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Origin of topological order in a Cooper-pair insulator
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We present a microscopic derivation of the Cooper-pair insulator (CPI), a topologically ordered counterpart of
the s-wave superconductor. For this, we study a generalized model of electrons with attractive interactions with
the unitary renormalization group method. The effective Hamiltonian for the CPI corresponds to a gapped, insu-
lating state of quantum matter arising solely from interparticle interactions (and without any need for disorder or
coupling to an external magnetic field). The CPI ground-state manifold displays signatures of topological order,
including a fourfold degeneracy. The CPI effective Hamiltonian can be written in terms of Wilson loops and
contains a topological θ -term known to be equivalent to the Chern-Simons term in two spatial dimensions. We
show that the long-ranged many-particle entanglement content of the CPI ground state is driven by interhelicity
two-particle scattering processes. The state with θ = 0 possesses the largest bipartite entanglement entropy (EE)
and scales logarithmically with subsystem size (L). Passage from the CPI to the s-wave BCS superconducting
ground state at T = 0 under RG is demonstrated through the replacement of the long-ranged entanglement of the
former by the short-ranged entanglement of the latter. A study of the renormalization of the entanglement in k
space shows that the CPI state possesses a hierarchy of scales of entanglement, and that this hierarchy collapses
in the BCS state. Our work offers clear evidence for the microscopic origins of topological order in a prototypical
system and lays the foundation for similar investigations in other systems of correlated electrons.
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I. INTRODUCTION

Superconductivity is undoubtedly one of the best studied
examples of an emergent collective phenomenon in a system
of interacting electrons. While Cooper’s theory [1] demon-
strates that the presence of an attractive pairing interaction
can lead to the formation and condensation of two-electron
bound states (Cooper pair), the celebrated BCS theory [2]
well describes the superconducting nature of this condensate
of Cooper pairs in terms of a ground-state wave function with
a fluctuation in the number of Cooper pairs. Importantly, the
BCS theory provides microscopic insight into various super-
conducting properties, like the Meissner-Ochsenfeld effect,
phase stiffness and the supercurrent, the transition tempera-
ture, etc. The phenomenological Ginzburg Landau theory [3]
captures well the criticality of the superconducting transition
in terms of a second-order transition, involving the sponta-
neous breaking of the global U (1) symmetry of the electronic
Hamiltonian; this is known to be equivalent to the abelian-
Higgs field theory. The many-particle entanglement properties
of the BCS wave function have also been established more
recently [4,5].

In the presence of a magnetic field [6–8] and/or disorder
[9–11], a superconducting thin film has been observed to un-
dergo a transition to an insulating state of matter (see Ref. [12]
for a review). Several works, experimental [13–17] as well as
theoretical [18,19], offer evidence that this insulating state has
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Cooper pairs present in it. Following Ref. [17], we henceforth
refer to this state as the Cooper-pair insulator. Notable among
various theoretical efforts on an insulating state composed of
Cooper pairs is the development of a phenomenological gauge
theory of Josephson junction arrays (JJA) [20], described by
a topological Chern-Simons field theory emerging out of the
nonlocal interaction between the quasiparticle and vortex ex-
citations of the superconducting system. Diamantini et al. [21]
show that such a topological insulating phase possesses, at
finite temperatures, a longitudinal conductance mediated by
time-reversal symmetry preserved counterpropagating edge
modes. Recently, an approach based on a microscopic ground-
state wave function for such a topological insulating state has
also been attempted [22].

Hansson et al. [23] further established that the abelian-
Higgs model equivalent of the s-wave superconductor (when
coupled to a dynamical gauge field) possesses other important
features of topological order, i.e., a nontrivial ground-state
degeneracy revealed on a multiply connected spatial mani-
fold (such as a torus) and charge fractionalization (see also
Ref. [24] for an alternative approach). The degenerate ground
states are labeled by topological quantum numbers corre-
sponding to the eigenvalues of Wilson and ’t-Hooft loops
[23–26]. More recently, the authors of Ref. [27] show that the
gapped topological bulk for s-wave pairing displays a vanish-
ing Hall conductance at T = 0. Further, they also study the
nature of the topological order in other spin-singlet supercon-
ductors [27]. The Cooper-pair insulating phase has also been
studied in lattice bosonic superconductors using vortex-boson
duality [28,29], and its topological order has been investigated
[30].
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The major outcome of this work involves the microscopic
derivation of the theory for a topologically ordered Cooper-
pair insulating phase. This is shown in Sec. II. Specifically, by
starting from a general model of electrons with attractive pair-
ing interactions, we derive an effective Hamiltonian for this
phase of quantum matter and demonstrate it to be an insulator
with a topologically ordered gapped ground-state manifold.
Importantly, we find that such a state is emergent from quan-
tum fluctuations arising purely from interparticle interactions.
Further, such quantum fluctuations preserve translational and
time-reversal invariance, and are not driven by either disor-
der or the coupling to an external magnetic field. Thus, the
effective theory of the CPI phase is described purely in terms
of Cooper pairs. This marks an important difference with the
gauge theories mentioned earlier (e.g., Ref. [21]) that require
the interplay of Cooper pair and vortex degrees of freedom.
We postpone a detailed discussion of the implications of this
point to the concluding section of our work.

We stress here that in obtaining the effective theory for
the CPI, the effect of vortices dynamically generated by
quantum fluctuations at T = 0 within the bare model have
been accounted for within the RG procedure [31]. Indeed, in
Ref. [31], some of us showed that the unitary RG method
reproduces the quantum BKT RG equations and resulting
T = 0 phase diagram of a system of interacting electrons in
one dimension. The BKT vortex binding-unbinding transition
corresponds to instabilities of the electronic Fermi surface,
and are described by the spin and charge vertex operators of
the associated sine-Gordon field theory. Topological aspects
of the zero mode of these vertex operators are understood from
their connection to nonlocal gauge transformations arising
from boundary condition changes on the fermionic Hilbert
space (at and near the Fermi surface). It was shown that the
unitary RG flow and the effective theories it obtains capture
accurately these changes in the boundary conditions of the
fermionic Hilbert space. In the same way, the unitary RG anal-
ysis presented by us for the CPI below captures the effects of
quantum fluctuation generated vortices on the phase diagram.

In meeting this goal, we begin with a generalized Hamil-
tonian for a Fermi liquid with a short-ranged repulsive
density-density interaction, as well as attractive pairing term.
Suitably rewritten in terms of Anderson pseudospins [32], this
corresponds to a reduced BCS Hamiltonian with additional
repulsive interactions familiar from Fermi liquid theory. Then,
using the unitary renormalization group (URG) technique re-
cently developed by some of us [31,33–37], we resolve in a
step-wise manner the quantum fluctuations arising from the
noncommutativity between the kinetic energy of the electrons
and the interparticle interactions. This involves decoupling
one electronic Fock state in the momentum space from all
the other states it was connected to, such that the occupation
number of the decoupled state is rendered as an integral of
motion. The decoupling proceeds in a hierarchical fashion
in terms of the kinetic energies of the electrons, from high
(near the Brillouin zone edge, UV) to low (near the Fermi
surface, IR), and an effective Hamiltonian is generated at
every step. For the sake of clarity, we have encapsulated the
major aspects of the URG method in Appendix A. As shown
in Sec. II, the RG flow stops at an IR fixed point, yielding a
low energy effective theory of a fixed number of Cooper pairs

FIG. 1. Renormalization group phase diagram for the effective
pairing Hamiltonian given in Eq. (3). The y axis represents the
energy scale (ω) for quantum fluctuations that are resolved under
the RG flow, while the x axis represents the repulsive interaction
(U ) in the parent metal (whose electrons feel the additional attractive
pairing). The phase diagram clearly shows the existence of an emer-
gent Cooper-pair insulator (CPI) phase at low ω (i.e., energy scales
proximate to the Fermi surface of the parent metal) for all U � 0.

but without any breaking of the macroscopic U (1) phase (i.e.,
with vanishing phase stiffness).

We find that the emergent fixed point effective theory
[Eq. (11)] involves a nonlocal renormalized interaction be-
tween all pseudospins within the window that is emergent in
k space around the erstwhile Fermi surface and described by
a collective zero-mode degree of freedom composed of these
pseudospins. In keeping with Ref. [17], we call this symmetry
unbroken phase of Cooper pairs the Cooper-pair insulator
(CPI). For readers who wish to skip the technical details, we
summarize our results below, as well as outline the plan of the
work.

A. Summary of results

The URG procedure involves an energy scale for quantum
fluctuations (ω). In keeping with this, in Sec. II, the RG phase
diagram obtained in Fig. 1 clearly displays a quantum phase
transition separating a CPI phase (at low ω) and a gapless
Fermi liquid metal (at higher ω) for any repulsive interaction.
The CPI Hamiltonian corresponds to a collective quantum
rotor model coupled to an effective Aharanov-Bohm (AB)
flux (�) [38,39]. and reveals different ground states related
to one another by spectral flow upon tuning �.

We have studied the topological features of the CPI state
in Sec. III. The gauge theoretic nature of the CPI Hamil-
tonian for the CPI is established by writing it in terms of
a nonlocal Wilson loop operator. Nontrivial topological de-
generacy and charge fractionalization signatures of the CPI
ground-state manifold are revealed through a flux-insertion
spectral flow argument [35,37,40,41]. This approach reveals
a plateauslike quantization of the number of Cooper pairs
(N , a topological quantum number) upon tuning � through
integer values (Fig. 4), with the passage between the plateaus
signifying topological transitions (at half-integer values of
�). The CPI ground state is found to possess large helicity
cross-correlations (Fig. 6).
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In Sec. IV, we present the entanglement features of the CPI
ground state. The entanglement spectrum (ES) computed for
the lowest CPI ground state (� = 0) is found to be doubly de-
generate for all partitions of the system (Fig. 8), reflecting the
additional particle-hole symmetric nature of this CPI ground
state. This degeneracy is lifted at the first topological tran-
sition (� = 1/2, Fig. 8). The bipartite entanglement entropy
(EE) is shown to vary with the subsystem length L as ln L
(Fig. 10). Further, the � = 0 plateau possesses the largest EE
(Fig. 11), and is rapidly lowered to zero as � is tuned toward
the gapless metal through various plateaus.

In Sec. V, we turn to the connection of the T = 0 CPI state
with the symmetry-broken BCS ground state (with a detailed
URG analysis shown in Appendix B). We show in Fig. 15
that a U (1) symmetry-breaking field promotes fluctuations in
the number of Cooper pairs, while lowering the fluctuations
in the conjugate global phase [42–45]. Further, in Fig. 16, we
show that symmetry breaking effectively destroys the helicity
cross-correlation (ϒ) among the Cooper pairs of the CPI state.
We find that an increasing symmetry-breaking field lowers the
inter-k entanglement between Cooper pairs present in the CPI
to zero, while raising the interspin entanglement to its BCS
value (Fig. 17) [4,5].

We also consider the effects of a Josephson coupling in
Sec. V. Specifically, we consider two CPI systems coupled
via Josephson coupling, and one of whom is placed in an U (1)
symmetry-breaking field. In Fig. 19, we find that breaking the
symmetry in one of the CPI systems generates a proximity
induced phase coherence in the other. Indeed, an increasing
symmetry-breaking field together with a large Josephson cou-
pling turn a CPI into a phase stiff ground state. The generation
of a Josephson current through the phase-locking, however,
requires the separate symmetry breaking of the two individual
subsystems (Fig. 20).

In Sec. VI, we develop an entanglement RG study of the
CPI state using the technique developed by us in Refs. [31,58].
From this technique, we obtain a family of wave functions
under RG (ranging from the UV to the IR). We compute the
entanglement entropy of various sizes of partitions from this
set of wave functions, revealing the evolution of the entan-
glement entropy with RG. As shown in Fig. 23, the EE for
the constituent subblocks of the emergent CPI ground state
are clearly distinguished from that for all other partitions:
their EE varies little under RG from UV to IR, while that
of all others is lowered under RG from UV to IR. Further,
this analysis reveals a remarkable hierarchy of scales of en-
tanglement possessed by the CPI ground state. This hierarchy
of scales of entanglement gradually collapses upon tuning a
symmetry-breaking field (Fig. 24), until it is no longer present
in the BCS ground state (Fig. 25). Further, we can distinguish
scaling toward the BCS and CPI ground states under RG flow.
Finally, we conclude in Sec. VII with a discussion of some
broader implications of our work.

