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Simulating both parity sectors of the Hubbard model with tensor networks
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Tensor networks are a powerful tool to simulate a variety of different physical models, including those that
suffer from the sign problem in Monte Carlo simulations. The Hubbard model on the honeycomb lattice with
nonzero chemical potential is one such problem. Our method is based on projected entangled pair states using
imaginary-time evolution. We demonstrate that it provides accurate estimators for the ground state of the model,
including cases where Monte Carlo simulations fail miserably. In particular, it shows near to optimal, that is
linear, scaling in lattice size. We also present an approach to directly simulate the subspace with an odd number
of fermions. It allows to independently determine the ground state in both sectors. Without a chemical potential,
this corresponds to half-filling and the lowest-energy state with one additional electron or hole. We identify
several stability issues, such as degenerate ground states and large single-particle gaps, and provide possible
fixes.
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I. INTRODUCTION

Projected entangled pair states (PEPS) are a higher-
dimensional generalization of matrix product states (MPS) [1]
and have successfully been used to approximate various phys-
ical systems. Examples include various two-dimensional (2D)
classical and quantum spin models [2,3], spin liquids [4,5],
as well as select lattice non-Abelian gauge theories [6,7].
Although originally developed for bosonic systems, calcula-
tions nowadays readily use fermionic PEPS [8] to investigate
systems with fermionic degrees of freedom.

As the method is variational and deterministic, calculations
using tensor networks such as PEPS do not suffer from numer-
ical issues seen in stochastic simulations when dealing with
systems with nonzero chemical potential μ. In such cases,
an induced numerical sign problem can completely preclude
a stochastic simulation, while tensor networks instead are
completely immune and provide results equally precise as
compared to cases when μ = 0. Furthermore, tensor network
calculations of global ground-state energies of various sys-
tems are achieving remarkable accuracy [9]. With continual
advancements in algorithmic efficiency, tensor networks are
fast becoming the “go-to” method for extracting the global
ground-state properties of low-dimensional systems.

The situation is less clear, however, when dealing with
excited states, or ground-state energies in sectors of oppo-
site parity to that of the global ground state. To date, tensor
networks could only access a few low-lying energy states
by calculating the ground state first and projecting to an
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orthogonal subspace in the following iterations [10]. This is
unfortunate, as an understanding of the spectrum of states
relative to the global ground state provides information on
novel forms of collective behavior of the system, such as
spin and antiferromagnetic correlations [11], or induced Mott
transitions [12], to name a few examples. A quintessential
example in this regard is the Hubbard model in two dimen-
sions [13,14]. On an infinite honeycomb, or hexagonal lattice,
for example, the Hubbard model exhibits a quantum phase
transition from a semimetal to insulator state at a particular
critical coupling [15,16]. Such a transition can be ascertained
by comparing the ground-state energy of the odd-parity sector
to that of the even-parity sector, as was done in [17]. Numer-
ical investigations of the Hubbard model have mostly been
confined to chemical potential μ = 0 so as to avoid the sign
problem, which means that much of its phase diagram is not
known. Thus, were tensor networks able to obtain information
of odd-parity states with equal precision as obtained with
the global ground state and with arbitrary μ, a new era in
simulations of nonperturbative phenomena would occur for
low-dimensional systems.

In this paper we build off the formalism presented in [8]
and apply it to the odd-parity sector of the hexagonal Hubbard
model as a test case. Although tensor networks have been ap-
plied to the Hubbard model using infinite PEPS (iPEPS) [18],
such investigations analyzed the global ground state of the
Hubbard model on a the square lattice. In our case, in addition
to considering the hexagonal lattice which has important ap-
plications in the study of graphene and its derivatives [19,20],
we extract the lowest-energy state in the odd-parity sector of
this system, giving us information about the single-particle
gap. We perform these calculations for select values of onsite
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Hubbard term U and chemical potential μ, benchmarking our
results to exact results where possible. For systems too large
for comparison with exact calculations, our results represent
predictions.

Our method for simulating in opposite parity sectors is not
a complete panacea for tensor network calculations of excited
states. Indeed, we encounter various numerical difficulties and
limitations which we carefully document and, where possible,
address. Still, our findings provide proof of principle that
excited states can be readily extracted using tensor networks,
and we anticipate continued development along the lines of
our research.

Our paper is organized as follows: In the following section
we give a cursory overview of the PEPS formalism and its
connection to imaginary-time evolution. We present our al-
gorithm for fermions that allows us to simulate in opposite
parity sectors. We discuss how we implement various update
schemes and demonstrate with hard examples the expected
scaling of our algorithm with system size, bond dimension,
and boundary MPS dimension. We also introduce the Hubbard
Hamiltonian in this section and explain how it is adapted to
our method. In Sec. III we enumerate our various improve-
ments to our algorithm to accelerate convergence as well as
increase precision. We take pains to enumerate the limitations
of our procedure so as to present to the reader a clear and
honest assessment of our method’s efficacy. Where possible,
we provide explanations for the sources of these limitations
and potential resolutions. We then show our results for the
Hubbard model in Sec. IV. Our results demonstrably show
the ability of our method to simulate both parity sectors of
the problem, obtaining precise results for both ground states
in both cases and therefore gaining information about the
single-particle gap. Finally, we recapitulate in Sec. V.

II. FORMALISM

A. PEPS

A projected entangled pair state (PEPS) [21,22] is an ansatz
for a physical state. It is a versatile tool to incorporate different
entanglement structures of two- and higher-dimensional sys-
tems and especially applicable for ground-state simulations.

We want to study a system of N lattice sites on a (Lx × Ly)
grid,1 where the local dimension of the Hilbert space is d .
Representing a state would therefore require dN complex
numbers, which is not feasible to store on a computer system
for larger lattices. Therefore, a truncation of the Hilbert space
is needed. A PEPS reduces the number of parameters drasti-
cally while still giving a good approximation of specific states.
The truncation corresponds to a cutoff in the entanglement
entropy. It was shown that ground states of local Hamiltonians
with an energy gap fulfill an area law and can therefore be
well approximated by tensor networks [23]. This holds in one
spatial dimension, but tensor networks and PEPS in particular
were also applied successfully in higher dimensions [24].

To construct a PEPS, one places a tensor on each lattice
site, pictured as circles in Fig. 1. Each tensor carries a physical

1This corresponds to (Lx/2 × Ly ) unit cells of the honeycomb lat-
tice, up to boundary effects.

x
y

FIG. 1. Ket state of a PEPS for a 3 × 4 fermionic honeycomb
lattice. Description of symbology (see text for more details): circles,
PEPS tensors; dashed lines, physical indices; solid lines, internal
indices; dotted line, parity index; diamonds, swap gates.

index running from 1 to d (dashed lines). Additional indices
connect the tensor to its nearest neighbors with indices (links)
running from 1 to Dk , where k enumerates the link between
the two nearest neighbors (solid lines). Lines connecting two
tensors require summation (contraction) over the correspond-
ing index, while open legs denote the open indices of the
resulting tensor after contraction of the network. Figure 2
shows different projections of the bra state corresponding to
the ket state in Fig. 1. The swap gates and the parity index in
Figs. 1 and 2 will be explained in Sec. II C.

In the limit of large Dk this ansatz becomes exact. For
larger systems, a truncation bond dimension D is chosen and
the indices are bound by Dk � D ∀ k. The accuracy of the
ansatz can be improved by increasing D.
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FIG. 2. Bra state of a fermionic PEPS. Symbology: circles with-
out stars, conjugated PEPS tensors; dashed lines, physical indices;
solid lines, internal indices; dotted line, parity index; diamonds, swap
gates. (a) Bra tensors for a 3 × 4 honeycomb lattice. (b) Definition
of starred tensors with four internal indices. Some indices and the
corresponding SWAP gates can be removed to obtain the honeycomb
tensors.
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B. Imaginary-time evolution

Expressing the state in the form of a PEPS allows us to
evolve the system in imaginary time to the ground state |�0〉
of a given Hamiltonian H . We start with a (random) initial
state |�(0)〉 and evolve it to find the ground state:

|�0〉 = lim
t→∞

|�(t )〉√〈�(t ) | �(t )〉 , |�(t )〉 = e−Ht |�(0)〉. (1)

The time-evolution operator

U (t ) := e−Ht = (e−Hδt )m (2)

is decomposed into m time slices of length δt = t/m. Every
single time slice is again split into a product of local terms. We
focus on a Hamiltonian that consists only of nearest-neighbor
interaction terms Hi:

H =
#Hi∑
i=1

Hi, (3)

U (δt ) =
∏

i

e−Hiδt + O(δt2), (4)

U (δt ) =
∏

i=1...#Hi

e−Hi
δt
2

∏
j=#Hi ...1

e−Hj
δt
2 + O(δt3). (5)

Here we used the Suzuki-Trotter expansion [25,26] of first
order in Eq. (4) and of second order in Eq. (5). For our
calculations we applied the second-order expression, where
the ordering of terms in the second product is inverse to the
ordering in the first.

