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We propose realization of non-Abelian topological superconductivity in two-dimensional quasicrystals by the
same mechanism as in crystalline counterparts. Specifically, we study a two-dimensional electron gas in Penrose
and Ammann-Beenker quasicrystals with Rashba spin-orbit coupling, perpendicular Zeeman magnetic field, and
conventional s-wave superconductivity. We find that topological superconductivity with broken time-reversal
symmetry is realized in both Penrose and Ammann-Beenker quasicrystals at low filling, where the Bott index is
unity. The topological nature of this phase is confirmed by the existence of a zero-energy surface bound state and
the chiral propagation of a wave packet projected onto the midgap bound state along the surfaces. Furthermore,
we confirm the existence of a single Majorana zero mode each in a vortex at the center of the system and along
the surfaces, signifying the non-Abelian character of the system when the Bott index is unity.
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I. INTRODUCTION

Since the first discovery of three-dimensional topological
insulators about a decade ago [1,2], a wide variety of topo-
logical materials have been discovered theoretically as well as
experimentally [3–6]. Classification of topological materials
[7] is not only limited to crystalline systems, but also has
been extended to include disordered [8], amorphous [9], and
quasicrystal materials.

Quasicrystals [10,11], which present phases of matter
with long-range structural order without periodicity [12,13],
have brought about new research into topology in condensed
matter systems [14,15]. Topological properties of quasicrys-
tals [16,17] have been investigated in connection with the
quantum Hall effect [18–20], the quantum spin Hall effect
[21–23], higher-order topological phases [24,25], and super-
conductivity [26–30]. Moreover, recent technical advances for
experimental realization of two-dimensional (2D) quasicrys-
tals, either in optical lattices [31,32] or by means of crystal
growth technologies [33–38], have enabled studies of novel
quantum phenomena in actual quasicrystals.

One of the most significant properties of topological ma-
terials is the existence of Majorana fermions in topological
superconductors [4]. The capability of creating and manip-
ulating Majorana fermions in a solid device may well open
the door to realizing stable and scalable quantum computation
that is topologically protected [6]. In a one-dimensional sys-
tem presenting topological superconductivity (TSC) as in the
Kitaev model [39], zero-energy Majorana fermions appear at
the two ends of the system [40,41]. In a 2D topological super-
conductor, a Majorana zero mode can appear not only along a
surface [42], but also in the vortex core [43]. 2D TSC with bro-
ken time-reversal symmetry has been proposed to be realized
in an ultracold Fermi gas [44,45] and heterostructure made of
conventional materials [4,46,47], and has been achieved in a

Pb/Co island on Si(111) [42]. Necessary ingredients are 2D s-
wave superconductivity [48–51], Rashba spin-orbit coupling
(RSOC) [52–54], and perpendicular Zeeman magnetic field
(PZMF). RSOC can be enhanced or induced by proximity
effects in heterostructures [55–59].

In our previous work [60], we have studied the topological
phase diagram of the Fibonacci-Kitaev model as an example
of the simplest one-dimensional quasicrystalline topological
superconductors. We have found that quasicrystal structure
has a profound effect on the topological phase diagram, mak-
ing it fractal. One might now ask, what will happen if the
spatial dimension increases from one to two? Can TSC be
stable even in 2D quasicrystals? In order to answer these ques-
tions, in this work we apply the method of realizing 2D TSC
with broken time-reversal symmetry [44,45] to quasicrystals.
Specifically, we study Penrose [61] and Ammann-Beenker
(AB) [62–64] quasicrystals [see Figs. 1(a) and 1(b)] at low fill-
ing with RSOC, PZMF, and s-wave superconducting pairing.
We find that irrespective of the aperiodicity of a quasicrystal,
TSC is realized as in a square lattice with translational invari-
ance. This finding is obtained by calculating the Bott index as
a topological invariant in the system [8,21,22] and confirming
the existence of a Majorana zero mode in a vortex and along
the surfaces in the topological phase where the Bott index is
unity.

The paper is organized as follows. The model is described
in Sec. II, results are presented and discussed in Sec. III, and
the work is summarized in Sec. IV. We describe our method
of producing AB approximants in the Appendix.

