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We theoretically analyze collective modes in unconventional superconductors focusing on the Bardasis-
Schrieffer (BS) mode and its contribution to the third-harmonic generation currents. Starting from a model
with competing superconducting pairing instabilities we add fluctuations of the fields beyond the saddle point
approximation and calculate their response to a driving electric field. To model phase fluctuations appropriately
we take into account the effect of the long-range Coulomb interaction. While the phase mode is pushed into a
plasmon frequency, as known from the literature, we show that the BS mode remains unaffected. Furthermore, it

has a characteristic polarization dependence and, unlike the Higgs mode, generates a current in the perpendicular
direction to the applied field. We find that the Bardasis-Schrieffer excitations contribute a sizable signal to the
third-harmonic generated current, which is clearly distinguishable from the charge density fluctuations due to
Cooper-pair-breaking effects and can be straightforwardly detected in experiment.

DOLI: 10.1103/PhysRevB.104.144508

I. INTRODUCTION

The recent technological development of THz spec-
troscopy makes it possible to probe properties of quantum
matter, which cannot be observed in equilibrium. This is
of considerable interest in the field of unconventional su-
perconductivity, where controlled probing of the relaxation
dynamics yields access to understanding ground state proper-
ties of the underlying system [1-3]. The THz waves can excite
the superconducting state at energies below the quasiparticle
continuum. It was found early that in this regime light couples
nonlinearly to the Cooper pairs and that it excites the collec-
tive Higgs mode at wy = 2A [4-18]. This mode corresponds
to amplitude oscillation of the superconducting order param-
eter in the Mexican-hat-shaped free energy and is therefore
also called the amplitude mode. It does not couple to the
electromagnetic wave within the linear response but becomes
visible in the third-harmonic generation (THG) [3,19-25].
In particular, below 7, the incident light at some fixed fre-
quency 2 excites the Higgs mode in a nonlinear process and
effectively drives it with 2€2 during the pulse irradiation. The
transmitted light then generates a component which oscillates
with the third harmonic of the incident pulse frequency 32
due to coupling to this excitation energy. Tuning the effective
excitation energy 2€2 to the energy 2 A then leads to a resonant
enhancement of the third-harmonic generation. One has to
mention, however, that even though it was initially [19,20]
assumed that the enhancement stems from resonant driving
of the Higgs mode frequency wy = 2A it was later shown
that the resonance in the clean case, i.e., without impurities,
is dominated by excitation of charge density fluctuations [21],
which is also around 2A, and the contribution to the reso-
nance due to the Higgs mode activation appears to be orders
of magnitude smaller. More recently, it was shown that the
situation may change in the dirty limit where the Higgs mode
can indeed dominate the THG response [26—30].

2469-9950/2021/104(14)/144508(11)

144508-1

We note in passing that the transition into the super-
conducting state in conventional superconductors leads to
the formation of other modes, including plasmons, and
the Carlson-Goldman mode [31,32]. The phase (Anderson-
Bogoliubov-Goldstone) mode is the order-parameter phase
mode, which couples to the electromagnetic field and in the
presence of long-range Coulomb interaction converts into the
plasmon mode [33]. In the presence of residual normal state
quasiparticles close to 7, the Coulomb potential of the su-
perfluid density fluctuation can be screened, and one finds an
ungapped Carlson-Goldman (CG) mode, in which the normal
and superfluid densities oscillate out of phase [34].

While those types of modes, discussed above, are present in
both conventional and unconventional superconductors, there
is another type of collective mode possible in unconventional
superconductors. In these systems multiple different pairing
symmetries can compete for the superconducting ground state
symmetry and if a second pairing symmetry is very close to
the ground state symmetry the so-called Bardasis-Schrieffer
mode [35] wps < wy emerges, signaling the nearby sub-
dominant state. Its possible experimental observation in the
iron-based superconductors due to the close competition be-
tween the sy ground state and the nearby d,>_,» instability
[36—41] has triggered further theoretical interest in the prop-
erties of this mode [32,42-46]. Furthermore, it was shown
that the nearby nematic instability, if present, couples to the
Bardasis-Schrieffer mode and pushes the resulting hybridized
Bardasis-Schrieffer-nematic mode further below the quasipar-
ticle continuum and extends the potential observability of this
mode beyond the near-degeneracy region of the d-wave and
s-wave superconducting states [47].

In this paper we investigate theoretically the signatures of
the Bardasis-Schrieffer mode in the third-harmonic generated
current once the driving frequency matches the resonance
condition 222 = wps. We show that the strength of the
Bardasis-Schrieffer mode signal is of magnitude similar to
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that of the charge density fluctuations even in the clean limit,
making its observation a straightforward experimental task.
The BS mode should yield a strong second resonance along-
side the Higgs mode (or charge density fluctuation) frequency.
We further study its polarization dependence and show that,
unlike the Higgs mode, the BS mode generates a current in
the perpendicular direction to the applied field.