II. EFFECTIVE THEORY OF THE COOPER-PAIR
INSULATOR (CPI)

We begin by deriving an effective Hamiltonian for an insu-
lating state of matter composed of a fixed number of Cooper
pairs (referred to as the Cooper-pair insulator, or CPI, in the

Introduction). For this, we will carry out a renormalization
group (RG) calculation on a system of electrons in two dimen-
sions with a generalized pairing Hamiltonian, H = ∑

q Hq
pair,

where

Hq
pair =

∑
k

εknk −
∑

k �=k′,σ

∣∣W q
kk′

∣∣c†
k−q,σ

c†
−k,−σ

c−k′,−σ ck′−q,σ

+ U
∑
k �=k′

(nk − 1/2)(nk′ − 1/2), (1)

where with q denotes the pair-momenta, εk the kinetic energy
for electrons about a circular Fermi surface, −|W q

kk′ | is the at-
tractive pairing interaction, U (>0) a repulsive density-density
interaction, and nk = ∑

σ c†
k,σ

ck,σ . Note that the case of a con-
stant |W q

kk′ | ∀(k, k′, q) corresponds to the attractive Hubbard
model [46]. Here, we are interested in spin-singlet Cooper-
pair degrees of freedom formed out of pairs of electrons
with momenta k − q and −k (i.e., having a total pair mo-
mentum q �= 0). The appropriate occupation number channel
for excitations with such nonzero pair momenta is identified
by employing Anderson’s pseudospin contruction in the sub-
space nk−q,↑ = n−k,↓:

�Sk = 1
2φk.�τ .φ

†
k , (2)

where �τ = (τ z, τ x, τ y) are the Pauli matrices and φk =
(ck↑, c†

−k↓). The pseudospins obey the standard commutation

relation for spin-1/2: [Si
k, S j

k ] = iε jklS
j
k . Then, we write Hq

pair
as

Hq
pair = −

∑
k

ε̃k,q

(
Sz

k,q − 1

2

)
−

∑
k �=k′

∣∣W q
kk′

∣∣
2

(
S−

k,qS+
k′,q + H.c.

)

+ U
∑
k �=k′

Sz
k,qSz

k′,q, (3)

where ε̃k,q = ε−k + εk+q is the kinetic energy for a pair of
electrons. To ensure the extensivity of the model, |W q

kk′ | =
|V q

kk′ |/N (where N corresponds to the total number of pseu-
dospins, and hence 2N the total number of electrons). The
special case of Hq=0

pair with |W q=0
kk′ | and U = 0 is called the

Richardson pairing model (see Ref. [47] and references
therein).

Following the strategy developed in Refs. [31,33–37], we
now carry out a renormalization group analysis on Hq

pair; see
Appendix A for details. The RG equations obtained for ε̃ and
|W q

kk′ | are


ε̃
( j)
k′,q


 log � j

�0

= 1

4

∣∣W ( j)
k�k′

∣∣2

(
ω − ε̃

( j)
k�,q

2 − U
4

) , (4)



∣∣W q,( j)

k′k′′
∣∣


 log � j

�0

= −1

4

∣∣W q,( j)
k�k′

∣∣∣∣W q,( j)
k�k′′

∣∣
(
ω − ε̃

( j)
k�,q

2 − U
4

) , (5)

where the index ( j) represents the RG step number, |W q,( j)
k′k′′ | =

|V q,( j)
k′k′′ |/N ( j) (for N ( j) being the number of remnant pseu-

dospins at the jth RG step) and k� the momentum at a k-space
window (�) lying on a radial and around the circular Fermi
surface. The symbol ω represents an energy scale for the quan-
tum fluctuations that lead to UV-IR mixing. Further, we note
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that the RG step index j starts from the number of pseudospin
(N) lying within the bare window �0 and proceeds to smaller
values. At every step of the RG, a pseudospin with momentum
k� lying on a given direction radial to the Fermi surface is
disentangled from the rest (∀k < k�); the U (1) symmetry of
the circular Fermi surface ensures that the RG is carried out
simultaneously for all pseudospins with momentum k�. Note
that the repulsive coupling U does not flow under RG, as
two-particle quantum fluctuations do not lead to the renormal-
ization of this term. Instead, it appears as a Hartree-shift in the

pseudospin Greens function Gps = [ω − ε̃
( j)
k�,q

2 − U
4 ]−1 present

in the RG equations given above [31,33–37].
It can be seen that the normalization for ε̃

( j)
k′,q is RG rel-

evant for ω > (ε̃k�,q/2 + U/4), while that for |W q,( j)
k′k′′ | is RG

relevant for ω < (ε̃ ( j)
k�,q/2 + U/4). Given that ε−k = εk for

a circular Fermi surface, it is easily seen that ε̃
( j)
k,q � 2ε

( j)
k .

Therefore, given the denominator ω − ε̃
( j)
k�,q/2 − U/4 in both

RG equations, the leading RG relevant q-sector for the lowest
quantum fluctuation energy scale (ω = 0) corresponds to the
case of q = 0 (i.e., Cooper pairs with zero center of mass
momentum). Thus, we will henceforth study only the case of
ε̃

( j)
k,q=0 ≡ ε̃

( j)
k = 2ε

( j)
k and Hq=0

pair ≡ H0
pair.

We define mode decompositions of the dispersion ε
( j)
k and

the pairing coupling |V ( j)
kk′ | as follows:

ε̄
( j)
l = 1√

N ( j)

∑
�k

eiklε
( j)
k , V̄ ( j)

ll ′ = 1

N ( j)

∑
k,k′

ei(kl+k′l ′ )∣∣V ( j)
kk′

∣∣,
(6)

such that the RG equations for ε̄
( j)
l=0 and V̄ ( j)

l=0,l ′=0 are observed
to dominate under the RG flow over all other modes for a
thermodynamically large system:

Re

(

ε̄

( j)
l=0


ε̄
( j)
l �=0

)
> 1, Re

(

V̄ ( j)

l=0,l ′=0


V̄ ( j)
l �=0,l ′ �=0

)
> 1. (7)

The zero mode ε̄
( j)
0 is related to the center of mass kinetic

energy ε̄ ( j) : ε̄
( j)
0 = (

∑
k ε

( j)
k )/

√
N ( j) =

√
N ( j)ε̄ ( j). Similarly,

the zero mode V̄ ( j)
00 is connected to its center of mass value

: V̄ ( j) = (
∑

kk′ V
( j)

kk′ )/(N ( j) )2 = V ( j)
00 /N ( j). Thus, the RG rela-

tions of these zero modes is equivalent to the study of the
center of mass degrees of freedom,


ε̄ ( j) = 1

4

|W̄ ( j)|2(
ω − ε̄ ( j)

2 − U
4

) = −
|W̄ ( j)|, (8)

where W̄ ( j) = V̄ ( j)/N ( j). In this way, we observe below the
emergence of the well-known reduced BCS model [2] at the
stable fixed point of the RG Eq. (8).

The relation between the two RG equations [Eq. (8)] leads
to a RG invariant: ε̄ ( j) + |W̄ |( j) = C, C ∈ R. From this in-
variant, it can now be seen that when the kinetic energy ε̄

is RG relevant, the attractive coupling |W̄ | is RG irrelevant,
and vice versa. We can now write the effective Hamiltonian

obtained at the stable fixed point of the RG flow as

Hcoll = −2ε̄∗

N∗
∑

k

(
Sz

k − 1

2

)
− V̄ ∗

2N∗
∑
k �=k′

(S+
k S−

k′ + H.c.)

+ U
∑
k �=k′

Sz
k,qSz

k′,q, (9)

where ε̄∗, V̄ ∗ and N∗ are the fixed point values of ε̄ ( j), V̄ ( j)

and N ( j), respectively, reached at the endpoint of the RG flow
(and V̄ ∗/N∗ = C − ε̄∗). Finally, by defining the composite
pseudospin �S = ∑

k
�Sk , we can rewrite the Hamiltonian Hcoll

(up to additive constants) as

Hcoll = −2ε̄∗

N∗ Sz − V̄ ∗

2N∗ (S+S− + S−S+) + USz2

= −2ε̄∗

N∗ Sz − V̄ ∗

N∗ (S2 − Sz2) + USz2. (10)

While the first term arises from the electronic kinetic energy,
the second the potential energy saved by the formation of
bound pairs and the third represents the repulsive charging
energy cost of the electrons that form the Cooper pairs. Note
that the Hamiltonian Eq. (9) has the global U (1) symmetry of
the generalized pairing Hamiltonian Eq. (1). This is expected,
as RG transformations are symmetry preserving.

We present the RG phase diagram below in Fig. 1 by a
numerical solution of the RG equations for the electronic
dispersion along a radial to the circular Fermi surface being
εk = 2t cos(k), a bare window near the Fermi energy vF �0 =
0.3t , a constant bare attractive coupling |V q

kk′ | = 4t/N and the
total number of pseudospins N = 51. The phase diagram is
presented in the plane of the effective quantum fluctuation
energy scale ω and the repulsive coupling U (and both are in
units of the kinetic energy bandwidth 4t). It clearly shows that
the Cooper-pair insulator (CPI) is stabilized at lower values of
ω for all U , and that a metallic phase (lying at higher values
of ω) is obtained through a quantum phase transition into a
gapless Fermi liquid metallic phase.

For the sake of simplicity, we will henceforth focus on the
case of U = 0 [43,48–51],

Hcoll = −2ε̄∗

N∗ Sz − V̄ ∗

N∗ (S2 − Sz2),

= V̄ ∗

N∗ (Sz − �)2 − V̄ ∗

N∗ S2, (11)

where � ≡ ε̄∗/V̄ ∗ and we have ignored a constant [∝
(ε̄∗/N∗)2]. Further, for N∗ pseudospins, 0 � S(∈ Z ) � N∗/2,
−S � Sz(∈ Z ) � S and the number of Cooper pairs is given
by Nc = S − Sz. It is easily seen that both S and Sz commute
with Hcoll. Further, Hcoll arises a global collective angular
momentum degree of freedom, Sz, and possesses the form of
a quantum particle whose dynamics is confined to a circle
and coupled to an (effective) dimensionless AB flux �. As
well will discuss in a later section, this points to a topological
property possessed by the ground-state manifold of its Hilbert
space.

We note here, however, that the emergent Hilbert space
corresponding to Hcoll possesses the property of spectral flow.
First, observe that minimisation of the energy is achieved
under RG flow for the case of � = ε̄∗/V̄ ∗ → 0+ by a ground
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state possessing S = N∗/2 and Sz = 0, corresponding to the
largest number of Cooper pairs (Nc = N∗/2). Spectral flow
refers to the existence of ground states, corresponding to other
positive integer values of Sz, that can be reached under RG for
values of the effective AB flux � � 1 flowing to the same
positive integer. As we will now see, this emergent quanti-
zation of the effective AB flux � under RG also provides a
relation between the RG invariant C and the quantum fluctu-
ation scale ω. As shown in Appendix A, the final fixed point
value of ε̄∗ is given by ε̄∗ = 2ω − U

2 . Using this together with
the relation for the RG invariant is C = ε̄∗ + |W̄ |∗, we find the
effective flux at the IR fixed point is

� = ε̄∗

|V̄ ∗| = 2ω − U
2

N∗|W̄ ∗| = 2ω − U
2

N∗(C − 2ω + U
2

) ≡ n ∈ Z. (12)

For the case of U = 0, this leads to

C = 2ω

(
1 + nN∗

nN∗

)
→ 2ω for n � 1. (13)

Finally, we note that the ground-state wave function of
the U (1)-symmetric CPI state with Sz = 0 (i.e., at strong
coupling) is given by

|ψg〉 = N
( ∑

k

c†
−k↓c†

k↑

)S

|vac〉, (14)

where |vac〉 is the state that contains no Cooper pairs, and N is
a normalization factor. By acting with Hcoll on |ψg〉, we obtain
the ground-state energy density as

Eg

N∗ = − V̄ ∗

N∗2
S2 = − V̄ ∗

N∗2

N∗

2

(
N∗

2
+ 1

)

= −V̄ ∗

4

(
1 + 2

N∗

)
� −V̄ ∗

4
for N∗ � 1. (15)

To gauge the accuracy of the effective Hamiltonian [Eq. (11)]
and ground-state wave function [Eq. (14)] obtained from
the RG procedure, we compare the ground energy density
value obtained in the thermodynamic limit [Eq. (15)] from a
finite-size scaling analysis with that obtained from a finite-
size scaling for exact diagonalization (ED) studies of small
systems of the bare Hamiltonian Hq

pair [Eq. (1)] for U =
0, |V q

kk′ | = 2 (in units of a hopping parameter t), |W q
kk′ | = 2/N .

