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Evolution of the Andreev bands in the half-filled superconducting periodic Anderson model
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We employ the periodic Anderson model with superconducting correlations in the conduction band at half
filling to study the behavior of the in-gap bands in a heterostructure consisting of a molecular layer deposited on
the surface of a conventional superconductor. We use the dynamical mean-field theory to map the lattice model
on the superconducting single impurity model with self-consistently determined bath and use the continuous-
time hybridization expansion (CT-HYB) quantum Monte Carlo and the iterative perturbation theory (IPT) as
solvers for the impurity problem. We present phase diagrams for square and triangular lattice that both show
two superconducting phases that differ by the sign of the induced pairing, in analogy to the 0 and π phases of
the superconducting single impurity Anderson model and discuss the evolution of the spectral function in the
vicinity of the transition. We also discuss the failure of the IPT for superconducting models with spinful ground
state and the behavior of the average expansion order of the CT-HYB simulation.
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I. INTRODUCTION

Individual magnetic impurities embedded in a metallic host
give rise to the Kondo effect that describes the screening of
the local moment by the conduction electrons, resulting in a
many-body, nonmagnetic singlet ground state [1]. A footprint
of this effect is a narrow resonance in the density of states
(DOS) and its width is connected with the energy scale kBTK ,
where TK is the so-called Kondo temperature, which quantifies
the exchange interaction between the impurity and the bath.
The same effect takes place when a spinful atom or molecule
is adsorbed on a surface of a metal [2]. In both cases, the
physics is well captured by the single impurity Anderson
model (SIAM) that describes a single energy level hybridized
with a bath of conduction electrons.

A different situation arises if the metallic host is replaced
by a superconductor. Here the conduction electrons with an-
tiparallel spins from the vicinity of the Fermi surface form
a singlet bound state as described by the Bardeen–Cooper–
Schrieffer (BCS) theory. As a result, a gap is opened at the
Fermi energy and the screening of the local moment of the
impurity can be incomplete. Furthermore, Andreev reflection
of the Cooper pairs off the impurity results in the presence of a
set of in-gap states known as Andreev bound states (ABS) [3].
In the case of imperfect screening the strong on-site Coulomb
repulsion can drive the system to a magnetic, doublet ground
state. This competition between the screening and the super-
conductivity can be quantitatively described by the ratio of
the two relevant energy scales, the Kondo temperature kBTK

and the superconducting gap �. For kBTK � � the system is
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in nonmagnetic state, while for kBTK � � the ground state
is magnetic. If the two energy scales become comparable,
the system undergoes a transition marked by the crossing of
the lowest-lying ABS at the Fermi energy as a result of the
change of the many-body ground state. This is an example
of an impurity quantum phase transition [4] best known as the
0 − π transition and it is well captured by the superconducting
impurity Anderson model (SCIAM) [5]. It was experimentally
observed in a number of setups including semiconducting
nanowires and nanotubes proximitized to superconducting
electrodes [6–8] as well as single atoms or molecules adsorbed
on superconducting surfaces [9,10].

When the concentration of the impurities is large, the
electron hopping, either direct or via the conduction band,
gives rise to the dispersion of the local impurity level and
a correlated impurity band of finite width is formed. Such a
system with a metallic host can be described by the periodic
Anderson model (PAM). This lattice model was originally
developed to study the physics of heavy fermion compounds
like SmB6 [11] or YbB12 [12] and its physics is much richer
than of the SIAM. Its phase diagram consist of a Kondo
insulator (KI), metallic and Mott insulator phase [13], and
a variety of magnetic phases [14,15]. It was also used to
study the possibility of unconventional superconductivity me-
diated by spin fluctuations [16,17] and magnetic quantum
oscillations under the orbital response to the magnetic field
[18,19]. PAM with attractive interactions in the impurity
band was used to simulate the superfluid Bose-Einstein con-
densate in ultracold atoms [20–22] and to study the local
magnetic moment formation in presence of superconducting
correlations [23].

A direct generalization of the SCIAM to a lattice model is
the superconducting PAM (SCPAM) which describes a single
correlated electron orbital at each lattice site hybridized with
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a band of conduction electrons with local superconducting
pairing. A very successful approach to study this class of sys-
tems is the dynamical mean-field theory (DMFT) [24]. This
method maps the lattice model to an impurity model with a
self-consistently determined bath. SCPAM was studied using
DMFT by Luitz and Assaad [25]. The authors used the con-
tinuous time interaction-expansion (CT-INT) quantum Monte
Carlo (QMC) as the solver for the impurity problem. Results
show that the 0 − π transition of SCIAM is inherited to SC-
PAM as a first order transition. Oei and Tanasković [26] later
used SCPAM to study the effect of magnetic impurities on
a bulk s-wave superconductor using hybridization-expansion
(CT-HYB) QMC and the dual fermion method in attempt to
explain the reentrant behavior of the superconducting phase in
certain classes of unconventional superconductors.

The SCPAM can be also employed to describe an atomic or
molecular layer deposited on the surface of a superconductor
where the interplay of superconductivity and magnetism gives
rise to a number of interesting phenomena. An example of
such a setup is a van der Waals heterostructure consisting of
thin superconducting layer coated with a layer of transition
metal (e.g., Mn, Fe, Co) phtalocyanine molecules [27,28] in
which the effect of the magnetic state of the molecule on
the superconducting properties of the substrate was studied.
Such molecules form a superlattice of impurities that may or
may not be commensurate with the structure of the surface.
In the ideal case of commensurate order, such superlattices
can be effectively treated using single-site DMFT as the larger
distance between the impurity sites weakens the spatial corre-
lations, making DMFT a better approximation than for bulk
systems. Another example of such system is the hydrogenated
superconducting graphene [29] where individual hydrogens
interact ferromagnetically when deposited on the graphene
and can give rise to in-gap Andreev bands. Also, recent ex-
periments involving superconducting boron-doped diamond
coated with ferromagnetic hydrogen monolayer [30,31] show
the existence of Andreev bands and regions of high zero-bias
conductance.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the SCPAM and rewrite it in the Nambu
formalism. In Sec. III we derive the DMFT equations for the
superconducting system and introduce two methods of solving
the impurity problem, CT-HYB, and the iterative perturbation
theory (IPT), and discuss their pros and cons for the given
problem. In Sec. IV we present the main results: In Sec. IV A
we present the phase diagrams of SCPAM at constant tem-
perature and half filling on square and triangular lattices and
we discuss the character of the two emerging superconduct-
ing phases. The transition between the two superconducting
phases is further illustrated in Sec. IV B on the behavior of
the spectral functions calculated using IPT. We close this
section by Sec. IV C where we look into the behavior of the
average expansion order of the CT-HYB simulation and what
information can be extracted from its behavior. We also use
this quantity to discuss the temperature dependence of the
phase boundaries. The main points are summarized in Sec. V.
To make the paper more self-contained, in Appendix A we
present analytic formulas for the bare local Green functions
and in Appendices B and C we summarize the basic properties
of the noninteracting model.