II. EFFECTIVE ACTION

Since the current response of a system is given by the
variation of the action S with respect to the applied vector
potential j = —dS5/SA one can obtain the third-harmonic gen-
erated current from an action, which is quartic in the vector
potential [21]. Contributions from fluctuating fields couple to
the vector potential and thus renormalize the current kernel.
Our starting point is therefore an action S = Sy + Ssc + S,
containing the fermions on a two-dimensional (2D) square
lattice S interacting via an attractive superconducting interac-
tion S and the Coulomb interaction S.. The superconducting
interaction consists of attractive s-wave and d-wave channels,
respectively, and reads

Se == [dr 3 Vit Viranea By @B, )
k.kK'.q

where V; and V; are the superconducting interaction strength
in the corresponding channels. We choose the d-wave
form factor as yx 4 = V2 cos(2¢), while the s-wave inter-
action, without loss of generality, can be chosen isotropic.
Here, we introduce the singlet pair operator By q(7) =
C—k+q/2, (T )Ck+q/2,4(T) to keep notation simple. Performing
the Hubbard-Stratonovich transformation in By 4 introduces
the superconducting field, which has the form Ag(q) =
Ag(q) + Ay(@)k.a, Where A is the s-wave component
transforming like A and A, is the d-wave component trans-
forming as By, irreducible representation, respectvely, with
the corresponding form factor. Note that both A (g) and
A4(q) are complex with an arbitrary overall phase. We focus
on the s-wave ground state by focusing on V;/V; < 1. By
performing a gauge transformation ¢yy — Cro e?®/2 gne can
choose the ground state field A (q) to be real. For the sake
of simplicity we ignore also the d-wave nematic fluctuations
in the particle-hole channel as their interaction with the sub-
dominant superconducting channels was investigated by us
previously [47].

As mentioned in the introduction, the superfluid phase is
known to show a soundlike phase (Goldstone) mode wg ~
|q|, which couples to the Coulomb field and becomes a plas-
mon [33]. This implies that the effect of the Coulomb field
needs to be taken into account to obtain the correct electro-
magnetic response of the superconductor [48],

Vq .
Se = f drk; S kg0 (D q.0 (DK 0/ (Tek o (7).
» K, q

0,0’

@

Here Vy = 2me?/|q| is the Coulomb potential for charged
fermions confined to our 2D lattice. This interaction can be
decoupled in the density channel via a Hubbard-Stratonovich

transformation introducing the density fluctuations field p(q).
Finally, the effect of a vector potential can be added to the
action via a Peierls substitution c;(,crﬂ;,g — ei"’A“sc;(,cH,;,g.
After a straightforward derivation the total action acquires

the form

S =Y W[ - Gy ()b + (k. k)] W, 3)
kK

where Go(k) = (iw,00 — &3 — Agoy)~! is the saddle point
Green’s function and the self-energy correction Z(k, k') =
Eak, K)+Zgk, k') +Zp, (k, K)+ 2k, K)+ 2,k k') +
EAg (k, k'), which contains the fluctuations of the
corresponding fields A(q), 8(q), Al;(q), Alj(g), p(g) and
the vector potential A?(¢) around their saddle point value.
Here, the d-wave superconducting field is separated into
real and imaginary parts, Ay(q) = Al (q) —iA)(q). The
corrections are given by

Ea, (kK = Agk — Ko, “

Zo(k, ) = = [ 3 (vn-)0 + 5 (6 — E)on |00 — k)

LX)

qi, 42, i k=t
<ol +gp — k— K 7LTEL )
T,k k) = Ak — KDyal(k + k') /201, (6)
Tayk, k') = Ak — K)yal(k + K')/2]o2, ©)
2,k k') = p(k — K)o3, (8)
Ty k. k') = %ZA?(@H - iwn’)%ak,km. 9)

The explicit expansion of the corrections is shown in Ap-
pendix A. We integrate out the fermions to obtain the effective
action and keep fluctuations up to quadratic level (Gaussian
fluctuations):

1
Setr = — Trln (Gy') + > > "~ @)
q
+ )t (=) Xy, 42((0)AT (V)

1
5 D AT ivn)Ko.ij (v )AT iv). (10)

ij

Here, we use the shorthand notation for the vector 5(g) =
(As(q), 0(q), Ay(q), Ali(q), p(g)T, which includes all fluc-
tuating fields. The corresponding matrix response function,
%(q), is given by x4 = Tr(GoZ,,GoZy,). In addition, the
coupling of the fluctuating fields to the vector potential is me-
diated via the response functions yx,, . Ag(ivm). The fluctuation
of the vector potential itself is mediated via the 2 x 2 kernel
Ko = Tr(GOEAiz GOEA?) with i, j € {x, y}. Here, we take the
limit q — O.
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The collective modes of this system are given by the condi-
tion det[ ¥ (¢)] = 0. In the simplest approximation we neglect
the off-diagonal coupling terms and focus on the diagonal
terms of ¥. After analytic continuation, one finds for the
propagator of the s-wave order parameter amplitude