For a U (1)-symmetric Fermi surface, it suffices to compare
the energy density value obtained along any one diameter of
the spherical Fermi volume. As is shown in Fig. 2, we find
excellent agreement between the results obtained in the ther-
modynamic limit from the two approaches: Eg/N∗ � −0.254t
from the RG, as against Eg/N∗ � −0.252t obtained from ED.
This indicates the efficiency of the RG method in preserving
the spectral content during the flow toward the stable IR fixed
point, and offers confidence in the analyses of subsequent
sections that offer insight into the properties of the CPI phase.

III. TOPOLOGICAL FEATURES OF THE CPI

We will, in this section, study the topological properties
of the many-body system described by the stable fixed point
effective Hamiltonian Hcoll [Eq. (11)] obtained from the RG.

FIG. 2. Finite-size scaling of the ground-state energy
density Eg/N∗ under RG for system sizes N = 100,

202,406,814,1600,3200,6400,12 800,25 600,51 200 (blue circles
from right to left). N∗ is the number of pseudospins within the
emergent subspace at the stable fixed point of the RG. The red
dash-dot line shows a linear fit to the finite-size scaling data.
The blue dash-dot line shows the thermodynamic limit value for
Eg/N obtained from a finite-size scaling exact diagonalization
study of small systems ranging between 5 and 15 pseudospins.
Inset: Zoom of RG finite-size scaling data for N = 3200, 6400,

12 800, 25 600, 51 200.

A. Topological nature of the effective theory

We begin by showing that the effective Hamiltonian for the
plateau state in the strong coupling limit (i.e., with ε̄∗ = 0)
system) is purely topological. This will be done by rewriting
Hcoll(ε̄∗ = 0) = − V̄ ∗

N∗ (S2
x + S2

y ) in terms of emergent Wilson
loop operators defined on a torus created by imposing periodic
boundary conditions in the �-direction (i.e., the window in k
space that defines the CPI state, see Fig. 3 below).

We define the k-space translation (Tŝ, brown curved line in
Fig. 3) and twist operators (Ôi

ŝ, blue dashed line in Fig. 3)

Tŝ : Si
�,ŝ → Si

�+δ�,ŝ, Ôi
ŝ = exp

[
2π

N∗ i
N∗−1∑
n=0

nSi
n�,ŝ

]
, (16)

where the twist operator Ôi
ŝ spans all values of � in the ŝ

direction and imparts a gradual twist to the pseudospins Si
n�,ŝ

such that the total twist imparted across the ŝ direction is 2π .

FIG. 3. (Left) Effective k-space window (dark gray) of size 2�

around the Fermi surface (FS, yellow circle) formed under RG for the
CPI phase. ŝ represents a given direction in k space normal to the FS.
(Right) Construction of the respective twist (Ôŝ, Ô�) and translation
operators (T̂ŝ, T̂ŝ⊥ ) defined on the torus created by imposing periodic
boundary conditions on emergent window in k space (i.e., on all
directions ŝ).
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Further, we can also define a composite twist operator that
spans the entire torus shown in Fig. 3,

Õi =
N∗−1∏
n=0

ÔRnŝ = exp

[
2π i

N∗

N∗−1∑
n,m=0

mSi
mδ�,Rnŝ

]
. (17)

Then, we compute the following (nonlocal) Wilson loop op-
erator W i

1 [i = (x, y)] defined in terms of Tŝ and Õi,

W i
1 = TŝÕ

iT †
ŝ Õi† = exp

[
2π i

N∗

N∗−1∑
m,n=0

Si
m�,Rnŝ

]

× exp

[
2π i

N∗−1∑
n=0

Si
�=0,Rnŝ

]
, (18)

where the first term on the right-hand side imparts the twist
to the center of mass of the torus of pseudospins. The
second denotes the trivial phase twist accumulated at a vir-
tual boundary defined on the torus by the curve � = 0,
exp[2π i

∑N−1
n=0 Si

�=0,Rnŝ] = 1. Thus, we obtain the composite
pseudospin [Si, i = (x, y)] in terms of W i

1 as

Si =
∑
m,n

Si
m�,Rnŝ = N∗

2π
Im

[
ln

(
W i

1

)]
, (19)

such that the U (1)-symmetric effective Hamiltonian obtained
from the RG can be written purely in terms of the emergent
W i

1 as

Hcoll = − ε̄∗

π
Im

[
ln

(
W z

1

)] − N∗V̄ ∗

4π2

∑
i=x,y

{
Im

[
ln

(
W i

1

)]}2
.

(20)

This shows us that the U (1) symmetry is encoded in the in-
variance of the Wilson loops W i

1 large gauge transformations
[26,52], and that the nonlocal nature of their dynamics is
encoded in the dependence of Hcoll on W i

1. In this way, we
can clearly see the emergence of an effective gauge theory
from the microscopic Hamiltonian Eq. (1).

We note that Hcoll can also be written in terms of another
set of emergent Wilson loop operators W i

2 obtained from a
different pair of translation and twist operators defined on the
torus (see Fig. 3)

Tŝ⊥ : Si
�,ŝ → Si

�,Rŝ, Ôi
� = exp

[
2π

N∗ i
N∗−1∑
n=0

nSi
�,Rnŝ

]
, (21)

such that we can redefine as earlier the following composite
twist (Õi) and pseudospin (Si) and the Wilson loop W i

2 as

Õi =
N∗−1∏
m=0

Ômδ� = exp

[
2π

N∗ i
N∗−1∑
n,m=0

mSi
mδ�,Rnŝ

]
, (22)

Si = N∗

2π
Im

[
ln

(
eiπ W i

2

)]
, W i

2 = Tŝ⊥ÕiT †
ŝ⊥Õi†. (23)

We can once again write the effective Hamiltonian Hcoll as

Hcoll = − ε̄∗
2

π
Im

[
ln

(
W z

2

)] − N∗V̄ ∗

4π2

∑
i=x,y

{
Im

[
ln

(
W i

2

)]}2
,

(24)

where ε̄∗
2 = ε̄∗ − N∗V ∗/2.

The fact that the effective Hamiltonian (Hcoll) obtained
from the RG can be written completely in terms of global
collective gauge degrees of freedom (i.e., the Wilson loops W i

1
and W i

2) is not surprising. Indeed, following Refs. [20,23] on
the effective theory for the CPI phase being a Chern-Simons
gauge field theory, we expect that the effective Hamiltonian
for the CPI cannot be written in terms of local degrees of
freedom. Thus, for finite and nonzero ε̄∗, the association of
a U (1)-symmetric Chern-Simons gauge field theory with the
effective quantum rotor Hamiltonian Hcoll [Eq. (11)] in 0-
spatial dimensions can be argued for as follows. The action
corresponding to Hcoll contains a 0-dimensional topological
θ -term [38]

θ = i
ε̄∗N∗

V̄ ∗

∫ β

0
dτ

∂φ

∂τ
, (25)

written in terms of a global phase φ conjugate to Sz, such that

−ih̄∂/∂φ ≡ Sz = − i

h̄
[Sx, Sy] = iN∗2

4π h̄

[
ln W x

1 , ln W y
1

]
, (26)

and with a Berry phase given by γ = 2π ε̄∗
V̄ ∗ = 2π� [38]. It

was shown by Yao and Lee [53] that such a θ -term in 0-spatial
dimensions is in precise correspondence with a U (1) Chern-
Simons topological term in 2-spatial dimensions. Hansson
et al. [23] show that the Chern-Simons term encodes a topo-
logical coupling of the vorticity (or winding number part) of
the global phase field φ to a field associated with the quasi-
particle excitations. In this way, they show that the system,
in the presence of a dynamical gauge field, possesses gauge
invariance under large gauge transformations. Further, they
argue that the time-reversal invariance of the original problem
necessitates that the K-matrix of the equivalent 2-flavor mixed
Chern-Simons theory is K = 2σx (see also Ref. [27]). Then,
the topological ground-state degeneracy on a torus of genus g
is given by |Det(K )|g = 4g [26]. This is in agreement with the
degeneracy observed for the topologically ordered condensate
of vortices observed in Ref. [23], arising from the coupling the
global phase of the superconducting ground state to dynamical
electromagnetic gauge fields. Next, we will demonstrate the
fourfold degeneracy for the special case of ε̄∗ = 0 = �.

B. Topological degeneracy at � = 0.

To unveil a ground-state degeneracy at � = 0, we follow
the adiabatic flux insertion treatment of Oshikawa [54]. For
this, we define the following momentum translation (T̂ŝ⊥) (see
Fig. 3) and twist (Oŝ⊥

ph) operators:

T̂ŝ⊥ = ei�̂ŝ⊥ , Oŝ⊥
ph = exp

{
i
2π

N

N−1∑
p=0

kSz
(Rpkŝ )

}
, (27)

Sz
(Rpkŝ ) =

∑
�(Rpkŝ )

Sz
�(Rpkŝ )

, (28)
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where �̂ŝ⊥ denotes the center of mass angular position along
ŝ⊥. With this, we find

Tŝ⊥Oŝ⊥
phT

†
ŝ⊥ = Oŝ⊥

ph exp

[
i2π

N

(
NSz

0 −
N−1∑
kŝ=0

Sz
kŝ

)]
,

= Oŝ⊥
ph exp[iπ (2n + 1)] = Oŝ⊥

ph eiπ , (29)

where we have set
∑N−1

kŝ=0 Sz
kŝ

= 0 and Sz
0 = (2n + 1) 1

2 (and
2n + 1 being the number of pseudospin states in the direction
ŝ) in the second line to obtain the third. Thus,{

Tŝ⊥ , Oŝ⊥
ph

} = 0, [H (∗), Tŝ⊥ ] = 0 = [
H (∗), Oŝ⊥

ph

]
. (30)

These relations imply the existence of two degenerate states
labeled by the center of mass angular position along ŝ⊥ (�ŝ⊥ )

|�ŝ⊥ = 0〉, |�ŝ⊥ = π〉, (31)

with transitions from one to the other taking place via the twist
operator Oph,

Oŝ⊥
ph |�ŝ⊥ = 0〉 = |�ŝ⊥ = π〉. (32)

We now unveil another twofold degeneracy of the ground-
state manifold. By first defining pseudospin degrees of
freedom along a given direction of momentum space (ŝ) that
are resolved in terms of the eigenvalue of the helicity operator
(η = ±1),

S̃ŝ,z
0 =

∑
k

δηk ,−1 Sŝ,z
k,ηk

, S̃ŝ,z
1 =

∑
k

δηk ,+1 Sŝ,z
k,ηk

, (33)

we define a helicity twist operator Oŝ
H ,

Oŝ
H = ei 2π

2 (0.S̃ŝ,z
0 +1.S̃ŝ,z

1 ). (34)

Then, we define the helicity inversion operator TH ,

T ŝ
H ≡ eiĤ ŝ

e : Sŝ,z
k,ηk

→ Sŝ,z
k,−ηk

, (35)

where Ĥ ŝ
e corresponds to the generator of helicity inversion of

the center of mass along ŝ. These helicity twist and translation
operators follow the algebra,

T ŝ
H Oŝ

HT ŝ,†
H = Oŝ

H × exp

[
i2π

2

(
2S̃ŝ,z

0 − [
S̃ŝ,z

0 + S̃ŝ,z
1

])]

= Oŝ
H × exp

(
i2π S̃ŝ,z

0

)
= Oŝ

H × ei2π (2n+1) 1
2 = Oŝ

H eiπ , (36)

where we have set [S̃ŝ,z
0 + S̃ŝ,z

1 ] = 0 and S̃ŝ,z
0 = (2n + 1) 1

2 in
the second line to obtain the third. Thus,{

T ŝ
H , Oŝ

H

} = 0,
[
H (∗), T ŝ

H

] = 0 = [
H (∗), Oŝ

H

]
. (37)

Again, these relations imply the existence of two degenerate
states labeled by the eigenvalue of the generator of helicity
inversion (Ĥ ŝ

e ) of the center of mass along ŝ,∣∣Hŝ
e = 0

〉
,

∣∣Hŝ
e = π

〉
, (38)

with transitions from one to the other taking place via the twist
operator Oph,

T ŝ
H

∣∣Hŝ
e = 0

〉 = ∣∣Hŝ
e = π

〉
. (39)

Importantly, we find that[
T ŝ

H , Tŝ⊥
] = 0 = [

Oŝ
H , Oŝ⊥

ph

]
,{

T ŝ
H , Oŝ

H

} = 0 = {
Tŝ⊥ , Oŝ⊥

ph

}
. (40)

Thus, these four operators together label the fourfold degen-
erate ground-state manifold. As noted above, this matches the
result for the phenomenological BF Chern-Simons gauge field
theory formulation of Hansson et al. [23].

