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We investigate the phase diagram of spinless fermions on a square lattice with nearest-neighbor interaction,
using the recently developed projective truncation approximation in Green’s function equation of motion. For
attractive interaction, the ground state is in a homogeneous p + ip superconducting (SC) phase at high or low
fermion densities. Near half filling is a phase separation (PS) between the SC phases. Allowing inhomogeneous
solution, we obtain p-wave SC domains with positive interface energy. As temperature increases, the SC phases
transit into normal phases above T, generating a homogeneous normal phase (far away from n = 1/2), or a
PS between normal phases with different densities (close to n = 1/2). Further increasing temperature to T,
the PS disappears and the particle-hole symmetry of the Hamiltonian is recovered. For repulsive interaction,
depending on the filling, the ground state is in charge-ordered phase (half filling), charge-disordered phase (large
hole/particle doping), or PS between them (weak doping). At finite temperature, the regime of charge order
phase moves to finite V and extends to finite doping regime.

DOLI: 10.1103/PhysRevB.104.155116

I. INTRODUCTION

The spinless fermion (SF) model is a simple but impor-
tant model in quantum many-body physics. Historically it
originates from the study of metal-insulator transition [1].
In the early stage, this model was used to describe a class
of materials with Verwey transition [2-4], as well as the
thermodynamic and transport properties of superionic con-
ductors [5,6]. It can be used to describe the phase separation,
stripe order, and nematic order in cuprates and organic su-
perconductors [7-10]. In recent years, this model has wide
applications in the emerging fields such many-body localiza-
tion [11-13], charge fractionalization [14,15], time-reversal
symmetry breaking [16-19], quantum criticality [20-22],
quantum quench [23], matter-field interaction [24,25], and
topological states [26].

One of the simplest forms of the SF model is defined
on a bipartite lattice with only nearest-neighbor hopping and
density-density interaction. The Hamiltonian reads

H=—tY (cje;+He)+V Y mnj—p) n. (1)
(i) (i) i

Here c}L (c;) is the fermion creation (annihilation) operator on
site i. n; = cjc,- and (...) represents the nearest-neighbor pair
summation. On bipartite lattice, this model has particle-hole
(PH) symmetry at pu = zV/2, where z is the coordination
number. In this work, = 1.0 is taken as the unit of energy
and periodic boundary condition is used.

The properties of this system has been well studied for
the cases of one spatial dimension and infinite spatial dimen-
sions. In one dimension, by Jordan-Wigner transformation,
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Eq. (1) can be mapped into a spin-1/2 XXZ model under
Zeeman field [27]. At half filling that corresponds to zero
field of the spin model, the ground state is either a Luttinger
liquid (—2f <V < 2¢) or a phase with charge order (CO)
(V > 2¢) [28-30]. In infinite dimensions, Uhrig and Vlaming
[31] obtained the full phase diagram and observed an incom-
mensurate phase.

For other spatial dimensions, this model has been studied
using the analytical methods such as perturbation theory [32],
perturbative-variational approach [33], Hartree-Fock approx-
imation [34,35], as well as numerical techniques including
cluster approximation [36,37], quantum Monte Carlo [38,39],
exact diagonalization [10], fermionic projected entangled-pair
states [40], and variational Monte Carlo [41-43]. One of
the basic issues is the phases and their stability. For half
filling and V > 0, the stability of the CO ground state is
discussed [44] and the ground state degeneracy [45] analysed
by strict proof. The van Hove singularity at Fermi energy
facilitates both PS and superconductivity (SC) for V < 0, as
analysed by random phase approximation [39] and Bogoli-
ubov mean-field approximation [46]. Various ordering is often
accompanied with phase separation (PS), i.e., the tendency
of particles to segregate into inhomogeneous state in real
space.

Surprisingly, despite extensive studies in the past decades,
a complete phase diagram containing charge order (V > 0
case), superconductivity (V < O case), and PS is still absent
for this model. The interplay between PS and various or-
derings, e.g., the CO and SC order studied in this paper, is
still awaiting a deeper understanding, especially for small V
regime. Ordering and PS are prevalent phenomena in many
strongly correlated electron materials ranging from colossal
magnetoresistance manganite [47], to organic superconduc-
tors [48], and to high temperature superconducting cuprates
[49]. The general understanding of this issue acquired by
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studying the simple SF model could benefit the study of other
more complicated systems.

In this paper, we address this problem using the Green’s
function (GF) equation of motion (EOM) method with pro-
jective truncation approximation (PTA). The robustness of
our conclusion is examined by expanding the operator basis
beyond the mean-field level. We map out the global phase
diagram which contains CO, SC, and PS phases. The inter-
play between phase separation and the ordering of spinless
fermions (i.e., SC and CO) is elucidated.

Our findings are the following. For repulsive interaction,
depending on the filling, the ground state of Eq. (1) is in CO
phase (half filling), PS between CO and the charge-disordered
(CD) phase (weak doping), or CD phase (large doping). At
finite temperature, the regime of CO phase moves to finite V
and extends to finite doping regime. For attractive interaction,
at T = 0, any weak attraction produces fermion pairing and
leads to p, + ip, SC phase. Depending on the filling of spin-
less fermions, the ground state is either in a homogeneous SC
phase (far away from half filling) or PS between them (near
half filling). The inhomogeneous solution gives p-wave SC
domains in real space with positive interface energy.

With increasing temperature, the SC states first transit into
normal phases at a lower temperature Ty, and then PS dis-
appears at a higher Ty, showing successive recovery of U (1)
and PH symmetry. In both cases of positive and negative V,
we find that PS occupies a significant portion of the phase
diagram around half filling. It competes with CO (V > 0) and
SC(V < 0) on the thermodynamical level, i.e., PS suppresses
the regions of two ordered states by tuning the density of
spinless fermion away from the favourable level for ordering.

This paper is arranged as follows. For the sake of com-
pleteness, in Sec. II, we briefly introduce PTA in GF EOM. In
Sec. III, the formalism of PTA for SF model using different
operator bases is presented. In Sec. IV, we summarize the for-
mula of Hartree-Fock-Bogoliubov (HFB) mean-field theory
which is equivalent to PTA under the simple basis. Section V
presents our numerical results and analysis. Summary and
discussion are given in Sec. VL.

II. INTRODUCTION TO GF EOM PTA

In this section, we briefly introduce the method that we use
to study SF model in this work, i.e., the GF EOM PTA method.
The two-time GF EOM [50-53] is a traditional tool for study-
ing quantum many-body problems. Its modern application,
however, is hampered by the arbitrariness and uncontrolled
nature of the truncation approximation [52,54,55]. Recently,
based on the ideas of operator projection [56-63], Fan et al.
[64]. developed the systematic truncation scheme known as
PTA to solve the GF EOM. With this method, GF with correct
analytical structure can be obtained with controlled precision
for a general quantum many-body system [65].