Xaa (@) =) (42 — 0" )K(), (11)
k

and the function F(w)= tanh(,BEk/Z)/{Ek[4El% — (w0 +
i0%)?]} carries the information of the Higgs (amplitude) mode
wg = 2A. The propagator of the global phase fluctuations is
given by

1
Xo0(q) = 715 —w22A2<k)Fk(w) (12)

where n; is the superfluid stiffness. This propagator contains
the Goldstone (phase) mode, which is gapless and can be
excited with an arbitrary small amount of energy.

Finally, there is a contribution of the Bardasis-Schrieffer
mode. As was shown previously in Ref. [47] this mode
corresponds to the fluctuation in A’}, which, in linear approx-
imation, is the relative phase between the s-wave field and the
d-wave field. The corresponding propagator has the form

Xanan(@) = — — Z AE Ve ) Fic(@). (13)

This function has a single root for 0 < w < 2A depending
on the exact strength of the d-wave interaction V, relative to
V;. Note that the propagator of the amplitude A/, carries no
collective mode at all. In principle the frequency positions
of these three modes are slightly affected by the coupling
between the fluctuations. However, our analysis shows that the
the cross-coupling between s-wave amplitude fluctuations and
the global phase xa.p(w) =2w ), &AF(w) is present but
is very weak. This is similar for the cross-coupling between
A/, and A/}. The coupling between the d-wave fields A, and
A/} and the s-wave fields Ay and 6 vanishes because these
two channels are orthogonal by symmetry, which implies
that these three modes are indeed given by the solution to
Xnone = 0. Correspondingly, in Fig. 1 the Bardasis-Schrieffer
mode and the Higgs mode frequency are shown for different
ratios V;/V; as a function of temperature 7 /T..

As shown above the Bardasis-Schrieffer mode can be
interpreted as a relative phase mode between an s-wave
field and the d-wave field. Therefore a correct treatment
of the phase due to incorporating the Coulomb field is
important to describe the Bardasis-Schrieffer mode. Inte-
grating out the charged fields p yields the renormaliza-
tion of the response functions according to xip = XaB —
XpA(—@) X p8(@)/ Xpp(@). While the effect of this renormal-
ization is weak for the amplitude mode propagator xa,a, =
XA, a,» it pushes the Goldstone phase mode into a plasmon,

IqI

Xoo(Q, ) = lq| — @), (14)

where one can identify the plasmon mode position, wp; =
V2me?nyq. The charged field is a density type fluctuation
and therefore its fluctuations have the same A, symmetry as
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FIG. 1. Higgs mode frequency wy and Bardasis-Schrieffer mode
frequency wgs positions versus temperature 7' calculated from the
resonance frequencies of Eqs. (11) and (13).

the s-wave ground state. Thus, these fluctuations are orthogo-
nal to the subdominant field fluctuations A, and leave their
propagators, and with them the Bardasis-Schrieffer mode,

unaffected, ' Al = XA A Note that this only holds for

q— 0, which i 1s Vahd in our case, as the transferred kinetic
momentum of the photons can be neglected in the terahertz
regime. For finite q the fluctuations in other symmetry chan-
nels are possible, which would affect the position of the
Bardasis-Schrieffer mode frequency wgs [35,47].

As mentioned in previous works [17,21], the coupling
between Higgs mode and the vector potential x, 42 =

Zk 4A§k (’k, Fk(w) is very small as the sum is linear in &.

However, this is not the case for the coupling between the
Bardasis-Schrieffer mode and the vector potential yn42 =

Dk 2iw0AYi g akka(w) and therefore one can expect that un-
like the Higgs mode, this mode is easily observable even in
the clean limit, where the charge density fluctuations, which
are given by K;; = — Y 4A? u ki" ‘Lki“ Fi(w), dominate the in-
tensity of the third-harmonic generatron current.

III. THIRD-HARMONIC RESPONSE

The current kernel K = Ky + 12,3 + I?Ax + Ky + I?A& +
kAg now contains contributions of each ﬁeld and in the fol-
lowing we compute the current j;(f) = — 52~ A (I) We assume
that the vector potential can be modeled by harmonic driving
A(t) = Agcos(R2t) with the driving frequency 2. Using ¢
as the polar angle in the momentum space with respect to
the k, axis we write Ay = Ap(cos(¢), sin(¢))T. Here, Ag is
the strength of the driving field and the angle 6 denotes the
polarization direction. The third-harmonic generation current
can be expressed as

j3.i(39Q) = / dt j3,i(t)e

1/e\°
=§(3> Ao Y Kij QA% (15)
J
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TABLE 1. Summary of the polarization dependence of each
contribution to the induced third-harmonic generation current for
the parallel and the perpendicular orientation to the applied vector
potential.