Finally, the topological order is protected by the spectral
gap,


top = ESz=1 − ESz=0 = V ∗

N∗ , (41)

separating the degenerate ground-state manifold from the
lowest lying excited state of the effective Hamiltonian Hcoll

[Eq. (11)]. Further, these ground states are also separated
from the single-particle excitations by a many-body gap
(
MB) that arises from the helicity backscattering term,
(V̄ ∗/N∗)

∑
k (S+

k S−
−k + H.c.), contained within the effective

Hamiltonian Hcoll [Eq. (11)] [55],


MB = 〈ψ0|V̄
∗

N∗
∑

k

(S+
k S−

−k + H.c.)|ψ0〉. (42)

C. Spectral flow, plateau ground states, and topological
quantum numbers

As mentioned in the previous subsection, by tuning the
ratio � ≡ ε̄∗/V̄ ∗, we can access ground states with different
number of Cooper-pair bound states (i.e., the eigenvalue of the
operator Sz). We will now study the passage between these
ground states, and also show the journey toward a metal-
lic (gapless) ground state (i.e., with a vanishing number of
Cooper-pair bound states).

We recall that for � = 0, the ground state is given by
|ψg〉 = |S = N∗/2, Sz = 0〉, i.e., a state with N∗ Cooper pairs.
The action of S+ on |ψg〉 is

S+
∣∣∣∣N∗

2
, 0

〉
=

√
(S − Sz )(S + Sz + 1)

∣∣∣∣N∗

2
, 1

〉

=
√

N∗

2

(
N∗

2
+ 1

)∣∣∣∣N∗

2
, 1

〉
, (43)

i.e., lowers the Cooper-pair number by 1. Energetically, this
is equivalent to a value of the parameter � in Hcoll within
the range 0.5 < � < 1.5. In the same way, m

2 < � < m
2 +

1 (m ∈ Z) leads to a ground state |N∗/2, m〉, such that for
� > (N∗ − 1)/2, we attain a ground state with a vanishing
number of Cooper pairs. This amounts to reducing the spectral
gap of the CPI phase in a steplike manner, until a gapless spec-
trum (the “metal”) is attained. Thus, tuning the parameter �

amounts to a process of spectral flow between various ground
states. Each gapped ground state (corresponding to different
values of Sz) possesses topological features (as discussed in
the previous subsection).

At zero temperature, in the presence of a pairing-induced
gap 
, these gapped ground states will show plateaus in
a variation of 〈Sz〉 with � = ε̄∗/V̄ ∗ (see Fig. 4 for a
small kBT = 0.04). Further, it is easily seen that at various
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FIG. 4. Variation of 〈Sz〉 (red curve, and y axis on left) and 〈
Sz〉
(blue curve, and y axis on right) with effective AB flux � at small
temperature T = 0.01 (in units of kB). 〈Sz〉 and 〈
Sz〉 are computed
using the effective CPI Hamiltonian Eq. (11). See text for discussion.

half-integer values of � = m + 1/2, the ground state becomes
degenerate via level-crossings, i.e., a linear combination of
|S = N∗/2, Sz = m〉 and |S = N∗/2, Sz = m + 1〉,

∣∣ψm
PT

〉 = c1

∣∣∣∣N∗

2
, m

〉
+ c2

∣∣∣∣N∗

2
, m + 1

〉
, (44)

where |c1|2 + |c2|2 = 1. As shown in Fig. 4, these correspond
to transitions between plateaus in 〈Sz〉 and lead to large fluc-
tuations (〈
Sz〉) in Sz. It can be shown that the largest 〈
Sz〉
is obtained for c1 = 1/

√
2 = c2. As noted above, the final

level-crossing is attained at � = (N∗ − 1)/2. In Fig. 5, we
show a variation of the energy for excited states obtained
from Hcoll (computed with respect to the ground-state energy)
with the parameter �, and where the color scale denotes the
number (Nc) of Cooper pairs in a given state. The plot clearly
shows the collapse of the excitation spectrum of the gapped
plateaus as � is tuned toward passage from the final plateau
into the gapless metal (white space in Fig. 5).

This is reinforced by a study of the helicity cross corre-
lation (ϒ), i.e., interhelicity two-particle scattering, defined
as

ϒ = 〈S+S−〉 + 〈S−S+〉 − 2〈S+〉〈S−〉, (45)

where the expectation value is taken with respect to the
ground state. For |ψg〉 = |S, Sz = M〉, it can be shown that

FIG. 5. Variation of the energy spectrum (E , y axis) of the ef-
fective CPI Hamiltonian [Eq. (11)] with the effective AB flux � (x
axis) for a system of 200 electrons. The color scale represents the
number of Cooper pairs (NC). The bright yellow border represents
the transition between the metal (white region) and CPI phases upon
tuning �.

FIG. 6. Variation of the normalized helicity cross correlation (ϒ)
with the ground-state eigenvalue of Sz (M) for a system of 200
electrons. M is increased by increasing the flux �. The large values
of ϒ for M → 0 characterizes the stable CPI phase, and the curve
represents the passage to the metal (ϒ → 0 as M → 100).

ϒ = 2(S2 + S − M2). A plot of ϒ versus M in Fig. 6 shows
that the strength of interhelicity scattering gradually reduces
as M increases, i.e., the parameter � is tuned toward the
gapless metal.

Upon increasing the temperature, the plateaus are steadily
degraded and the fluctuations 〈
Sz〉 at the transitions increase
in strength (Fig. 4). In Fig. 7, we show a plot of 〈
Sz〉 against
〈Sz〉 obtained from Hcoll for different values of the parame-
ter � and temperature T for the case of S = 1, Sz = 0,±1.
The blue curves are for −1 � � < 0 (with −1 � 〈Sz〉 < 0)
and the green curves are for 0 < � � 1 (with 0 < 〈Sz〉 � 1).
The direction of the arrows denote the lowering of temper-
ature. Figure 7 shows that lowering T generically leads to
a plateau ground state (〈Sz〉 = 0,±1, 〈
Sz〉 = 0). However,
there also exist special cases when lowering T leads to (unsta-
ble) ground states located precisely at the plateau transitions
(〈Sz〉 = 1/2 = ±〈
Sz〉). While the figure shows the numeri-
cal computation for Hcoll with S = 1, we have observed that a
similar plot for a much larger value of S also shows the same
“dome”-like structure of the curves.

FIG. 7. Variation of 〈Sz〉 and 〉
Sz〉 with lowering temperature
(from T = 1000 to T = 0 (in units of kB), and indicated through ar-
rows) and flux � = 0 toward the three CPI ground states Sz = 0, ±1
that are reached for the S = 1 system. 〈Sz〉 and 〉
Sz〉 are computed
using the CPI Hamiltonian [Eq. (11)]. See text for discussion.
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IV. ENTANGLEMENT FEATURES OF THE CPI

A. Entanglement spectrum

We begin our discussion of the entanglement features of the
CPI phase with an investigation of the entanglement spectrum
for the plateau ground states, whose wave function is given
by |ψP〉 = |S, Sz〉 for � = m, m ∈ Z . We will also present the
entanglement spectrum at the plateau transitions where the
ground state is degenerate, ψPT = 1√

2
(|S, Sz〉 + |S, Sz + 1〉)

for � = m/2, m ∈ Z . We first Schmidt decompose the state
|ψP〉 (with n = Sz + N∗/2 ↑-pseudospins) into subsystems
of length L and N∗ − L (with l and n − l ↑-pseudospins,
respectively),

|ψP〉 =
lmax∑

l=lmin

λn
l |L, l〉 ⊗ |N∗ − L, n − l〉, (46)

where λn
l are the Schmidt coefficients. The number l ranges

within lmin and lmax given by

lmax = n for n � L and (47)

= L for n > L, (48)

lmin = 0 for n � (N∗ − L) and (49)

= n − (N∗ − L) for n � (N∗ − L). (50)

From the pure state density matrix ρP = |ψP〉〈ψP|, we can
then obtain a reduced density matrix ρP,L(n) for a subsystem
of L pseudospins

ρP,L(n) =
lmax∑

l=lmin

(
λn

l

)2|L, l〉〈L, l|. (51)

The Schmidt coefficients (λn
l ) are determined by the combina-

torial factor that specifies the number of ways one can choose
l ↑ spins from n ↑ spins:

(
λn

l

)2 = CL
l CN∗−L

n−l

CN∗
n

= L!(N∗ − L)!n!(N∗ − n)!

l!(L − l )!(n − l )!(N∗ − L − n + l )!N∗!
. (52)

At the plateau transitions, we start with a pure state density
matrix obtained from the linear superposition state |ψPT〉,
ρPT = |ψPT〉〈ψPT|, and proceed identically as above to ob-
tain the reduced density matrix ρPT,L(n). The ES is obtained
from the Schmidt eigenvalues, ξ n

i = −log2(λn
i ), for ρP,L(n)

and ρPT,L(n) with given values of N∗ and L.
For a fixed N∗ = 488 pseudospins, we plot the ES for

various values of the reduced partition size L for the case
of the plateau at strong coupling � = 0 and the first plateau
transition at � = 1/2 in Figs. 8(a) and 8(b), respectively. The
double degeneracy of all levels in the ES for all L at � = 0 is
revealed by the small splitting revealed at � = 1/2. This dou-
ble degeneracy for the entire spectrum reflects the additional
particle-hole symmetric nature of the CPI ground state at
� = 0, and corroborated by the degeneracy lifting precisely at
the transition point (� = 1/2). We have checked that a similar
degeneracy of the ES is revealed for all other plateau ground
states at � = m, m ∈ Z, m > 0 for only a bipartitioning of
the system L = N∗/2. For instance, in Fig. 9, we present the

FIG. 8. Entanglement spectrum (ES, ξi = −log2λi) of a subsys-
tem of size L in the ground-state wave function at � = 0 [Eq. (14),
upper plot] and at � = 1/2 [Eq. (44), lower plot] for a system of
N∗ = 488 Cooper pairs and as a function of the subsystem size L.
The index i labels the ES eigenvalues. The upper inset shows the
double degeneracy for all levels, while the lower inset shows that the
degeneracy is lifted at � = 1/2.

ES at a weak coupling plateau � = 240 and plateau transition
� = 240.5 for a system of N∗ = 488 pseudospins. Here too,
the plots clearly show the double degeneracy of the plateau
and the degeneracy lifting at the transition. The restricted de-
generacy of the ES for all bi-partitioned CPI plateaus ground
states with � > 0 may be associated with their topological
order. However, this requires further investigation.