For a given Hamiltonian H, we select a set of linear inde-
pendent operators to form the vector A= (A1, Ay, ..., AT,
which is supposed to include the most relevant excitations of
the problem. A matrix of two-time retarded Fermion-type GF
is defined as

GAMIAT(1) = —%e(r —Y{AD), AT ()

Here, 6(r — t’) is the Heaviside step function. AYt) is the vec-
tor of basis operators in Heisenberg picture. The curly bracket
represents anticommutator. (O) = Tr(e #70)/Tre #H is the
thermodynamical average of operator O. Below, we take the
natural unit, i = 1.

In the frequency domain, the GF matrix satisfies the EOM

wG(A|AT, = ({A, A")) + G((A, H]|AT),, A3

wG(AIAT), = ({A, A")) — GA|IAT, H]),. )

Here, the square bracket represents commutator. For an in-
complete basis, the commutator [fT, H] is not closed but
generates new linearly independent operators. The EOM
therefore involve higher order GFs. The idea of PTA is to
project [A, H] to A. We denote the commutator as

[Ai, Hl =) MjA; + B, (5)
J

where B; € {A;}. M is called a naturally closed matrix. PTA
amounts to approximate B; as a linear combination B; ~
> ;NjiAj and determine N by projecting the equation to basis
{A;}. For this purpose, we choose the inner product

(A|B) = ({A", B}) ©)

that satisfies the requirements of linearity and positivity. After
projection, Eq. (5) is approximated as

[A, H] ~MA, (7)

where M, = M + N = I"!L. Here, the inner product matrix I
is defined as I;; = (A;]A;). The Liouville matrix L is given
by L;; = (A;|[A;, H]). Both I and L are Hermitian and I
is positive definite. This property ensures that the obtained
approximate GF has only real simple poles.

Combining Eqgs. (3) and (7), we get the approximate GF
matrix

GAIAT, ~ (w1 —M7) T (8)
An equivalent expression reads
G(A|A"), ~ (IU)* (w1 — A)~ AU, ©9)

with U being the eigenvector matrix of the generalized
eigenvalue problem LU = IUA. It fulfils the generalized or-
thogonal relation UTU=1. A= diag(Aj, Ao, ..., Ay) is a
real diagonal matrix. This formal solution of G, involves I
and L which contain unknown static averages. Those averages
of the form (AjA ;) can be calculated self-consistently from GF
by the spectral theorem,

o AU AU),
(AafA) = ij—em P (10)
or equivalently,
(ATATY = 1(P™M 4+ 1)7" (11)

For those averages that cannot be expressed in the form
(A;A,-), additional approximation is required. If such averages
appear in L, Ref. [64] proposed the partial projection approx-
imation (PPA). We first divide the basis into two subspaces
{A;} = {AEI)} U {Afz)}. Basis operator A; belongs to subspace
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{AEI)} if B; = 0, and to subspace {Al@} if B; # 0. Accordingly,
the matrix L and I become 2 by 2 block matrices. The idea
of PPA is to approximate the projection of B; # 0 to the
subspace {Afz)} by first projecting B; to {Agl)} and then to
{AEZ)}, approximately expressing Lj, in terms of I and M.
Employing the Hermiticity of L, one gets

M IM),, 1
L~ <( 11 1 [s )21]{1 . )’ (12)
(IM),, E[Lzz + (L5,) ]
where
L5, = M)y + Ly 117 'Py,, (13)
Py = [AM)y]" — (IM),,. (14)

If the inner product matrix I contains the averages outside the
form (AJ'A,-), GF of the type G(A|O"),, needs to be calculated

for properly chosen O. Besides, PPA may break the PH sym-
metry of Hamiltonian. If that happens, we need to replace
Eq. (12) with the PH symmetry-conserving formalism [64].
The GF obtained from the above procedure are guaranteed to
obey the causality and energy conservation. It was confirmed
on the Anderson impurity model that the precision of result
improves systematically with enlarging basis size [65].

III. APPLICATION TO SPINLESS FERMION
MODEL: FORMALISM

In this section, we apply EOM PTA to SF model Eq. (1).
The key is to select operator basis that contain the most
relevant excitation operators of the system. In this work,
we consider the following bases. The simplest one is the
N-dimensional basis of single-particle annihilation operators
{c1,c2,...,cn}. Here N is the number of lattice sites. PTA
with this basis is equivalent to Hartree-Fock (HF) mean-field
approximation. We therefore call it HF basis. The second basis
considered is {c;, njysci} (i=1,2,...,N), which includes
the operators appearing from the commutator [c;, H]. Here,
8 stands for nearest-neighbor index, This basis has a dimen-
sion of 5N and is named p-5 basis (short for projection-SN
dimension). These two bases cannot describe the supercon-
ducting phase. To take into account the superconducting order
parameter, we extend the above bases by adding the Her-
mitian conjugate operators, forming the HFB basis {c;, ¢/}
(i=1,2,...,N) and the p-5-sc basis {c;, cj', NitsCiy ni+5c;r}
(i=12,...,N),respectively.

When the superconducting order parameter is zero [i.e.,
no U(l) symmetry breaking], the results from HFB and
p-5-sc bases coincide with those from HF and p-5 bases,
respectively. Besides the above four basis sets, in the case
of superconducting state, we also consider a subspace of
the p-5-sc basis, namely {c;, c;, D s MitsCis Y g n,uﬂgcj} (i=
1,2,..., N), which contains the operators in the commutator
[ci, H] summed up as a single operator. We call this basis
p-2-sc basis.

i {(Cl, N15,C1, M1, Cly M1ssCly Mis,Cly - -2 ),
= T
[ezs crps d(8). d; 3 (®)] .

For the translation invariant phase, the calculation can be
greatly simplified by using the translational symmetry of the
Hamiltonian. To do that, we use the bases composed of the
Fourier transform of the operators for each specific wave
vector k. It is worth noting that to meet the PH symmetry
requirement, for the p-5, p-2-sc, and p-5-sc bases for a spe-
cific momentum k, we put the two operators at a pair of
momentums k and (m,m) — k into these bases. The reason is
as follows. For SF model Eq. (1) on a square lattice, the PH
transformation is defined as

¢, = (1) (15)

At the PH symmetry parameter p = 2V, the Hamiltonian
is invariant under the PH transformation, i.e., H = H. To
facilitate the consideration of PH symmetry, we define a com-
posite transformation as O = (0’) and require that the basis
is invariant under this transformation. This in turn requires
that both operators Oy and O, | ; be contained in the basis.
Following the idea of Fan er al. [64], we can then construct
the PH symmetric natural closed matrix M and obtain the ap-
proximate GF matrix that satisfies PH symmetry. The details
of constructing the PH symmetric natural closed matrix M is
given in Appendix.

In the following, for each operator basis used in this work,
we give the corresponding matrices I and M (or the Liouville
matrix L).