This way the time-evolution operator U (t ), which acts
globally, can be decomposed into a sequence of local terms
e−Hiδt . These can be efficiently applied to the PEPS, which we
discuss in Sec. II D.

C. Modifications for fermions

If we want to consider fermions in our model, we have
to take into account their anticommuting nature. We need to
order the fermionic degrees of freedom and make sure that
the sign flips once we exchange two fermionic creation or
annihilation operators. In Fig. 1 the two-dimensional network
is arranged in a way that we can number the physical indices
from left to right. The state would be created by applying cre-
ation operators in the order of this numbering to the vacuum
state. We can apply a nearest-neighbor operator in the y direc-
tion directly because the corresponding links have consecutive
numbers. Since any observable has an even number of creation
and annihilation operators, all sign flips come in pairs and
cancel each other. If the creation and annihilation operators
of an observable sit on sites with nonconsecutive numbers,
however, we would have to take into account all indices with
numbers in-between. This happens for the application of a
gate in the x direction in our numbering scheme. This would
turn nearest-neighbor operators into nonlocal ones. Fortu-
nately, we can avoid this issue by using the scheme developed
in [8,27], which we now discuss.

1. Fermion SWAP gate

We implement the fermionic anticommutation relations at
the PEPS level rather than at the operator level only. In order

to do this, we first introduce the concept of fermion-number
parity. An even number of fermions comes with parity p = 1,
an odd number with parity p = −1, i.e., p(|0〉) = p(|↑↓〉) =
1 and p(|↑〉) = p(|↓〉) = −1. In addition, we assign the parity

p = (1, . . . , 1︸ ︷︷ ︸
De

,−1, . . . ,−1︸ ︷︷ ︸
Do

) (6)

with De + Do = Dk to every internal tensor index k. Parity
conservation requires fermions to be created and annihilated
in pairs. We can ensure this on the level of the tensor network
by the rule

Ti1,i2,...,ir = 0 if p(i1)p(i2) . . . p(ir ) = −1. (7)

The crucial difference to bosonic tensor networks, however,
is the aforementioned anticommutation of the creation opera-
tors. An exchange of two odd numbers of fermionic operators
yields a minus sign. In the PEPS formalism this means that ev-
ery crossing of two lines introduces additional signs. A minus
sign occurs at every crossing for the indices with twice neg-
ative parity. In [27] this is achieved by introducing fermionic
SWAP gates

X i1i2
j1 j2

= δi1 j1δi2 j2 S(i1, i2), (8)

S(i1, i2) =
{−1 p(i1) = p(i1) = −1,

1 else (9)

with the two incoming indices i1, i2 and the two outgoing
indices j1, j2.

In our graphical notation, we place a SWAP gate on every
line crossing. SWAP gates are pictured as diamonds in our
notation as used in Figs. 1 and 2. We can move the lines
freely and create new intersections with SWAP gates due to
S being self-inverse. Because of Eq. (7), we can also move
lines across nodes. When we want to apply nearest-neighbor
gates, we can move the physical links to be next to each other.
This introduces new SWAP gates in the network but allows the
operators to be applied locally.

The SWAP gates were used in Fig. 2 to write a bra state in
an alternative manner. Originally, the bra state can be obtained
by reflecting the ket state on a line in the vertical direction
and subsequently conjugating all tensors. This is shown as
the left side of Fig. 2(a). The right side arranges the ket state
in the same way as the bra state. This can be realized by
appropriately moving the tensors and lines, and introducing
new SWAP gates. Some of the SWAP gates are included in the
definition of the starred tensors according to Fig. 2(b).

In this manner we never have to contract the SWAP gate
with a tensor explicitly. Instead, we can always find a way to
write the tensor network so that the gate is contracted with
two indices of the same tensor. This way the SWAP gate can be
applied element wise to the tensor. More details can be found
in Appendix A. The computational cost scales only with the
number of elements of the corresponding tensor. Since this is
negligible compared to the most demanding steps we describe
later in Sec. II E, the fermionic algorithm has the same leading
costs as the bosonic one.
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envL triadL
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triadR envR
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FIG. 3. Splitting tensors into triads triad and the environments
env for an update in the x direction. Symbology: small orange circles
on indices, singular values; diamond, swap gate for fermionic PEPS.

2. Parity index

The previously constructed fermionic PEPS requires that
all tensors have an overall even parity due to Eq. (7). This
way, the tensor network can only represent states with even
parity. To include the odd-parity sector as well, one introduces
an additional parity index to one of the tensors. This index
can take two values corresponding to even or odd parity. We
represent it by dotted lines (see, e.g., Fig. 1). When calcu-
lating expectation values, the parity index of a bra state gets
contracted with the corresponding one in the ket state.

We can also crop the parity index to only have one value
with either even or odd parity. This way we simulate the even-
and odd-parity sectors individually. For the Hubbard model,
the state of half-filling is of even parity. By choosing an odd
parity, we can find the state with an additional electron (or
hole).

D. Truncation and expectation values

To apply the imaginary-time evolution described in
Sec. II B, the nearest-neighbor operators e−Hiδt have to be
applied to the PEPS sequentially. Since every application of
a local operator increases the bond dimension on the corre-
sponding link, a truncation has to be done in order to keep the
bond dimension small. We use two different schemes for the
truncation: simple update [8,28–30] and full update [8,30–32].
We limit ourselves to open boundary conditions (OBC) here,
though we note that the simple update scheme can easily be
applied to periodic boundary conditions as well. All results
presented in this paper are obtained with simple update where
not stated otherwise.

1. Simple update

Simple update is a truncation method that only takes local
properties into account. We use the simplified update, where
triads (reduced tensors) are split from the PEPS tensors to
reduce the numerical costs [8,30,32].

In a first step, each tensor on the updated link is split into
a triad and an environment tensor. This is depicted in Fig. 3
for the x direction, where the y direction gets split similarly.

exp(−τHi)
truncated

SVD

U VS

FIG. 4. Simple update truncation.

The link to be updated gets combined with the physical in-
dex, while all other indices get combined to a second index.
The resulting matrix is split in a QR decompostion into an
orhtogonal matrix Q and an upper triangular matrix R. The
triangular matrix carries the physical index and the link to be
updated, while the orthogonal matrix carries all other indices.
The newly emerged index connecting the two matrices of
the QR decomposition is denoted with wiggly lines in our
graphical notation. We limit ourselves to updating the triads
only as this is numerically cheaper. For fermionic PEPS we
apply the SWAP gates to the initial tensors to put the physical
indices next to each other. The two-site operator can then be
directly applied to these adjacent indices.

The update is performed as depicted in Fig. 4. We apply the
local gate to the physical indices of the triads. The resulting
network gets contracted and is then split by a singular value
decomposition (SVD) into two tensors U and V connected by
a singular value matrix S. The singular values are truncated
in order to keep the bond dimension bound by D. Finally,
the square roots of the singular values can be multiplied to
the left- and right-unitary tensors U and V to form the new
triads. We keep the singular values explicitly on the links,
however, as shown in Figs. 3 and 5 as small orange circles
on the links. To increase the precision, the singular values of
the surrounding links of tensors are included in the initial QR
decomposition to calculate the triads and the environment (see
Fig. 3). This way, more information about the rest of the tensor
network is included during the update.