Ja1(@) J3..(9)
Higgs mode Const. 0
Phase fluctuations Const. 0
Bardasis-Schrieffer mode cos’(2¢) sin(4¢)
Charge density fluctuations ~ Mixed const. + cos*(2¢)  sin(4¢)

with components in multiple directions depending on the
components of the kernel K;;. Therefore, it is useful
to introduce the vectors mj; = (cos(8), sin(qb))T and n; =
(— sin(¢), cos(¢))” to filter out the parallel and perpendicular
components of the induced current. Although the kernel has in
total four components, only two of them are independent by
symmetry; i.e., we write K, = K, and K, = K,. Thus, one
finds for the parallel and the perpendicular components of the
induced current

J3(@)=j3-h

1/é? 2
=3 <E) {[COs“(m + sin*(¢)]K. (2Q)

1
+ EKn,(zQ)sinz(qu)], (16)

J3.1(@) =j3-fp

2\ 2
= 1(6—) {1 sin(4¢)[K,y(2R2) — K (292)] } (17)
8\ 2 4

Before explicitly evaluating these expressions numerically, we
summarize the polarization dependence of each excitation;
i.e., the charge density fluctuations (CDFs), the Higgs and BS
modes, as well as phase fluctuations in Table I and the ex-
pressions for K;; are explicitly derived in Appendix B. As was
shown in Refs. [17,23] the contribution due to the Higgs or the
phase fluctuations shows different polarization dependence
than the CDF contribution. In fact the polarization dependence
can be easily read off if one knows the ratio K,,/K,,. Since
the s-wave amplitude fluctuations and the global phase fluc-
tuations have to be A, symmetric, one finds that K,, = K.
From Egs. (16) and (17) this implies that their corresponding
modes yield no contribution to the perpendicular current and
a constant in ¢ contribution to the parallel current. This is
different for the contribution of the d-wave fields A/, and A’.
One finds in this case K, = —K,,, leading to a very different
polarization dependence of their contribution to the current.
In particular, we obtain that the parallel current has cos>(2¢)
polarization dependence, while the perpendicular current has
sin(4¢) dependence. Thus, the Bardasis-Schrieffer mode, me-
diated via fluctuations of the field A/}, yields no signal for
a periodic driving field direction along the Brillouin zone
diagonal ¢ = /4. This agrees with a previous theoretical
analysis of the pump-probe photoemission [46]. Note that the
amplitude fluctuations in the subdominant d-wave channel,
i.e.,in A/, are generally small. For the CDF contribution there

is no strict relation between K, and K, and their exact ratio
depends on the precise band structure. Therefore CDF yield
a mixed polarization profile to the current along the paral-
lel direction. Similarly to the Bardasis-Schrieffer mode the
CDF shows sin(4¢) dependence for the perpendicular current
J3... Also note that as shown in Appendix B the size of the
contribution of the phase fluctuations to the third-harmonic
generation goes to zero in the limit of vanishing q = 0, due to
their renormalization by the Coulomb field.

It is important to notice that the polarization profile of
each contribution is not affected by the renormalization of the
propagators by the Coulomb field, as they follow the intrinsic
symmetry properties of the fields. Instead, the effect of the
renormalization is visible in the explicit dependence on the
driving frequency €2. Observe also that although we assumed
the isotropic order parameter in the s-wave ground state, our
results hold for the general A;,-symmetric ground state (like
anisotropic s wave) as they follow from the properties of
the A, and By, irreducible representations under rotation by
m /2 angle. Thus, the presence of a Bardasis-Schrieffer mode
signal can be easily detected by the analysis of the polariza-
tion dependence of the current. A signal, which is present at
¢ = 0 but absent at ¢ = /4, should be a strong indication of
the Bardasis-Schrieffer mode (or Bardasis-Schrieffer-nematic
mode) and clearly distinguishable from other types of modes.

In particular, in Fig. 2 we show the third-harmonic gener-
ated current j3 | parallel to the applied vector potential A(r)
for a system with (V;/Vy; = 0.8) and without (V;/V; =0) a
subdominant d-wave instability. Indeed, one finds that the
contribution due to the Bardasis-Schrieffer mode is sizable
such that apart from the pair-breaking signal at ® = 2A a sec-
ond resonance condition can be found, which agrees well with
the calculated frequencies for the Bardasis-Schrieffer mode.
For a constant driving frequency €2 the resonance due to the
Bardasis-Schrieffer mode frequency wgg is activated at lower
temperatures than the resonance at 2A and since the current is
generally larger for a larger order parameter A(7), this makes
the resonance peak at w = wpg stronger than the resonance
peak at w = 2A. Note that in agreement with Ref. [21] we find
that the contribution due to the Higgs mode is small compared
to the CDF and the phase contribution. Therefore, the Higgs
mode contribution to the total current remains negligible com-
pared to the total current.