A. HF basis
- T 1
i— (c1, €3,...,cn)", real space, (16)
s momentum space.

Here, ¢ = 1/ VN Zi kT c;. For this basis, PTA is equivalent
to HF mean-field approximation. For the real space basis,
matrices I and L are obtained as

L; =6 a7
and
Lij=-t 251‘,#54- 1% Z((nH—S)(Si,j_ (clei)8i js)— 18ij,
5 s s

respectively. In the momentum space basis, matrices I = 1
and L reads

1% S
L:e,;—u+4nV—NZCOS[(k’—k)-S](c;cE,). (19)
)

Here, ¢, = —21(cos k. + cosky) andn = 1/N Z,;(c%c;) is the
fermion density.

B. p-5 basis
The p-5 basis is defined as

real space
. (20
momentum space
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Here, njs, = nis, (z=1,2,3,4),dy(§) = 1//N Zi e”"?"niHci, and 7 = (i, 7). To ensure the PH symmetry, we put operators
with momentums k and 7 — k into the basis together. L contains the averages such as (n,-+(scj+8, 4o Civs) and (i 5oy

which cannot be expressed as (Aj'A ). We therefore use PPA to simplify the calculation.
For the real space basis, the matrix elements of I is given by the following equations:

(ci | ¢j) = dij,

(Migsci | njrsc;) = (Nigsiys)ij

(ci | njysci) = (niys)dij

—(cleins)8imss

- <ni+6+5’cjci+6>5j,i+6 - (ni+6C,TCi—6’)8j,i—5’- (21)

The elements of the matrix M can be extracted from the following commutators,

[ci, H] = —t ch+8 +V2nl+(§cl Ui,
[isaie HY = —tniciss + (V= igsci — 5 3 s+ o 3 (niscs + ) + Bi(O) 22)
2 5/ 2 818

Here,

t -
Bi(8) = 3 Z Ciyy — 1 Z NitsCivs + 1 Z (CL(HS'CH—B — ¢l sCivsys)Ci +V Z NitsNits Ci —

8548 8548 §'#—8

\%4
5 2 ss +niydei (23)
§'#£8 8'#£8

For the operator basis in momentum space, the inner product matrix I is given by

(cz I eg) = b

(cz | dp(8)) = [n — p(8)16; 1, (24)

1
(d(8) | dp(8)) = [ﬁ > s ) — B (8,8~ BE(E, 8)— 35,_5@;(5)}5%}/. (25)

i

The natural closure matrix M can be extracted from the following commutator relations:

[ Hl = (e — weg +V Y dy(6),
§

1 5 1%
[dy(8), H] = —E(e]; —te * e + (EV - M)d,;(é) —te 0 d (—8)+ 3 Zd,;((s’)vL B(8). (26)

In the above equations,

1 I
Ol,;((s) — ﬁ Zel(/{ /C)(S(C,];cl_él>7
k/
, 1 DV ot
Bi8,8) = > el By ), 27)
]2/

and B;(8) = 1/+/N Y, €*7B;(5). For § # &', the averages
(nizsnirs) in Egs. (21) and (25) cannot be calculated self-
consistently from the spectral theorem. We therefore used
an additional decoupling approximation for it, (n; snj1sy) ~
(niys)(nive) — (C;;SCHB’)(C;@/C:'M)-

C. HFB basis

The simplest basis that is able to describe superconductiv-
ity is
real space

o 3T
- (CI’C27'-'aCNaclvcz’~-'aCN)7

LT NT
(e e o)

For this basis, PTA is equivalent to HFB approximation.
Analytical equations can be obtained and analysed for the
momentum space basis, which will be left for the next section.
For real space basis, we obtain the inner product matrix I = 1.

momentum space

848

(

The matrix element of L reads

H]) = —t Z&‘,,ﬂra — Wi
8

+V Y (nigs)dij —
$

(c]lle;, HD) = —(cille], HD* =V ) (cic))8i js. (28)
8

H]) = —(c]llc

(cillcy,

(cle)8ijvs),

D. p-2-sc basis

To take into account correlation effect, we enlarge HFB
basis into the following 8 dimensional operator basis

A — . T i N
A= (cp gz, € o c. o dp, d,

i T N\
AR k—7t° d,]}" dﬁ—z) . (29)

Here, d; = ) ; d;(8). Note that we have put the operators
at momentums k and kK — 7 into the basis for PH symmetry
reasons. Since the Liouville matrix L is complicated for this

basis, we use PPA for it. Assigning the first four operators as
block one, and the latter four as block two, we obtain the block
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matrices as I}, = diag(1, 1, 1, 1), Ly = (I2)",

4n — al(E) 0
0 4n + al(E)
I, = .
by (k) 0
0 —by (k)
and
—fik)+h 0
Y 0 fil)y+h
—g" (k) 0
0 g (k)

In the above two equations, the coefficients ai(z) and b,-(l;)
(i=1,2)are

ay(k) = % > Teos(k, — ke) + cos(k] — ky)l{n).
I;’
) ) )
ar(k) = N Z[cos(kx + k) + cos(ky + k) ng),
I;/
) ) )
bik) = < ) leos(k, + ko) + cos(k] +k)legel ),
k/
) ) )
ba(k) = ~ > “lcos(k}, — ky) + cos(k], — ky)l{c_gcp). (32)
E’
The coefficients f; (75), fz(lz), and g(l;) are given as
)
Atk =~ > “lcos(k}, — ky) + cos(k] — k)]
]?
x ((ng) + (dlep) + (el dp)),
) ) )
h) =~ > “lcos(k} + ki) + cos(k, + k)]
]?
X ({ng) + {djcp) + (] dg)).
g(k) = IEV Z[cosk cos k. + cos ky cos k; 1(d_, T T_]?). (33)
-
|
n— ot/;_ ) 0
0 n+ o ()
=g 0
0 ~B;®)
and
£:(8, 8" 0
0 s (8,8
b2=|-pes) 0
0 158", )

b (k) 0
0 —by (k)
> , 30
4n — a (k) 0 (30)
0 4n + az(E)
~g(k) 0
0 8(k)
S 31
—falk)+ h 0 3D
0 fk)+h
[
In the diagonals of I,, the symbol 4 is
1
h=dn+ > Z Z(nini+5_5r). (34)

i85 5

It cannot be obtained directly by the spectral theorem. We
therefore make an additional approximation v(n,n,+5 5)
(ni) (nigs—s) = (clys_geilc]civs—s) + (clps_ye)cicivs-s).

For the natural closure matrix M, we obtain the
explicit expression as My, = diag(e; — u, —€; — u, —€z +
W, € + ), Mp= diag(26,;, —261-(*, —26];, 26];), M, =
diag(V, V, =V, =V), and My, = diag(4V — u, 4V —
w, =4V 4+ pu, =4V 4+ ).

E. p-5-sc basis

This operator basis reads

el o di(8).dy 5(8),d (8),d ().