II. SCPAM

A. Hamiltonian

The Hamiltonian of the SCPAM describes a band of con-
duction electrons with local superconducting pairing that
hybridizes with a nondispersive, correlated electron orbital at
each lattice site i = 1, . . . , N and reads

H = Hd + Hc + Hhyb. (1)

The Hamiltonian describing the correlated sites reads

Hd =
∑

iσ

εσ d†
iσ diσ + U

∑
i

d†
i↑di↑d†

i↓di↓, (2)

where d†
iσ creates an electron at site i with spin σ ∈ {↑,↓} and

energy εσ = ε − μ − σh where h is the local magnetic field,
μ is the chemical potential, and U is the local on-site Coulomb
repulsion. The attractive interaction in the conduction band is
treated on the static mean-field level. Its Hamiltonian reads

Hc =
∑
kσ

εkσ c†
kσ ckσ

− �
∑

k

(c†
k↑c†

k̄↓ + H.c.). (3)

Here c†
kσ creates an electron with spin σ and energy εkσ =

εk − μ − σh and

� = g

N

∑
k

〈ck̄↓ck↑〉 ≡ g

N

∑
k

〈c†
k↑c†

k̄↓〉 (4)

is the the BCS superconducting gap parameter where g is
the attractive, phonon-mediated interaction strength and we
denoted k̄ = −k to save space in the equations. Finally, the
term describing the coupling between the two subsystems
reads

Hhyb = −
∑
kσ

(Vkσ d†
kσ ckσ

+ H.c.), (5)

where Vkσ denotes the hybridization matrix element,

d†
kσ = 1√

N

∑
i

e−ik·ri d†
iσ , dkσ = 1√

N

∑
i

eik·ri diσ , (6)

and ri is the position vector of the lattice site i.
It is convenient to use the Nambu formalism while dealing

with superconducting Hamiltonians. We define the Nambu
spinors

Dk =
(

dk↑
d†

k̄↓

)
, Ck =

(
ck↑
c†

k̄↓

)
, (7)

and matrices

Eck =
(

εk↑ −�

−� −εk̄↓

)
, Ed =

(
ε↑ 0

0 −ε↓

)
,

Vk =
(−Vk↑ 0

0 Vk̄↓

)
,

(8)

from which we construct the double-spinor ψk and the 4 × 4
matrix Ek,

ψk =
(

Dk

Ck

)
, Ek =

(
Ed Vk

V †
k Eck

)
. (9)
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Hamiltonian in Eq. (1) can be written in the form

H =
∑

k

ψ
†
kEkψk + U

∑
i

d†
i↑di↑d†

i↓di↓. (10)

The structure of the underlying lattice is fully encoded
in the dispersion relation εk. Motivated by the experiment
concerning superconducting boron-doped diamond [31], we
consider two types of lattices, square and triangular, simu-
lating a lattice of impurities on the (100) and (111) diamond
surfaces. The square lattice is described by

εk� = −2t[cos(akx ) + cos(aky)], (11)

where t is the nearest-neighbor hopping amplitude, a is the
lattice constant, and we set h̄ = 1 for simplicity. The triangu-
lar lattice is described by

εk� = −2t

[
cos(akx ) + 2 cos

(
akx

2

)
cos

(√
3aky

2

)]
. (12)

The noninteracting local density of states (LDOS) A0(ω) =
1
N

∑
k δ(ω − εk ) can be, in both cases, calculated analytically

in terms of the complete elliptic integral as explained in detail
in Appendix A.

B. Nambu Green function

From now we assume that the hybridization matrix ele-
ments are momentum-independent, Vkσ = Vσ and drop the
spin index σ unless needed. We define the noninteracting
(U = 0) Green function as the resolvent of the noninteracting
k-resolved Hamiltonian that in the basis of ψk reads

G0(k, z) = [zI − Ek]−1. (13)

Here I is the 4 × 4 unit matrix and z is the complex energy.
Zeros of the determinant Det[G−1

0 (k, ω + i0)] mark the poles
of the Green function, i.e., the band structure of the nonin-
teracting model as explained in detail in Appendix B. The
full interacting Green function is obtained from the Dyson
equation

G(k, z) = [
G−1

0 (k, z) − 	(k, z)
]−1

, (14)

where

	(k, z) =
(

	d (k, z) 0

0 0

)
(15)

is the 4 × 4 self-energy matrix. As the attractive interaction
in the conduction band is already incorporated on the static
mean-field (BCS) level into the noninteracting Green func-
tion, there is no explicit self-energy in that segment of the
basis, although the conduction band is affected by 	d via the
hybridization V .

III. DMFT

The DMFT maps the lattice model (1) to an effective
single-site dynamical model by performing a controlled limit
to infinite spatial dimensions by proper scaling of the hop-
ping parameters that guarantees the finiteness of the kinetic
energy [32]. In this limit, the correlation-induced self-energy
becomes local [33], 	d (k, z) → 	d (z). For finite lattice

dimensions this is an approximation, 	d (k, z) ≈ 	d (z), how-
ever, it is the only approximation within the scheme. This
approach, developed originally to solve the Hubbard model,
can be successfully utilized also for other lattice models in-
cluding the SCPAM [25,26].

As the DMFT equations for SCPAM were already derived
in the above-mentioned works, we present here just a brief
overlook of the procedure. The effective single-site model in
our case is the SCIAM,

HS =
∑
kσ

ε̃kσ c†
kσ ckσ

− �̃
∑

k

(c†
k↑c†

k̄↓ + H.c.)