Finally, we update the PEPS tensors by recombining the
new triads and the old environment tensors. This is shown in
Fig. 5.

envL

U
S−1

2

S−1
1

S−1
3

L̃

(a)

V
envR S−1

5

S−1
4

S−1
6

R̃

(b)

FIG. 5. Combining triads U , V and the environments env to the
updated PEPS tensors L̃ and R̃.
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∗ ∗ ∗ ∗ ∗

FIG. 6. Overlap of the old and the new boundary MPS. The upper
layer corresponds to the old boundary MPS, the middle layer repre-
sents bra and ket PEPS tensors, and the lower layer is the conjugate
of the new boundary MPS.

For fermionic PEPS we split the tensor on the left side of
Fig. 4 into two parts. Each one contributes to only one parity
sector on the link to be updated. Then, two individual SVDs
are performed on these parts. The truncation combines and
orders the singular values and keeps the D largest ones. This
allows to change the splitting between even and odd parity due
to their local contributions to the tensor network.

With this update procedure we also change the norm of
the state. In order to keep the norm in a reasonable order, we
normalized the new singular values:

S → S

λ
, λ =

√∑
i

S2
i . (10)

The renormalization factors λ can also be used to estimate the
energy (see Sec. III C).

2. Full update, boundary matrix product state,
and expectation values

Full update algorithms take the whole tensor network into
account for the truncation. Contracting the complete network
scales exponentially in the size of one dimension of the sys-
tem. To avoid this, an approximate contraction has to be used.
We use the boundary matrix product state (boundary MPS)
method for two-dimensional systems with OBC [21,30].

A boundary MPS is a string of tensors each connected to its
neighbors. It represents an approximation of the contraction
of the bra- and ket-layer of all tensors in the network from the
boundary up to a certain x or y value. The upper layer of Fig. 6
represents a boundary MPS in the x direction. Each tensor is
connected to its neighbor by an index (thick lines) of size up
to χ , the boundary MPS dimension. Additionally, each tensor
carries two indices which represent the external indices of the
approximated network. Each is of size up to D.

Initially, the boundary MPS is set to a trivial product state
of length Lx with all tensors set to rank 0, i.e., scalar. To go
from one row to the next, we initialize the boundary MPS
including one more row with random numbers. Then, a sweep
is done through all tensors of the boundary MPS to optimize
one tensor at a time, while the others are kept fixed. If |b〉 is the
contraction of the old boundary MPS with the PEPS tensors
to be included in the next layer, and |b′〉 is the new boundary
MPS, we minimize

‖|b〉 − |b′〉‖2 = 〈b|b〉 + 〈b′|b′〉 − 〈b|b′〉 − 〈b′|b〉 . (11)

∗ ∗ ∗ ∗
ô =:

∗ ∗
ô

Nred

NredNN

FIG. 7. Calculating the expectation value of a two-site operator ô
in the x direction with a fermionic tensor network using boundary
MPS. Wiggly lines denote a splitting of triads and environment
tensors according to Fig. 5 but without singular values S. Contraction
of all tensors outside the dashed-dotted rectangle defines the environ-
ment tensor Nred.

The overlap 〈b|b′〉 is shown in Fig. 6. The optimization can
be done using alternating least-squares (ALS) optimization
[30,32,33].

This procedure is done from all boundaries and allows us
to calculate expectation values as depicted in Fig. 7. In the
update step, the same surrounding can be used. We split the
nodes we want to update into triads and the rest as described
in Sec. II D 1. The whole network except for the triads is then
contracted to form an environment tensor Nred as defined in
Fig. 7.

For the truncation step, we make Nred Hermitian and semi-
positive before we gauge it for better conditioning of the
following steps. This preparation is explained in detail in [32].
For the update itself there are two common procedures. The
first is called the second renormalization group (SRG) [34].
The idea here is to generalize simple update and do a singular
value decomposition that includes the environment Nred. The
truncation is done by dropping the smallest singular values of
this decomposition. Since every singular value corresponds to
either even or odd parity on the link to be updated, the splitting
between the two parity sectors is done dynamically according
to the sizes of the singular values in the sectors. The second
update procedure optimizes the sites iteratively while keeping
the remaining sites fixed, using the same ALS optimization
techniques as before for the boundary MPS [30,32,33]. We
applied this algorithm to fermionic PEPS, so we also had to
sweep through the parity sectors. The details of the optimiza-
tion can be found in Appendix B.

Despite its benefit of being able to dynamically track and
split the parity sectors, we found that truncation errors of
the SRG update process were rather large for the systems
we tested and this precluded its use as a standalone updating
process. On the other hand, the ALS procedure provided much
smaller truncation errors, but the parity sectors have to be kept
at a constant size during the updating process. This prevented
us from dividing the parity sectors on a link according to their
contribution to the state. Our solution to addressing the short-
fall of each update procedure was to combine both procedures
during the updating step, as follows: We first used SRG to
make an initial guess for the new triads and to choose the size
of the different parity sectors. The relatively large truncation
errors at this point were subsequently reduced by application
of the ALS updating procedure with a fixed size of the sectors.
By combining both methods, we were able to achieve our

155118-5
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desired accuracy goals with full accounting of both parity
sectors.

After each update step we divided the new state |� ′〉 by

λ =
√

〈� ′ |� ′〉
〈�|�〉 to normalize it.

E. Resource scaling

Now that we know which operations have to be performed,
we can analyze the required resources in terms of runtime and
memory. In both cases, the leading contribution is made by
the calculation of the environment Nred as shown in Fig. 7.
The overall runtime TCPU then asymptotically scales as

T �
CPU ∝ Nin(2χ3D4d2 + 2χ2D6d2 + χ2D4d4) (12)

for a 2D square lattice where Nin = (Lx − 2)(Ly − 2) denotes
the number of inner lattice points. We do not need the full
number of points here because the contraction at the boundary
proceeds much faster due to the lower number of links on the
tensors.

In the case of the honeycomb lattice some of the links are
removed. This can be interpreted (and implemented) as setting
D = 1 for these links. The runtime reduces to

T ∗∗∗∗
CPU ∝ Nin(2χ3D4d2 + 2χ2D5d2 + χ2D4d4). (13)

It is common to choose χ ∝ D2 which leads to the well-
known and feared scaling in O(D10). Our findings in
Sec. III A, however, suggest that choosing χ ∝ D (usually
χ = 2D or χ = 3D) already yields very good results in many
cases. In particular, the error on observables introduced by the
choice of χ is much smaller than that introduced by the choice
of D. With χ ∝ D the overall scaling of our algorithm reduces
to O(D8) for the square and O(D7) for the honeycomb lattice.

For practical considerations such as job submissions, an
understanding of the required memory M is often even more
important than the scaling of the runtime. We found that
we can predict the memory usage very accurately [up to
O(100 MB)] with the formula

M = 700 MB + 2χ2D4d2Mnum + 2Nχ2D2dMnum, (14)

where Mnum is the memory required for a single number, in
our case Mnum = 16 B for complex doubles. Notice that the
constant offset in Eq. (14) is system dependent and in our
case represents the approximate memory usage of MATLAB

[35] when idle.
Our simulations were single threaded and accomplished

within 48 hours. They were performed on MATLAB with heavy
reliance on NCON [36].

F. Hubbard model

The Hamiltonian of the Hubbard model can be decom-
posed into sums of operators acting on a pair of neighboring
sites only. It reads as

H = −κ
∑

〈x,y〉,s
c†

x,scy,s + U

2

∑
x

q2
x + μ

∑
x,s

(
c†

x,scx,s − 1

2

)
(15)

with 〈x, y〉 denoting nearest neighbors, whereas s ∈ {↑, ↓}
denotes the two possibilities for the spin of an electron. c†

x,s

(cx,s) is a creation (annihilation) operator of an electron at
position x with spin s and follows the usual anticommutation
relations

{c†
i , c†

j } = {ci , c j } = 0 , {ci , c†
j } = δi j . (16)

The onsite coupling U gives the interaction strength of two
electrons with combined charge qx = c†

x,↑cx,↑ + c†
x,↓cx,↓ − 1

on the same lattice point. The hopping parameter is denoted
by κ and μ is the chemical potential. The form of Eq. (15) is
such that at μ = 0 the system is at half-filling.