P .
A= (cp, ¢ g Z

7

i
(35

It contains all the higher order operators that appear in the
commutator [c;, H] separately. In the above equation, each
symbol depending on § represents four operators, with § rang-
ing from 1 to z = 4. This basis therefore has a dimension of
20. Due to the complication of Liouville matrix L, here we
also need to use PPA. The first four operators are regarded as
block one and the other 16 operators as block two.

The block matrices of I are obtained as follows: I;; =
diag(1, 1,1, 1), Iy = (In)",

[ﬂg(S)]* 0
0 =B I
n— [Ol )I* kO ’ (36)
0 n+ [ (8)]"
—n(8, 8) 0
0 n7(8, 8")
6.8 0 (37
0 ¢ (6,8)
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In the above two equations, § and &’ take values 1 ~ 4. Equations (36) and (37) are therefore compact expression for the 4 x 16
matrix I, and the 16 x 16 matrix I,,, respectively. The matrix elements are expressed as the following:

1 A3 1 WD) 3 ho Ly e
@) = 5 DT ). ) =5 30 e ), 16,80 = 5 31 G)cp),

k' k' K

1 ) N

. 8) =5 ) le ST @l @)t )+ E DN al 8l ),

k!
6.8 = - Y ay) — 0.8 — (5. 8) — By ol O (38)
70, =N iNi+5-8' Vi L0, Yo, 5+6,010 .

i

The natural closure matrix M can be extracted from
Eq. (26) and its Hermitian conjugate. Finally, when & #
8’, we make an additional approximation to the average
(ninigs—y) in (8, 8"), taking (miniys—s) = (mi)(nivs—s) —
(cf,s_gei)lc]civoms) + (cf,s_ycl) cicivs—s).

IV. HFB MEAN-FIELD APPROXIMATION

For HFB basis, we find that EOM PTA is equivalent to
HFB mean-field approximation. In this section, we summa-
rize the analytical formula obtained. From HFB mean-field
approximation, Hamiltonian (1) is reduced to

Hyie = ) &cicp — ) [A(K)c
k k
-y [— - V&, k/)]( D)

k&

+ ) Al el ). (39)
k

' +Hel

In this equation,

G=e+4anV =23 V& K)ng) — p.
]?

- - %
Vk, k)= — k,
(k, k") N[COS(

- ZV(%, k) c_pcp)
];/

— k) + cos(ky, — k)],

A(k) =

= A,sink, + Ay sink, (40)

are the renormalized single-particle dispersion relation, the
interaction potential matrix, and the energy gap function, re-
spectively. In Eq. (40), A, = —(V/N) Z,; sin(k;)(cflg,c,;,) and
Ay, =—(V/N) Z,;, sin(k;)(c_,;,c,;,). From the above equation,
we see that A(k) is an odd function of &, implying odd parity
for the possible superconducting pairing. The last two terms
in Hyr are constants that only shift the energy.

Solving Hyr by Bogoliubov transformation, we obtain the
single-particle dispersion &; = v %3 + 4A(k)A*(k). The self-
consistent equation for the gap functlon reads

AK) =
1‘(’/

S v, %’)%tauh(@). 41)
]z/

(
The averages (n;) appearing in & is given by

uz v?

Ty — k k
(C”Ck) - eﬂél? + 1 + e_ﬁg]; + lv (42)

M &) ol &
ulz—2<1+%>, v];—2<1 $;>. (43)

The superconducting transition temperature 7, satisfies the
two equations below,

_V sin?(k) BeEr
1= 5 ];Z Z tanh( > ),
_ v ﬂc‘gjgr
- Z ( > ) (44)

Due to the C4 symmetry of the lattice, the above two equations
in Eq. (44) give the same T.. Obviously, HFB approximation
predicts that there is no superconducting phase in the SF
model with repulsive interaction V > 0.

with

sin (k/

V. RESULTS

Using the formalism developed in previous sections, we
obtain numerical results for bases HF, p-5, HFB, p-2-sc, and
p-5-sc. The PH symmetric formalism is used in all our calcu-
lations. We find that the stability of SC is sensitive to lattice
size. For HF and HFB bases in momentum space, results are
obtained for lattice as large as 103 x 107 sites. For p-5, p-2-sc,
and p-5-sc bases in momentum space, our study is limited to
102 x 10% system. In real space, we can study systems of size
30 x 30 using HF, p-5, and HFB. The finite size effects for
these sizes are negligible unless stated otherwise.

We first briefly review some basic properties of Hamil-
tonian (1) at the PH symmetric parameter 1 = 2V. In the
weak-coupling limit (V = 0), as pointed out by Gubernatis
et al. [39], the Fermi surface has a nesting momentum (7, 1)
and the single-particle density of states (DOS) has logarithmic
Van Hove singularity at Fermi energy. At low temperature,
they cause the divergence of density-density susceptibility at
(7r, ) and (0,0), respectively. As a consequence, the density
instability prefers to appear at k= (mr, ) (for V > 0) and
k = (0,0) (for V < 0).

The strong-coupling perturbation analysis [39] up to
(t/V)? order shows that Eq. (1) can be mapped into a
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FIG. 1. Ground state energy per site for 4 x 4 lattice from ED,
HF, and p-5 basis. Parameters are 7 = 0.0 and p© = 2V. (Inset)
Ground state energies obtained by HF (dots) and p-5 basis (upper
triangles) subtracting that from ED. The lines are for guiding eyes.

two-dimensional XXZ model in the z-directional magnetic
field. In the limit |V| — oo, SF model becomes an Ising
model. The Z, symmetry of the Ising model at zero field
corresponds to the PH symmetry of SF model at half filling.
This symmetry can be spontaneously broken at T < T, =
0.56]V|. For V < 0 (ferromagnetic Ising coupling), this spon-
taneous symmetry breaking gives out a ferromagnetic phase
for Ising model, or a phase separation for SF model. The U(1)
symmetry of SF model could be further broken at a lower tem-
perature. For V > 0 (antiferromagnetic Ising coupling), the
breaking of Z, symmetry is accompanied with the breaking of
sublattice translation symmetry, giving an antiferromagnetic
phase, or the CO phase for SF model.

We therefore conclude that the PH symmetry at yu = 2V
could be broken independently (leading to phase separation
of normal states) or together with other symmetries of the SF
model, such as the A-B lattice translation symmetry (leading
to charge ordering order) or U(1) symmetry (leading to phases
separated superconducting states). As we will see below, a
unified phase diagram discloses the interplay of these sym-
metry breakings at the thermodynamical level.

In Fig. 1, we plot the ground state energy per site as func-
tions of V obtained from HF and p-5 basis for a 4 x 4 lattice.
They are compared to the exact energy obtained from exact
diagonalization (ED). The fermion density is fixed at half
filling, i.e., u = 2V is used. The three curves are quite close
to each other on the scale of the main figure. A weak change
of slope can be observed at V =0, which corresponds to
transition into different phases in the thermodynamical limit.
As to be shown in Figs. 3 and 7 for infinitely large system,
in the regime V > 0, the sublattice translation symmetry of
the square lattice is broken and the ground state is in CO
phase. For V < 0, there are two degenerate ground states,
one with high density (n;, = 0.5 4+ §) and another with low
density (n; = 0.5 — §), both in superconducting phase. If in-
homogeneity were allowed in the solution, they would coexist

in real space and occupy equal volume of the sample to give a
nominal filling of 1/2.