+
∑

σ

ε̃σ d†
σ dσ + Ud†

↑d↑d†
↓d↓

−
∑
kσ

(Ṽkσ c†
kσ dσ + H.c.). (16)

For simplicity, we use the same notation for the fermion oper-
ators (c for the conduction band and d for the impurity) in the
two models. We can rewrite the SCIAM Hamiltonian in the
Nambu formalism

HS = D†Ẽd D + Ud†
↑d↑d†

↓d↓

+
∑

k

C†
kẼckCk −

∑
k

(C†
kṼkD + H.c), (17)

where the spinors D and Ck as well as the matrices Ẽd , Ẽck,
and Ṽk are defined analogously to Eqs. (7) and (8).

We define the local element of the Matsubara (imaginary-
frequency) Green function of the SCPAM

Gloc(iωn) = 1

N

∑
k

G(k, iωn)

=
(

Gd,loc(iωn) Gdc,loc(iωn)

G†
dc,loc(iωn) Gc,loc(iωn)

)
, (18)

where ωn = (2n + 1)πkBT is the nth fermionic Matsubara
frequency and T is the temperature. Following the standard
DMFT procedure we define the bath Green function that
serves as the input to the auxiliary problem by locally remov-
ing correlations from the local d-electron Green function

G(iωn) = [
G−1

d,loc(iωn) + 	d (iωn)
]−1

. (19)

Now we solve the auxiliary problem for the given value of
U with �̃ determined by Eq. (4) while ε̃σ , ε̃kσ , and Ṽkσ

are encoded in the bath Green function G. As a result we
obtain the local impurity Green function Gimp(iωn) and the
impurity self-energy 	imp(iωn) = G−1(iωn) − G−1

imp(iωn) and
we identify it with the d-electron self-energy of SCPAM,
	d (iωn) = 	imp(iωn). Analogously to Eq. (15) we define

	(iωn) =
(

	d (iωn) 0

0 0

)
. (20)

Using this self-energy and the Dyson equation

G(k, iωn) = [
G−1

0 (k, iωn) − 	(iωn)
]−1

(21)

we close the self-consistent loop. The convergence is
achieved when Gd,loc(iωn) = Gimp(iωn). The occupation num-
bers nd = nd↑ + nd↓, nc = nc↑ + nc↓ the induced pairing νd =

155102-3



VLADISLAV POKORNÝ AND PANCH RAM PHYSICAL REVIEW B 104, 155102 (2021)

1
N

∑
k〈dk̄↓dk↑〉 and the intrinsic pairing νc = 1

N

∑
k〈ck̄↓ck↑〉

can be then calculated from the local Green function, Eq. (18),

1

β

∑
n

Gloc(iωn) =

⎛
⎜⎝

nd↑ νd ndc νdc

νd 1 − nd↓ −νdc −ndc

ndc −νdc nc↑ νc

νdc −ndc νc 1 − nc↓

⎞
⎟⎠.

(22)

The auxiliary single-site problem can be solved using ei-
ther numerically exact but expensive techniques like QMC,
numerical renormalization group (NRG) or the exact diago-
nalization, or in an approximative way using simpler but faster
solvers based on diagrammatic expansion techniques like IPT,
noncrossing approximation or various slave-boson techniques
[34]. We chose the CT-HYB QMC method to calculate the
overall properties of SCPAM, backed up with approximate
spectral functions provided by the IPT.

A. CT-HYB

We use the CT-HYB QMC technique [35] as a numer-
ically exact solver for the SCIAM. As the Hamiltonian
in Eq. (16) does not conserve particle number, we use
a standard trick where we perform a canonical particle-
hole transformation in the spin-down segment of the
Hilbert space [25], (d†

↑, d↑, d†
↓, d↓) → (d†

↑, d↑, d↓, d†
↓) and

(c†
k↑, ck↑, c†

k↓, ck↓) → (c†
k↑, ck↑, c

k̄↓, c†
k̄↓). This transforma-

tion maps SCIAM to SIAM with attractive interaction −U and
changes the sign of the energy levels of the spin-down elec-
trons, ε̃σ → σ ε̃σ and ε̃kσ → σ ε̃kσ . The resulting Hamiltonian
is conserving and can be treated using standard solvers.

CT-HYB is an inherently finite-temperature method that
measures the Green function in imaginary-time domain G(τ ).
Therefore, the spectral functions are not accessible without
performing an analytic continuation to real frequencies which,
for stochastic data, is a notoriously ill-defined problem [36].
However, the value of the spectral function at the Fermi en-
ergy A(ω = 0) can be approximated at low temperatures by
βG(τ = β/2) [37] where β = 1/kBT is the inverse tempera-
ture. Since

G(τ ) =
∫ ∞

−∞
dω

e−τω

1 + e−βω
A(ω), (23)

we get

G(β/2) =
∫ ∞

−∞
dω

A(ω)

2 cosh(βω/2)
, (24)

i.e., that G(β/2) is a measure of the integrated spectral weight
on an interval of few kBT around the Fermi energy. As
(β/2) cosh−1(βω/2) → πδ(ω) for β → ∞, we arrive to a
simple expression βG(β/2) ≈ πA(0) valid for very low tem-
peratures. This measure is often used to locate metal-insulator
transitions in Hubbard-like models and we can utilize it to
identify the possible crossing of the impurity bands at the
Fermi energy.

B. IPT

The drawback of the CT-HYB method coming from the in-
ability to provide spectral functions with adequate resolution

FIG. 1. Diagrammatic representation of the two spin-up compo-
nents of the second-order correction to the d-electron self-energy,
Eq. (27). Top line represents spin-up, bottom line spin-down. Arrows
with single heads (diagonal elements of the bath Green function)
mark the propagation of electrons (right arrow) and holes (left ar-
row), arrows with double heads (off-diagonal elements of the bath
Green function) represent creation and annihilation of the Cooper
pairs. Vertical wavy line is the Coulomb interaction vertex U .

hinders its usability to describe experiments performed using
scanning tunneling spectroscopy techniques. Therefore, we
used the IPT to provide an approximate shape of the spectral
function.