B. Entanglement Entropy of the plateau ground
states and transitions

We now compute the bipartite entanglement entropy in
momentum space for various plateau ground states obtained
by tuning the parameter φ. As before, we take a system where
N∗ and L are the total number of pseudospins and number of
pseudospins within the reduced subsystem, while n and l are
the number of ↑-pseudospins within N∗ and L, respectively.
The bipartite entanglement entropy (SEE) can simply from the
Schmidt coefficients (λn

l ) via the following formula:

SEE(n, L) = −
lmax∑

l=lmin

dl

∣∣λn
l (L)

∣∣2
log2

∣∣λn
l (L)

∣∣2
, (53)

where dl is the degeneracy factor for the lth state of the
entanglement spectrum. We have observed earlier in Fig. 8(a)
that for the case of the strong coupling ground state at � =
0, dl = 2 ∀l due to the two topologically distinct sectors
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FIG. 9. Entanglement spectrum (ES, ξi = −log2λi) of a subsys-
tem of size L in the ground-state wave function at � = 240 [Eq. (14),
upper plot] and at � = 240.5 [Eq. (44), lower plot] for a system of
N∗ = 488 Cooper pairs and as a function of the subsystem size L.
The index i labels the ES eigenvalues. The inset in the lower figure
shows the lifting of degeneracies observed in the upper plot.

X = ±1. The appearance of the constant dl = 2 thus signifies
the influence of the topological nature of the ground-state
manifold on SEE. In Fig. 10, we see that SEE varies linearly
with log2(L) for N∗ = 10 000 for a large range of L, departing
from the linear variation only very near the equipartitioning
value of L = N∗/2. We have found the value of the slope

FIG. 10. The red curve shows the variation of the entanglement
entropy (EE) with ln2(L) (L is the subsystem size) for the CPI ground
state at � = 0 for a system of N∗ = 488 Cooper pairs. The blue curve
is a linear fit to the form 1/2 ln2(L) + 1. See text for discussion.

FIG. 11. Plot of bipartite entanglement entropy for various CPI
ground states corresponding to different various flux � of a system
of N∗ = 500 Cooper pairs. Inset shows the rapid fall of the bipartite
EE upon approaching the CPI-to-metal (� = 500) transition.

to be a simple number (1/2) as � is varied through the first
2000 plateaus. However, it is not clear whether this indicates
a universality of plateaus ground states observed at strong
coupling with those at intermediate coupling. Unlike the ob-
servation of logarithmic scaling of SEE with subsystem size in
1+1D quantum critical systems (see Ref. [56] and references
therein), the log-scaling observed by us in Fig. 10 is indicative
of the physics of a gapped ground state of the effectively
zero-dimensional Hamiltonian Hcoll [Eq. (11)] obtained from
the RG [57].

The value of the intercept [1, in units of log2(2)] is the
entanglement entropy of a subsystem size of L = 1 and cor-
responds to a maximally mixed pseudospin. The intercept is,
however, observed to decrease steadily beyond the first 200
plateaus as � is varied, indicating that a single pseudospin’s
entanglement with the rest of the system within a plateau
ground state is lowered as � is tuned toward weak coupling.
Further, in Fig. 11, we present the variation of the bipartite
SEE with the parameter � for a system with N∗ = 1000 = 2L.
The plot clearly shows that the � = 0 plateau possesses the
largest entanglement content, and that this is rapidly lowered
to zero as � is tuned through various plateaus toward the
gapless metal [57].

In contrast to Fig. 10 above, the entanglement entropy at
the first transition (� = 0.5, see Fig. 12) computed using
Eq. (44) for c1 = 1/

√
2 = c2 for various system sizes N∗

displays a nonmonotonic variation of SEE with the subsystem
size L. Remarkably, SEE displays a common peak at L∗ = 7
for system sizes ranging between 100 � N∗ � 1000, with all
the curves collapsing onto a universal curve for L � L∗. This
suggests that the entanglement content at the first plateau
transition is dominated by small subsystem size. While the
last data point in Fig. 12 corresponds to the equipartition
SEE(L = N∗/2) for N∗ = 100, we have checked that SEE(L =
N∗/2) falls logarithmically with N∗. As shown in Fig. 13, we
have also observed that the maximum value of SEE observed
in Fig. 12 remains unchanged (as � is tuned across various
plateau transitions for a system of size N∗ = 1000) until al-
most the very last few transitions, where it falls rapidly to zero.
However, L∗ increases gradually with �, climbing rapidly at
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FIG. 12. Variation of the entanglement entropy (SEE) with sub-
system size L at the first plateau transition (� = 0.5) for various
system sizes in the range 100 � N∗ � 1000 Cooper pairs.

the last few transitions. This clearly demonstrates that the peak
in SEE is a universal feature of the plateau transitions. We have
also observed that the SEE for a single pseudospin (i.e., L = 1)
falls to zero gradually from its value at the first transition as
� is varied.

Finally, we present the computation of the entanglement
entropy of the plateau ground states and transitions at fi-
nite temperature. The thermal density matrix for the plateau
ground state |N∗ = 2S, n = Sz + N∗

2 〉 can be written as

ρ(β ) =
∑

n

e−βEn

Z
|N∗, n〉〈N∗, n|, (54)

where β is the inverse temperature and Z the partition func-
tion. Equipartitioning the system precisely as described earlier
in Eqs. (51) and (52) (with L = N∗/2), we obtain the thermal
reduced density matrix as

ρL(β ) =
∑
l,n

e−βEn

Z

(
λn

l

)2|L, l〉〈L, l|. (55)

FIG. 13. Plot of the maximum entanglement entropy (Smax
EE , red

curve, left y axis) and the corresponding subsystem size (L∗, blue
curve, right y axis) at the transitions between various CPI ground
states as � is varied for a system of NC = 500 Cooper pairs. Inset:
Rapid variation of Smax

EE and L∗ with � upon approaching the CPI-to-
metal (� = 500) transition.

FIG. 14. Variation of the equipartition entanglement entropy
[SEE(β )] with temperature (β−1) for a subsystem size L = 4 Cooper
pairs. Various colored curves correspond to the CPI ground states and
transition ground states at different values of the flux �. See text for
discussion.

The reduced density matrix is easily seen to be diagonal,

[ρL(β )]l,l ′ = δl,l ′
∑

n

(
λn

l

)2 e−βEn

Z
, (56)

such that the entanglement entropy at a nonzero temperature
is obtained as

SEE(L, β ) = −
∑

l

[ρL(β )]l,l log2{[ρL(β )]l,l}. (57)

Precisely the same formalism can also be carried out with the
state equal admixture state at the plateau transition (|ψ〉PT).

In Fig. 14, we present a numerical evaluation of SEE(L, β )
for a subsystem of L = 4 pseudospins with varying kBT =
β−1 for the first four plateaus (colored curves centered about
� = 0, 1, 2 and 3) and transitions (+ symbol curves centered
about � = 0.5, 1.5, 2.5 and 3.5). While we have chosen a
small system here (N∗ = 8) for the sake of visual clarity, we
have checked that all features of the plot are qualitatively un-
changed for larger N∗. Remarkably, the plot shows that the SEE

corresponding to the transitions clearly separates all curves
arising from neighboring plateaus for temperatures kBT �
V ∗. The SEE curves for all � corresponding to a plateau
collapse to a universal value at T = 0 characteristic of that
plateau. Thermal fluctuations are observed to affect the curves
of both the plateaus and the transitions in the same manner.
For instance, the position of the divergence of the curves for
a given plateau as T is increased suggests the robustness of
that plateau to thermal transitions. Clearly, the � = 0 plateau
(strong coupling) is the most robust, the � = 1 slightly less
and so on, ending at the last plateau [at SEE(T = 0) = 0],
beyond which lies the gapless metal. Similarly, the curves for
transitions associated with higher plateaus depart from their
initial flat behavior at lower temperatures in comparison to
that for lower plateaus. The domination of thermal fluctua-
tions as T is raised is also clearly observed: various SEE curves
corresponding to a particular T = 0 plateau show a linear
increase with T asymptotically, and with a slope common to
that of the SEE curve for the transition that leads to the next
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plateau (e.g., the slopes of the SEE curves for � = 0, 0.25,

and 0.5 are the same for large T , etc.).

V. PASSAGE TO THE BCS GROUND STATE

To chart the passage from the number-fixed CPI ground
state to the conjugate phase-fixed BCS ground state, we
will carry out the RG analysis upon adding a global
U (1)-symmetry-breaking term (−2B

∑
k Sx

k , B > 0) to the
collective Hamiltonian Hcoll [Eq. (9)] with the repulsive
density-density interaction U = 0. The B field represents
a Josephson coupling to an external phase-fixed BCS su-
perconductor. We will show that at large B, the RG flow
leads to a BCS-like ground state. This will also be rein-
forced by studying the variation of several quantities with
the symmetry-breaking field B, e.g., inter-k entanglement,
helicity-partitioned entanglement, helicity cross-correlation,
pair number fluctuation, etc.

Thus, we begin with the Hamiltonian

HSB = −2ε̄

N

∑
k

Sz
k − V̄

2N

∑
kk′

(S+
k S−

k′ + H.c.) − 2|B|
∑

k

Sx
k .

(58)

The RG equations for ε̄ and V̄ are those given earlier in Eq. (8)
(with W̄ = V̄ /N), while the RG for the symmetry-breaking
field B is found to be


|B( j)|

 log � j

�0

= −1

2

|W̄ ( j)||B( j)|(
ω − ε ( j)

2 − U
4

) . (59)

In the regime ω < ε ( j)

2 + U
4 , both W̄ and B are found to be RG

relevant. From the RG Eqs. (8) and (59), we find


(ε)


|W̄ | = −1,

(ε)


B
= −|W̄ |

2B
⇒ 
|W̄ |


B
= |W̄ |

2B
, (60)

indicating that while both |W̄ | and B grow to strong
coupling under the RG flow, the ratio |W̄ |/B remains in-
variant. This shows that while the original BCS mean-field
Hamiltonian [2] is achieved only in the limit of the RG
invariant |W̄ |/B → 0, a U (1)-symmetry-broken BCS-like ef-
fective Hamiltonian is emergent from the RG flow at strong
coupling,

HSB = Hcoll − B∗Sx, (61)

where Hcoll is given in Eq. (10). Further, in Appendix B, we
show that the familiar form of an exponentially small spectral
gap is obtained from the RG flow to strong coupling in B.
In considering the effective Hamiltonian obtained from the
RG, we will henceforth drop the ∗ symbol from all couplings.
Clearly, as [Sz, HSB] �= 0, the total Cooper-pair number op-
erator (proportional to Sz) is no longer a conserved quantity.
Further, the topological order parameter Z encountered earlier
is no longer a good order parameter, as [Z, HSB] �= 0: the
effective Hamiltonians Hcoll ≡ HSB(B = 0) and HSB(B �= 0)
are topologically inequivalent. We will demonstrate below
that, as B is tuned to larger values, the Cooper-pair number
fluctuations increase rapidly while the fluctuations in the con-
jugate U (1) global phase is lowered. This indicates that a

BCS-like ground state is attained under the RG flow of B to
strong coupling.

In commonality with the BCS ground state, the ground-
state wave function for HSB is given by a linear superposition
of states with different Sz [Eq. (14)],

|ψ (B)〉 =
S∑

Sz=−S

αB(Sz )|S, Sz〉

=
S∑

Sz=−S

αB(Sz )

( ∑
k

c†
k↑c†

−k↓

)S−Sz

|vac〉, (62)

where the (normalized) coefficients αB(Sz ) are functions of
the symmetry-breaking field B. We will also show below that
several properties of |ψ (B)〉 closely resemble those of |ψBCS〉
as B is tuned to large values. For instance, we will show that
at large B, |ψ (B)〉 leads to vanishing inter-k entanglement.
We recall that a vanishing inter-k entanglement entropy is a
special property of the BCS ground state, arising from the fact
that different k-momenta electron-pair states are decoupled
from one another.

A. Properties of the ground state

To obtain various properties of the ground state of the
effective Hamiltonian HSB, we carry out exact diagonaliza-
tion computations for system sizes of N∗ = 50 Cooper pairs.
We compute various quantities related to the ground state,
e.g., fluctuation in the Cooper-pair number and the conjugate
global phase, helicity cross correlations, various measures of
entanglement etc.

In Fig. 15, we present the variation of the fluctuations
in the Cooper-pair number (〈
N〉 ≡ 〈
Sz〉, blue curve) and
conjugate global phase (〈
φ〉, red curve). The plot clearly
shows the rapid decline in 〈
φ〉 as B is increased, together
with an equally rapid growth in 〈
N〉. We have also observed
that a plot of the number fluctuations 〈
Sz〉 versus 〈Sz〉 for
different values of � and B is strikingly similar to Fig. 7.
Further, we shall see below that the entanglement content of
the fluctuations induced by a nonzero B are very different from
that induced by thermal fluctuations.