The abrupt change of slope at V = —1.4 in the curves is a
finite size effect that arises from the level crossing of ground
state energies between the n = 1/16 (in V < —1.4) and n =
5/16 (in V > —1.4) subspaces. Due to PH symmetry, another
level crossing occurs at same V between n = 15/16 (in V <
—1.4)andn = 11/16 (in V > —1.4) subspaces.

The Inset of Fig. 1 shows the error of ground state energy
per site obtained by HF and p-5 basis, taking ED result as
reference. HF always gives non-negative error, reflecting the
variational nature of HF approximation. For V < —1.4, the
energy error from HF is zero because it correctly describes
that the ground states has only one particle or hole and there
is no correlation. Another point of zero correlationis atV = 0,
where HF approximation is exact. The largest error of HF
curve occurs at V 2> —1.4 due to large charge fluctuations,
reaching a relative error [E,(HF) — E,(ED)]/E,(ED) ~ 20%.
In contrast, the energy error from p-5 basis is not varia-
tional. It is much smaller than HF result at V 2> —1.4. In the
regime —2.0 < V < —1.4, p-5 basis gives inaccurate fermion
densities and it leads to a relative energy error ~10%. For
V < —2.1, the energy from p-5 basis becomes accurate again.
AtV = 0, exact energy is obtained by p-5. For large repulsive
interaction, both HF and p-5 give small energy errors due
to frozen of charge fluctuations in this regime, with rela-
tive errors less than 0.3% (HF) and 0.6% (p-5), respectively.
This comparison of energy errors show that while p-5 is
not variational, it gives overall smaller energy errors in the
regime —1.4 <V < 0.8 where charge fluctuations are large.
This reflects that correlations are taken into account by larger
operator basis. Note that for this small lattice, p-5-sc basis
produces zero SC order parameter and the energy is the same
as that from p-5 basis.

A. Attractive interaction: phase separation
and superconductivity

In this section, we focus on the case of V < 0. We first
discuss the results from HFB basis whose solution can be
analysed in more detail due to the analytical formula presented
in Sec. IV.

1. HFB result

We first study the properties of the uniform SC state
obtained from HFB basis. For this purpose, we choose param-
eters such that the particle filling is far away from half filling
to guarantee that the solution is in an uniform SC phase. For
fillings close to half filling, the uniform SC state is unstable
towards PS. The interplay of PS and SC will be discussed
using the phase diagram in the next subsection. The results
below are obtained by solving the analytical self-consistent
equations in Sec. IV.

We find that the gap function A(Iz) is complex. ReA(l;) and
ImA (k) depends only on k, and k,, respectively. Figures 2(a)
and 2(b) show their curves at T = 0 obtained from the self-
consistent solution of Eq. (41), which agree with the form
A(lz, T) = A(T)(sink, + isinky), i.e., in p, + ip, symmetry.
This is consistent with the analysis of Cheng et al. [46]. Note
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FIG. 2. HFB results for uniform SC phase. (a) ReA(E) as a func-
tion of k.. (b) ImA(ié) as a function of k. Parameters are T = 0.0,
V = —1.0, and u = —2.2. (c¢) Superconducting transition tempera-
ture Ty as a function of interaction V for different fermion density n.
(d) T as a function of 1/g(0) for different V. g(0) is the density of
states at Fermi energy. The dashed lines are for guiding eyes.

that although the pairing average (c_;cy) is sharply distributed
around Fermi surface, A(I;, T) does not depends directly on
the shape of Fermi surface. We find that the ground state
energy of p. + ip,-wave uniform SC without nodal line is
always lower than that of a p,-wave (or p,-wave) uniform SC
with a nodal line (For the inhomogeneous solution, p, + ip,-
wave SC has higher energy than p,-wave, see below). This
can be understood since the nodal line has no contribution
to the condensation energy. Mathematically, this is related
to the fact that the mean-field free energy F is a concave
function of the norm of the superconducting order parameter
A (.e., F"(JA*) > 0) [46]. The relative difference between
the ground state energies of SC and normal phases is found to
be less than 1073, which leads to a low superconducting phase
transition temperature (see below).

The SC critical temperature T obtained from Eq. (44)
is plotted versus —1/V for various fermion densities in
Fig. 2(c). For each curve, the chemical potential is tuned
to keep n fixed. Fig. 2(c) supports the exponential depen-
dence Ty ~ exp[—1/(«|V])], which is different from T, =
2exp(—2m /+/]V]) obtained by random phase approximation
(RPA) [39] at half filling in the weak attraction regime
—0.38 <V < 0. For V < —0.38, RPA predicts that the PS
transition temperature Tp,; exceeds Ty and the superconducting
pairing will be suppressed by PS at low temperatures. The dif-
ference traces back to the fact that Gubernatis ef al. considered
an uniform SC at half filling where the van Hove singularity
on the Fermi surface enhances the SC [39]. Our calculation at
the nominal filling » = 1/2, in contrast, obtains a PS between
SC states with two actual fillings n; < 1/2 and n;, > 1/2, for
each of which the van Hove singularity lies away from Fermi

OO 1§ T T T M 1 T T T - T
——HFB NG
f[p-2sc I o1 ,,;'; )
p-5-sc I > .-
0.5F ll\ ” Slope:15/2
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> 08 12 16 2
-1 0 I~ SC __—e-0e. T
~o—*
A \\
15 PS(h/l SC) .
-2.0 f/ \ 1 \ 1 \ 1 \ 1 \ ¥
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n

FIG. 3. Ground state phase diagram on V-n (V < 0) plane. SC:
superconducting phase; PS(h/1 SC): phase separation between high-
and low-density superconducting phases. (Inset) Width of PS region
W =n, —n; as a function of —V obtained from HFB basis. The
dashed line is a fitting with slope 7.5.

surface and does not influence Ti.. Due to this PS at half
filling, an homogeneous SC is thermodynamically unstable at
n = 1/2, as to be discussed in Fig. 3. Figure 2(c) also shows
that for a fixed V, Ty increases dramatically with increasing
density. This can be largely attributed to the increase of den-
sity of states at Fermi energy g(0) with increasing n. Due to
the PH symmetry of the Hamiltonian, on the high density side
n > 1/2, Ty, will decrease as n increases.