Similar to the amplitude of the third-harmonic generated
current, we find strong signatures of the Bardasis-Schrieffer
mode in the phase of the current. Due to the two resonance
frequencies the phase of the current varies strongly with tem-
peratures in a region between the resonance at wgs and 2A.
Therefore it appears that the presence of two resonant modes
is even more pronounced in the phase of the third-harmonic
generated current than in the intensity of the signal itself.

The third-harmonic generated current induced in the per-
pendicular direction to the vector potential A is shown in
Fig. 3. In the perpendicular current the signal is dominated
by the Bardasis-Schrieffer mode peak once the subdominant
channel is present (V;/V, = 0.8) and is dominated by the
pair-breaking peak (CDF) at 2A if no subdominant chan-
nel is present (V;/V; = 0.0). Similar to the third-harmonic
generated current in the parallel direction the presence of a
second resonance peak can be clearly visible in the phase of
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FIG. 2. The total third-harmonic generated current j3 | parallel to
the applied field versus temperature for the four driving frequencies
w = 0.6A,1.0A,1.4A, and 1.8A and their position relative to the
collective modes in the system as shown in (a). The signal is shown
without (b) and with (d) taking into account the subdominant d-wave
component. Additionally the corresponding phase dependencies of
the current in (c) and (e) are shown. The markers emphasize the
resonance positions of wy (squares) and wgg (circles).

the current. As only the charge density fluctuations and the
fluctuations of the d-wave field contribute to the perpendicu-
lar current the renormalization effects due to the long-range
Coulomb interaction do not influence this component of the
current. Although the different contributions to the third-
harmonic generated current induced parallel to the field can
be distinguished by their polarization dependence, this is not
the case for the current induced in the perpendicular direction,
where all contributions show the same sin(4¢) dependence.

IV. CONCLUSION

To conclude, we analyzed theoretically the signatures of
the Bardasis-Schrieffer mode excitation in the third-harmonic
generated currents. Including the long-range Coulomb inter-
action to ensure a correct treatment of the phase fluctuations,
we showed that the Bardasis-Schrieffer mode excitation is
clearly visible as a resonance in the third-harmonic generated
current. Unlike the Higgs mode signal, which is orders of
magnitude smaller in the clean limit than the charge density
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FIG. 3. The total third-harmonic generated current j; ; perpen-
dicular to the applied field versus temperature for the four driving
frequencies w = 0.6A, 1.0A, 1.4A, and 1.8A and their position rel-
ative to the collective modes in the system as shown in (a). The
signal is shown without (b) and with (d) taking into account the sub-
dominant d-wave component. Additionally the corresponding phase
dependencies of the current in (c) and (e) are shown. The markers
emphasize the resonance positions of wy (squares) and wgs (circles).

fluctuations contribution due to the Cooper pair breaking, we
demonstrated that the Bardasis-Schrieffer mode signal is of
similar strength and can be clearly visible in the magnitude
as well as the phase of the current. We further showed that the
contribution of the BS mode to the polarization dependence of
the third-harmonic generated current j; has very characteristic
features, different from the Higgs, charge density fluctuation,
and phase fluctuation modes.

Regarding the experimental observation of the Bardasis-
Schrieffer mode in the third-harmonic generation currents, we
note that the Bjg-symmetric collective modes were recently
reported by means of Raman spectroscopy in the super-
conducting state of Ba;_,K,Fe,As, [36,37,39], CaKFesAs,4
[40], and also (Li;_Fe,) OHFeSe [41]. This makes these
compounds the most plausible candidates for realizing the
Bardasis-Schreiffer mode and the polarization dependence,
predicted by us, can serve as a smoking gun for its ex-
perimental verification. Furthermore, the Bardasis-Schrieffer
mode contributes also to the perpendicular component of the
third-harmonic generated current and its intensity is also of
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magnitude similar to that of the charge density fluctuations.
These results clearly open the perspective to observe this
mode in unconventional superconductors.