The red curve in Fig. 16 shows the variation of the helicity
cross correlations [ϒ , Eq. (45)] with B. The plot displays

FIG. 15. Variation of fluctuation in number of Cooper pairs
(〈
N〉, blue curve, left y axis) and global phase (〈
φ〉, red curve,
right y axis) with the global U (1) symmetry-breaking field B for a
system of N∗ = 50 Cooper pairs.
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the rapid decline of ϒ that is characteristic of the CPI
ground state toward zero as B is tuned to large values. This
is expected, as ϒ vanishes for the BCS ground state. The
blue curve in Fig. 16 shows the variation of the helicity-
partitioned entangled entropy (�) with B. � is derived from
the reduced density matrix obtained by tracing out one of
the two helicities (η± = sgn(k)sgn(σ ) = ±1). The helicity-
partitioned ground-state wave function can be written as

follows:

|ψg(B)〉 =
S∑

m=−S

Cm(B) |S, Sz = m〉,

|S, m〉 =
∑

mη+ ,mη−

Dm
mη+ ,mη−

|S/2, mη+ ; S/2, mη−〉, (63)

where Dm
n ’s are Clebsch-Gordon coefficients given by

Dm
mη+ ,mη−

= δm,mη+ +mη− ×
√

(S!)2(S + m)!(S − m)!

(2S)!
(

S
2 − mη+

)
!
(

S
2 + mη+

)
!
(

S
2 − mη−

)
!
(

S
2 + mη−

)
!
. (64)

In the ground state, the total spin (S) is maximized, ensur-
ing that the total spin within each helicity sector is also
maximized (and taken to be S/2). By tracing over a cer-
tain helicity (η+), we obtain a reduced density matrix ρη− =
Trη+|ψg(B)〉〈ψg(B)|. The set of eigenvalues ({λi}) obtained by
diagonalizing ρη− then gives the helicity-partitioned entangle-
ment entropy � (i.e., a measure of the entanglement between
the opposite helicities),

�(B) = −
∑

i

λi(B)log2[λi(B)]. (65)

The variation of this entanglement entropy with B is shown
via the blue curve in Fig. 16, displaying a rapid decline toward
zero in the entanglement between the helicities η+ and η− as
B is tuned to large values. This is consistent with the fact that
the BCS ground state does not possess helicity entanglement;
this arises simply from the fact that the BCS ground-state
wave function is a direct product state of pairs of electronic
momenta (k,−k).

However, as Cooper pairs in the s-wave BCS state are
spin singlets, there is a nonzero entanglement between the
two spins of a Cooper pair [4]. Thus, to distinguish the CPI
and BCS ground states further, we compute the entangle-
ment entropies Sk

EE and SS
EE by partitioning the ground state

|ψg(B)〉 for an analytically tractable system of two Cooper

FIG. 16. Variation of helicity cross correlations (ϒ , red curve,
left y axis) and helicity partitioned entanglement entropy (�, blue
curve, right y axis) in number of Cooper pairs (〈
N〉, blue curve, left
y axis) with the global U (1) symmetry-breaking field B for a system
of N∗ = 50 Cooper pairs.

pairs [(k1 ↑,−k1,↓) and (k2 ↑,−k2 ↓)] in the momentum
variable (k1, k2) and the spin variable (↑,↓), respectively, for
the case of ε̄ = 0 (strong coupling limit) in the Hamiltonian
Hcoll [Eq. (10)]. For this system of two coupled pseudospins,
S = 1 and the ground-state wave function is

|ψg(B)〉 =
1∑

α=−1

Cα (B)|S = 1, Sz = α〉, (66)

where the coefficients Cα are a function of the field B and the
coupling V/N given by

{Cα} = N
(

1,−α +
√

α2 + 8β2

2β
, 1

)
β�1−→

(
1

2
,− 1√

2
,

1

2

)
,

(67)

where N is the normalization factor, α = V
N and β = B√

2
.

By writing the states |S, Sz〉 in the basis of |nk↑n−k↓〉 ⊗
|nk′↑n−k′↓〉, i.e., the states {|0↑0↓〉k ⊗ |0↑0↓〉k′ , |0↑0↓〉k ⊗
|1↑1↓〉k′ , |1↑1↓〉k ⊗ |0↑0↓〉k′ , |1↑1↓〉k ⊗ |1↑1↓〉k′ }, the den-
sity matrix ρ(B) = |�g(B)〉〈�g(B)| is found to be

ρ(B) =

⎡
⎢⎢⎢⎢⎣

|C1|2 C0C1√
2

C0C1√
2

C1C−1

C0C1√
2

|C0|2
2

|C0|2
2

C0C−1√
2

C0C1√
2

|C0|2
2

|C0|2
2

C0C−1√
2

C1C−1
C0C−1√

2
C0C−1√

2
|C−1|2

⎤
⎥⎥⎥⎥⎦. (68)

The momentum-partitioned reduced density matrix is then
obtained by tracing out the k′ pseudospin from the density
matrix Eq. (68). The reduced density matrix ρk is written in
the basis {|0↑0↓〉k, |1↑1↓〉k},

ρk = Trk′ρ(B) =
[

|C1|2 + C2
0

2
C0C1√

2
+ C0C−1

2
C0C1√

2
+ C0C−1√

2
|C−1|2 + C2

0
2

]
. (69)

The inter-k entanglement is Sk
EE calculated from the density

matrix ρk . As shown via the red curve in Fig. 17, Sk
EE reduces

monotonically from its largest value at B = 0 as B is in-
creased, displaying the destruction of the inter-k entanglement
of the CPI ground state in the passage toward the BCS ground
state.

Similarly, for the spin-partitioned entanglement entropy,
we trace out a given spin sector, say ↓. Then, the reduced
density matrix in the basis {|0k0k′ 〉↑, |0k1k′ 〉↑, |1k0k′ 〉↑,
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FIG. 17. Variation of spin partitioned entanglement entropy (SS
EE,

blue curve, left y axis) and momentum partitioned entanglement
entropy (Sk

EE, red curve, right y axis) with the global U (1) symmetry-
breaking field B for a prototypical system of N∗ = 2 Cooper pairs.

|1k1k′ 〉↑} is

ρ↑ = Tr↓ρ(B) =

⎡
⎢⎢⎣

|C1|2 0 0 0
0 |C0|2

2 0 0
0 0 |C0|2

2 0
0 0 0 |C−1|2

⎤
⎥⎥⎦. (70)

The spin-partitioned entanglement entropy Sk
EE is obtained

from ρ↑. As shown via the blue curve in Fig. 17, S↑
EE increases

steadily from its smallest value at B = 0 as B is increased and
saturates as B � 1. This shows the growth of the interspin
entanglement of the BCS ground state in the passage from
the CPI ground state. The limiting values of S↑

EE at B = 0
and B � 1 observed in Fig. 17 can be understood as follows.
At B = 0, we get C0 = 1, C−1 = C1 = 0, giving S↑

EE for the
CPI ground state as log22 = 1, as seen in Fig. 17. Similarly,
the diagonal elements of the diagonal density matrix Eq. (71)
at large B become ( 1

4 , 1
4 , 1

4 , 1
4 ). This shows that ρ↑(B � 1)

becomes maximally mixed in nature, leading to S↑
EE(B � 1)

saturating to the value seen in Fig. 17,

S = −4 × 1
4 log2

1
4 = 2log22 = 2. (71)

This is a clear signature of the maximal entanglement of the
Cooper-pair singlets in the BCS ground state.

Another diagnostic of the difference between the ground
states at B = 0 and B � 1 lies in the occupation for the k-
momentum electron

〈nk〉 = Tr(n̂kρ
↑) = |C0|2

2
+ |C−1|2. (72)

While at B = 0, 〈nk〉 ≡ 〈nk〉(α, β ), 〈nk〉 → 1/2 as B � 1.
Given that 〈nk〉 follows the Fermi-Dirac distribution for the
BCS ground state [4], the result of 〈nk〉 = 1/2 obtained at
B � 1 indicates that the collective Hamiltonian HSB [Eq. (61)]
in the presence of a large U (1) symmetry-breaking coupling
B describes the BCS superconductor near the Fermi surface.

We now present the entanglement entropy (SEE) computed
from partitioning the ground state |ψg〉 (with spin S) of Hamil-
tonian HSB into two equal subsystems A and B such that
S = SA + SB, SA = S/2 = SB using the strategy adopted in
Eqs. (46)–(53). In Fig. 18, we present a variation of SEE

with B computed for a system of eight pseudospins and
for ground states of HSB(B = 0) ≡ Hcoll at various values of

FIG. 18. Variation of the equipartition entanglement entropy for
different CPI ground states and transition ground states (correspond-
ing to different integer and half-integer values of 0 � � � 4) with
the global U (1) symmetry-breaking field B for a system of N∗ = 8
Cooper pairs. Note that the nonmonotonic behavior of the purple
curve arise from the fact that this corresponds to the ground state
precisely at the transition from the CPI to the parent metal.

� = ε/V . The plot shows the monotonic decrease for SEE

with B for all ground states with a nonzero number of Cooper
pairs (0 � � < 4), while the SEE computed for the gapless
ground state at � = 4 shows a nonmonotonic variation with
B. The latter case corresponds to the entanglement related
to superconducting phase fluctuations in a mean-field BCS
Hamiltonian, i.e., a Hamiltonian HSB in which the BSx term
induces pairing in the gapless spectrum of Hcoll. While the
BCS ground state corresponding to a vanishingly small SEE

is obtained for all these curves in the limit of large B, the
approach of the mean-field ground state is clearly different
from those with pre-existing Cooper-pair bound states: the
peak in the curve for φ = 4 likely arises due to the creation
of Cooper pairs in a gapless system.

B. The effect of a Josephson coupling

We end with a brief presentation of the effects of a Joseph-
son coupling between the bulk of two CPI systems A and B
(i.e., we are ignoring all effects from gapless edge states), each
of which is modeled by HSB [Eq. (61)],

Hμ = −2εμ

Vμ

∑
k∈μ

Sz
k − Vμ

2Nμ

∑
k �=k′∈μ

(S+
k S−

k′ + H.c.)

− Bμ

∑
k∈μ

Sx
k , μ = A, B,

HAB = T
∑

k∈A,k′∈B

(eiφS+
k S−

k′ + e−iφS−
k S+

k′ ), (73)

where HAB is the Josephson coupling between systems A
and B, with the phase φ dependent on the externally applied
voltage difference between the two systems [43]. We have
simulated the equations in Eq. (73) for two systems composed
of four pseudospins each.

First, we set the field BA = 0, such that system A is in
a U (1) symmetric CPI phase and couple it with system B
(HB) for several values of the field BB and the Josephson
coupling T . The values of the parameters εA = εB =, VA/NA =
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FIG. 19. Plot of the induced phase stiffness 〈Sx
A〉 in CPI system

A due to a Josephson coupling (with strength T ) to CPI system B [in
presence of a global U (1) symmetry-breaking field (BB)]. Various
curves correspond to different values of BB.

VA/NB = 1, and φ = π . In Fig. 19, we study the phase co-
herence being generated in system A by computing 〈Sx

A〉 in
the ground state of the total system (H = HA + HB + HAB).
The blue line in Fig. 19 clearly shows that a Josephson cou-
pling between two systems that are individually in CPI phases
(BA = 0 = BB) cannot lead to phase coherence being induced
in either system A or B. However, for nonzero values of BB,
the other curves in Fig. 19 shows that as system B already pos-
sesses some degree of phase coherence, an increasing nonzero
phase coherence is induced in system A via the Josephson
coupling with increasing BB. Note, however, that while this
demonstrates the breaking of the U (1) symmetry of system A
via the Josephson coupling to the symmetry-broken system B,
the phases of the two systems are locked to one another with
zero relative phase difference [43]. This is demonstrated in a
plot of the total ground-state energy E (φ) as a function of the
phase φ: the blue line in Fig. 20 clearly shows that a Josephson
current [J ∝ ∂E (φ)/∂φ] cannot be generated in the coupled
system for BA = 0. However, in the presence of a nonzero
symmetry-breaking field BA, E (φ) shows a cosinusoidal vari-
ation with φ in Fig. 19. This shows that when the symmetry is

FIG. 20. Plot of the total ground-state energy E (φ) for a CPI
system [placed in a gradually increasing U (1) symmetry-breaking
field BA] coupled to a BCS superconductor through Josephson tun-
neling as a function of their phase difference φ. The various curves
correspond to different values of BA.

