δ−k+k′ and δ−k+k′±2π ẑ survive.
Since shifting the Brillouin zone also shifts the periodic boundary, k = k′ ± 2π ẑ, which implies that δ−k+k′±2π ẑ contributes in
the sum.

Next we examine how a hopping term like c†
RcR+n + H.c. is modified, where n is a discrete length n = n1ax̂ + n2bŷ + n3cẑ

for {n1, n2, n3} ∈ Z. We find∑
R

c†
RcR+n =

∑
R

∑
k,k′

(
e−i(k−π/2ẑ)·Rc†

k−π/2ẑ + e−i(k+π/2ẑ)·Rc†
k+π/2ẑ

)(
ei(k′−π/2ẑ)·(R+n)ck′−π/2ẑ + ei(k′+π/2ẑ)·(R+n)ck′+π/2ẑ

)

=
∑

R

∑
k,k′

(
ei(−k+k′ )·Rei(k′−π/2ẑ)·nc†

k−π/2ẑck′−π/2ẑ + ei(−k+k′−π ẑ)·Rei(k′+π/2ẑ)·nc†
k−π/2ẑck′+π/2ẑ

+ ei(−k+k′−π ẑ)·Rei(k′−π/2ẑ)·nc†
k+π/2ẑck′−π/2ẑ + ei(−k+k′ )·Rei(k′+π/2ẑ)·nc†

k+π/2ẑck′+π/2ẑ
)

=
∑
k,k′

(
δk,k′ei(k′−π/2ẑ)·nc†

k−π/2ẑck′−π/2ẑ + δk,k′−π ẑe
i(k′+π/2ẑ)·nc†

k−π/2ẑck′+π/2ẑ

+ δk,k′−π ẑe
i(k′−π/2ẑ)·nc†

k+π/2ẑck′−π/2ẑ + δk,k′ei(k′+π/2ẑ)·nc†
k+π/2ẑck′+π/2ẑ

)
=

∑
k

(
ei(k−π/2ẑ)·nc†

k−π/2ẑck−π/2ẑ + ei(k+π/2ẑ)·nc†
k+π/2ẑck+π/2ẑ

)
. (A4)
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As before, the sum over kz will restrict the Kronecker deltas that give nonvanishing contributions. Notice this equation is
bereft of terms mixing the +π/2 and −π/2 spaces and introduces a shift of ±π/2ẑ in eik·n for the respective k ± π/2ẑ
annihilation/creation subspaces. Consider the noninteracting Hamiltonian [38]:

H0 =
(∑

R

[itxc†
Rσ xcR+x̂ + ityc†

Rσ ycR+ŷ + tzc
†
Rσ zcR+ẑ] +

∑
R

m

2
(c†

Rσ zcR+x̂ + c†
Rσ zcR+ŷ − 2c†

Rσ zcR )

−
∑

R

tz cos
Qc

2
c†

Rσ zcR

)
+ H.c. (A5)

Applying Eq. (A4), this Hamiltonian produces Eq. (1). This result relies on Q = π ẑ, which constitutes breaking the Hamiltonian
into two separate chunks and shifting these chunks into a single region. However, this procedure is generalizable for any
modulation vector Q = �π/nẑ for �, n ∈ Z+. In this more general case, n indicates into how many regions we need to cut
the original Brillouin zone during the shifting process. Note also that the factors of cos φ appear in Eq. (A3) due to the twofold
modulation Q = π/2ẑ. Larger values of n, (i.e., higher-fold modulation) would require a careful treatment of how φ enters into
the Kronecker delta constraints in Eq. (A3).