IPT uses the second-order perturbation theory (2PT) in the
interaction strength U as the solver for the impurity problem
and was originally introduced to solve the Hubbard model at
half-filling [38]. It was successfully used to solve the PAM
[39–41] as well as the Hubbard model with BCS supercon-
ducting bath [42,43]. The dynamical self-energy reads

	imp(iωn) = 	HF + 	(2)(iωn), (25)

where 	HF is the static Hartree-Fock self-energy

	HF = U

β

∑
n

(G↓(iωn) F↓(iωn)

F̄↑(iωn) Ḡ↑(iωn)

)
(26)

and 	(2)(iωn) is the second-order correction that can be easily
written down in the imaginary-time domain and reads [42]

	(2)
σ (τ ) = −U 2Ḡ−σ (−τ )[G↑(τ )Ḡ↓(τ ) − F↑(τ )F̄↓(τ )],

S (2)
σ (τ ) = −U 2F−σ (−τ )[G↑(τ )Ḡ↓(τ ) − F↑(τ )F̄↓(τ )], (27)

where we denoted the elements of the local d-electron bath
Green function (19) and self-energy as

G =
(G↑ F↑
F̄↓ Ḡ↓

)
, 	(2) =

(
	

(2)
↑ S (2)

↑
S̄ (2)

↓ 	̄
(2)
↓

)
, (28)

and the bar denotes a charge-conjugate (hole) function. The
relation between functions in imaginary frequency and imag-
inary time reads

X (τ ) = 1

β

∑
n

e−iωnτ X (iωn) (29)

and we use the same notation for both. Diagrammatic repre-
sentation of the dynamic part of the self-energy is depicted in
Fig. 1. The elements with inverted spin can be obtained via
symmetry relations Gσ (iωn) = −Ḡ−σ (−iωn) and Fσ (iωn) =
F̄−σ (iωn).

The IPT was later generalized for arbitrary filling [44] by
introducing interpolation parameters A and B,

	imp(iωn) = 	HF + A	(2)(iωn)[1 − B	(2)(iωn)]−1. (30)

155102-4



EVOLUTION OF THE ANDREEV BANDS IN THE … PHYSICAL REVIEW B 104, 155102 (2021)

Parameter A is obtained from the exact asymptotics in the
high-frequency limit (ωn → ±∞) of the spectral function that
can be calculated from the equation of motion [45,46] and
B is derived from the atomic limit t → 0. The matrix form
of the parameters for superconducting models in the Nambu
formalism was derived in Ref. [42] where the authors showed
that matrix B is zero in the superconducting case.

Our experience with 2PT calculations of SCIAM [47,48]
shows that a more viable way how to modify the behavior of
the self-energy is the correction of the static (Hartree-Fock)
part 	HF, so that the initial occupation matrix calculated from
the bath Green function matches the final one calculated from
the 2PT propagator. In this method, the dynamical self-energy
(27) is calculated only once from the bath Green function
G, but the static part 	HF is consistently recalculated from
Eq. (26) in which the bath propagator G is replaced by the
2PT propagator

G(2)
d,loc(iωn) = [G−1(iωn) − 	HF − 	(2)(iωn)]−1. (31)

In theory, a fully self-consistent update is possible, where the
	(2) is also calculated iteratively from G(2)

d,loc. Our experience,
however, is that this method is numerically much more de-
manding and can lead to spurious behavior if used inside of a
DMFT loop.

We implemented the IPT method in the Matsubara fre-
quency formalism. While it is possible to implement the IPT
solver directly in real frequencies, the complicated subgap
structure of the impurity Green function makes such calcula-
tions problematic as one has to carefully identify the positions
of the in-gap states while the local spectral functions Ad (ω) =
− Im Gd,loc(ω + i0)/π and Ac(ω) = − Im Gc,loc(ω + i0)/π
can be obtained reliably from the Matsubara Green function
using the Padé analytic continuation technique [49].

Properties of 2PT solution for SCIAM were studied in
Refs. [47,48], showing that 2PT with corrected static self-
energy as described above provides reliable results compared
to NRG and QMC for weak and intermediate coupling U
if the ground state of the impurity model is a singlet, but it
fails for the doublet ground state. As the ground state for the
noninteracting (U = 0) model is always a singlet, there is no
way to switch on adiabatically the interaction and end up in
the doublet state as it is separated from the singlet state by a
quantum critical point. Also, it is not possible to perform a
diagrammatic expansion around a doublet (or any multiplet)
ground state without prior lifting of the degeneracy, e.g., by
magnetic field. Therefore 2PT gives a nonphysical solution
for SCIAM in the doublet phase with the in-gap states pinned
at the Fermi energy. This is indeed a serious limitation and
one has to keep an eye on the sign of the induced gap νd .
Negative values of this parameter mark the situations where
IPT becomes unreliable due to the above-mentioned failure of
the underlying 2PT impurity solver, even though the results
can show reasonable agreement with the numerically exact
QMC data.

IV. RESULTS

Calculations were performed using our own DMFT code
based on the TRIQS 2.2 libraries [50] and the TRIQS/CTHYB

hybridization-expansion solver [51] at temperature kBT =

0.025t with a cutoff in Matsubara frequencies ωmax
n � 300t .

Few data sets were recalculated at lower temperature to assess
its effect on the position of the phase boundaries. We restrict
our results to the half-filled situation nc + nd = 2. The DMFT
cycle was started from zero self-energy and a high value of
the gap parameter �, which was recalculated in each DMFT
iteration [52] together with the chemical potential μ that fixes
the total filling. The CT-HYB solver was used to obtain nu-
merically exact results on the impurity density matrix, from
which the occupancy, double occupancy and the induced pair-
ing was calculated. These results were recalculated using IPT,
showing good agreement, at least for the square lattice. The
spectral function A(ω) was then obtained from the IPT Green
function using the Padé analytic continuation method. An
imaginary frequency offset η = 5.10−3 was used to guarantee
the correct analytic behavior of the spectral functions.

A. Phase diagrams

In Fig. 2 we plot the phase diagram of SCPAM in the
g − U plane on a square [Fig. 2(a)] and triangular [Fig. 2(b)]
lattice at half-filling for V = 0.5t . We choose this value
of the hybridization V as the superconducting correlations
are strongest here in the noninteracting (U = 0) case (see
Appendix C for mode details). The two phase diagrams look
rather similar, largely due to the local nature of the DMFT.
The main panel shows the phase diagram calculated using
CT-HYB as the DMFT solver. Each individual bullet repre-
sents a separate calculation. The black empty bullets mark the
nonsuperconducting, KI phase. The superconducting region
can be separated into two phases that we mark SC+ (red
bullets) and SC− (blue bullets) by the sign of the induced
paring νd . Solid lines represent the approximate position of
the phase boundaries.