The Hubbard model is studied on a honeycomb lattice. The
connectivity of nearest neighbors 〈x, y〉 is the same as the
connectivity of the tensor network, as can be seen in Fig. 1.
For larger systems in the x (y) direction, the figure is extended
to the right (bottom) in our convention. The parity link is
always attached to the tensor in the left bottom corner.

We rewrite the Hamiltonian Eq. (15) purely as a sum of
two-site terms hxy as follows:

H =
∑
〈x,y〉

hxy, (17)

hxy = −κ
∑

s

(c†
x,scy,s + c†

y,scx,s) + U

2

(
1

nx
q2

x + 1

ny
q2

y

)

+ μ
∑

s

[
1

nx

(
c†

x,scx,s − 1

2

)

+ 1

ny

(
c†

y,scy,s − 1

2

)]
. (18)

Here nx is the number of nearest neighbors of site x. hxy is cho-
sen Hermitian and therefore every link 〈x, y〉 is counted only
once, i.e., 〈y, x〉 is ignored. For the imaginary-time evolution
we then use the Hamiltonian gate e−hxyδt .

1. Two-site basis

We now define our basis for the two-site states. For this we
fix the order of creation operators acting on the empty state |0〉
as c†

x,↑, c†
x,↓, c†

y,↑, c†
y,↓ and receive a (4 ⊗ 4 = 16)-dimensional

basis, where the one-site basis consisting of |0〉, |↑↓〉, |↑〉, and
|↓〉 is d ≡ 4 dimensional. We write

|k〉 := |kx〉x ⊗ |ky〉y, (19)

k = 4kx + ky (20)

and the kx,y ∈ {0, . . . , 3} is the respective state index, so for
example |7〉 = |1〉x ⊗ |3〉y ≡ |↑↓〉x ⊗ |↓〉y.

In this basis we can rewrite the gate operator hxy using the
defining properties

〈k2 | c†
x,↑cy,↑ | k1〉 =

⎧⎨
⎩

1 (k2, k1) ∈ {(8, 2), (11, 1)},
−1 (k2, k1) ∈ {(4, 14), (7, 13)},

0 else,
(21)

〈k2 | c†
x,↓cy,↓ | k1〉 =

⎧⎨
⎩

1 (k2, k1) ∈ {(12, 3), (4, 11)},
−1 (k2, k1) ∈ {(14, 1), (6, 9)},

0 else
(22)
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and

q2
x =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠⊗ 14, (23)

c†
x,↑cx,↑ + c†

x,↓cx,↓ − 1 =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠⊗ 14. (24)

2. Operators

Any local operator, i.e., involving only onsite and nearest-
neighbor interactions, can be expressed in terms of gates in the
same way as the Hamiltonian in Eq. (17). We derive this form
explicitly for the magnetization operator because it becomes
important for breaking degeneracies later on. The operator
reads as

M =
∑

x

(c†
x,↑cx,↑ − c†

x,↓cx,↓) (25)

=
∑
〈x,y〉

(
1

nx
(c†

x,↑cx,↑ − c†
x,↓cx,↓)

+ 1

ny
(c†

y,↑cy,↑ − c†
y,↓cy,↓)

)

=:
∑
〈x,y〉

mxy (26)

with the matrix form

mxy =

⎡
⎢⎣ 1

nx

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠⊗ 14

+ 1

ny
14 ⊗

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠
⎤
⎥⎦. (27)

The integers nx and ny denote the number of nearest neighbors
at sites x and y.

The particle number

n =
∑

x

(c†
x,↑cx,↑ + c†

x,↓cx,↓) (28)

is another important operator as it directly couples to the
chemical potential. Its matrix form follows immediately from
Eq. (24).

III. IMPROVEMENTS

A. Boundary MPS bond dimension dependence

Since our observables consist of nearest-neighbor opera-
tors only, one can use the boundary MPS environment for
each set of nearest neighbors and calculate the corresponding
expectation value as explained in Sec. II D and Fig. 7. The
sum of these terms leads to the desired global observables.

In the literature a typical value of χ � D2 is standard
[8,21,29,31,32,37]. This gives an exact representation of the
boundaries itself and a good approximation of the rest of the

101 10210−6

10−5

10−4

10−3

10−2

10−1

100

χ
|〈O

(χ
)〉 /

〈O
(1

0
0
)〉
−

1|

Energy H
Norm deviation ΔI
Magnetization M
Anti-Magnetization
Particle Number n
Hole Number n − V

FIG. 8. Dependence of different operators 〈O〉 on the boundary
MPS bond dimension χ for the ground state in the odd-parity sector.
Shown are the relative errors compared to results at χ = 100. Hon-
eycomb Hubbard model with D = 12, L = 12 × 6, κ = 1, U = 2,
μ = 0.1, B = 0.01. See [38] for numerical data.

network. We considered the dependence of expectation values
on the boundary MPS bond dimension more carefully and
found that a much smaller χ leads to a good precision already.

For example, Fig. 8 shows the relative error of different
observables as a function of χ . In this case, the ground state of
the odd-parity sector of the Hubbard model was obtained with
simple update and a bond dimension of D = 12. Expectation
values were then calculated with different boundary MPS
dimensions χ and compared to the result using χ = 100. We
found that for χ � 16 all errors are on a subpercent level.
This is much smaller than the usual D2 = 144. Thus, if a
subpercent precision is sufficient, as it was in our studies,
the boundary MPS bond dimension can be decreased signifi-
cantly. We found similar results for different parameters U and
μ, bond dimensions, and both parity sectors of the Hubbard
model.

Let us stress, however, that these results only apply to the
boundary MPS contraction after a time evolution with simple
update. They do not apply to full update. On the contrary, for
full update to be stable we found that in some cases χ � D2

is indeed required.
Obviously, choosing a smaller χ improves the computa-

tional costs drastically. This in turn can be used to increase
D which then improves the overall precision. Note that we
need to normalize our state or calculate the norm explicitly
for expectation values:

〈Ô〉 = 〈� | Ô | �〉
〈� | �〉 . (29)

Instead of normalizing the state once, we found it helpful to
calculate the norm 〈�|�〉k for each nearest-neighbor pair k
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by calculating it the same way as the expectation values, but
without inserting any operators. This way, the local expecta-
tion values can be divided by the norm with respect to the
same environment Nred and therefore the same truncation of
the tensor network. This increases the precision of expecta-
tion values. Moreover, the standard deviation �I of the local
norm evaluations can be used as an estimator for the error
introduced by the boundary MPS truncation:

�I =
√∑

k (〈�|�〉k − 〈�|�〉)2

〈�|�〉√|k| − 1
. (30)

The term |k| denotes the number of nearest-neighbor pairs in
the system and 〈�|�〉 =

∑
k〈�|�〉k

|k| is the mean value of the
norm. The error estimation by �I can be seen in Fig. 8 as
red squares. In all cases we studied, �I was of the order of
the relative errors of any observable considered. This allowed
us to estimate the effects of the boundary MPS truncation on
expectation values without needing to do a full scan in χ .

We observed that a good precision can be reached with
χ = 3D. The error introduced by a finite D is then larger than
that caused by a finite χ . A similar behavior was observed
for infinite PEPS in [39]. We checked that our results do not
crucially depend on χ by repeating most of our simulations
with χ = 2D.

B. Convergence

The imaginary-time evolution as described in Eqs. (1)–(5)
has to be tuned carefully. It is crucial to choose an appropriate
value for δt at every step. To understand the details better,
we first have to differentiate two kinds of errors. First, we
have the pollution of the ground state2 by excited states. This
error arises from Eq. (1), decays exponentially for any given
δt , and we therefore call it exponential error. Second, the
discretization into a scheme of order r − 1 introduces an error
decreasing as δt r [see Eq. (4)]. This error remains for any
given δt even at t → ∞. We designate this as the Trotter error.

A well-tuned convergence scheme should use as few steps
as possible to achieve the smallest total error. Naively, this
can be achieved by choosing several, successively decreasing,
values of δt and performing the complete imaginary-time
evolution for every one of them. This, however, turns out to
be highly inefficient. Instead, we first perform the imaginary-
time evolution with a coarse step size and then proceed from
the resulting state with a smaller value of δt . As the ground
state energies of both discretizations are (asymptotically)
close to each other, we only have a small number of steps to
perform with the finer step size. Once the new discretization
shows no significant exponential error any more, the step size
is reduced again and the procedure is iterated.