II. MODEL

We focus on 2D Penrose and AB quasicrystals as illus-
trated in Figs. 1(a) and 1(b). Our results can be generalized
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(a) (b) (c)

FIG. 1. (a) Penrose and (b) Ammann-Beenker quasicrystals stud-
ied in this work. (c) A schematic setup for realizing a topological
quasicrystal superconductor in heterostructure.

readily for other types of 2D quasicrystals. We generalize the
tight-binding model [44,45] for a quasicrystal:

H = 1

2

∑
i jσσ ′

(c†
iσ ciσ )H

(
c jσ ′

c†
jσ ′

)
, H =

(
h �

�† −h∗

)
,

(1)
where ciσ is the annihilation operator for the electron at site i
with spin σ , and the normal-state Hamiltonian is

[h]iα, jβ = [(ti j − μδi j )σ0 + hzδi jσ3 + ıVi j �ez · �σ × R̂i j]αβ,

(2)

with the Pauli matrices �σ = (σ1, σ2, σ3) acting in spin space,
σ0 = 12 the 2 × 2 identity matrix, spin indices α, β, and ı =√−1. We consider the vertex model, where the sites {i} are
defined on vertices in the quasicrystal and R̂i j is a unit vector
connecting sites i and j. We consider hopping along nearest-
neighbor links only, ti j = t〈i j〉 ≡ −t , and Vi j = V〈i j〉 ≡ V is
the coupling constant of RSOC, where 〈 〉 indicates nearest-
neighbor links. PZMF and the chemical potential are denoted
as hz and μ, respectively. The off-diagonal elements are
given by

[�]iα, jβ = [δi j�ıσ2]
αβ

, (3)

where � is the s-wave superconducting order parameter.
A possible setup of the system is illustrated in Fig. 1(c),
where PZMF and s-wave superconductivity are induced by
proximity to a ferromagnetic insulator and a conventional su-
perconductor, respectively. RSOC can be enhanced or induced
by the ferromagnetic insulator [65] or the superconductor
[66,67]. To explore the properties of such a system, we nu-
merically diagonalize the BdG Hamiltonian in Eq. (1) to find
the quasiparticle energy spectrum and wave functions [68]:

H |ψλ〉 = ελ|ψλ〉. (4)

The topological phases in a square lattice with translational
symmetry have been classified in Ref. [45] according to the
first Chern number or the Thouless-Kohmoto-Nightingale-
Nijs (TKNN) number [69], ν ∈ Z [7], where the system is in
the trivial, Abelian, and non-Abelian phase when ν = 0, ν =
−2, and ν = ±1, respectively. For the chemical potential μ �
−2t and for large enough PZMF, the system can have a single
noninteracting Fermi surface, and the non-Abelian phase with
ν = 1 is realized when �2 < h2

z − (W + μ)2, where � is
taken to be real and W = 4t is half of the bandwidth in the
absence of RSOC and PZMF in the normal state. This phase
hosts a zero-energy Majorana fermion as a single edge mode
per surface or bound state in a vortex [45,70,71].

In the following, we set

V = 0.5t, hz = 0.5t, � = 0.2t, (5)

and probe topological phase transitions by varying the chem-
ical potential in the low-filling limit.

The Bott index [8,72] is one of the topological invariants
that are equivalent to the first Chern number, previously used
[21–23,26,32] to explore nontrivial states of a quasicrystal. In
order to calculate the Bott index, we first obtain the quasipar-
ticle excitation states. Exploiting the particle-hole symmetry
of Eq. (4), we define the occupation projector onto the quasi-
particle states with negative energy,

P =
∑
ελ<0

|ψλ〉〈ψλ|. (6)

In terms of this projector and Q = I − P, with I the identity
operator, we can define the projected position operators,

UX = Peı2πX P + Q, UY = Peı2πY P + Q, (7)

where

X = Diag[x1, x1, . . . , xN , xN , x1, x1, . . . , xN , xN ]. (8)