APPENDIX B: COVARIANCE USING THE BERRY CONNECTION

In periodic crystals, matrix elements of the velocity operator contain anomalous contributions due to the Berry connection
[76,86,102]. These can be embedded into the covariant version of the derivative through minimal coupling. To see this, start
from the definition of the density operator [103],

ρ(r) =
N∑
i

δ(r − ri ) =
∑

k1,k2,a,b

〈k1, a|δ(r − ri )|k2, b〉c†
k1,a

ck2,b =
∑

k1,k2,a,b

ψ∗
k1,a(r)ψk2,b(r)c†

k1,a
ck2,b, (B1)

where ψk1,a(r) is the Bloch wave function satisfying ψk1a(r) = eik·ruk,a(r), where uk,a(r) = uk,a(r + R) for Bravais lattice
vector R. Note the index a is understood to index both orbital degrees of freedom and any valley degrees of freedom arising
from zone shifting. Recall also that the Bloch wave functions are orthonormal:

∫
[dr]ψ∗

k1,a
(r)ψk2,b(r) = δ(k1 − k2)δab. Invoking

a Fourier transform, we have for the density operator

ρq′ =
∑

k1,k2,r

(u∗
k1,a(r)e−ik1·reik2·ruk2,b(r))c†

k1,a
ck2,be−iq′ ·r. (B2)

To find the modified current density operator, we want to expand the continuity equation

∂tρq′ + iq′ · jq′ = 0 (B3)

as q′ → 0. Using the equation of motion −i∂tρq′ = [H, ρq′ ] yields[∑
k,a,b

Hab(k)c†
k,ack,b,

∑
k1,k2,ra′,b′

(
u∗

k1,a′ (r)uk2,b′ (r)ei(k2−k1−q′ )·r)
c†

k1,a′ck2,b′

]

=
∑

k,k1,k2,r,a,b,a′,b′
Hab(k)

(
u∗

k1,a′ (r)uk2,b′ (r)ei(k2−k1−q′ )·r)[
c†

k,ack2,b′δk1,kδb,a′ − c†
k1,a′ck,bδk,k2δb′,a

]

=
∑

Haa′ (k)
(
u∗

k,a′ (r)uk1,b′ (r)ei(k1−k−q′ )·r)
c†

k,ack1,b′ − Hb′b(k)
(
u∗

k1,a′ (r)uk,b′ (r)ei(k−k1−q′ )·r)
c†

k1,a′ck,b. (B4)

The next step is to Taylor expand in orders of q′. Notice that due to the orthogonality of the Bloch wave functions, Eq. (B4)
vanishes for q′ = 0; the expansion starts at linear order. Taking the derivative to compute the first order term gives∑

r

∂q′ (u∗
k,a′ (r)uk1,b′ (r)ei(k1−k−q′ )·r )

∣∣
q′=0

= −
∑

r

(u∗
k,a′ (r)uk+q,b′ (r)∂qeiq·r )

= −
∑

r

∂q(u∗
k,a′ (r)uk+q,b′ (r)eiq·r ) +

∑
r

∂q(u∗
k,a′ (r)uk+q,b′ (r))eiq·r

= −∂qδ(q)δa′,b′ +
∑

R

eiq·R
∫

U.C.
[dr]∂q(u∗

k,a′ (r)uk+q,b′ (r))

= −∂qδ(q)δa′,b′ + δ(q)
∫

U.C.
[dr]u∗

k,a′ (r)∂quk+q,b′ (r)

= −∂qδ(q)δa′,b′ − iδ(q)Aa′b′ (k). (B5)
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The previous calculation took advantage of the periodicity in R. We used the transformation k1 = k + q, and we denote by
Aa′b′ (k) ≡ i

∫
U.C.[dr]u∗

k,a′ (r)∂kuk,b′ (r) the matrix elements of the Berry connection between states indexed by a′ and b′. Note
that the Brillouin zone shifting procedure in general leads to additional terms proportional to δ(q ± Q) in Eq. (B5). However,
in the limit that q → 0 which we consider here, these terms vanish. We emphasize as well that Aa′b′ is the Berry connection
evaluated in the orbital and valley basis. Because of the Dirac delta δ(q) in Eq. (B5), it is diagonal in the valley indices. If instead
we choose to work in the basis of eigenstates of Hab(k), then we would find iAα

nm = ∫
U. C.[dr](∂kα [u∗

k,a(r)U †
an(k))]Umb(k)uk,b(r),

where the transformation matrix U diagonalizes H0 such that H ′
0 = U †H0U [104]. The simplicity of Aa′b′ is one of the advantages

of working in the orbital basis mentioned in Sec. IV of the main text.
Continuing with our simplification of Eq. (B4), we have additionally that