FIG. 21. Quantum circuit representation of (left panel) the
ground state of the fixed point CPI Hamiltonian and (right panel)
the ground state after the first step of the reverse unitary RG step.
Both are for a system of N∗ = 2 Cooper pairs.

separately broken in the two systems, a Josephson coupling
certainly induces a Josephson current. The results of this
subsection serve as predictions for the experimental search of
systems in the CPI ground state.

VI. ENTANGLEMENT RENORMALIZATION

Having explored the entanglement features of the topologi-
cally ordered CPI and symmetry-broken BCS ground states at
some length in previous sections, we now present an analysis
the T = 0 RG evolution of the many-particle entanglement
content of these ground states. For this, we follow the strat-
egy for entanglement renormalization that was developed in
Refs. [31,58]. For the sake of completeness, we outline briefly
the strategy below.

As we have seen earlier, the URG proceeds by disentan-
gling electronic states sequentially from the UV toward the
IR by the application of many-particle unitary transformations
(U , see Appendix A for further details). At the IR stable
fixed point, we have identified the ground-state wave func-
tion. Now, by reversing the RG flow through the sequential
applications of the appropriate U †s, we generate a family
of ground-state wave functions ranging toward the UV. This
allows for the computation of several entanglement features
from each member of the family of wave functions, thereby
generating the RG flow of these entanglement features. As
discussed in detail in Refs. [31,58], the unitary operators U
of the URG method can be implemented as a quantum circuit,
i.e., in terms of a combination of universal two-qubit gates
(e.g., Hadamard, C-NOT and phase-shift gates). Below, in
Figs. 21 and 22, we show the quantum circuit realisations that
implement the reverse URG flow along one radial direction in
k space for the CPI and BCS wave functions, respectively.

As shown in Fig. 21, nodes 9 and 19 refer to the fermion
states residing just outside and just inside the Fermi surface,
respectively. The distance from the Fermi surface increases
with passage between states 9 to 0 (all outside the Fermi sur-
face), and with passage between states 19 to 10 (all inside the
Fermi surface). As indicated by the quantum circuit diagrams,
the reverse RG flow starts from the emergent CPI phase [de-
scribed by the effective Hamiltonian in Eq. (11)] obtained at
the stable fixed point and with a window of electronic states
given by N∗ (N∗ = 2 in the figures). The reverse RG flow
proceeds by the re-entangling of two electronic states lying
outside the window at each step of the RG. We now present
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FIG. 22. Quantum circuit representation of (left panel) the
ground state of the fixed point BCS Hamiltonian and (right panel)
the ground state after the first step of the reverse unitary RG step.
Both are for a system of N∗ = 2 Cooper pairs.

the results of the RG evolution for the entanglement entropy of
a block in k space along a given radial direction for CPI and
the symmetry-broken phases. In Fig. 23, we present the RG
variation of the entanglement entropy computed for a block
(lying outside the Fermi surface) of varying size ranging from
one to ten fermionic states. The two plots are for different
sizes of the window (N∗) for the emergent CPI phase: the
upper plot is for N∗ = 2 (i.e., composed of states 9 and 19
only), while the lower is for N∗ = 8 (i.e., composed of states
6–9 and 16–19). Further, the reverse RG process increases
stepwise from step 0 (in the IR) toward the UV.

FIG. 23. Plot for the RG variation of the entanglement entropy
S(n) for various block sizes 1 � n � 10 (in different colors) for a
CPI system with N∗ = 2 (upper panel) and N∗ = 8 (lower panel)
Cooper pairs. See text for discussion.

FIG. 24. Plot for the RG variation of the entanglement entropy
S(n) for various block sizes 1 � n � 10 (in different colors) for a CPI
system with N∗ = 2 (upper panel) and N∗ = 8 (lower panel) Cooper
pairs in the presence of a weak global U (1) symmetry-breaking field
B = 5 × 10−5 (in units of the attractive pairing coupling V ). Note
that the curves for n = 8, 9, and 10 are lying on top of one another.
See text for discussion.

The upper panel of Fig. 23 shows that block entropy for
all block sizes terminates at a universal value of S = 0.693 =
ln 2, corresponding to the entanglement for the N∗ = 2 pseu-
dospins that form the emergent CPI window in the IR. Further,
the plots demonstrate that the block entanglement entropy of
block size 1 (i.e., for the state 9, one of the two states that
form the CPI ground state in the IR) increases slowly with
the RG flow from UV to IR. However, the block entropy of
all other block sizes (greater than one) decreases with the
stepwise decoupling of electronic states. Further, the entan-
glement entropy of the blocks varies nonlinearly with the
RG steps. Additionally, in the block entropy plots for N∗ = 8
(lower panel of Fig. 23), we see that the entanglement entropy
for all block sizes less than 4 (i.e., the size of the four states
9-6 that are part of the CPI ground state in the IR) are affected
very little by the RG flow. This is a remarkable display of the
fact that the entanglement of the electronic states proximate
to the Fermi surface (and that eventually form a part of the
emergent window) is quite robust under RG evolution and
distinguishes them from those that are decoupled along the
flow. Further, the CPI ground state possesses a hierarchy of
scales of entanglement defined by the various block sizes.

Next, we present the entanglement RG results for a system
in the presence of a bare symmetry-breaking field (B). In
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FIG. 25. Plot for the RG variation of the entanglement entropy
S(n) for various block sizes 1 � n � 10 (in different colors) for a CPI
system with N∗ = 2 (upper panel) and N∗ = 8 (lower panel) Cooper
pairs in the presence of a strong global U (1) symmetry-breaking field
B = 25 × 10−3 (in units of the attractive pairing coupling V ). Note
that the curves for n = 8, 9, and 10 are lying on top of one another.
See text for discussion.

Fig. 24, we see that the presence of a very weak bare U (1)
symmetry-breaking field B ∼ 5 × 10−5 (in units of V ), the
entanglement RG flows from UV to IR are very similar to
those shown in Fig. 23 above for the CPI (i.e. for the case
of B = 0), with only one difference: the final value of the
block entropies in the IR here is reduced with respect to those
obtained for the CPI. This indicates a gradual collapse of the
hierarchy of scales of entanglement of the CPI upon tuning
a symmetry-breaking field. Finally, in Fig. 25, we present
that the entanglement RG flows for a system with N∗ = 4
for the case of a slightly larger (but still weak) bare U (1)
symmetry-breaking field B ∼ 25 × 10−3 (in units of V ). Here,
we find that the entanglement curves for various block sizes
is very different to those obtained for the CPI (see Fig. 23).
For instance, the block entropy for both block sizes one and
two (i.e., corresponding to the two possible subblocks of the
emergent BCS ground state in the IR) have zero entangle-
ment entropy throughout the RG. There is, thus, no longer
any way to distinguish between the constituent blocks of
the BCS ground state under the RG. Further, the entangle-
ment entropy varies linearly with the RG steps for block
sizes �8.

VII. CONCLUSIONS AND DISCUSSIONS

We end with a discussion of some of the broader implica-
tions of our work. First, we comment on the significance of
our findings with regards to the subject of topological order
[59]. Unlike ordered states of matter belonging to the GLW
paradigm, a topologically ordered ground state does not arise
from breaking any symmetries and thus lacks a local order pa-
rameter. Instead, such ground states are invariant under large
gauge transformations, can be represented purely in terms of
nonlocal gauge operators (e.g., Wilson loops, etc.), and their
quantum dynamics can be captured by a topological gauge
field theory. When placed on a multiply connected manifold
(e.g., a torus), a topologically ordered system displays a non
trivial degeneracy of the ground-state manifold (protected by
a nonzero energy gap), as well as the existence of fractionally

charged topological excitations that interpolate between the
ground states. While the bulk of such a system is an incom-
pressible insulating state of matter (due to the spectral gap),
it can possess gapless current-carrying degrees of freedom at
its boundaries. It has also been shown that the ground states
of a topologically ordered system can possess signatures of
nontrivial many-particle entanglement, e.g., an entanglement
entropy (due to a real-space bipartitioning) proportional to
the degeneracy count of the ground-state manifold (called the
quantum dimension). While all of these properties are widely
believed to be the features and diagnostics of a topologically
ordered system, an overarching theoretical framework for
this subject remains an outstanding challenge. As the pairing
instability of the Fermi surface represents a paradigmatic phe-
nomenon for a system of interacting electrons, our insights
into the CPI represents an opportunity toward learning the
inner workings of emergent topological order in such systems,
as well as how it is different from the order captured by ground
states belonging to the GLW paradigm (e.g., the BCS ground
state).

The body of results presented for the CPI phase clearly
satisfy the diagnostics described above. We have established
analytically the topological degeneracy of the ground-state
manifold using flux insertion arguments, and shown that the
zero mode collective effective Hamiltonian for the CPI can
be written in terms of Wilson loop operators. This then paves
the way for connecting the topological θ term in the effective
theory for the CPI with the 2+1 dimensional topological
Chern-Simons gauge field theory proposed for such systems
[20,23,27]. We have shown the origin of the spectral gap that
protects the ground-state manifold, and shown the spectral
flow property of such ground states with a variation in the
θ parameter: ground states form plateaus in θ labeled by a
topological quantum number and with topological quantum
phase transitions separating them. Indeed, much of the phe-
nomenology observed by us is common with the properties of
topologically ordered fractional quantum Hall ground states
(see Ref. [59] and references therein). It will be interesting to
test these conclusions for systems of interacting electrons in
the presence of disorder [37] or incommensuration [60,61].

Our investigations of the entanglement features show clear
universal signatures that distinguish the topologically ordered
CPI ground states (plateaus) from those found at the transi-
tions between plateaus. The passage to the metallic state upon
tuning the effective Aharanov-Bohm flux of the fixed point
Hamiltonian is charted at zero as well as finite temperatures,
yielding clear signatures once again in the entanglement for
the CPI ground states. By carrying out the RG analysis in
the presence of a global U (1) symmetry-breaking term, a
detailed comparison between the CPI and BCS ground states
is also offered. This allows us to demonstrate the clear dis-
tinctions between these two kinds of ground states in terms
of many-particle entanglement and many-body correlations:
unlike the BCS state, the CPI ground state is found to pos-
sess various measures of entanglement. Further, we show
that, as CPI ground states lack phase stiffness, they cannot
show the Josephson effect (i.e., upon coupling two such CPI
systems through Cooper-pair tunneling). We stress that the
symmetry-breaking transition described here can only take
place at T = 0 for a 2D system, and would be replaced
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by a Berezinskii-Kosterlitz-Thouless phase transition at finite
temperatures. While this limits the reach of our conclusions
for 2D systems, we plan to extend our analysis and results
to the pairing instabilities of a system of interacting elec-
trons in 3D at zero as well as finite temperatures in a future
work.

All of this leads us to conjecture that our results on the CPI
offer a broad framework for understanding topological order.
Specifically, we believe that various quantum liquid systems
displaying the hallmark signatures of topological order de-
scribed above are likely to be described by effective zero mode
collective Hamiltonians described in terms of Wilson loop
like nonlocal degrees of freedom. Using similar flux insertion
arguments, it should be possible to show that the ground-state
manifolds of such Hamiltonians display topological degener-
acy on the torus, etc. Indeed, similar conclusions have been
reached by some of us for the Mott liquid ground states of
the 2D Hubbard model discovered recently in Refs. [33,34],
and the spin liquid ground states of quantum spins coupled
through antiferromagnetic exchange on geometrically frus-
trated lattices [35,62,63]. It should be possible, therefore, to
chart out in a similar fashion the microscopic origins of vari-
ous kinds of topologically ordered quantum liquids. This will
go a long way in establishing a detailed understanding of the
universality of such phenomena.