Figure 2(d) shows the dependence of T, on 1/g(0) for
various V values. Here, the single-particle density of state at
Fermi energy g(0) is calculated from g(w) = (1/N) 212 S(w —
&) with Lorentz broadening of  functions. It changes with the
filling of fermions, which is in turn tuned by w. The curves
in Fig. 2(d) deviate significantly from exponential form, in
contrast to that in the BCS superconductivity. This is because
the attractive interaction V in our model Hamiltonian (39) is
not limited to the Debye shell around Fermi surface. Accord-
ingly, in Eq. (44), the sum of momentum runs over the entire
first Brillouin zone rather than within the Debye energy shell
around the Fermi surface.

2. Results from larger bases

The zero temperature V -n phase diagram (on the half plane
of V < 0) is presented in Fig. 3. The phase boundaries ob-
tained from HFB and p-5-sc are qualitatively similar. They
divide the diagram into three regions, two SC phases in the
low- and the high-density regimes, respectively, and PS be-
tween them near n = 1/2. The higher boundary density n is
obtained by scanning chemical potential upwards and observe
that fermion density jumps at certain p to a larger value n;,.
The lower boundary density n; is obtained similarly from the
inverse scanning. This approach gives slightly wider density
window of PS than the binodal lines obtained from Maxwell
construction based on the S-shape n-u curve [66-68]. Figure 3
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implies that close to n = 1/2, two SC states with different
fermion densities coexist in real space, with volume fractions
determined by the boundary values n;, nj, and nominal den-
sity n. Each of the coexisting SC states has the properties
of an homogeneous SC phase at the same filling. In reality,
long-range interactions beyond our model Hamiltonian may
lead to domains or other inhomogeneous structures in the
sample.

In Fig. 3, the PS region obtained from HFB, p-2-sc, and
p-5-sc bases are qualitatively the same when |V| is large. In
the small |V | region, the results of HFB and p-5-sc are quali-
tatively different from those of p-2-sc. The phase boundaries
from HFB and p-5-sc have a sharp peak around n = 1/2 and
in small |V |, while there is no PS in p-2-sc in this region (say
V| < 1.0). Quantitative comparison shows that HFB basis
gives a sharper peak of PS region atn =1/2and V > —0.5
than p-5-sc, while p-5-sc gives almost identical boundary for
V < —1.1 as p-2-sc. For HFB and p-5-sc bases, the width
of PS region increases with increasing |V| and decreases to
zero only at V = 0. That PS occurs at n = 1/2 for any finite
attractive V' is consistent with the notion that the PS discussed
here is a density instability due to divergence of density sus-
ceptibility at momentum (0,0), which is in turn caused by the
van Hove singularity at n = 1/2 [39]. Therefore we speculate
that the disappearance of PS for the p-2-sc basis in small
|V| region is nonphysical, which may be due to the improper
estimation of the relative weight between operators ¢; and dy
in the p-2-sc basis by inner product Eq. (6).

The inset of Fig. 3 shows that the width of PS region W (the
density difference between high- and low-density SC) in the
thermodynamic limit decreases as a power law W ~ [V|7.
It is obtained from HFB basis for which calculation can be
done for the number of lattice sites as large as N ~ 10% in
momentum space. The power law behavior is consistent with
the singular nature of the point (V = 0, n = 1/2) on the phase
diagram and may be related to the van Hove singularity. A
complete understanding of it is still absent. For p-5-sc basis,
our computation is limited to lattice sites N ~ 10* in momen-
tum space. The obtained width of PS region in Fig. 3 (between
two green lines) is wider and does not follow power law in
|V| = 0 limit. This is due to the finite size effect since we
observed that with increasing size, the width obtained from
p-5-sc basis decreases.

Figure 4 shows the phase diagram on the 7-|V| (V < 0)
plane at half filling. Symbols with eye-guiding lines in the
main figure mark the PS transition temperature 7p,; obtained
from different bases of EOM PTA. At high temperatures, the
system is in a homogeneous normal phase. For T below Ty,
PS occurs and two normal phases with different densities n;,
and n; coexist (PS(h/1 N) in the main figure). The appearance
of PS means that the PH symmetry of Hamiltonian is sponta-
neously broken. In the correspondence of SF and Ising model
in large V limit, PS between high- /low-density normal phases
at low temperature corresponds to the magnetized phases of
spin-up/spin-down.

The inset of Fig. 4 shows the SC transition of phase-
separated states at a much lower temperature Ty, (Ty ~
102 « Tp). At the common Ty, each of the coexisting nor-
mal phases undergoes the SC transition, making a state of
SC-SC coexistence below Ty [PS(h/l1 SC) in the inset of

30 5o L ! S— ' ' ' '
25}
PS(h/I N) PS(h/l N)
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2.0 —|_
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FIG. 4. Phase diagram on T-|V| (V < 0) plane at half filling
u = 2V. The symbols with guiding lines in the main figure are the
PS transition temperature Tp. Those in the inset are the SC tran-
sition temperature 7i.. N: homogeneous normal phase; PS(h/1 N):
coexistence of high-density and low-density homogeneous normal
phases; PS(h/1 SC): coexistence of high-density and low-density
superconducting phases. The quantum Monte Carlo (QMC) results
are from Gubernatis et al. [39].

Fig. 4]. The maximum value of T is obtained atV = —1.2 for
HFB and at V = —1.3 for p-2-sc and p-5-sc. Due to the huge
difference in magnitude (T ~ 1072 Tps in the whole negative
V regime), we plot the SC phase boundary separately in the
inset. Combined together, the two figures give the scenario
that for V < 0 and half filling, as temperature decreases, the
state first transits from an homogeneous normal state into
a phase separated normal state at Ty, and then transits into
phase separated SC state at T, showing successive breaking
of PH symmetry and U (1) symmetry with decreasing temper-
ature.

Now we compare different 7,; —V curves in the main
figure of Fig. 4. The results of HFB and p-5-sc are closer when
|V| is small, and those from p-2-sc and p-5-sc are closer when
|V is large. The T,s’s decrease rapidly around V = —1.0. In
particular, p-2-sc basis produces T = 0 for V- < —1.0. These
observations are consistent with the results in Fig. 3. T,s from
p-2-sc and p-5-sc bases scale as T, >~ 0.9|V] in the large
|V| limit. They are improved with respect to the HFB result
Tps >~ |V, but are still much higher than QMC data (down
triangles) and the exact behavior T,s 2 0.56|V|.