∑
r (u∗

k1,a′ (r)uk,b′ (r)ei(k−k1−q′ )·r ) = −∂qδ(q)δa′,b′ −
iδ(q)Aa′b′ (k) under the transform k1 = k − q. Putting everything together yields[∑

k,a,b

Hab(k)c†
k,ack,b,

∑
k1,k2,r,a′,b′

(
u∗

k1,a′ (r)uk2,b′ (r)ei(k2−k1−q′ )·r)
c†

k1,a′ck2,b′

]

= q′ ·
[ ∑

Haa′ (k)(−∂qδ(q)δa′,b′ − iδ(q)Aa′b′ (k))c†
k,ack+q,b′ − Hb′b(k)(−∂qδ(q)δa′,b′ − iδ(q)Aa′b′ (k))c†

k−q,a′ck,b

]

= q′ ·
⎡
⎣ ∑

k,q,a,b

Hab(k)δ(q)(c†
k,a∂qck+q,b − ∂qc†

k−q,ack,b) − i
∑

k,a,b,a′,b′
c†

k,aHaa′ (k)Aa′b(k)ck,b′ − c†
k,a′Aa′b′ (k)Hb′b(k)ck,b

⎤
⎦

= q′ ·
[∑

k,a,b

Hab(k)∂k(c†
k,ack,b) − i

∑
k,a,b,a′

c†
k,a(Haa′ (k)Aa′b(k) − Aaa′ (k)Ha′b(k))ck,b

]

= q′ ·
[∑

k,a,b

Hab(k)∂k(c†
k,ack,b) − i

∑
k,a,b

c†
k,a[H,A]abck,b

]
. (B6)

In this form, [H,A]ab = ∑
a′ Ha,a′ (k)Aa′b(k) − Aaa′ (k)Ha′,b(k), is just the commutator between the Hamiltonian and Berry

connection matrices [76]. Applying this logic recursively suggests that every derivative with an expectation value should be
covariantly modified to DμÔab = ∂μÔab − i[Ô,A]ab for an arbitrary operator Ô. This guarantees expectation values involving
derivatives will yield identical answers no matter which basis is chosen.

Finally, we must make a choice as to the Berry connection Aab in the orbital/valley basis. This quantity is model dependent,
containing information about the shape and location of the basis orbitals in which our tight-binding model is expressed. In
particular, we are free to make use of the standard tight-binding convention, where the basis orbitals are assumed to be compactly
localized, centered at the origin of the unit cell, and that the position operator has no off-diagonal elements in terms of the basis
orbitals. This ensures that Aab = 0 within this tight-binding orbital basis. We work with this convention throughout the paper.
This choice is appropriate for a lattice model whose primary purpose is to regulate the low-energy theory of an incommensurate
system. Note that for a tight-binding model of a commensurate CDW, it may not be possible to choose A = 0. This is because
the commensurate CDW distortion enlarges the position space unit cell, resulting in orbitals that are not located at the origin
in the enlarged cell. The orbital basis Berry connection Aab then encodes the positions of these orbitals. We defer a systematic
study of the implications of this subtlety to future work.

There is an additional question: Do the off-diagonal elements of the Hamiltonian contribute to the velocity vertex in a
nontrivial way? To answer this, let us recall that the valley-off-diagonal terms in Hab(k) are given by our mean field expression
H+−(k) = g〈bQ + b†

−Q〉 = 2�e−iφ , which is crucially independent of the crystal momentum k. Substituting this into Eq. (B6),
integrating the first term by parts, and using the fact that A = 0, we see that H+− does not contribute to the velocity operator.
Therefore, the standard form v̂nm = 〈n| d x̂

dt |m〉 for the velocity operator is still valid.