Finally, let us also mention that the BS mode of the sub-
dominant superconducting instability would strongly couple
to the nematic fluctuations, provided both transform under
the same irreducible representation. As was shown previously
[47], the hybridization between both would result in the com-
posite Bardasis-Schrieffer-nematic mode. Most importantly,
even if the initial interaction in the secondary superconducting
channel is formally repulsive, the frequency position of the
BS-nematic mode can still be below the Higgs mode at 2A,
provided the interaction in the nematic channel is attractive
and is larger in magnitude than that of the secondary super-
conducting channel. Thus, the actual origin of this mode will
be a nematic instability and not a secondary superconducting
instability. Nonetheless, we expect similar qualitative depen-
dencies of the third-harmonic generation currents, found in
this work.
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APPENDIX A: DERIVATION OF EFFECTIVE ACTION

In this Appendix we introduce the model for our super-
conducting system with competing instabilities and derive an
effective action in terms of the Gaussian fluctuations follow-
ing Refs. [49,50]. The full action is given by the kinetic part,
the superconducting interaction, and the long-range Coulomb

J

V

1 . 1 -
See = / dr{z [—A;(q, DAQ, 7) + EAZ(q’ DA, r)] + Y [A(q. T)BL , + AL(Q. T)Bigl {
q )

interaction:

S =S80+ S +Se. (A1)

The kinetic part takes nearest-neighbor hopping on a square
lattice into account and reads

So= / dr [Z cly (V)3 = p)ers (1) =1 Y cI(,(r)crf(,(r)},

(r,r)

(A2)

where p is the chemical potential and ¢ is the hopping parame-
ter. We choose the chemical potential such that the band filling
is far from half filling and the Fermi surface is near circular.
The superconducting interaction is assumed to have the form

Se == [T 3 Vet Vitane B ()Bua(). (A3
kK .q

with the shorthand notation By (7)) =
C—k+q/2,4 (T )Cktqy2,4(T) for the spin singlet Cooper pairing.
We choose the signs of the s- and d-wave interactions V;
and V; such that Vj, > 0 implies attractive interaction.
Observe that the Cooper-pairing interaction as written in
most of the textbooks is not strictly gauge-invariant; see
Ref. [51]. At the same time, it was argued there that the
expected error, if one restores the gauge invariance, is
of the order of kpT./2p where Qp is the corresponding
frequency of the Cooper-pairing boson. This ratio is
typically small also for the unconventional superconductors.
This four-fermion interaction is now decoupled using a
standard Hubbard-Stratonovich transformation in the s-wave
pairing channel ), Bk q(7) and the d-wave pairing channel
>k Yk.dBi.q(7), and one obtains

(Ad)
k.q

where Ag(q, t) = Ay(qT) + Ay(q, T)Yk g contains the two introduced Hubbard-Stratonovich fields A (q, ) and Ay(q, 7),
which transform according to the Ay, (s wave) and By, (d,2_,» wave) irreducible representation of the tetragonal lattice. We
choose the phase of A(q, 7) to be real and positive by performing a gauge transformation for the global phase ¢y, (t) —
Cro (7)e?™T)/2 Here we assume that the phase does not change too fast as a function of lattice site. We can transform the action
Ssc from imaginary time to Matsubara frequency description and split the fields into saddle point value at g = (q, iv,,) = 0 plus
fluctuations Ag 4 T Aga(g) to obtain

Sse = Z Wi{[Aso + Al oW )8k w0t + A o Vica (K)o + Ta, (k. k) + Zar (k, k') 4+ Spr (k, k) } W,
Tk

(A5)

where we introduced the Nambu spinor \Illj = (c,t,T, c_x,,) with k = (K, iw,). Additionally we split the complex d-wave field

Ay = A, —iAl into two real fields. While the first line of Eq. (AS) corresponds to the saddle point action, the second one
describes the self-energy corrections due to fluctuations around the saddle point:

T,k K) = Agk — K)o, (A6)
o, (k, k) = Ay — KD)yal(k +K)/2]o, (A7)
ok, k) = Ajlk — K)yal(k +K)/2]o. (A8)
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Here, we introduced the shorthand notation k£ = (K, iw,). By
performing the gauge transformation, the fluctuations of the
global phase 6 contribute to the kinetic action Sy in Eq. (A2).
After performing a Fourier transformation they read

So =Y W [(—iwno0 + &o3 — 1o3)8eie (A9)
k

+ T, (k, k') + Zg, (k, k') + Zp, (k, k)W (A10)
The remaining self-energy contributions are given by
g, (k, k') = — %(ivnfn')G(k — ko3, (A1)
i /
B, (k, k') = E(gk — k)0 (k — k')oo, (A12)
1 (AL L (Y2
Yo, (k, k') = 5 Z '0(51] )0(gq2) sin <T) sin <T)
q1, 42,1
& /
eyl 8lg1 + g2 — (k= k). (AI3)

_ k+k’
k=73

To ensure correct renormalization of the phase fluctuations we
include the effect of the long-range Coulomb interaction to
our system and add the action S, to the system,

1
So= [0 3 SVacliqo Oy (Do (Dcka (o)

k. K, q

> (A14)
where V, = 2me?/|q| is the Coulomb interaction between
quasiparticles projected onto the 2D lattice. Performing
a Hubbard-Stratonovich transformation introduces the field
p(q), and one obtains the self-energy due to the charged field