In the noninteracting (U = 0) case the system is a KI for
g < gc0 and a SC+ superconductor for g > gc0. The critical
value of the attractive coupling is gc0 ≈ 3.30t for the square
and gc0 ≈ 3.86t for the triangular lattice [53]. By increasing
the interaction strength U , the critical coupling gc shows a
reentrant behavior as described later in Fig. 4. The transition
between the KI and SC+ phases at constant U is continu-
ous and BCS-like, i.e., � ≈ (g − gc)1/2. The character of the
transition changes at the point where the KI-superconductor
transition line meets the transition line that separates the SC+
and SC− phases. The transition from KI to SC− phase is
discontinuous with a jump in the order parameter �. The
SC+ and SC− phases are separated by a smooth crossover
that becomes sharper with decreasing temperature and the line
in the phase diagram that separates these phases marks the
point where the induced gap νd changes sign. The behavior
of this crossover with decreasing temperature and a possible
method how to extrapolate the transition to zero temperatures
is discussed in Sec. IV C.

All the presented DMFT calculations use zero self-energy
and a large value of � as the initial condition. In the search
for the expected hysteresis behavior as described by Luitz and
Assaad in Ref. [25] we performed a second calculation for
selected values of the coupling strength g, starting from the
self-energy for large interaction strength U > 4t . We encoun-
tered no measurable difference within the QMC error bars
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FIG. 2. Phase diagram of SCPAM in the g − U plane for V =
0.5t and kBT = 0.025t on (a) square lattice and (b) triangular lattice
calculated using CT-HYB as the DMFT solver. Bullets represent
individual DMFT calculations. Black: Nonsuperconducting, Kondo
insulator phase. Red (blue): Superconducting phase with positive
(negative) induced pairing. Blue lines are approximate position of
the phase boundaries. Inset: Comparison of the position of the phase
boundary calculated using CT-HYB (blue) and IPT (red).

between the results at kBT = 0.025t . This is consistent with
the conclusions of Ref. [25] where the authors had to perform
the calculation at very low temperatures kBT ≈ 0.007t to be
able to observe any measurable hysteresis.

The insets show the phase boundaries calculated using
IPT solver (red) compared to the CT-HYB result from the
main panels (blue). For the square lattice IPT overestimates
the value of the critical interaction strength U but provides
qualitatively correct topology of the phase diagram. For the
triangular lattice IPT again gives a fair guess for the position
of the KI-superconductor phase boundary, but fails to predict
the change of the sign of the induced gap which is posi-
tive for all parameters and only decreases towards zero with
increasing interaction strength U . This unsatisfactory behav-
ior of the IPT for triangular lattice is connected with the failure
of the solver to provide reasonable data away from half filling.
As the triangular lattice is not bipartite, the fixed total filling
nc + nd = 2 does not guarantee that the individual bands are

half-filled and the filling of the d band nd changes with the
model parameters due to the change of the chemical potential
μ. The IPT overestimates the deviation from half-filling of the
d-band. Therefore the correlation effects caused by increasing
U , which are strongest at half-filling, are damped, keeping the
the system in the SC+ phase for all values of U .

In Fig. 3 we plot the comparison of CT-HYB and IPT
results along three cuts of the phase diagram for the square
lattice, Fig. 2(a), for g = 3t (black), 4t (blue), and 5t (red).
The bullets represent CT-HYB results, dashed lines IPT re-
sults. Figures 3(a) and 3(b) show the behavior of the induced
pairing νd and the intrinsic pairing νc [54]. For g = 3t we
start at U = 0 from the KI phase with zero pairing. The
transition to the SC− phase is discontinuous with a jump
in the order parameter at Uc ≈ 1.13t . IPT overestimates this
value by roughly 20%. The different height of the jump is
also due to the proximity to the “triple point” where the two
transition lines meet. For g = 4t and 5t the induced pairing
decreases with increasing interaction strength, changing sign
from positive to negative. The intrinsic νc shows a slight kink
around that point, but otherwise it is largely independent of
the interaction strength. IPT again overestimates the position
of the transition point but provides a reasonable fit to the
CT-HYB data in both superconducting phases, despite the fact
it becomes unreliable in situations where νd is negative.

Figure 3(c) shows the double occupancy of the d-band D =
〈d†

↑d↑d†
↓d↓〉 calculated using CT-HYB. Its value at U = 0 is

1/4 for g = 3t and larger than 1/4 in the superconducting
phase due to the attractive interaction induced in the impurity
band by the proximity effect. It decreases with the increasing
interaction strength U as the doubly occupied state becomes
energetically more expensive and shows a sharp downturn at
the crossover to the SC− phase, where the ground state of the
impurity model is a doublet of singly occupied states.

Figure 3(d) shows value of the d-electron imaginary-time
Green function Gd (τ ) at τ = β/2, Eq. (24), which is a mea-
sure of the spectral weight in the narrow window of a few
kBT around the Fermi energy. For g = 3t the system is a KI
with a narrow gap smaller than the relevant energy window
so this value is small but nonzero, decreasing sharply at the
transition point to the superconductor where the additional
gap of width � opens at the Fermi energy, pushing the spectral
weight to higher energies. As expected, IPT fits this value very
well in the KI phase. For g = 4t and 5t this function shows
a peak before the transition point, then decreases rapidly,
suggesting that the subgap Andreev bands are approaching
the Fermi energy at the crossover in a similar manner as the
ABS are crossing in the SCIAM at the 0 − π (singlet-doublet)
transition. This feature is discussed in more detail in the next
section.