APPENDIX C: FREE PHONON PROPAGATOR

This Appendix provides the derivation of the free phonon propagator. We start with the definition D0(T , q) =
−〈TT Aq,ξ1 (T )A†

q,ξ1
〉 for Aq,ξ1 (T ) = bq,ξ1 (T ) + b†

−q,ξ1
(T ), where H1 = ∑

q>0,ξ1
ωq(b†

q,ξ1
bq,ξ1 + b†

−q,ξ1
b−q,ξ1 ). To proceed, no-

tice that [H1, bq,ξ1 ] = −ωqbq,ξ1 and [H1, b†
−q,ξ1

] = ωqb†
−q,ξ1

. Using these commutation relations and the Hadamard lemma, which

produces eH1T bq,ξ1 e−H1T = e−ωqT bq,ξ1 and eH1T b†
−q,ξ1

e−H1T = eωqT b†
−q,ξ1

, the phonon propagator becomes [89]

D0(T , q) = −〈(
bq,ξ1 (T ) + b†

−q,ξ1
(T )

)(
b†

q,ξ1
+ b−q,ξ1

)〉
θ (T ) − 〈(

b†
q,ξ1

+ b−q,ξ1

)(
bq,ξ1 (T ) + b†

−q,ξ1
(T )

)〉
θ (−T )

= −〈
eH1T

(
bq,ξ1 + b†

−q,ξ1

)
e−H1T

(
b†

q,ξ1
+ b−q,ξ1

)〉
θ (T ) − 〈(

b†
q,ξ1

+ b−q,ξ1

)
eH1T

(
bq,ξ1 + b†

−q,ξ1

)
e−H1T

〉
θ (−T )

= −(
e−ωqT 〈bq,ξ1 b†

q,ξ1
〉 + eωqT 〈b†

−q,ξ1
b−q,ξ1〉

)
θ (T ) − (

eωqT 〈b†
q,ξ1

bq,ξ1〉 + e−ωqT 〈b−q,ξ1 b†
−q,ξ1

〉)θ (−T ). (C1)

155120-22



OPTICAL RESPONSE FROM CHARGE-DENSITY WAVES IN … PHYSICAL REVIEW B 104, 155120 (2021)

We next transform to Matsubara frequencies ω = 2nπ/β

with nεZ. In addition, the boson distribution takes the
place of the expectation values, 〈bq,ξ1 b†

q,ξ1
〉 = 1 + nB(ωq) and

〈b†
q,ξ1

bq,ξ1〉 = nB(ωq). This yields

D0(iω, q) = − 2ωq

ω2 + ω2
q
. (C2)

APPENDIX D: INTERCEPT OF MASSLESS LINEAR
COLLECTIVE CONDUCTIVITY

Because the massless collective mode propagator diverges
as ω → 0, it leads to a divergent contribution to the con-
ductivity as ω → 0. To see how this arises, we will analyze
the asymptotics of the massless collective contribution to the
linear conductivity. First we note that the massless mode
propagator, D++(ω) − e2iφD+−(ω) diverges as 1

ω2 . Addition-
ally, note that the d1th component of the loop contribution
from Fig. 7, (Gloop)αd1

, behaves like 1
ω

for large frequency. To
find the value of limω→0 σzz(ω), consider the general form of
(Gloop)αd1

(ω) for any arbitrary Hamiltonian:

(Gloop)αd1
(ω)

=
∫

[dk]
f α
0 (k) + f α

1 (k)ω + · · · + f α
n−1(k)ωn−1

gα
0 (k) + gα

1 (k)ω + · · · + gα
n (k)ωn

. (D1)

The functions f α
i (k) and gα

i (k) multiply ωi in the rational
function representation of the loop diagram. For example, in
the tilted lattice model from Eq. (7), the degree of polynomial
is n = 10. Another important property of the lattice model
is that f α

j (k) = 0 for { j = 2i|i ∈ N} and gα
j (k) = 0 for { j =

2i − 1|i ∈ N} due to parity constraints. Correspondingly, the
massless mode propagator may be written as

D++(ω) − e2iφD+−(ω)

= 1
ω2

Q−ω2

2ωQ
− ∫

[k] m1,0(k)+m1,1(k)ω+···m1,�−1(k)ω�−1

m2,0(k)+m2,1(k)ω+···m2,�(k)ω�

. (D2)

Now, the functions m1,i(k) and m2,i(k) describe the coeffi-
cients of the rational function in the denominator, which are
due to our recursive treatment of the electron-phonon inter-
actions. Also, � gives the degree of the polynomials, where
� = 8 in the tilted lattice model. The characteristic property
of the massless mode propagator D++(ω) − e2iφD+−(ω) is
that ωQ

2 = ∫
[k] m1,0(k)

m2,0(k) , due to the gap equation. Taking into
account the symmetries of the tilted lattice model, it follows
that m1, j (k) = 0 for { j = 2i − 1|i ∈ N} and m2, j (k) = 0 for
{ j = 2i − 1|i ∈ N}.