2
Se= [—V—qm—q)p(q) + Wik — k’)os\vkl
q

2
=Y [—‘70(—q)p(q) +W[T, (k. k/)‘pk’]’ (Al5)
q q

J

with the self-energy contribution

2,k k') = p(k — K)o3. (A16)

Finally, we include the effect of an applied pulsed electric
field by introducing a time-dependent vector potential A(z).
This couples to the electric field via the Peierls substitution
¢l yCrss.0 — €M) cris.q, Which translates into a shift for
the dispersion &k — &x_.a. Note that we neglect spatial vari-
ation of the vector potential, which implies that it carries zero
kinetic momentum transfer q = 0. This is justified, because
the wavelength of the light used in THz experiments is much
larger than a typical coherence length in unconventional su-
perconductors. Expanding the dispersion up to a second order
in the vector potential k.o =2~ & — eAi(t)g—i‘: + %A%(t)%i—i‘:
one obtains the corrections

i

Al7
ok, (ALT)

Za (k K') = —e Y Ailio, — i, ) =Sk w00,

/ 62 2/ . 3251(
Sk k)= = > Aoy — io, ) dkwos. (A18)

Since the third-harmonic generated current stems from contri-
butions to the effective action, which are quartic in the vector
potential A, the self-energy correction in Eq. (A17) does
not contribute to the third-harmonic generated current up to
quadratic order. Therefore we only focus on the contribution
given by Eq. (A18).

The total action now reads

S =Y W[ -Gy (kdew + Tk, k)] Wy,
k,k'

(A19)

with the saddle point Green’s function Gy(k) = (iw,00 —
£03 — Aoy)~! and the combined self-energy contributions

Bk, k) = Ta, k, k) + Zny (k, k') + Zag (k, k) + o, (k, k) + Zo, (k, k') + g, (k, k') + By (k, k) + Sk, k). (A20)
Integrating out the fermions and expanding the action for small fluctuations around the saddle point yields
1 1
Sp=3 ;A?(—ivm)Ko,,-,-(ium>A§(ivm> + Z e (—=10m) Xy, 2 (VAT (0) + 207 (DR (@N(), (A21)
where the bare current-current kernel Ky ;; is defined via
978 9%& . . .
Ko.ij = ; ; o g 00K fon+ im)osGok, i)
96k 078
- _ 2 S22 R (i
= Z 4A TERETS F(ivy), (A22)
k i J
with the function
tanh(BEx/2
Fulivy) = o PE/2) (A23)

4Ek [EI% - (ivm)z] .

144508-7



MARVIN A. MULLER AND ILYA M. EREMIN PHYSICAL REVIEW B 104, 144508 (2021)

The vector (g) = (As(q), 0(q), A (q), Al(q), p(q))T contains the fields and their fluctuations on a Gaussian level and is given
by a matrix ¥ whose diagonal elements yx,,,, read

2
Xaa, = o+ D 0lGo(k, ion + ivn)or Golk, iwop)or] = Y 7 [4AF = ()’ ]Fclivm), (A24)
‘ k,iw, k
2 2
XA’dA:,(ivm) = + Z Vk dtr GO(k lwn + lvm)UlGO(k lwll)al] =35 = Z 4Ekyk d)Fk(le) (A25)
K,iw,
Xarar(ive) = — 2 4 Z Ve Jtr[Go(K, iy + ivy)o2Go(K, iwy)on] = — — Z —4EZYE ) Fe(ivm), (A26)
d
K,iw,
X00 (V) = % ; ; tr[Go(K, iw, + ivm)o3Go(K, iw,)o3] + Znsqﬁ
1
= —(ivw)* Y A*Re(ivn) + Ja’ (A27)
k
Fop (V) = —— + D0 tlGo(k, iw, + iv)o3Go(k, iwy)os] = —— — Z4A (K)Fic (ivy,). (A28)
k iw, (l

For Eq. (A27) we introduced the superfluid stiffness n, = ), ‘25“ (%‘W) The off-diagonal nonzero terms are

Xoa, (ivn) = z(’”z’”) ; ;trwk iy + ivp)o1 Go(K, iw,)03] = 2i(iv,) Zf;kAFk(w (A29)
Xagay(ivm) = Y > 1 ttlGo(k, iy + ivy)o1 Go(k, iw,)0] = Z( 200 4 ()i iv), (A30)
k iw,
Xoa (ivn) =Y " t[Go(K, i, + ivy)o1Go(K, iw,)o3] = Y 4 AF(ivy,), (A31)
k iw, k
Xpo(iVm) = — (”;’”) ; %jtr[G()(k iy + ivy)o3Go(K, iw,)03] = 2i(ivy) Z A?F(ivm). (A32)

Note that the couplings between A/, and A’} as well as A, 6, and p are absent by symmetry. The bare couplings to the vector
potential then read