To illustrate the reentrant behavior of the superconductivity
and the failure of IPT for the triangular lattice we plotted in
Fig. 4 the induced pairing νd (main panel) and the intrinsic
pairing νc (inset) as functions of the interaction strength U
for triangular lattice calculated using CT-HYB (bullets) for
three values of g close to the KI-SC+ phase boundary and
added the IPT result for g = 4t (dashed line). For g = 3.9t the
superconducting order is quickly suppressed by the increasing
Coulomb interaction just to re-emerge again at higher values
of U . Similar reentrant features are discussed in Ref. [26]. The
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FIG. 3. (a) Induced pairing νd , (b) intrinsic pairing νc, (c) d-band double occupancy D, and (d) the value of the diagonal element of the
imaginary-time Green function Gd,loc(τ ) at τ = β/2 as functions of interaction strength U for three values of the coupling g calculated using
CT-HYB (bullets) and IPT (dashed lines) as the DMFT solvers for SCPAM on the square lattice for V = 0.5t and kBT = 0.025t . Solid lines
are splines of the quantum Monte Carlo data and serve only as a guide for the eye.

d-band occupation is nd ≈ 1.15 at U = 0 for all three values
of g and according to the CT-HYB result it quickly approaches
unity (half filling) with increasing interaction strength. This

FIG. 4. Induced gap νd (main panel) and the intrinsic pairing νc

(inset) as functions of the interaction strength U calculated using
CT-HYB as the DMFT solver on the triangular lattice for three
values of the electron-phonon coupling g in the vicinity of the Kondo
insulator-superconductor phase boundary. The system shows a reen-
trant behavior for g = 3.9t (blue). Bullets represent quantum Monte
Carlo data, solid lines are splines and serve only as a guide for the
eye. The dashed line represents the IPT results.

enhances the correlation effects and eventually drives the sys-
tem into the SC− phase. On the other hand, IPT result shows
only very slow decrease of the d band occupation. As a result,
it fails to predict the change of the sign of νd which only
asymptotically approaches zero with increasing interaction
strength. A more elaborate modification of the IPT algorithm
is needed to correctly describe the change of the occupation to
study the model on nonbipartite lattices, although this cannot
overcome the principal problem of the method which is the
inability to describe the spinful ground state of the impurity
problem as discussed in Sec. III B, which seriously limits the
reliability of this method for certain superconducting models.

B. IPT spectral functions

The transition between the two superconducting phases can
be further illustrated on the behavior of the in-gap bands in the
spectral function. Here we limit our results to the square lattice
where IPT provides reasonable agreement with CT-HYB. In
Fig. 5 we plot the diagonal part of the total spectral function
A(ω) = Ad (ω) + Ac(ω) calculated using IPT as a function of
the interaction strength U for V = 0.5t , g = 5t , and kBT =
0.025t at the Fermi energy ω = 0 [Fig. 5(a)] together with
the heatmap of A(ω) in the region around the Fermi energy
[Fig. 5(b)]. We also plot in Fig. 6 the spectral function for
selected values of U to better specify the shape of the in-
gap bands. The gap edges lie at ±� = ±gνc ∼ ±1.7t which
follow the red dashed line from Fig. 3(b) (scaled by g = 5t).
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FIG. 5. (a) Value of the diagonal element of the total spectral
function A(ω) at the Fermi energy ω = 0 (blue) as a function of
the interaction strength U calculated using IPT for V = 0.5t , g = 5t ,
and kBT = 0.025t compared to the βG(β/2) from Fig. 3(d) (red).
(b) Heatmap of A(ω) for the same parameters as in panel (a).

As expected, the in-gap spectral function is largely dominated
by the d-band contribution. The double-peak structure of the
individual bands is quickly smeared out by the interaction
strength and the two bands move closer together, losing co-
herence, merging at U ≈ 0.55t , and move apart again. The

FIG. 6. In-gap spectral functions Ac(ω) (blue) and Ad (ω) (red)
calculated using the IPT solver for selected values of interaction
strength U for the same parameters as in Fig. 5, V = 0.5t , g = 5t ,
and kBT = 0.025t .

FIG. 7. Momentum-resolved spectral function A(k, ω) for the
square lattice calculated using IPT for V = 0.5t , g = 5t , and kBT =
0.025t for four values of the interaction strength U = 0 (top left),
0.2t (top right), 0.4t (bottom left), and 0.6t (bottom right). The
notation on the high symmetry points in the Brillouin zone follows
Fig. 10(c).

merging of the bands roughly coincides with the zero of the
induced pairing νd [red dashed line in Fig. 3(a)] at U ≈ 0.64t .
Furthermore, two additional bands are formed at higher ener-
gies that resemble Hubbard bands of the SIAM as they move
to larger energies with increasing U .

To further illustrate the evolution of the bands while ap-
proaching the transition point, we plot in Fig. 7 the total
momentum-resolved spectral function A(k, ω) = Ad (k, ω) +
Ac(k, ω) calculated using Eq. (21) in the gap region along
a path in the Brillouin zone described in Fig. 10(c) for four
values of the interaction strength. The double-peak structure
of the bands for vanishing values of U is connected with the
plateaus at � and X points. The increasing interaction strength
pushes the bands closer to the Fermi energy that can be seen
on the increase of the value of βG(β/2) [red line in Fig. 5(a)]
that shows a maximum at U ≈ 0.4t . As the bands are moving
closer together, they simultaneously lose coherence and more
spectral weight is pushed to the side bands by the increasing
effect of the self-energy 	d . As βG(β/2) measures the inte-
grated spectral weight in an interval around the Fermi energy,
its maximum does not match the maximum of the spectral
function at the Fermi energy A(0) [blue line in Fig. 5(a)],
although they should become more similar with decreasing
temperature and eventually coincide at T = 0.

Figure 7 also illustrates how the increasing self-energy is
responsible for the formation of the side bands. Their evo-
lution is similar to the formation of the Hubbard bands of
the SIAM, although their position deviates for weak interac-
tion strength from the ω = ±U/2 guess that comes from the
atomic limit of the impurity model. It is more plausible these
bands are, in fact, connected with the second pair of ABS
that emerge in the SCIAM with doublet ground state and their
origin is similar to the origin of the outer peaks in the spectrum
of a single-level impurity that is simultaneously connected to
both superconducting and metallic baths [55].
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FIG. 8. Average expansion order 〈k〉 of the CT-HYB simulation
scaled by inverse temperature β = 1/kBT as function of the inter-
action strength U for the square lattice, V = 0.5t , three values of
the coupling strength g, and three temperatures kBT = 0.05t (blue),
0.025t (black), and 0.0125t (red).