Returning to the loop diagram, recall that the
components obey (Gloop)z

1(ω) = −(Gloop)z
2(ω). There-

fore, since the relevant conductivity is ωσ zz(ω) =
−2i e2

h̄ [(Gloop)z
1(ω)]2(D++(ω) − e2iφD+−(ω)), L’Hôpital’s

rule must be applied twice as ω → 0 in the case of the tilted
lattice model. Simplifying, this gives

lim
ω→0

ωσ zz(ω)

= −i
∫

[dk1][dk2]
2 f z

1 (k1) f z
1 (k2)

gz
0(k1)gz

0(k2)

1

ωQ + ∫
[dk3] 2m1,2(k3 )

m2,0(k3 )

.

(D3)

In the tilted lattice model, these intercept values are small
[see Fig. 8(i)], which is characteristically different from the
cosine dispersion in Appendix G. Based on our arguments
in Sec. IV A 1, this is because the massless collective contri-
bution to the conductivity depends perturbatively on the tilt.
The result is small tilts will produce only small changes in the
conductivity, such as the intercept at ω = 0.

APPENDIX E: MASS OF THE AMPLITUDE MODE
PROPAGATOR

As stated in the main text at Eq. (22), the massive phonon
mode propagator (when Wick rotated) is

D++(ω) + e2iφD+−(ω) = 1
−ω2

2ωQ
+ g2

∫
[dk] ω2−4(2�)2

Ek (ω2−4E2
k )

. (E1)

The mass of the collective mode is determined by the
resonant frequency, ωres, at which this propagator diverges.
Setting the denominator of Eq. (E1) equal to zero, we obtain
a transcendental equation. However, a solution may be esti-
mated in the ideal model by expanding perturbatively when
� � ωres. Substituting the gap equation Eq (16), the squared
resonant frequency is

ω2
res =

∫
[dk] (2�)2

E3
k

1
4g4

∫
[dk]E−1

k
+ ∫

[dk] ε2
k

4E5
k

(E2)

= (g�)4β1

(txtytz )2β2 + g4�2β3
, (E3)

where β1,2,3 are numbers defined by unitless integrals β1 =∫
dudvdw

(2π )3
1
2 (u2 + v2 + w2 + 1)−3/2, β2 = [

∫
dudvdw

(2π )3 2(u2 +
v2 + w2 + 1)−1/2]−1, and β3 = ∫

dudvdw
(2π )3

1
8 (u2 + v2 + w2)

(u2 + v2 + w2 + 1)−5/2. Near this frequency, the propagator
D++(ω) + e2iφD+−(ω) diverges. In the weak coupling limit
g � (txtytz )1/3, we see that

ωres →
√

β1

(txtytz )2β2
(g�)2. (E4)

This is generically less than the single-particle gap 2�. As
shown in Fig. 16, the unitless integrals, β1, β2, and β3

parametrize the cutoff dependence of the integrals. The cutoff
� is important to consider when dealing with the ideal Weyl
model. Another subtlety is the dependence of the propagator
on the phonon self energy, iη. A sufficiently large η can make
the decaying tail of the real massive propagator intercept the
axis at different points. The cutoff also influences this inter-
cept. Although we focus on the disorder-free η → 0 limit in
the text, we must still keep in mind the role of η when we
interpret our numerical calculations.