Here N is the total number of vertices, xi is the x coordinate of
the ith vertex rescaled to [0, 1), and similarly for Y . Namely,
each vertex (lattice site) of a 2D system is mapped onto the
surface of a torus. The Bott index is defined by

B = 1

2π
Im{Tr[log(UY UXU †

Y U †
X )]}, (9)

which is quantized to be a nonzero integer (zero) in a topolog-
ically nontrivial (trivial) phase. We use the periodic boundary
condition (PBC) for large enough system size to calculate
the Bott index. In nontrivial topological states the periodic
and open boundary conditions (OBC) result in a gapful and
gapless energy spectrum, respectively. The latter is a direct
consequence of the bulk-boundary correspondence [73]. To
apply PBC to AB quasicrystal supercells, we first identify a
large square portion of the quasicrystal that has similar edges,
and then apply PBC to each pair of parallel edges. Our method
of generating AB approximants is described in detail in the
Appendix. For Penrose quasicrystals we use the multigrid
method [74,75]. Details of our method of generating Penrose
approximants are explained in the Appendix of Ref. [76].

III. RESULTS

A. Topological phase transitions

In Figs. 2(a)–2(c) we present the Bott index and the lowest
quasiparticle excitation energy as a function of the chemical
potential μ for a 54 × 54 square lattice and Penrose (3571
vertices) and AB (2869 vertices) quasicrystals. It can be seen
that irrespective of the crystal structure, the energy gap closes
twice as μ is increased in the region shown, where the Bott
index B changes first from zero to unity and then back to zero.
We find that the range of μ for which B = 1 is given by

−W −
√

h2
z − �2 < μ < −W +

√
h2

z − �2, (10)

where −W is the lower band edge in the absence of RSOC
and PZMF in the normal state, regardless of the crystal

144511-2



TOPOLOGICAL SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 104, 144511 (2021)

FIG. 2. Lowest excitation energy (LEE) is plotted as a function
of the chemical potential for (a) a square lattice (2916 vertices) and
(b) Penrose (3571 vertices) and (c) Ammann-Beenker (2869 vertices)
quasicrystals with PBC. The probability distribution of the lowest-
energy excitation in a (d) square lattice (18 225 vertices) and (e)
Penrose (18 643 vertices) and (f) Ammann-Beenker (18 029 vertices)
quasicrystals with OBC for μ = −4.25t , in a logarithmic scale. The
darker (red) color implies higher probability. The energy of each state
is shown above each plot.

structure. With W = 4t , this is precisely the condition for the
non-Abelian phase with the TKNN number ν = 1 in a square
lattice [45]. The two critical values of μ above are indicated by
two vertical lines for each system in Figs. 2(a)–2(c). We have
confirmed these phase transitions for different combinations
of parameter values (V, hz,�) and system size.

The bulk-boundary correspondence implies the existence
of a gapless bound state per surface in the topological
phase with B = 1. This is illustrated in Figs. 2(d)–2(f),
where the probability distribution is plotted for the lowest-
energy state in a 135 × 135 square lattice and Penrose (18 643
vertices) and AB (18 029 vertices) quasicrystals for μ =
−4.25t . The energy (∼10−3t) for each state is shown above
each plot. Clearly these states are strongly localized along the
surfaces, and the energy of these states approaches zero as
the system size increases. In the thermodynamic limit, these
midgap surface bound states form a continuous excitation
spectrum. In contrast, in the trivial phase there is no such sur-
face bound state and the wave function distribution depends
drastically on μ and the shape of the system.

T
im
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ev

ol
u
ti

on

Square-lattice Penrose Ammann-Beenker

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

FIG. 3. Time evolution of the chiral propagation of a surface
bound state is illustrated for the same systems as in Figs. 2(d)–2(f)
for (a1)–(a3) a square lattice and (b1)–(b3) Penrose and (c1)–(c3)
Ammann-Beenker quasicrystals for μ = −4.25t .