Thus, the overall convergence behavior resembles a stair
as can be seen in Fig. 9. If the “steps” of this stair have a
significant slope at the time a smaller δt is chosen, this indi-
cates a remnant exponential error and thus a loss of accuracy

2Here we mean the ground state of the Trotterized time-evolution
operator.
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FIG. 9. Relative deviations of the energies during the imaginary-
time evolution with κ = 1, U = 4, and μ = B = 0 on the 2 × 2
lattice with D = 6. (a) Too rapid reduction of δt . (b) Efficient reduc-
tion of δt . (c) Too slow reduction of δt . See [38] for numerical data.
In all three cases exactly 50 steps have been performed. Energies
calculated using boundary MPS (bMPS) and the direct estimator
derived in Sec. III C.

[see Fig. 9(a)]. Therefore, δt has to be decreased slower. If on
the other hand there are long plateaus or the energy difference
between adjacent “steps” is very small, no accuracy is lost, but
the algorithms efficiency could be increased by a more rapid
decrease of δt [see Fig. 9(c)].
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1. Extrapolation

For energy values E (δt ) with pure (or at least strongly
dominating) Trotter error we make the ansatz

E (δt ) = E0 + γ δt r + O(δt r+1), (31)

where E0 is the exact ground-state energy and γ is some
coefficient independent of δt . We then obtain an extrapolated
E0 by choosing two values of δt , preferably the smallest two
available, and calculate

E0 =
(

1

δt r
1

− 1

δt r
2

)−1(E (δt1)

δt r
1

− E (δt2)

δt r
2

)
+ O(δt r+1).

(32)

2. δt-reduction scheme

The energy including the exponential error can be approx-
imated by

E (t ) = E0(1 + αe−�trt ), (33)

where α is some coefficient independent of t (and at least
asymptotically of δt) and �tr is the current gap to the first
excited state. This approximation is accurate up to exponen-
tially suppressed higher-state contributions and therefore very
precise at large enough times. At large t and small δt the gap
approaches the difference in Trotter errors between the last δt
and the current one. We therefore write

�tr
t→∞, δt→0−−−−−−→ β�exδt r (34)

with another coefficient β constant in t and δt . The physical
gap �ex to the first excited state3 has been included to set a
comparable energy scale.

We consider the local relative energy change

E ′(t ) := E (t + δt ) − E (t )

E (t )
(35)

= αe−�trt (e−�trδt − 1)

1 + αe−�trt
(36)

= αe−�trt [−�trδt + O((�trδt )2)] + O(e−2�trt )

(37)

→ −αβe−�trt︸ ︷︷ ︸
ε

�exδt r+1 (38)

and find that at any given discretization the exponential error
can be considered small enough once some threshold

|ε| =
∣∣∣∣E ′(t )

�ex

∣∣∣∣δt−(r+1) < εtol (39)

is reached. The target precision of the exponential error εtol

therefore can be chosen independently of t and δt .
The remaining problem is that a priori the factors β and

especially �ex are not known. We observe that β is usually of
the order of one and therefore does not greatly influence the
performance of our algorithm. �ex on the other hand can vary

3Only the gap in the simulated sector is relevant here. If, e.g., only
the even-parity sector is simulated, then �ex denotes the gap between
even ground state and first excited even state.

over many orders of magnitude if the parameters of the model
are changed and a good initial guess can drastically improve
the performance of the algorithm.

As explained earlier, we reduce δt once the exponential
error decreases below the threshold set by εtol. We chose
to perform this reduction geometrically, i.e., δt �→ ξδt with
some factor ξ ∈ (0, 1). It is important to choose ξ carefully. If
it is chosen too small, unnecessarily many steps are performed
with the small step size where a few larger steps would have
sufficed. On the other hand, too large values of ξ lead to a slow
decrease of δt implying a slow continuous time convergence.
We find that usually the results are best for ξ ∈ [0.7, 0.9].

3. Convergence criteria

Our termination criterion for the evolution is the point
where the exponential error is diminished as explained before
and δt has dropped below some threshold. This threshold usu-
ally can be chosen surprisingly high because the extrapolation
of the values without exponential error reduces the Trotter
error to O(δt r+1).

C. Energy estimator

The energy can be measured as described before by cal-
culating the expectation values of the local terms of the
Hamiltonian as in Fig. 7. This requires the calculation Nred,
which is the leading cost of the whole algorithm, for every
site. If we use a full update algorithm, Nred has to be calculated
in each update step as well. Therefore, calculating the energy
is as expensive as a step of the imaginary-time evolution.
It can be even cheaper if parts of the previously calculated
boundary MPS are reused.

The situation looks different, however, when we use simple
update. Each update step scales at most as O(D4) in the bond
dimension for the honeycomb lattice. This is much cheaper
than the calculation of an expectation value. Hence, we used
an estimator for the energy to avoid calculating Nred after each
update step.

From Eq. (2) follows (up to discretization errors)

H = − 1

δt
ln U (δt ) (40)

⇒ E = − 1

δt

〈�| ln U (δt )|�〉
〈�|�〉 . (41)

If |�〉 is the ground state of the system, we can approximate
this as

E ≈ − 1

δt
ln

√
〈�|U (δt )2|�〉

〈�|�〉 (42)

= − 1

δt
ln

√
〈� ′|� ′〉
〈�|�〉 = − 1

δt
ln
∏

λ. (43)

In the last line we named the new state after an imaginary-time
step |� ′〉. The renormalization factor λ corresponds to the
change of the norm of a state when an imaginary-time evo-
lution operator is applied locally [see Eq. (10)]. In the product∏

λ we combine the individual renormalization factors from
all two-site updates involved in a global update. With this
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FIG. 10. Imaginary-time evolution with κ = 1, U = 4 on the 2 × 4 lattice with D = 8 and odd parity. Energies calculated using boundary
MPS (bMPS) and the direct estimator derived in Sec. III C. (a) μ = B = 0; (b) μ = B = 0.1; see [38] for numerical data. As a reference we
provide the exact imaginary-time evolution of the state vector obtained via full contraction of the initial PEPS.

procedure we get an estimator of the energy from the simple
update algorithm without significant additional costs.

The estimator is only exact up to the Trotter error. It
also assumes that we converged to the ground state. In some
cases the estimator reproduces the energy quite reliably even
if convergence or a small δt are not given. In other cases,
the estimator was far off the real energy. See Figs. 9–11 for
examples.

We found the estimator useful to check for convergence
within a given Trotter step size δt . If the energy estimator does
not change anymore after an imaginary-time step with a given
step size, the state converged to the ground state of the Trot-
terized Hamiltonian. Therefore, we can reduce the step size.
This convergence check is much cheaper than the calculation
of an expectation value after each imaginary-time step.

0
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full Update, D = 6

FIG. 11. Energy during the imaginary-time evolution with U =
1 and κ = μ = B = 0 on the 3 × 4 lattice with odd parity. The
energies have been calculated using boundary MPS (bMPS) and the
direct estimator derived in Sec. III C for simple update. Full update
simulation with bMPS energy calculation. See [38] for numerical
data.

D. Instabilities caused by degenerate states

Even if all the criteria described above are fulfilled (includ-
ing a good estimation of the gap �ex), the imaginary-time
evolution is still not guaranteed to converge to the correct
value. As a matter of fact, it might not converge at all. One
such example is shown in Fig. 10(a), where the results first
approach the correct values. At some point, however, the
energy estimator does not decrease monotonously any more.
It begins to rise and to fluctuate. Again, much later the results
become numerically unstable and chaotic.

Fortunately, the onset of this problem has various indica-
tors which we can track. Not only does the full contraction
energy estimator fail to decrease further, in our implementa-
tion it also gains a significant imaginary part as compared to
machine precision. Under normal circumstances, the imagi-
nary part is on the order of 10−13, but when the time evolution
starts to fail it increases drastically. It becomes clear that we
are facing numerical instabilities when taking into account
that even the norm estimator obtains an imaginary part. One
further, though less reliable, indicator is a steplike decrease of
the simple update energy estimator. The step does not always
occur and it sometimes stabilizes at a new level, but other
times it continues decreasing without bounds.