APPENDIX F: VANISHING OF THE MASSLESS MODE
PROPAGATOR IN THE ONE-PHOTON LOOP

This Appendix provides mathematical rationale for why
the massless mode propagator does not contribute to the con-
ductivity in untilted Weyl semimetal models. Mathematically,
the massless mode, D++(ω) − e2iφD+−(ω), is multiplied by
ω2 to ensure the singularity in D++(ω) − e2iφD+−(ω) cancels
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FIG. 16. Real (a) and imaginary (b) parts of the massive collective mode propagator D++(ω) + e2iφD+−(ω) for the ideal linearized model.
The cutoff � is important in determining the resonant frequency, as well as the intercept at ω = 0. In the main text, a cutoff of � = π was
used.

through a series of L’Hôpital’s rules. Equation (31) indicates
that in the expression for the collective conductivity, a factor
of ω2 will appear in the numerator due to the Green’s function
in Eq. (8) for the diagonal elements, Gn1,ξ ,n2,ξ (i(ν + ω), k) ∝
i(ν + ω)δn1n2/(E2

k + ν2) for all choices of node index ξ . In
this Appendix, we will show that the Pauli matrix algebra will
force these terms to give zero contribution to the conductivity,
unlike LRA’s quadratic dispersion model. Although there are
other contributions to the conductivity that go as ω2 upon a
Taylor expansion of the denominator of the Green’s functions,
those terms vanish due to integration parity. Note first that
the velocity vertex is block diagonal in the ξ subspace. This
implies that hμ

n1ξ1,n2ξ2
∝ δξ1ξ2 (σμ)n1,n2 up to an overall sign in

accord with Eq. (28). Next, the vertex Pn1ξ1,n2ξ2;d1 , for any
chosen value of d1, is nonzero only for ξ1 = −ξ2, as demon-
strated in Eqs. (17) and (18). Therefore, the contributions to
the conductivity that do not trivially integrate to zero from a
single photon collective loop [see the single loop part from
Eq. (31) and from Fig. 31] are proportional to

tr
(
G−ξ,ξ (iν1, k1)hμ

ξ,ξ Gξ,ξ (iν1 + iω, k1)Pξ,−ξ ;ξ
)
. (F1)

Since the ξ index is the only important one at this point,
the n indices were suppressed in Eq. (F1). The Pauli matrix
structure for either choice ξ = ± is identical, up to an overall
sign. Substituting the respective Pauli matrices into Eq. (F1),
the trace becomes

tr
(
G−ξ,ξ (iν1, k1)hμ

ξ,ξ Gξ,ξ (iν1 + iω, k1)Pξ,−ξ ;ξ
)

∝ Tr(σzσμσ0σz ) ∝ δμ0δzz. (F2)

In the last step, we used the following trace identity [105]:

tr (σασβσγ σμ) = 2(δαβδγμ − δαγ δβμ + δαμδβγ )

+ 4(δαγ δ0βδ0μ + δβμδ0αδ0γ )

− 8δ0αδ0βδ0γ δ0μ + 2i
∑

(αβγμ)

ε0αβγ δ0μ.

Therefore the massless mode propagator will not contribute
to the conductivity, since the velocity index only runs over
μ ∈ {x, y, z}. This vanishing occurs even before integration
or summing over ξ . This stems from the even number of
subbands and the symmetries internal to each Weyl node. As
a result, the Pauli matrix algebra between bands is important
in determining the conductivity. This contrasts with the 1D
single band case, where the loop contribution is the trace of
a 1 × 1 matrix. (See Appendix G below.) Furthermore, along
the direction of the CDW ẑ, the velocities on each band are
opposite and so cancel in the collective masssless term. These
opposing on-node velocities can be interpreted as LRA [17]
and anti-LRA CDWs canceling out, which is further discussed
in Sec. IV A 1. A tilting term in the Weyl model will allow for
the appearance of a term proprotional to σ0 in the velocity
operator, allowing for Eq. (F2) to be nonzero.