Figure 5 presents the 7'-n phase diagram at a generic attrac-
tionV = —1.2. Only n < 1/2 region is shown since the phase
diagram is symmetric with respect to n = 1/2. Different bases
give qualitatively similar phase diagram. Note that in the inset,
Ti. from p-5-sc is slightly higher than that from p-2-sc. The PS
transition temperature T,s has a dome shape with the highest
value at n = 1/2. For a fixed nominal 7 inside this dome and at
high temperature, PS occurs between two normal phases with
high density n;, and low density n;. As temperature decreases,
the coexisting normal phases will transit into coexisting SC
phases below Ty, (dashed lines). Due to the PH symmetry of
the system, nj, + n; = 1 always holds in this process. For n
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FIG. 5. Phase diagram on T-n plane at V = —1.2. (Inset) En-
larged figure in the small n and low-temperature regime. N:
hormogeneous normal phase; SC: homogeneous superconducting
phase; PS(h/1 N): coexistence of high- and low-density normal
phases. PS(h/1 SC): coexistence of high- and low-density SC phases.

outside this dome (far away from half filling), the system is
in an homogeneous normal phase (N) for 7 > T;. and transits
to an homogeneous SC phase (SC) below Ti.(n) which has a
long tail extending to n = 0 (see inset for the enlarge figure).
Note that the homogeneous Bogoliubov approximation [46]
produces an homogeneous SC at n = 1/2, while this work
produces a coexisting high-/low-density SC phase. The ex-
istence of PS suppresses T, because the SC state only occurs
at densities far away from n = 1/2 which has lower 7. In this
sense, PS and SC competes at the thermodynamics level.
Using the real space HFB basis, we also studied the in-
homogeneous SC state in the PS regime without translation
symmetry. Figure 6 shows the ground state fermion den-
sity distribution n; for V = —1.2 at particle-hole symmetric
point u =2V on a 40 x 40 lattice with periodic boundary.
In the calculation, n; for each site i is allowed to change self-
consistently, starting from arbitrary initial conditions. Figure 6
shows one of the stable state obtained. A domain wall lies
parallel to x axis and separates the sample into high- and low-
density domains with equal volume, making the whole system
at nominal half filling. The domain wall is composed of ap-
proximately half-filled sites and has a width of several lattice
constants. The whole system is in a nonhomogeneous SC state
with p, symmetry, which is in contrast to the p, + ip, symme-
try obtained from the translation symmetric calculation. Using
different initial states for the self-consistent calculations, we
can obtain the energy-degenerate p,-wave SC state with a do-
main wall parallel to y axis, but never stabilize a p, + ip, wave
state with a domain wall. The energy calculation shows that
the ground state energies of homogeneous p, and p, + ip, SC
states are very close to each other. The existence of a domain
wall across the whole sample could well change the energy
difference as well as the symmetry of the SC order parameter.
We also studied the SC-SC interface energy. For this pur-
pose, let us consider a virtual PS(h/1 SC) system without

n
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FIG. 6. Real space distribution of density (n;) for V = —1.2,
pu =2V, and T =0, obtained from real space HFB basis on a
40 x 40 lattice with periodic boundary condition. The ground state
is found to be in SC order with p, wave symmetry.

SC-SC interface. The ground state energy of this virtual sys-
tem is the same as that of high- (or low-) density homogeneous
SC. The SC-SC interface energy is thus defined as the ground
state energy of the inhomogeneous PS(h /1 SC) state (with in-
terface) minus that of the virtual PS(h /1 SC) system (without
interface). We find that the SC-SC interface energy is positive
and proportional to the system linear size L(L = +/N). This
seems reasonable since the existence of an interface limits the
motion of spinless fermions and increase the kinetic energy.
For the high temperature PS(h/I N) phase, the normal-normal
interface energy can be defined similarly and we also find a
L-linear positive interface energy.

B. Repulsive interaction: charge order and phase separation

In this subsection, we study the spinless fermion model
with repulsive interaction V > 0. Figure 7 shows the ground
state V-n phase diagram, obtained from HF and p-5 bases. The
data from projected entangled-pair states calculation [40] are
also shown for comparison. The phase boundaries from var-
ious calculations are qualitatively consistent. Our calculation
gives a CO phase at n = 1/2 for any finite V, as expected from
the Fermi surface nesting with nesting momentum (7, 7 ) and
being consistent with the renormalization group analysis [69].
This is different from the case of honeycomb lattice where
CO occurs only for V > V. > 0 [20]. For density far away
from half filling, an charge-disordered (CD) state is stable. In
the regime very close to n = 1/2, we obtain the PS between
CO and CD phase, where CO and homogeneous fermion gas
coexist in real space. The width of this coexistence region in
the n axis decreases to zero smoothly in the limit V = 0. In the
CO phase, PH symmetry and sublattice translation symmetry
are spontaneously broken. Being different from the attractive
case, for the repulsive interaction, PS occurs only when holes
or particles are doped into CO state and hence it is not a
spontaneous PH symmetry breaking.
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FIG. 7. Ground state phase diagram on V-n plane for V > 0.
CD: charge-disordered phase; CO: A-B type charge-ordered phase;
PS(CD/CO): coexistence of charge-disordered phase and A-B type
CO phase. The result of fermionic projected entangled-pair states
(iPEPS) is from Corboz et al. [40]. D is the bond dimension of the
iPEPS.

Comparing the results from HF, p-5, and iPEPS, we find
that the agreement is reasonable. In particular, in the small V
range, the numerical results of the three methods are relatively
close. When the repulsive interaction is strong, the PS bound-
ary obtained by p-5 and iPEPS is more inward.

Figure 8 shows the critical temperature of CO at half filling
as a function of V, obtained from HF and p-5 bases. For
comparison, QMC data from Gubernatis et al. [39]. are also
shown. In the small V limit, HF gives exponentially small
Tt [39] and our p-5 calculation gives consistent results. In
the large V' limit, p-5 basis gives a linear T, (V) curve with

0.0 0.5 1.0 15 2.0 2.5 3.0

FIG. 8. Charge ordering temperatures 7, as functions of repul-
sive V for half filling n = 1/2. CD: charge-disordered phase; CO:
A-B type charge-ordered phase. The quantum Monte Carlo (QMC)
results are from Gubernatis et al. [39].

FIG. 9. V-n phase diagram for V > 0 at T = 0.1 obtained from
HF basis.

smaller slope than HF result. But both HF and p-5 deviate
significantly from the expected Ising results T, = 0.56V in
this limit. This reflects that the excitations included in p-5
basis are still insufficient for an accurate description of the
thermal excitations of Ising model.

According to Fig. 8, the whole phase diagram on V -n plane
will change as temperature increases from zero. In Fig. 9, we
show such a phase diagram at 7 = 0.1. Compared to the zero
temperature phase diagram in Fig. 7, CO atn = 1/2 melts first
from the small V regime, recovering the PH and translational
symmetry. Accompanying with this melting, the PS between
CO and CD state disappears. The CD phases in n > 1/2 and
n < 1/2 regimes are connected in the small V regime. In the
large V regime, CO is no longer limited at » = 1/2 but extends
to a finite density regime around half filling. A second-order
charge order-disorder transition line appears near half filling
and small V.