B. Chiral propagation

Because of the chiral nature of edge modes in a square
lattice [45,70], we anticipate the unidirectional propagation
of the midgap surface bound states. To see this, we project an
initial state |ψ0〉 localized around an edge site onto the lowest-
energy midgap state. We then allow the system to evolve with
time by applying the time evolution operator exp(−ıT H ) at
time T . If the system supports chiral edge modes, the initial
state would propagate along the boundary [19,32,77]. In Fig. 3
the time-lapse propagation of the initial state is presented for
the first few time steps, �T = 50/t . We can see that despite
the aperiodicity, the wave packet propagates along the surface
boundary in both quasicrystals as in a square lattice. On the
contrary, in trivial phase an initial wave packet quickly dis-
perses into the bulk of the system.

C. Majorana zero modes

It is possible to directly confirm the existence of Majorana
zero modes by introducing a vortex in the system. For this
purpose, we include a vortex as a local phase winding in the
order parameter in the middle of the crystal. We set the pairing
amplitude to zero at the vortex center to avoid ambiguity in
the pairing phase, while assuming no radial dependence in the
amplitude or phase. Introducing a vortex induces the Caroli–
de Gennes–Matricon (CdGM) bound states [68,78] localized
in the vortex core.

In the B = 1 phase, we additionally find a zero-energy
Majorana bound state in the vortex core, which is clearly
distinct from the CdGM states, as its energy is approximately
zero regardless of μ and approaches zero as the system size
increases. In contrast, the CdGM energy levels in either trivial
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Square lattice Penrose Ammann-Beenker

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

(f1)

(f2)

(f3)

FIG. 4. The probability distribution of the three lowest-energy excitations is plotted in a logarithmic scale for a square lattice in the
(a1)–(a3) topologically nontrivial (μ = −4.25t) and (b1)–(b3) trivial (μ = −3t) phase, Penrose quasicrystal in the (c1)–(c3) topologically
nontrivial (μ = −4.25t) and (d1)–(d3) trivial (μ = −3.5t) phase, and Ammann-Beenker quasicrystal in the (e1)–(e3) topologically nontrivial
(μ = −4.25t) and (f1)–(f3) trivial (μ = −3.5t) phase. The numbers of vertices are 38 025, 37 351, and 38 413, respectively. The excitation
energy of each state is shown above each plot.

or nontrivial phase are strongly dependent on μ. Moreover,
while the CdGM excitation energy also depends on the local
environment of the vortex center in quasicrystals, the Majo-
rana bound-state energy does not.

With a vortex at the center of the system with OBC, the
BdG equations (4) yield two zero-energy solutions, numer-
ically with energy ±ε where ε � t . In Fig. 4 we plot the
probability distribution of the three lowest-positive-energy
states for two values of μ each for a square lattice (38 025
vertices) and Penrose (37 351 vertices) and AB (38 413 ver-
tices) quasicrystals, such that B = 1 for one value of μ (μ =
−4.25t for all systems) and B = 0 for the other (μ = −3t for
the square lattice and μ = −3.5t for the quasicrystals). The
energy of each state is shown above each plot. The highest-
symmetry (maximum) coordination number is five (seven)
and eight (eight), respectively, in the Penrose and AB qua-
sicrystal. The vortex is placed at a highest-symmetry vertex.

The zero-energy state in all three systems shown in
Figs. 4(a1), 4(c1), and 4(e1) has half of its probability dis-
tributed along the surfaces and the other half concentrated
around the vortex center. This is also the case for the other
zero-energy state (numerically with slightly negative energy)
in each system. Furthermore, we have confirmed (not shown)
that each zero-energy state has equal probabilities being an
electron and a hole. Thus, analogously to the non-Abelian
phase in the square lattice, a Majorana zero mode exists per
vortex or surface in both kinds of quasicrystals in the topo-
logical phase with B = 1. Interestingly, the third excitation
in Fig. 4(e3) is a CdGM state, while it can be a surface
state depending on μ and the position of the vortex center.
We find that the highest coordination number results in the

lowest energy of a given CdGM state. It is the combination
of the highest coordination number and highest (eightfold)
symmetry of the vortex center that lowers the energy of the
CdGM excitation in the AB quasicrystal.