We find that such instabilities occur only if the ground
state of the simulated system is degenerate. It is plausible
that degeneracies lead to numerical instabilities because the
ambiguity of the unitary matrices in an SVD is dramatically
increased once the principal values are no longer pairwise
distinct. This is similar to simulations without gauge fixing
which are known to be unstable. We find that breaking the
degeneracy, if ever slightly, resolves the problem. In Fig. 10(a)
the simulated system has a fourfold-degenerate ground state
and we clearly observe the described instability. With all
symmetries broken (see next section for details) and a non-
degenerate ground state the evolution converges stably as can
be seen in Fig. 10(b).
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1. Degeneracies in the Hubbard model

The ground state of the Hubbard model at half-filling
(i.e., μ = 0) lies in the even-parity sector and is nondegen-
erate [14]. Therefore, simulations of the full space and the
even-parity subspace do not feature the instabilities described
above. One has to be careful nevertheless because influences
like a strong chemical potential can reintroduce degeneracies.
In the case of large μ the ground state falls into a sector with
nonzero4 particle number which might be degenerate.

The ground state of the odd-parity sector, on the other
hand, a priori comes with a fourfold degeneracy. It can have
one spin-up or -down particle less or more than the ground
state, all leading to the same energy at μ = 0 with no external
magnetic field B. This degeneracy is easily broken by intro-
ducing a small but nonzero chemical potential and a magnetic
field of similar magnitude. The magnitude has to be chosen
carefully as it has to be large enough to ensure numerical
stability but small enough to keep the ground state in the
desired sector. In practice, μ ∼ 10−2κ usually yields good
results and the quality of the simulation is not very sensitive
to the exact value of μ.

The ground-state energy E0 without chemical potential and
magnetic field can be easily regained after a simulation from
the measured one:

E0(μ, B) = E0 − |nμ| − |MB|. (44)

We exploit the fact here that particle number n and magne-
tization M are both good quantum numbers of the Hubbard
model, i.e., the corresponding operators commute with the
Hamiltonian. We use the absolute values in Eq. (44) for clarity
as the ground state of the broken system always has lower
energy than the ground state of the unbroken one.

Finally, we point out that the lattice geometry itself can
exhibit an additional, more subtle, degeneracy that is not as
easily broken and regained after the simulation. This degener-
acy comes from a high spatial symmetry of the lattice or, put
differently, is a degeneracy in momentum space. It occurs only
if the symmetry group of the lattice has at least one irreducible
representation of dimension larger than one. In this case, the
degeneracy is protected by symmetry and cannot be broken
by any translationally invariant Hamiltonian. Any ring with an
even number N of sites exhibits this feature as it falls into the
dihedral symmetry group DN . In our case of rectangular pieces
of the hexagonal lattice with OBC it turns out that the 6-ring
is the only lattice with such a high symmetry. All the other
lattices can only have reflection symmetries and thus only
one-dimensional irreducible representations. We can therefore
easily avoid this degeneracy by choosing the geometry ac-
cordingly from here on.

E. Instabilities caused by the single-particle gap

A different problem arises in the case of a very large
single-particle gap �sp � �ex. The single-particle gap is the

4In our convention, half-filling has exactly zero particles though of
course the electron number has to equal the number of lattice sites. It
is a simple shift by a constant.

difference between even- and odd-parity ground-state ener-
gies Ee

0 and Eo
0 , respectively. It turns out that in this regime

the simulation in the even-parity sector works fine, but the
odd-parity simulation becomes unreliable. During the time
evolution the energy in the odd-parity sector can drop to that
of the even-parity sector, for example. To demonstrate this
type of instability explicitly, we simulate in the regime where
κ = 0, thereby enforcing �sp � �ex.

Such a case is shown in Fig. 11 where an odd-parity sim-
ulation has been attempted. The energy estimator from the
change of the norm during the simple update goes down to
Ee

0 = 0 immediately. The energy estimator from the boundary
MPS contraction originally converges correctly against Eo

0 =
1
2U , but then jumps down to Ee

0 after some time t ≈ 35. Only
the simulation using full update remains stably at the correct
energy.

The chosen bond dimension D = 2 suffices to solve the
problem at hand exactly because with no hopping the Hamil-
tonian decomposes into its local contributions. On every
lattice point, there is a twofold-degenerate ground state (one
particle up or down) with energy 0 and a twofold-degenerate
excited state (none or two particles) with energy U/2. That
means that only two independent dimensions have to be
considered. Thus, the instability cannot be alleviated with
larger D.

1. Tensor structure

To understand how this can happen, let us revisit the struc-
ture we imposed onto the tensors by the condition that only
parity-conserving entries can be nonzero. We consider the
simplest possible example, namely, a two-site lattice with
OBC and d = D = 2. Then, both tensors can be written as
2 × 2 matrices. We add a parity index to the left tensor and fix
it to be odd. Equation (7) now guarantees that the full tensor
network takes the form

M1M2 :=
(

0 a1

b1 0

)(
a2 0
0 b2

)
(45)

=
(

0 a1b2

a2b1 0

)
, (46)

which is equivalent to the state vector v := (0, a1b2, a2b1, 0)
encoding the two-dimensional odd subspace of the (d2 = 4)-
dimensional state space. Next, we apply a time-evolution
operator U to both sites independently. Again to keep things
simple, we choose U = diag(1, ε) where we are interested in
the case of ε � 1. The evolved network reads as

(UM1)(M2U ) =
(

0 a1

εb1 0

)(
a2 0
0 εb2

)
(47)

=
(

0 εa1b2

εa2b1 0

)
. (48)

This means that ultimately the eigenstate v is multiplied by ε.
The tensors M1,2, however, are not “eigentensors” of the time
evolution.

2. Suppression of a subspace

Equation (47) shows why the application of this energy
estimator of Sec. III C using the local norm change is prob-
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FIG. 12. Energies of the 3 × 4 hexagonal lattice with κ = 1 and μ = B = 0 at different values of the coupling U . (a) Even parity. (b) Odd
parity. Duplicate points correspond to χ = 2D and χ = 3D. The legend in the left plot applies to both. See [38] for numerical data.

lematic. Repeated applications of U lead to a suppression of
the b terms. Once they are much smaller than the a terms,
the matrix norm no longer changes significantly with further
applications of U . The energy estimator thus becomes zero, or
more generally Ee

0 .
With this in hand, we can also estimate when the jump, i.e.,

the more important problem, will occur. We expect that the
odd-parity sector will not be represented sufficiently well any
more once the b terms reach the order of machine precision
relative to the a terms. We call the threshold below which
stability cannot be guaranteed any more εstable. This leads to
the stability condition

e−�spt > εstable (49)

⇒ t <
ln (1/εstable)

�sp
. (50)

In the example of Fig. 11 we find εstable ≈ 10−8.
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FIG. 13. Smallest bond dimension D for which the simulation
of the 3 × 4 hexagonal lattice with κ = 1 and μ = B = 0 in the odd-
parity sector becomes unstable against the ratio of single-particle and
excitation gaps. Values of U as in Fig. 12 resulting in different ratios
�sp/�ex. See [38] for numerical data.

One would expect εstable to depend on D because more nu-
merical errors can accumulate with a larger number of entries.
This is not always the case, however, as can be clearly seen in
Fig. 11. Unfortunately, this property is not generalizable and
there are cases where larger D can worsen the problem. Such
examples are visualized in Figs. 12–14 and explained in detail
in Sec. IV A.

As the stability condition takes the same form as the con-
vergence condition for the exponential error due to the gap
�ex, we can easily extract the ratio between the time tstable for
which a stable evolution is possible and the time tconv needed
to reach the precision εconv, giving

tstable

tconv
= �ex

�sp

ln εstable

ln εconv
. (51)

The ratio of the logarithms can vary depending on the desired
precision and the dimensionality of the system, but in all
realistic scenarios it is of order 1 or slightly larger. Therefore,
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FIG. 14. Standard deviation of the norm �I [see (30)] and devi-
ations of the magnetization M [see (26)] and the particle number n
[see (28)] from the exact value. 3 × 4 hexagonal lattice with κ = 1,
U = 3, and μ = B = 0 for different bond dimensions D using χ =
3D. See [38] for numerical data.
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the relevant factor is the ratio between the different gaps.
One finds that a reliable simulation is possible if and only if
�ex � �sp.