C. Average CT-HYB expansion order

The average expansion order 〈k〉 of a CT-HYB simula-
tion of SCPAM bears the information about the coupling
between the conduction and the impurity band [35] as it can
be identified with the hybridization energy scaled by inverse
temperature, 〈k〉 = β〈Hhyb〉 where Hhyb is given by Eq. (5).
Therefore, for momentum-independent hybridization V it can
be related to the parameter ndc = 1

N

∑
k〈d†

kσ ckσ
〉 defined in

Eq. (22), 〈k〉 = 2βV ndc (in contrast to the DMFT solution for
the Hubbard model where 〈k〉 is connected with the kinetic
energy of electrons [56]). The statistics of k can be accu-
mulated during the CT-HYB simulation and can be used to
quickly identify the approximate position of the phase bound-
aries without the need to measure the Green function or the
expectation value of any operator [57].

In Fig. 8 we plotted the scaled average expansion order
〈k〉/β of the CT-HYB simulation as a function of the inter-
action strength U for three values of the coupling strength
g and three temperatures kBT = 0.05t (blue), 0.025t (black),
and 0.0125t (red). We can use these data to assess the effect
of the temperature on the position of the phase boundaries.
For g = 3t this quantity exhibits a jump at the transition point
between the KI and SC− phases. The transition moves to
higher values of U and the jump becomes larger with de-
creasing temperature. For g = 4t and 5t the average expansion
order exhibits an increasingly abrupt change with decreasing
temperature around the crossover between the SC+ and SC−
phases and this crossover again moves to larger values of U .

For the SCIAM, the crossing of the lines for different
low-enough temperatures kBT � � marks the position of the
phase transition at zero temperature. This can be proven by
mapping the SCIAM in the vicinity of a critical point to a
simple discrete two-level system [58]. In our case, the low-
energy spectrum of SCPAM is continuous and the mapping is
only approximate therefore the lines for different temperatures
will not cross exactly at the same point, however, the crossing
of the lines for kBT = 0.025 (black) and 0.0125 (red) should

FIG. 9. The noninteracting LDOS for (a) square lattice, Eq. (A4)
and (b) triangular lattice, Eq. (A6). Dashed lines mark the position of
the chemical potential that corresponds to half filling.

still give a reasonable guess for the position of the transition
at zero temperatures. A comparison to the NRG data would be
needed to assess the reliability of this guess for lattice models.

V. CONCLUSION

We studied the properties of a heterostructure consisting
of a periodic lattice of impurities deposited on the surface
of a BCS superconductor that can be described by SCPAM.
We solved the model within the DMFT framework at half
filling using CT-HYB and IPT as impurity solvers. CT-HYB
provides numerically exact results that showed that apart from
the KI phase there are two superconducting phases we marked
SC+ and SC− separated by a crossover at finite temperatures.
These phases represented analogies of the 0 and π phases of
the SCIAM and were previously identified in Ref. [25] in a
model with fixed � but never studied in detail. The relation
between the phase transitions in the impurity model and in the
lattice model bound together by the DMFT equations is still
an open question [59] and here we provide an example of such
scenario. We present phase diagrams at constant temperature
that show the evolution of the phase boundaries with regard
to the attractive interaction g in the conduction band and the
repulsive interaction U in the impurity band. At small values
of U the interplay between the two interaction strengths leads
to a reentrant behavior of the phase boundary between the KI
and the SC+ superconductor. For larger values, the Coulomb
interaction favors the SC− superconducting phase over the
KI by lowering the critical value of the attractive interaction
strength. A similar effect was described in an experimental
setup in which the presence of a spin-1/2 transition metal
phtalocyanine molecules on the surface of a two-dimensional
superconductor enhances the superconducting pairing [27].
As the CT-HYB calculation is performed in imaginary time,
there is no direct way to access the spectral functions except
performing an ill-defined analytic continuation. Therefore,
we used the approximate IPT method that provides reliable
results for the square lattice. It correctly describes the KI and
SC+ phases as well as crossover between the SC+ and SC−
phases. The in-gap bands follow a crossing-like scenario in
which the spectral weight is transferred to the Fermi energy
in the crossover region. Furthermore, a second pair of in-
gap peaks is formed at higher energies. Unfortunately, the
current implementation of IPT fails to describe these effects
for the triangular lattice. Its reliability in the SC− phase is
also questionable due to the inherent failure of the underlying
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FIG. 10. Noninteracting (U = 0) band structure of the SCPAM
for (a) square and (b) triangular lattice for V = 0.5t and � = 0 (blue
dashed line), and � = t (red solid line). (c) First Brillouin zones
for square (left) and triangular (right) lattice. Blue dashed line is
the Fermi surface for � = V = 0. Black dashed line marks the path
along which the data in (a) and (b) and in Fig. 7 are plotted.

2PT solver to correctly describe a spinful ground state of the
auxiliary impurity model. In the last part we discussed the
temperature dependence of the average expansion order of
the CT-HYB algorithm. This quantity can be calculated very
effectively and bears the information about the change of the
phase boundaries with regard to the temperature.
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APPENDIX A: LDOS FOR SQUARE
AND TRIANGULAR LATTICES

The momentum summation in Eq. (18) can be calculated
effectively using the Hilbert transform and the noninteracting
LDOS for the given lattice which can be calculated from the
local Green function. For the square lattice with dispersion

FIG. 11. (a) Induced pairing νd (solid lines) and intrinsic pairing
νc (dashed lines) as functions of the hybridization V for selected
temperatures at U = 0 and g = 5t . (b) Induced pairing νd (main
panel) and intrinsic pairing νc (inset) as functions of the temperature
for selected values of the hybridization at U = 0 and g = 5t .

given by Eq. (11) it reads [60]

Gloc�(z) = 1

(2π )2

∫
dk

z − εk�
= 2

πz
K

(
16t2

z2

)
, (A1)

where the integration is over the first Brillouin zone and

K (m) =
∫ π/2

0

dθ√
1 − m sin2(θ )

(A2)

is the complete elliptic integral of the first kind. Using the
identity

K (m) = 1√
m

[
K

(
1

m

)
− isK

(
1 − 1

m

)]
, (A3)

where s = sgn(Im m) we obtain the LDOS A�(ω) =
− Im Gloc�(ω + i0)/π that reads

A�(ω) = 1

2π2t
K

(
1 − ω2

16t2

)
�(16t2 − ω2). (A4)

For the triangular lattice with dispersion given by Eq. (12) we
obtain [60]

Gloc�(z) = 1

π
√

z0
K

(
4r

z0

)
, (A5)
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where r = √
3 − z/t and z0 = (r + 3)(r − 1)3/4. The ana-

lytic continuation to the real axis must be done carefully due
to the complicated structure of the argument. The LDOS reads

A�(ω) =

⎧⎪⎨
⎪⎩

1
4π

√
z1

K
( z2

z1

)
for − 6t < ω < 2t,

1
4π

√
z2

K
( z1

z2

)
for 2t < ω < 3t,

0 otherwise,

(A6)

where z1 = 4q, z2 = (3 − q)(1 + q)3/4, and q = √
3 − ω/t .