APPENDIX G: COLLECTIVE CONDUCTIVITY
IN A 1D CDW

This section will examine the collective conductivity from
a toy 1D model to compare to the tilted Weyl semimetal
results. Consider a simple 1D cosine dispersion given by the
tight-binding Hamiltonian H1D = t

∑
R −c†

RcR+ẑ + c†
RcR +

H.c., where R = Rẑ. Taking a Fourier transform, cR =∑π
k=−π eik·Rck, the Hamiltonian in the full Brillouin zone

scheme is H1D = t
∑

k[1 − cos(k)]c†
kck. We consider the

model at half filling, so the Fermi wave vector is Q = π ẑ. We
will then introduce a CDW distortion coupling the two Fermi
points (ignoring commensuration effects as in the main text).
This model was chosen since it can be compared to the LRA
results at quadratic order [17,18]. Applying the same shifted
Brillouin zone scheme as the models in the main text (see
Appendix A), we rewrite the Hamiltonian as

H1D =
π/2∑

kz=−π/2

�c† ′
kz

[tτ0 + t sin(kz )τz]�c ′
kz
, (G1)
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FIG. 17. Spectrum and conductivity for the tight-binding model of a 1D CDW. The spectrum is shown in (a), with both � = 0 and
� = 0.5t . The plots of iωσ zz

coll [(b), (c)] and σ zz
coll [(d), (e)] are each shown in natural units. The real [(b), (d)] and imaginary [(c), (e)] parts are

provided for the parameters η = 0.1t/h̄ and a gap � = 0.5t , where the small self-energy ω → ω + iη serves to numerically resolve the plot.

where recall �c† ′
kz

denotes creation in the shifted subspace from
momentum ±Q/2. The spectrum of H1D in the shifted Bril-
louin zone scheme with the gap term from Eqs. (2) is plotted
in Fig. 17.

We now move on to compute the propagators for this
model. As compared with the main text, note that the electron-
phonon vertex is different, now given by as P1,ξ1,1ξ2;d1 =
gδd1ξ1 (τx )ξ1,ξ2 . The diagram from Fig. 7 and its corresponding
Eq. (31) are still applicable. The only difference is the integral
is 1D, spanning just

∫ π/2
−π/2[dkz]. The Green’s function matrix

for the electrons is

G(iν, kz ) =
[ −iν+t (1+sin(kz ))

(2�)2+(t sin(kz ))2−(t−iν)2
−(2�)e−iφ

(2�)2+(t sin(kz ))2−(t−iν)2

−(2�)eiφ

(2�)2+(t sin(kz ))2−(t−iν)2
−iν+t (1−sin(kz ))

(2�)2+(t sin(kz ))2−(t−iν)2

]
.

(G2)

Evaluating Eq. (19) to compute the collective conductivity, we
find that the only the massless mode contributes due to the
even parity and single band of the initial cosine dispersion.
The massless mode propagator is

D++(ω) − e2iφD+−(ω) = 1
−ω2+ω2

Q

2ωQ
− 2g2

∫
[dkz]

(2�)2+(t sin(kz ))2√
(2�)2+(t sin(kz ))2[4((2�)2+(t sin(kz ))2 )−ω2]

, (G3)

and, from the general gap Eq. (15),

ωQ = g2
∫

[dkz]
1√

(2�)2 + (t sin(kz ))2
. (G4)

For completeness, the single photon electron loop is also defined by

Gloop in(ω) =
∫

[dk]
2�gt cos(kz )√

(2�)2 + (t sin(kz ))2(4(2�)2 + 4(t sin(kz ))2 − ω2)

[
eiφ (ω + 2 sin(kz ))

e−iφ (−ω + 2 sin(kz ))

]
, (G5)
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FIG. 18. Conductivity in the linearized model of a 1D CDW, as first calculated by LRA. Plots (a) and (c) are the real part, while plots
(b) and (d) are the imaginary part. The parameters � = 0.5t and ω → ω + iη with η = 0.1t/h̄ were used.

and Gloop out(ω) = G∗
loop in(ω). The collective conductivity is

then given by σcoll(ω) = −e2

iω Gloop in(ω)D(ω)Gloop out(ω).
The definition of the phase and amplitude mode propaga-

tors used in this paper, D++(ω) ± e2iφD+−(ω), are different
than the definition used in LRA, DLRA

++ (ω) ± DLRA
+− (ω). The

reason for this is that LRA implements a different convention
for the mean field decomposition: those authors take bQ(t ) =
(�/g + δb)eiδθ , where the phase φ is absorbed into a shift in
the origin of the dynamical phase δθ . As a result, the factors
of eiφ are distributed differently among the collective phonon
propagator and the loop diagrams. However, LRA’s method
and this paper’s method will produce the same outcome, as all
factors of eiφ cancel in the final result, σcoll(ω).