Note that Eq. (50) provides a lower bound for tstable, i.e., the
time in which stability is guaranteed. It is nevertheless possi-
ble that simulations proceed stably for a much longer time.
We observe that this is in fact usually the case. A possible
explanation is that interactions involving more than one site
average out the effect of suppressed subspaces on a larger part
of the lattice and thus mitigates the problem. The example
above has no such interactions and hence accumulates the
factors locally.

3. Adding the even-parity sector

The example above Eq. (46) assumes an odd external parity
index at M1. In the more general case we would allow this
external index to take both values and therefore obtain two
copies of the matrix Mo

1 and Me
1 where the odd version Mo

1
corresponds to M1 in Eq. (46). In this case, an imaginary-time
step evolutes the network as

Mo
1M2 ∼

(
0 1
ε 0

)(
1 0
0 ε

)
(52)

=
(

0 ε

ε 0

)
(53)

in the odd-parity part and as

Me
1M2 ∼

(
1 0
0 ε

)(
1 0
0 ε

)
(54)

=
(

1 0
0 ε2

)
(55)

in the even-parity sector.

4. Full update as a possible fix

So far we are not aware of any solution to this problem
as long as simple update is used. Full update, on the other
hand, provides a solution as can be seen in Fig. 11, be it
a very costly one. In the future hybrid solutions might be
considered performing several steps with simple update and
then a stabilizing step with full update. We believe that full
update does not suffer instabilities from this problem because
the full contraction of the network and the following normal-
ization prevents the scale separation of individual blocks as
in Eq. (47). More research, however, is required and ongoing
with respect to full update’s stability and possible alternative
fixes.

IV. RESULTS

We now apply the algorithms explained above to specific
test models. We provide most of our results for the 3 × 4
honeycomb lattice with OBC because this is the largest system
for which results from exact diagonalization are feasible for
a comparison. Some tests on larger lattices as a proof of
principle are presented as well.

We find that the common choice of χ = D2 is much larger
than required (see Sec. III A). A good convergence is observed

already at χ = 3D. From now on all our simulations are
performed with both χ = 2D and 3D. Usually, the deviation
between these two points is negligible compared to the differ-
ences between results at different D. We use simple update in
the imaginary-time steps.

A. Ground state and first excited state of the Hubbard model

We first demonstrate the capabilities and limitations of our
algorithm with a scan of different onsite couplings U which
provides a broad range of single-particle gaps �sp. The results
for both even- and odd-parity sectors are depicted in Fig. 12.
While the even-parity calculation yields reliably good results
(with errors in the subpercent level for D � 10) for all chosen
couplings, this is not the case in the odd-parity sector. There,
the results are similarly good for U � 2 corresponding to
the case of �sp < �ex. Above this threshold, however, the
stability decreases. At U = 2.5 only simulations with bond
dimensions D � 20 produce wrong results. The ever smaller
bond dimensions at which the instabilities occur are plotted in
Fig. 13.

Fortunately, the breakdown in the odd-parity simulations is
easily identifiable. Not only the energy but also particle num-
ber n and magnetization M yield completely wrong results.
Since the latter are known to be integer values in a nondegen-
erate ground state, they can be used for a simple consistency
check. A large standard deviation of the norm �I provides
an even more reliable indicator for untrustworthy results [see
Eq. (30) and Fig. 8]. We visualize all three observables in
Fig. 14 for a conditionally stable simulation. The region of
D � 12, where the odd-parity sector features stability issues,
is clearly distinct from the stable regions for all three indica-
tors. There are two orders of magnitude separating the best
unstable result from the worst stable one.

This observation implies that, even though stability prob-
lems can occur, we can still trust the results from odd-parity
simulations as long as they have been tested for the stability
indicators, in particular �I .

B. Finite chemical potential

To emphasize the efficacy of our tensor method when
dealing with nonzero chemical potential μ, we compare our
results to those obtained from hybrid (or Hamiltonian) Monte
Carlo (HMC) for the 3 × 4 lattice with open boundaries. The
nonzero value of μ induces a complex phase in the action,
which we label θ for convenience.5 Standard HMC calcula-
tions must therefore resort to reweighting techniques when
calculating some observable O:

〈O〉 = 〈Oeiθ 〉
〈eiθ 〉 . (56)

The expectation values on the right-hand side of the equation
are evaluated with the real part of the action only. The reliabil-
ity of such reweighting calculations depends strongly on the

5The phase θ is itself a function of the field configurations.
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FIG. 15. The expectation value of the exponential of the complex
phase θ of the action for the 3 × 4 honeycomb lattice as a function of
chemical potential μ. Results are shown for integration along the real
plane (black points) and integration pushed into the complex plane
along the tangent plane (red squares) as described in the text. For
μ = 0 there is no sign problem and the expectation value is equal to
1 for both calculations. See [38] for numerical data.

fluctuations of eiθ and this in turn influences its mean value
〈eiθ 〉, or statistical power. In the limit of no complex phase
(i.e., no sign problem), the statistical power goes to one and
we recover the original HMC algorithm. On the other hand,
in the limit of large fluctuations the statistical power goes to
zero and the right-hand side of Eq. (56) becomes ill defined,
precluding any reliable estimate of 〈O〉. In Fig. 15 we show
the statistical power related to reweighting (black points) for
this system as a function of μ. It is clear that the sign problem
quickly becomes prohibitive for moderate μ ∼ 0.3 and larger.
One can attempt to alleviate the sign problem by deforming
the contour of integration into the complex plane [40–42]. The
simplest contour deformation is that of a constant imaginary
shift of the fields to a “tangent” plane that intersects the ac-
tion’s main critical point [43,44]. Examples have been found
where such a simple transformation of the fields greatly allevi-
ates the sign problem [45]. We have done similar calculations
with the honeycomb Hubbard system, as shown in Fig. 15
(red squares). Although there is slight improvement in the
statistical power for μ � 0.3, the sign problem still quickly
overwhelms the calculation as μ increases.

For tensor network simulations this problem is completely
absent. Figure 16 visualizes the energy obtained with different
bond dimensions D in the even- and odd-parity sectors as well
as the single-particle gap as the difference of these energies.
The same system and the same range of chemical potentials as
in Fig. 15 were used. The simulations have a lower precision
in the regions where the ground state changes, i.e., near the
kinks. This can be explained by the near degeneracy due to the
small excitation gap �ex. We also encounter severe problems
in the odd-parity sector at μ = 0 which is to be expected as
the ground state in this sector is degenerate and we encounter
the problem described in Sec. III D. Otherwise, the results are
very precise, in particular, for a broad range of values μ > 0.3
where the HMC completely fails.
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FIG. 16. Energies of the 3 × 4 hexagonal lattice with κ = 1,
U = 2, and B = 0 at different values of μ. (a) Even parity. (b) Odd
parity. (c) Energy gap between even- and odd- parity sectors. Du-
plicate points correspond to χ = 2D and χ = 3D. See [38] for
numerical data.

C. Scalability with volume

The ability to simulate away from half-filling by itself is a
great advantage of the tensor network ansatz over stochastic
methods. Yet, the method is only beneficial if it demonstrates
a feasible scaling in spatial volume. We know from Sec. II E
that the runtime depends linearly on the lattice size and the
volume’s influence on memory is of subleading order. It is,
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FIG. 17. Relative deviations of the energies in the noninteracting
limit with finite chemical potential (κ = 1, U = 0, μ = 0.5, B = 0)
from the exact values for different lattice sizes and bond dimensions
D. Duplicate points correspond to χ = 2D and χ = 3D. See [38] for
numerical data.

however, not clear a priori that the same bond dimension D
is enough to describe larger lattices with similar precision.
Therefore, the implicit effect on runtime and memory might,
in principle, be significantly larger. We find that this is not
the case. As can be seen in Fig. 17, the relative error for
any specific bond dimension D is virtually independent of
the lattice size. This is a strong indicator that the area law is
fulfilled for this system.