D. Dispersion

It is rather remarkable that the topological phase transitions
as seen in Figs. 2(a)–2(c) are predicted by Eq. (10), which
corresponds to closing of the bulk spectral gap at one of the
high-symmetry points in the Brillouin zone in a square lattice,
with numerically obtained W in both quasicrystals. Due to
the lack of periodicity, there is no Brillouin zone for qua-
sicrystals and the entire momentum space would be filled with
Bragg peaks in the limit of an infinite quasiperiodic lattice.
Moreover, quasicrystals are known to have a pseudogap in
their energy spectrum [79] (see also Refs. [30,38] and refer-
ences therein). In addition, both Penrose and AB quasicrystals
have families of strictly localized states at zero energy owing
to local topology and quasiperiodicity [80–82], and in the
former there is an energy gap above and below the highly
degenerate (∼10% of the total number of states) zero-energy
level [80,83]. On the other hand, most of the kinetic-energy
eigenstates in both quasicrystals are of the extended nature
[27,30,82].

To better understand the occurrence of TSC governed by
Eq. (10), we now examine the band structure of quasicrystals.
We first note that as we consider only nearest-neighbor links
in the vertex model, all the links connecting vertices are of
the same length in each of the Penrose and AB quasicrystals,
and both systems are bipartite. As a result, the eigenspectrum
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FIG. 5. The probability distribution of single-particle states along kx = ky in momentum space; in the normal state with RSOC [(a1),
(b1), (c1)] and RSOC+PZMF [(a2), (b2), (c2)], and in the superconducting state [(a3), (b3), (c3)] for a square lattice [(a1)–(a3)] and Penrose
[(b1)–(b3)] and Ammann-Beenker [(c1)–(c3)] quasicrystals with OBC with 3249, 3274, and 3105 vertices, respectively. The chemical potential
μ = −4t is used for both normal and superconducting states. The opacity is given in a logarithmic scale.

of the hopping matrix is symmetric about zero energy in both
quasicrystals [80,82,84].

In Fig. 5 we show the dispersion along kx = ky for a square
lattice [panels (a1)–(a3)] and Penrose [panels (b1)–(b3)] and
AB [panels (c1)–(c3)] quasicrystals, with 3249, 3274, and
3105 vertices, respectively, with OBC. The dispersion has
been obtained by calculating the spectral function [30], that
is, the probability distribution of single-particle states in
momentum space. In Fig. 5, the probability distribution of
single-particle states is plotted as a function of kx = ky and
energy in the normal state with RSOC [panels (a1), (b1),
(c1)] and RSOC+PZMF [panels (a2), (b2), (c2)], and in the
superconducting state [panels (a3), (b3), (c3)], with the pa-
rameter values in Eq. (5). In all three systems, μ = −4t for
both normal and superconducting states, and the smoothing
width of 0.005t has been used in the spectral function. The
probability is represented in a logarithmic scale by the opacity
such that the darker a given point is, the higher the probability.
The single-particle states in both quasicrystals extend over the
entire momentum range shown. However, the probabilities are
the highest in the energy range close to the bottom of the band
in the normal state within the first Brillouin zone of the square
lattice. In this region, the normal-state dispersion around the

chemical potential in both quasicrystals—without RSOC or
PZMF (not shown), with RSOC [Figs. 5(b1) and 5(c1)], or
with RSOC+PZMF [Figs. 5(b2) and 5(c2)]—is similar to that
in the square lattice. Clearly seen in Figs. 5(a3), 5(b3), and
5(c3) are the chiral edge states in the TSC phase with B = 1
in all three systems.

Thus, the topological phase transitions as predicted by
Eq. (10) can be understood as due to the fact that the normal-
state dispersion is similar in all three systems. One might
then ask if the topological phase studied in this work, which
does not rely on any crystal symmetry, can occur in arbi-
trary random structure. Or is there anything special about
quasicrystals, and in particular, is bipartite structure key to
the existence of TSC in quasicrystals? To address the last
question, we have performed additional calculation by making
all three systems non-bipartite, by including the next-nearest-
neighbor links and the shortest links, respectively, in a square
lattice and quasicrystals. The classification of different topo-
logical phases for different ranges of μ [45] is still possible
for a square lattice, even though modified by next-nearest-
neighbor hopping. We have also confirmed that making the
Penrose and AB quasicrystals non-bipartite by including the
shortest links does not alter the results presented above.
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FIG. 6. Deflation rules for a (a) 45◦ rhombus and (b), (c) two
isosceles right triangles with the (b) left and (c) right corner marked.