VI. SUMMARY AND DISCUSSION

In summary, in this work, we systematically study the SF
model on the square lattice with nearest-neighbor hopping and
interaction. For the attractive interaction, at low temperature,
the system is in the p 4+ ip SC phase when particle concen-
tration n is far away half-filling and in the PS between high-
and low-density SC phase near half filling. With the increase
of temperature, the homogeneous SC phase will transit into
into homogeneous normal phase above T;., while the PS of SC
will transit into PS of normal phases which finally transits into
homogeneous normal phase at 7 > T,s. Using the real space
basis, we observed the domain structure of SC with p-wave
symmetry at n = 1/2 and obtain positive interface energy. For
repulsive interaction, homogeneous CO state is stable only at
half filling. In the low/high fermion density regime, uniform
CD phase is stable. In the weakly particle/hole doped regime,
a PS between CO and CD phase occurs. Upon increasing
temperature, the parameter regime of CO moves to finite V
and expands into a finite density regime around half filling.
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There are several issues worthy of discussion. Firstly, in
principle, the obtained results can be improved by expanding
the basis. In practice, the feasibility of using larger bases
depends severely on the strategy of expanding the basis. In
this work, we generate operator bases by successively ap-
plying the Liouville superoperator on ¢; and collecting each
individual operators generated. Starting from c¢; (HF basis),
[ci, H] produces the p-5 basis. If we collect all the operators
generated by [[c;, H], H] into the basis, the dimension of the
basis will increase so rapidly that writing down the matrices
I and L by hand is already infeasible. We could add only
part of the newly generated operators, or certain combinations
of new operators (as we did for p-2-sc) into the basis. For
example, if only the type n;sn;isc; is added to p-5-sc, the
computational cost will increase by about 8 times, which is
acceptable. Other ways of expanding the basis include the
Lanczos process [70], or simply collecting all the operators
of the form ch,,cq. The former produces continued fraction
form of GF but involves correlation functions that are hard to
compute. The latter generates a huge basis size of order N3.
We estimate that a lattice of 10 x 10 sites could be studied
with the latter basis using translation symmetry.

In the expansion of the basis, priority should be given to
those operators that describe important fluctuations for the
problems under consideration. A systematic and controllable
way to expand the basis must take care of both computational
complexity and efficiency of the operators. A quantitative
criterion for the importance of a basis operator is still lacking.
In this sense, it is still an open question how to best extend the
operator bases beyond p-5-sc. Maybe the idea of renormal-
ization group, as being successfully adopted by algorithms in
Hilbert space diagonalization such as numerical renormaliza-
tion group and density matrix renormalization group, could
be applied in Liouville space to establish the optimal EOM
method in the future.

Secondly, the possibility of superconductivity in the repul-
sive interaction case is an interesting issue. For the system
with a sharp Fermi surface and weak repulsive interaction,
the effective attraction between particles could be generated
through the Kohn-Luttinger mechanism [71,72]. However, our
PTA always produces CD, CO, and PS(CD/CO) for V > 0 by
the present bases. No SC phase is observed so far from PTA.
Considering that PS means that particles prefer to segregate
in real space and can be regarded as a signal of effective
attractive interaction [31], further study in this direction by
expanding the basis is desirable.

Thirdly, the formalism obtained in this paper can be di-
rectly extended to the t —t' — V model [that is, taking into
account the next-nearest-neighbor hopping ¢’ in Eq. (1)]. In
the study of high-7; SC, long-range hopping plays an impor-
tant role. For example, (i) the existence of long-range hopping
may better-screening Coulomb repulsion and reproduce the
flat band and Fermi surface shape of cuprates; ii) for some
unconventional superconductors, ¢’ can not be ignored (e.g.,
La,CuQy4, YBa,Cu3;07, BiySr,CaCu,Og, LaNiO,, etc.) and
it influences the SC transition temperature [73-79]. More-
over, the existence of #* will destroy the PH symmetry of
the system and change the present results significantly. Pre-
vious HF approximation for ¢-t'-V model show that when ¢’
is in a proper range (|¢'| 2 0.25), for repulsive interaction,

the half-filled CO phase will expand to a finite region [35].
Results from iPEPS show that CO appears only at half-filling.
[80] Extending the calculation in this work to the t-t'-V
model will provide a reference for the phase diagram of this
system.

Fourthly, the incommensurate CO is widely present in
electronic materials [81]. For the spinless fermion model,
incommensurate CO was found in infinite spatial dimensions
[31] and in two-dimensional anisotropic nearest-neighbor
hopping system [82] at appropriate doping. In the present
study, the real space basis calculation allows all possible ways
of spontaneously breaking the translational symmetry. The
influence of boundary condition is weak given the large lattice
size. Therefore, the fact that we did not find an incommensu-
rate CO supports that it is unstable towards PS for fermions
away from half filling, as far as the HF and p-5 basis are
concerned. From the correlation point of view, however, since
the p-5 basis only contains short-range correlation and partial
particle-hole excitations, for the moment we cannot exclude
the possibility of incommensurate ordering in the true ground
state, since longer range correlation and particle-hole fluctu-
ation could favour the incommensurate ordering. This issue
deserves further study in the future.

Finally, the PS between SC and normal phases is also
an interesting issue. Recently, Partridge et al. observed the
SC-normal coexistence phase in cold atom experiments with
mismatched chemical potential of °Li atoms with different
spin orientations [83]. In the SF model studied in this work,
we obtain only the SC-SC (or normal-normal) PS for the at-
tractive interaction. To study the SC-normal PS phenomenon,
we need to extend our study to models of interacting fermions
with spin degrees of freedom.
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APPENDIX: CONSTRUCTING PH SYMMETRIC
MATRIX M

In PPA, Liouville matrix L is approximated as L =
L, M). This approximation usually violates the PH sym-
metry. To restore this symmetry, we need to use a natural
closed matrix M satisfying the PH symmetry requirement for
self-consistent calculation.

Following the idea in Ref. [64], we use the following strat-
egy to construct the matrix M. Firstly, we divide Hamiltonian
H into odd and even parts under PH transformation (15).

H, = —t Z(c;rcj +H.c.)+VZn,~nj -2V Zn,- +c,

(i) (ij) i

H,= 2V — ) Zni —c. (A1)

Here, H, = ™% and H, = 5. ¢ = (V — £)N is a con-
stant. At PH symmetry point u =2V, H, = H and H, =
0. Secondly, We denote [A, H,] = MTA + B, and [A, H,] =

MZ/Y —1—1;‘0. Also, the results of the composite transforma-
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tion of these two equations are denoted by A, H,] = 1\~/IeTX +

—_~—

ée and [A, H,) :M({X+§(,. It can be proved that if

B,=—QB, and B, =QB, then M, = —Q'M,Q"

M, = Q"M,Q7. M =M, + M, meets the requirement of
PH symmetry. [64] Here, the composite transformation
and matrix Q are defined as O = (0')" and A = QA,
respectively.

In fact, when A is closed under PH transformation, we can
remove the Hermitian conjugate operation in the definition of
composite transformatlon Accordlngly, we need to construct

B, and B, satisfying B = QB, and | B = —QB, respectively.
In this case, M, QTMeQT and M, = —Q"™M,Q’. The M
matrix that satisfies PH symmetry is M = M, + M,,. Actually,
the two different definitions of composite transformation do
not bring physical discrepancy.
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