The LDOS for the square and triangular lattices are plotted in
Fig. 9.

APPENDIX B: NONINTERACTING BAND STRUCTURE

The U = 0 band structure of the SCPAM can be calcu-
lated from the Green function in Eq. (13). The determinant
D(k, ω) = Det[G−1

0 (k, ω)] reads

D(k, ω) = (ω2 − ε2)
(
ω2 − ζ 2

k

)
− 2|V |2(ω2 + εεk ) + |V |4, (B1)

where ζ 2
k = �2 + ε2

k. Its zeros ω(k) mark the positions of the
poles of the Green function and read

ω(k) = ± 1√
2

[
2|V |2 + ζ 2

k + ε2

±
√(

ζ 2
k − ε2

)2 + 4|V |2(ζ 2
k + ε2 + εεk

)]1/2

.

For V = 0 the band structure simplifies to ω(k) = {±ε,±ζk}.
In Fig. 10 we plot the bands for U = 0 for square [Fig. 10(a)]
and triangular [Fig. 10(b)] lattice along the selected path
through the Brillouin zone [black dashed line in Fig. 10(c)].
For � = 0 (dashed blue lines) the model shows a very nar-
row hybridization gap at the Fermi energy. For � > 0 an

additional gap opens between the conduction and the impurity
bands.

APPENDIX C: EFFECT OF HYBRIDIZATION AND
TEMPERATURE ON THE NONINTERACTING MODEL

All results in Sec. IV (except Fig. 8) were calculated for
the fixed value of the hybridization V = 0.5t and temperature
kBT = 0.025t . Here we briefly discuss the effect of these
parameters on the noninteracting (U = 0) model. In Fig. 11(a)
we plot the dependence of the induced pairing νd (solid lines)
and intrinsic pairing νc (dashed lines) as functions of V for
several temperatures and g = 5t . The increasing hybridization
weakens the superconducting correlations in the conduction
band measured by νc by strengthening the pair breaking effect
of the magnetic impurities. The effect of the hybridization
on the induced pairing νd is more complicated, as for small
values of V it promotes the proximity effect leading to the
increase of the pairing in the impurity band, while for larger
values the induced pairing decreases at the same rate as the
intrinsic pairing in the conduction band. The maximum of
νd for kBT = 0.025t lies at V ≈ 0.48t , close to the value for
which the results in the main text are plotted.

In Fig. 11(b) we plot the induced pairing νd (main panel)
and the intrinsic pairing νc (inset) for g = 5t and U = 0 as
functions of the temperature. For T = 0 the values of νd

and νc coincide for any V > 0. For vanishing values of V
the intrinsic pairing decreases with increasing temperature
according to the standard BCS theory and vanishes at the
critical value Tc, followed by the induced pairing. For larger
values of V the dependence is nonmonotonic and for V = t
(blue line) we observe the reentrant behavior of the supercon-
ductivity. This effect is also discussed in Ref. [26] and our
result is in agreement with their conclusions that the reentrant
behavior is not an effect of the electron correlations, as we
observe it already at U = 0, but rather a result of the subtle
interplay between the electron tunneling and superconducting
pairing.
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[14] M. Vekić, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and
R. L. Sugar, Competition between Antiferromagnetic Order and
Spin-Liquid Behavior in the Two-Dimensional Periodic Ander-
son Model at Half Filling, Phys. Rev. Lett. 74, 2367 (1995).

[15] J. P. L. Faye, M. N. Kiselev, P. Ram, B. Kumar, and D. Sénéchal,
Phase diagram of the Hubbard-Kondo lattice model from the
variational cluster approximation, Phys. Rev. B 97, 235151
(2018).

[16] O. Bodensiek, R. Žitko, M. Vojta, M. Jarrell, and T. Pruschke,
Unconventional Superconductivity from Local Spin Fluctua-
tions in the Kondo Lattice, Phys. Rev. Lett. 110, 146406 (2013).

[17] W. Wu and A.-M. S. Tremblay, d-Wave Superconductivity
in the Frustrated Two-Dimensional Periodic Anderson Model,
Phys. Rev. X 5, 011019 (2015).

[18] P. Ram and B. Kumar, Theory of quantum oscillations of mag-
netization in Kondo insulators, Phys. Rev. B 96, 075115 (2017).

[19] P. Ram and B. Kumar, Inversion and magnetic quantum oscilla-
tions in the symmetric periodic Anderson model, Phys. Rev. B
99, 235130 (2019).

[20] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Observation of Bose-Einstein condensation
in a dilute atomic vapor, Science 269, 198 (1995).

[21] A. Koga and P. Werner, Superfluid state in the periodic Ander-
son model with attractive interactions, J. Phys. Soc. Jpn. 79,
114401 (2010).

[22] A. Koga and P. Werner, Superfluid state in the periodic Ander-
son model with attractive interactions, J. Phys.: Conf. Ser. 302,
012040 (2011).

[23] M. A. N. Araújo, N. M. R. Peres, and P. D. Sacramento,
Local-moment formation in the periodic Anderson model with
superconducting correlations, Phys. Rev. B 65, 012503 (2001).

[24] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[25] D. J. Luitz and F. F. Assaad, Weak-coupling continuous-time
quantum Monte Carlo study of the single impurity and periodic
Anderson models with s-wave superconducting baths, Phys.
Rev. B 81, 024509 (2010).

[26] W. V. van Gerven Oei and D. Tanasković, Reentrant s-wave su-
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