Namely, not only the TSC phase with B = 1 that supports
Majorana zero modes, but also the topological phase tran-
sitions analogous to those in a square lattice occur in both
quasicrystals made non-bipartite with the shortest links.

E. Effects of randomness

To gain further insight, we have searched for the TSC
phase in all three systems while either introducing random
additional links or removing random nearest-neighbor links,
so as to gradually approach the extreme limit of arbitrary
random structure. In all cases that we have examined for the
same parameters as in Eq. (5), the TSC phase for a range
of μ roughly given by Eq. (10) persists up to some degree
of randomness; however, μ quickly goes out of this range
as randomness increases and different sets of parameters—
typically larger �—are required altogether for TSC states, if
any, to exist (in different kinetic-energy ranges). For exam-
ple, with longer links added randomly in the Penrose (9349
vertices) and AB (8119 vertices) quasicrystals (diagonal links
in wider rhombuses and squares, respectively, in the former
and latter), the range of μ for which TSC occurs as in Fig. 2
is significantly narrowed and shifted more than halfway up
in energy compared to Eq. (10), when the number of added
links is 10% of the total number of links in both quasicrystals.
The changes are more drastic in the AB quasicrystal, in which
TSC is mostly gone for μ given in Eq. (10) with 10% added
links. Regardless of energy range, there is no such criterion
as Eq. (10) that can predict the occurrence of TSC in partially
randomized systems beyond a certain degree of randomness.
We have not found any TSC state in completely random
structure.

While quasicrystals lack translational symmetry, we be-
lieve that their long-range quasiperiodic order and peculiar ro-
tational symmetry associated with higher-dimensional space
groups allow the existence of TSC in both quasicrystals.
The vertices of the Penrose and AB quasicrystalline lattice
can be obtained by projection of a set of five-dimensional
and four-dimensional hypercubic lattice points, respectively,
onto a two-dimensional plane [85,86]. It has recently been
suggested that the localized states at zero kinetic energy in
the Penrose quasicrystal may be protected, so to speak, by
topology of its five-dimensional parent [84]. The Penrose and
AB quasicrystals share the general properties of quasiperiod-
icity and higher-dimensional symmetry. It is intriguing to ask
whether or not such general properties can result in some kind
of universal or common features in the TSC states among
different quasicrystals. At the same time, the Penrose and
AB quasicrystals have local pentagonal and octagonal ro-
tational symmetry, respectively. It is interesting to examine

FIG. 7. Ammann-Beenker tiling produced by starting from an
(a) eightfold-symmetric seed and applying the deflation rules
(b) once and (c) twice.

their respective fractal structure in the perpendicular space,
as has recently been done for magnetically ordered states in
both quasicrystals [87,88]. These questions are left for future
studies.

IV. CONCLUSION

We have extended the 2D TSC model with broken time-
reversal symmetry to 2D quasicrystals. We have shown that
despite the aperiodicity, a nontrivial topological phase can
be realized in Penrose and Ammann-Beenker quasicrystals at
low filling, where the Bott index B is nonzero. By assuming
a uniform order parameter �, we have observed that topolog-
ical phase transitions to/from the TSC phase with B = 1 are
governed by Eq. (10) in both quasicrystals, just as for systems
with translational symmetry. When B = 1, both quasicrystals
host chiral surface bound states.

Furthermore, by introducing a vortex at the center of the
system in the B = 1 phase, we have found two Majorana
zero modes, one along the surfaces and the other around the
vortex center, irrespective of the underlying crystal structure.
In contrast to the CdGM states, the energy of the Majorana
vortex bound state remains approximately zero regardless of
μ and the vortex position. Our results indicate that a new
setup of heterostructure using quasicrystals as in Fig. 1(c) is
possible for realizing 2D TSC.