We now comment on possible connections to the Bose
metal phase [64] that has been proposed to lie in between the
CPI and superconducting phases. This is based on a body of
recent work on thin film systems [6,65–78] have also revealed
the existence of an intervening metallic phase, called the
“Bose metal” phase [64], intervening between the supercon-
ducting and Cooper-pair insulating phases (see Ref. [79] for
a review). The gauge-theoretic approach of Ref. [21] posits
the Bose metal phase as a topological insulator phase aris-
ing from the interplay of Cooper-pair and vortex degrees of
freedom. While it is tempting to speculate that the T = 0
topologically ordered CPI phase studied in the present work
evolves into the Bose metal at finite temperatures through a
Berezinskii-Kosterlitz-Thouless (BKT) type phase transition,
a recent microscopic wave-function-based approach by Dia-
mantini et al. [22] concludes that the Bose metal phase does
not possess signatures of topological order. Another important
point to note is that the CPI state observed by us is composed
purely of Cooper pairs. However, the bosonic topological
insulating Bose metal additionally needs vortex degrees of
freedom. Thus, the connection between the theory presented
here for the CPI and the gauge theory of Refs. [21,22] for
the Bose metal needs a careful investigation of the role of
vortices introduced into the CPI state, and how they likely
destroy the topological order of the CPI in leading to the Bose
metal. However, this lies well beyond the scope of the present
analysis, and we leave this for a future work.

We end with a brief discussion on where to search for such
CPI ground states. As we have seen here, the CPI state reached
from a generic nonnested Fermi surface is strongly susceptible
toward the effects of spontaneous symmetry breaking and the
emergence of the BCS s-wave superconducting ground state.
As mentioned earlier, some hints of the CPI have been found
to lie at the superconductor to insulator transition in recent
experiments on thin films. The existence of an insulating

state of Cooper pairs distinct from the Bose metal and super-
conducting states was also proposed in earlier literature on
Josephson junction arrays (JJAs, see Ref. [79] and references
therein). Further, the authors of Ref. [79] suggest that the
properties of this insulating phase arise from a macroscopic
Coulomb Blockade phenomenon where the entire Josephson
junction array acted as a single island of Cooper pairs with
a macroscopic charging energy. This is consistent with our
finding of a similar global charging energy for the CPI state
[given by the third term with coupling U in the CPI effective
Hamiltonian of Eq. (10)], and suggests that JJAs could be a
candidate system in which to search for the CPI.

Further, based on our recent study of the 2D Hub-
bard model [33,34], and its relevance to the physics of the
high-temperature superconducting hole doped cuprate Mott
insulators, we believe that the CPI ground states may well be
observed in those materials too. Specifically, in Ref. [34], we
observed the existence at T = 0 of a pseudogapped CPI state
of quantum matter lying above the d-wave superconducting
“dome” obtained upon optimally doping the Mott insulating
ground state of the 1/2-filled 2D Hubbard model with holes.
This pseudogapped phase arose from electronic differentia-
tion built into the electronic dispersion of the nested Fermi
surface of the 2D tight-binding model at 1/2-filling. Further,
the pseudogap phase showed a clear gapping of the anti-nodal
regions in k space that could be described in terms of a state
of matter containing Cooper-pair bound states but without
any global phase coherence. The large superconducting phase
fluctuations observed in this pseudogapped phase [34] are a
signature of the CPI, and are reminiscent of the findings from
Nernst effect measurements on the pseudogap phase of the
doped cuprates [80]. We believe, therefore, that the cuprates
are excellent candidate systems in which to search for the exis-
tence of the CPI phase. Following the suggestion of Ref. [81],
pressurised solid H2S may be another interesting candidate
system in which to search for the CPI.
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APPENDIX A: HAMILTONIAN RG

We first briefly recapitulate the unitary RG method devel-
oped in Refs. [31,33–37], and then derive the RG equations
for the generalized pairing Hamiltonian Eq. (3). The RG
method adopted uses a unitary transformation to decouple
one single-particle Fock state |kσ 〉 from the rest of the
states it is interacting with. Very generally, one can write the
many-particle Hamiltonian as Ĥ = ĤD + ĤX

kσ + Ĥ X̄
kσ , where

ĤD contains all single-particle and many-particle number
diagonal (kinetic energy and interaction) terms. ĤX

kσ repre-
sents all the off-diagonal interaction terms connected to the
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single-particle state |kσ 〉, while Ĥ X̄
kσ represents all off-

diagonal interaction terms among all (say, 2N−1) single-
particle states other than |kσ 〉. Considering a many-particle
eigenstate of the Hamiltonian |�〉 (a member of the full 2N

dimensional Hilbert space), we can write

Ĥ |�〉 = (
ĤD + ĤX

kσ + Ĥ X̄
kσ

)|�〉 = Ē |�〉, (A1)

where Ē is the eigenvalue for |�〉. One can rewrite the wave
function |�〉 in a Schmidt decomposed form as follows:

|�〉 = a1|�1〉 ⊗ |1kσ 〉 + a0|�0〉 ⊗ |0kσ 〉, (A2)

where {|1kσ 〉, |0kσ 〉} live in a two-dimensional single-particle
Fock space and {|�1〉, |�0〉} lives in the remaining 2N−1

dimensional Hilbert space. We then proceed to remove all
quantum fluctuations connected between |k, σ 〉 with the other
|k′ �= k, σ 〉 states. For this, one can define transition operators
η̂kσ and η̂

†
kσ

as follows:

a1|�1〉 ⊗ |1kσ 〉 = η̂
†
kσ

a0|�0〉 ⊗ |0kσ 〉,
a0|�0〉 ⊗ |0kσ 〉 = η̂kσ a1|�1〉 ⊗ |1kσ 〉, (A3)

where |1kσ 〉 and |0kσ 〉 represent the nkσ = 1 and nkσ = 0
states, respectively, and

η̂kσ = 1

ω̂ − Trkσ (ĤD(1 − n̂kσ ))(1 − n̂kσ )
Trkσ (c†

kσ
Ĥ )ckσ .

(A4)

Here, Trkσ ( ) represents a partial trace in the Fock space over
the state |k, σ 〉. These transition operators have a fermionic
nature,

η̂
†
kσ

η̂kσ = n̂kσ = 1 − η̂kσ η̂
†
kσ

,

{η̂†
kσ

, η̂kσ } = 1, [η̂†
kσ

, η̂kσ ] = 2n̂kσ − 1, η̂2
kσ = 0. (A5)

Using the transition operators (ηkσ , η
†
kσ

) and Eqs. (A3),
one can see that

|�〉 = a1|�1〉 ⊗ |1kσ 〉 + a0|�0〉 ⊗ |0kσ 〉
= a1|�1〉 ⊗ |1kσ 〉 + η̂kσ a1|�1〉 ⊗ |1kσ 〉
= a1(1 + η̂kσ )|�1〉 ⊗ |1kσ 〉 = a1eη̂kσ |�1〉 ⊗ |1kσ 〉. (A6)

Thus, one can construct a unitary operator,

Ukσ = 1√
2

(1 + η
†
kσ

− ηkσ ), (A7)

that rotates the many-particle basis in such way that Ukσ |�〉 =
N |α〉, where α = 0 or 1, and N is the normalization con-
stant. This unitary rotaion removes all quantum fluctuations
between the states |0kσ 〉 and |1kσ 〉. Further, using the unitary
operator, the Hamiltonian can be written in the rotated basis
as

Ukσ ĤU †
kσ

= 1
2 Trkσ (Ĥ ) + τkσ Trkσ (Hτkσ )

+ τkσ {c†
kσ

Trkσ (Ĥckσ ), η̂kσ }. (A8)

It is important to note that while n̂kσ Ĥ (1 − n̂kσ ) �= 0 (i.e.,
there existed nontrivial quantum fluctuations in the occupation
of single-particle Fock state given by nσ ) prior to the applica-
tion of the unitary operator, subsequent to its application we

find

n̂kσUkσ ĤU †
kσ

(1 − n̂kσ ) = 0 ⇒ [n̂kσ ,Ukσ ĤU †
kσ

] = 0.

(A9)

The degree of freedom nkσ is thus rendered an integral of
motion (IOM) of the RG flow. The RG equations can then
be obtained from the condition Eq. (A9).

Coming to the problem at hand, in the generalized pairing
Hamiltonian Eq. (3), we are working in the subspace given
by nk,σ = n−k,σ [32]. Thus, at every step of the RG, we are
disentangling two single-particle states |k, σ 〉, | − k and −σ 〉
simultaneously. We now proceed by rewriting the Hamilto-
nian in terms of Anderson pseudospins [32]

Hq
pair = −

∑
k

ε̃k,q

(
Sz

k,q − 1

2

)
−

∑
k �=k′

∣∣W q
kk′

∣∣
2

(S−
k,qS+

k′,q + H.c.)

+U
∑
k �=k′

Sz
k,qSz

k′,q, (A10)

such that the part of the Hamiltonian associated with the kN

pseudospin is given by

Hq
N = −ε̃kN ,qτ

z
k,q −

∑
k �=kN

∣∣W q
kkN

∣∣
2

(τ−
kN ,qS+

k,q + τ+
kN ,qS−

k,q ) + U

4
.

(A11)

Applying the RG formalism to Hq
N , one obtains from the

condition Eq. (A9) the operator level RG equation for the
Hamiltonian in the low-energy sector for the quantum fluc-
tuation scale ω as


H =
( ∑

k �=kN

∣∣W q
kkN

∣∣
2

τ+
kN

S−
k

)
GkN

( ∑
k′ �=kN

∣∣W q
k′kN

∣∣
2

S+
k′ τ

−
kN

)
.

(A12)

From this, we derive the RG equations in the relevant channel
(τ z

k,q = + 1
2 ) for Cooper-pair bound state formation as


ε̃
( j)
k′,q


 log � j

�0

= 1

4

∣∣W ( j)
k�k′

∣∣2

(
ω − ε̃

( j)
k�,q

2 − U
4

) ,



∣∣W ( j)

k′k′′
∣∣


 log � j

�0

= − 1

4

∣∣W ( j)
k�k′

∣∣∣∣W ( j)
k�k′′

∣∣
(
ω − ε̃

( j)
k�,q

2 − U
4

) . (A13)

APPENDIX B: URG WITH SYMMETRY-BREAKING FIELD

We begin by including a global U (1) symmetry-breaking
term (−2|B|∑k Sx

k ) to the pairing Hamiltonian Eq. (A10) (but
with the repulsion coupling U = 0). Naturally, the symmetry-
breaking term now appears in the Hamiltonian involving
the node kN [Eq. (A11)], as well as the operator RG equa-
tion [Eq. (A12)]. Subsequently, in the sector τ z

kN
= +1/2,

we get the RG equations for ε̃k′,q and |Wk′k′′ | precisely as
in Eqs. (A13) (but with U = 0). Further, we obtain a RG
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equation for the symmetry-breaking field |B|,

|B( j)|

 log � j

�0

= −1

2

|B( j)|∣∣W ( j)
k�k′′

∣∣
(
ω − ε̃

( j)
k�,q

2

) . (B1)

We now compute the spectral gap of the symmetry-broken
BCS superconducting phase. For this, taking |W ( j)

k�k′′ | ≡ W (0)

(a constant independent of k� and k′′), we note that the solu-
tion to the RG equation for B is given by

B( j) = B(0)

1 + |W (0)| ∑ j−1
l=0

1
2ε ( j)−ω̃

. (B2)

The strong coupling RG fixed point of B → ∞ is
reached when the denominator of the above relation for B

vanishes,

− 1

|W (0)| =
j−1∑

l

1

2ε (l ) − ω̃
≈

∫ EF +h̄vF �∗

EF +h̄vF �(0)

N (E )dE

2(E − EF )
, (B3)

where we have replaced the sum by an integral, N (EF ) is the
electronic density of states (DOS) at the Fermi energy (EF ),
ε (l ) by the continuous energy variable E and ω̃ by 2EF . �(0)

and �∗ correspond to the bare and final k-space cutoffs of the
RG flow. From here, we obtain the well-known relation for the
(exponentially small) BCS gap,

�∗ = �(0) exp

[
− 2

|W0|N (EF )

]
. (B4)
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