There is, however, another hidden cost of larger vol-
umes. As the lattice approaches the thermodynamic limit,
the excitation gap �ex usually goes to zero. Thus, a longer
imaginary-time evolution is required to reach convergence of
the true ground state. In addition, it turns out that the time
steps δt have to be chosen smaller from the very beginning
for larger lattices. Too large time steps lead to numerical
instabilities. The combination of these two constraints results

in a significantly increased number of steps required for the
imaginary-time evolution.

We present the results of a 30 × 15 lattice6 simulation at
nonzero chemical potential both in the noninteracting limit
and at finite coupling U = 2 in Fig. 18. The first serves as
a proof of principle where we can compare to results obtained
from exact diagonalization of the hopping matrix. The latter
simulation is the first of its kind and it predicts energies that
could not have been obtained otherwise to date.

The results in Fig. 18 are depicted as a function of D−2.
We find empirically that this dependence approximates the
convergence behavior very well. It should be possible to fur-
ther improve the extrapolation by using the truncation error or
similar quantities instead of the bond dimension [18,46].

Although we can calculate the energy well below sub-
percentage precision in this way, we cannot give a reliable
estimator of the single-particle gap �sp because for this
particular choice of parameters the gap is too small to be
resolved, i.e., even- and odd-energy extrapolations are com-
patible within uncertainties. The results of the extrapolation
in the noninteracting case are Eeven = −693.2(17) and Eodd =
−692.1(18) which in both sectors are fully compatible with
the exact value Eexact ≈ −692.3. The exact energy is the same
for both parity sectors on our level of precision. In the case of
U = 2 we find Eeven = −483.5(14) and Eodd = −483.8(12).
The fit has been done using the Levenberg-Marquardt al-
gorithm [47,48]. Reference [49] provides a comprehensible
explanation of the uncertainty estimation.

V. CONCLUSION

We presented an algorithm for direct simulations of
fermionic even- and odd-parity sectors and demonstrate its
efficacy using the example of the Hubbard model. For this, we
use fermionic PEPS with an additional parity link confined to

6This corresponds, up to boundary conditions, to the bipartite 15 ×
15 honeycomb lattice with two sites per unit cell.
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FIG. 18. Energies with finite chemical potential (κ = 1, μ = 0.5, B = 0) for the 30 × 15 lattice against the inverse squared bond
dimension. (a) U = 0; (b) U = 2; see [38] for numerical data. Duplicate points correspond to χ = 2D and χ = 3D.
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one of the two subspaces. This allows us to probe explicitly
for specific excited states and, among others, calculate the
single-particle gap. Our ability to study physical systems in
both parity sectors with tensor networks stands in contrast
to infinite PEPS [18,21,31,39] or other renormalization-based
algorithms [34,50,51] which often reach higher precisions for
ground-state calculations.

The ground-state energies of the respective parity sectors
can be determined with high accuracy. Using the boundary
matrix product state method with a truncation dimension χ

that scales linear in the bond dimension D allowed us to use
large values of D to increase the precision. Extrapolations in
squared inverse bond dimension D−2 allow for uncertainties
in the order of 10−3 with relatively low computational costs.
Nevertheless, a higher accuracy is required before physically
meaningful interpretations of the single-particle gap on large
lattices are possible. The single-particle gap is, of course, only
one out of many different order parameters of the Hubbard
model on the honeycomb lattice [52] and it might be worth-
while investigating additional observables like the staggered
magnetization or correlator functions.

Our simulations work reliably and efficiently for large lat-
tices and away from half-filling, but not necessarily with large
onsite interactions. In the latter case, simple update becomes
increasingly unstable. We also find that degenerate ground
states can significantly decrease the stability of the simula-
tions. While the only feasible solution to the first problem
seems to be the usage of full update, the latter problem can
usually be alleviated by explicitly breaking the degeneracy.
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APPENDIX A: FERMIONIC SWAP GATES

We introduced the fermionic SWAP gates in Sec. II C as
additional tensors in the tensor network. In our case we never
have to contract the SWAP gate with a tensor explicitly. Instead,
we can always find a way to write the tensor network such that
the gate is contracted with two indices of a tensor Ti1i2 , where
any additional indices of T are ignored at the moment because
they are irrelevant for the consideration. With two contracted
indices we can write

Ti1i2 X i1i2
j1 j2

= Ti1i2δi1 j1δi2 j2 S(i1, i2) (A1)

= Tj1 j2 S( j1, j2). (A2)

Note that the indices j1 and j2 in the last term (A2) are not
contracted. This can be realized by an element wise multipli-

cation of T with the matrix S. Any additional indices of T
simply yield a multiplicity of the same operation.

Figure 19 shows the different possible contractions of a
SWAP gate. Wiggly lines summarize any number of indices
that are not explicitly relevant for a given contraction but
cannot be neglected nevertheless. Arrows between diagrams
show the transformation under contraction.

The transformations in Fig. 19 are the different contrac-
tions of a SWAP gate as written in Eq. (A2). It becomes clear
that a SWAP gate does precisely what one would expect by
interchanging two lines (best to be seen in the central panel).
The SWAP gate is self-inverse, so the transformation works
the same way by a single contraction in both directions. The
figure seems very redundant, but the swapping of different line
types comes with different S matrices. Thus, the first panel
interchanging two physical indices translates to

Spp =

⎛
⎜⎝

1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1

⎞
⎟⎠, (A3)

the second physical-internal panel yields

Spi =

⎛
⎜⎝

1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1
1 . . . 1 −1 . . . −1
1 . . . 1 −1 . . . −1

⎞
⎟⎠, (A4)

and the twice internal one reads as

Sii =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1 1 . . . 1
...

. . .
...

...
. . .

...

1 . . . 1 1 . . . 1
1 . . . 1 −1 . . . −1
...

. . .
...

...
. . .

...

1 . . . 1 −1 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

APPENDIX B: FULL UPDATE TRUNCATION
FOR FERMIONS

The operator exp(−τHi ) is applied to a pair of nearest
neighbors in the imaginary-time evolution. This increases the
bond dimension and requires a truncation. We want to find
new triads with a link of fixed bond dimension D approxi-
mating the new state. This is depicted in Fig. 20. The bond
dimension splits into an even- and an odd-parity part D =
De + Do. We keep the size of the parity sectors fixed for this
truncation procedure.

The truncation shall be optimal in the sense that the differ-
ence

f = ‖|�〉 − |� ′〉‖2 = 〈�|�〉 − 〈�|� ′〉 − 〈� ′|�〉 + 〈� ′|� ′〉
(B1)

between the old state and the new state is minimal. Scalar
products mean summation of the corresponding physical in-
dices between the bra and the ket as well as a contraction of
the wiggly lines with the rest of the tensor network Nred (see
Fig. 7).

The optimization involves two triads with two parity sec-
tors each. Therefore, we have to update four tensors. As an
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Spp Spi Sii

FIG. 19. Contraction of a single SWAP gate with a tensor. The left figure shows the two physical indices, the middle represents a physical
and an internal index, and the right the two internal indices.

example, we present the update of the even-parity part of the
left tensor here. The other tensors follow correspondingly. We
first calculate the derivative of our loss function f with respect
to the tensor to be updated:

∂f

∂ ∗ e

=
∂Ψ

∂ ∗ e

|Ψ ∂Ψ
∂ ∗ e

|Ψ
(B2)

= e

∗e

Nred

+ o

∗e

Nred

−

∗e

exp(−τHi)

Nred

.

(B3)

|Ψ =
exp(−τHi)

→ |Ψ =

FIG. 20. Truncation after the application of an imaginary-time
evolution operator. Left: original triads with operator applied. Right:
new triads with given bond dimension D on the link between them.

To find the minimum of f , we set the derivative to zero. This
leads to a linear equation for the triad of interest. Its solution
is

e =

M−1

∗
e

exp(−τHi)

Nred

e

−

M−1

o

∗
e

Nred

e

, (B4)

where M−1 is the inverse of M:

M
e

e

:= e

∗e

Nred

,
(B5)

M−1

M
e

e

e

= e . (B6)

We get the optimal new tensor according to Eq. (B4) while
keeping the other triads fixed. All four tensors are updated
sequentially this way. We then calculate the truncation error f
and repeat the procedure iteratively until f converged.
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