Finally, it is interesting to explore possible fractal structure
in 2D quasicrystals due to their inherent self-similarity, for
example, in topological phase diagrams. In order to study
such fractal structure, however, the local environment of each
vertex in a quasicrystal needs to be taken into account by
solving for the order parameter self-consistently. We have
performed some preliminary self-consistent calculation of the
superconducting order parameter. As found for regular s-wave
superconductivity [27,30], the order parameter is not uniform
in a quasicrystal when solved self-consistently. However, spa-
tial fluctuations in the order parameter do not fundamentally
alter the conclusions of the current work. By solving for the
order parameter self-consistently, we have found the TSC
phase with the Bott index B = 1, where the Majorana zero
mode appears along the surface boundary or at the vortex
center. Detailed self-consistent studies of TSC in quasicrystals
will be presented in a future publication.
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APPENDIX: AMMANN-BEENKER APPROXIMANTS

We here present our approach to generating the Ammann-
Beenker (AB) [62–64] quasicrystal and its approximants. The
Bott index needs to be calculated in an approximant so that
the periodic boundary condition (PBC) can be applied. With
the conventional method of creating approximants by means
of projection from a higher-dimensional hypercubic lattice
[85,86], the number of vertices N in an AB approximant takes
on values N = 7, 41, 239, 1393, 8119, 47 321, 275 807, . . . .
Thus, the jump from one possible value of N to the next
increases significantly as the system size increases. While an
approximant with N = 1393 is too small to calculate the Bott
index for, the next available size N = 8119 is numerically
much more costly to produce.

For this reason, we use the deflation/inflation rules [61] to
produce the AB tiling and identify a large enough square por-
tion enclosed by two sets of parallel Ammann lines [10,85].
This method allows smaller jumps in possible values of N
and hence various intermediate sizes not available with the
projection method. We use N = 2786 for calculation of the
Bott index.

The AB tiling can be constructed in terms of a 45◦ rhombus
as in Fig. 6(a) and two isosceles right triangles, represented
by red and green triangles with a specific corner marked
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FIG. 9. (a) Distinct Ammann lines in the Ammann-Beenker qua-
sicrystal are shown in different colors. The gray area is surrounded
by two sets of parallel Ammann lines, which have the same vertex
configuration along them. (b) An Ammann-Beenker approximant
constructed by selecting vertices in the gray region in (a).

in Figs. 6(b) and 6(c), respectively. One can create the AB
tiling by applying the deflation rules to a rhombus and two
triangles as shown in Fig. 6 repeatedly. This is illustrated in
Fig. 7, where the rules are applied first to each of the eight
rhombuses making up the eightfold-symmetric seed tile in
panel (a), then to each of the rhombuses and triangles in panel
(b), which results in panel (c). Applying the rules once more
leads to Fig. 8(a). Thus, more (smaller) tiles are created and
the number of vertices increases at each step. Alternatively,
one can “inflate” each side by a factor (1 + √

2) at the same
time as the rules are applied, keeping the size of individual
tiles the same as the system becomes larger.

We can construct the conventional AB tiling by merging
adjacent red and green triangles in Fig. 8(a) into a square tile,
so that the building blocks are the square and 45◦ rhombus
[63,89,90]. The resulting AB quasicrystal surrounded by thick
lines in Fig. 8(a) is shown in Fig. 8(b), where the vertices are
the quasicrystalline lattice sites and links connecting vertices
are all of the same length.

To calculate the Bott index, we apply PBC to an approx-
imant of the AB quasicrystal. We identify a pair of parallel
Ammann lines with the same configuration of vertices along
them and another such pair in the perpendicular direction, to
produce an approximant enclosed by these four sets of line
segments [the gray region in Fig. 9(a)]. Shown in Fig. 9(a) are
the Ammann lines as four sets of parallel lines (colored with
red, green, blue, and yellow) passing through the diagonal of
all square tiles [91]. Figure 9(b) illustrates application of PBC
in such an approximant, where a vertex with a white plus
(green “O”) is connected to the corresponding vertex with a
red star (yellow “S”) on the other side.
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