The collective linear conductivity is illustrated in Fig. 17.
We see that, due to the contribution of the massless mode,
Re{−iωσ zz

coll(ω)} is finite as ω → 0. This corresponds to a
divergence in the real part of the DC conductivity at zero
frequency. Another feature similar to the tilted Weyl collective
conductivity is the presence of a peak in the conductivity
that occurs for frequencies larger than the single-particle gap,
which is at ω = 2(2�) (ω = 2t in Fig. 17). The frequency
at which the electric field is able to excite electrons from
the bottom band to the highest point in the upper band is
given by ω = t +

√
(2�)2 + t2 (ω = 2.414t in Fig. 17). It

is marked by a subtle change is slope (real) or a maximum
(imaginary) in the conductivity. The final characteristic oc-
curs at ω = 2

√
(2�)2 + t2 (ω = 2.828t/h̄ in Fig. 17) where

the lowest part of the energy dispersion in the bottom
band excites past the highest energy in the upper band.
This is marked by a decrease in the conductivity toward
zero.

The LRA result for the linearized model may be recov-
ered by approximating our Hamiltonian to linear order in kz.
Making this approximation in Eq. (G1) yields Fig. 18 for the
conductivity, which agrees with the results of Ref. [18]. For
convenience, the cutoff momentum is taken at � = π/2. Note
that for small frequencies, the conductivity in the linearized
model Fig. 18 is qualitatively similar to the lattice result in
Fig. 17. We will now show that in this low-energy limit we can
recover the analytic results of Refs. [17,18]. To facilitate this,
the cutoff momentum is taken as � → ∞, which is possible in
1D but yields a divergence answer in 3D. Then the collective
conductivity may be described simply. Defining the unitless
function

f
( ω

4�

)
≡ 1

2π

2

ω
4�

√
1 − ω2

(4�)2

arctan

⎛
⎝ ω

4�√
1 − ω2

(4�)2

⎞
⎠, (G6)
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the conductivity becomes

σcoll(ω) = −e2

iω

(
25tzωQg2 f 2( ω

4�
)

tz(4�)4 + ωQg2(4�)2 f ( ω
4�

)

)
, (G7)

in agreement with Ref. [18]

APPENDIX H: THIRD-ORDER COLLECTIVE
CONDUCTIVITY NEAR ZERO FREQUENCY

The harmonic generation and self-focus plots shown in
Figs. 13 and 14 seem to have nonzero intercepts at ω = 0.
Since gapping out the Weyl system should yield an insulator,
the reader might expect both real and imaginary parts of the
collective conductivity to vanish in the zero frequency limit.
This nonzero intercept is a relic of introducing a small imag-
inary self-energy to the frequency, ω → ω + iη. The self-
energy dictates how fast the resonant frequency decays, giving
rise to this nonzero intercept. To illustrate that η is the culprit,
we have plotted Re[limωβ,ωγ ,ωδ→0 σ zzzz

coll (ωβγ δ; ωβ, ωγ , ωδ )] as
a function of η in Fig. 19. We see that as the small imagi-
nary frequency vanishes, we recover our zero intercept of the
collective conductivity. Ergo, one should be cautious about
numerically taking the full, complex frequency ω + iη to zero
when comparing to an insulator. We show this for the idealized
Weyl model and the m = 0, 0.7tx, and 2tx cases from the
lattice model in the figure, but the argument will generalize
to all values of m.

FIG. 19. Real part of the third-order collective conductivity at
ω = 0 as a function of the self-energy parameter, η. The idealized
Weyl model and the m = 0 lattice model are sufficient to generalize
to the other models throughout the paper.

The imaginary part of the collective conductivity, on
the other hand, does go to zero as frequency vanishes.
Furthermore, Im[limωβ,ωγ ,ωδ→0 σ zzzz

coll (ωβγ δ; ωβ, ωγ , ωδ )] is in-
dependent of η, and so would give a horizontal line through
zero on a plot like Fig. 19.
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