Xaw =Y > ulGo(k. i, + ivi)osGo(k, iw,)or] = Z4Ask e 7 Fidiv) (A33)
k i,
s
Xagiz = O Y tr{Go(K, iy + ivy)o3Go(K, iwn)o1 1 Va = Z4Ayk abics Flivn), (A34)
k iw, ’

82
XA(’,’A% = Z Ztr[Go(k la),, + ll)m)O";G()(k la)n)O'z])/kd = Zzl(lvm)Ayk do79 E

o F(ivy), (A35)
k iw,
(ivm)
Xorr = i~ Xk:;tr[Go(k iwy + ivm)03Go(K, iwy)o3] = ZZ[(lvm)A —Fk(zvm) (A36)
3%&
Xouz = Y 9 tlGo(k, iw, + iv)o3Go(k, i, )os] = Z4A2 ez Fliow) (A37)

k iw,

APPENDIX B: DERIVATION OF CURRENT KERNELS

The response functions y are generally integrals ~ Zk F(iv,,) or ~ Zk (ék/A)Fx(ivy,). In particular, observe that the
function Fx contributes only near the Fermi level & = O yet the dispersion & is nearly linear in this region such that the total
sum in the second integral is almost zero. The functions xx a2, Xpa, Xoa,> and xa;a;, depend on this latter integral as can be seen
from Eqgs. (A29)-(A31), and (A33). Thus, we obtain the well known result that the coupling of the amplitude mode to the vector
potential is small. This leads to a weak contribution of the Higgs mode to the third-harmonic generated current compared to the
charge density fluctuations, which follow from Eq. (A22). Unlike the Higgs mode, the coupling of the Bardasis-Schrieffer mode

144508-8



SIGNATURES OF BARDASIS-SCHRIEFFER MODE ... PHYSICAL REVIEW B 104, 144508 (2021)

via A/] to the vector potential contains no linear term in &, signaling that this coupling is much stronger. This is also true for
the coupling to the global phase mode 6 in Eq. (A36). However, the phase mode is strongly affected by the long-range Coulomb
interaction. Thus, we need to integrate out these charged fields p to take this effect into account. This process renormalizes all
functions xag:

XpA(_‘I)XpB(Q).

B1
Xpo (@) G

X/pr(CI) = xaB(q) —

Since the coupling of p to the d-wave field is zero, all functions which describe the fluctuations of A/, and A/, remain unaffected.
This means the contribution of the Bardasis-Schrieffer to the third-harmonic generation current remains unaffected by these
fluctuations. As known from Ref. [52] they do effect the Higgs mode depending on the precise form of the band structure,

Xr = x Xpr(_ivm)Xpr(iVm)
— AAA; T .
Bl ) Xpp(@ = 0, ivy)

Az Zk(sk/A)Fk(iVm)
Zk A k (i 1)m) ’
As argued above, due to the near linear band dispersion & near the Fermi level this effect is negligible and one can therefore

approximate xx , = Xa,a,- As aresult, the position of the Higgs mode remains roughly at wy ~ 2A. Unlike the Higgs mode
and the Bardasis-Schrieffer mode, the global phase mode is strongly affected:

= Y (1422(K) — (v, 1K) Fcliv,a)} — 4 (B2)
k

XpG(_iVm)XpG (ivm)
Xop Qs 1Vm)

X(;@(qv ivm) = XO@(q’ lvm) -

v’ 4623, F(iva)P
4 __lal 4A2 Zk Fk(ivm)

2me?

1 s ) . (i
= 1re(D)a’ — —=4A ;Fkovm)

lq] .
~ —— 271 pe(T)Iq| — (iva)’]. (B3)
8me
Identifying Qp;(q) = /2me2ps(T)|q| as the plasmon frequency for a quasi-2d metal, we find that indeed this phase fluctuation
mode becomes a plasmon. Similarly to the bare propagator of the phase mode, also its couplings to the s-wave field A; and to
the vector potential are strongly renormalized:

. o LGow) dl Y oG/ A)F(ivi)
)((9AA (q7 ”)m) ==1 ) 27’[62 Zk Fk(ivm)

(B4)

and

9% .
iy = i) 1d Sk it Fivm)
s W) = —1 .

Xoaz'd 2 2me?r Y, F(ivy)

The coupling between the Higgs mode and the vector potential is renormalized to

. 2 .
[ St/ M Fliva)][ L S Fivn) |
[ S/ 258 R v ][ 4 Fitiv)]

The current kernel K ;; gains an additional contribution K, ;; due to integrating out the charged field p with

(B5)

9%k
oK

xgsA;<ivm)=4A2[Z(sk/A) Fko'vm)} 1 - (B6)
k

XpAf(_iVm)XpA§ (ll)m)

Xpp (V)

4A2[Zk %Fk(ivm)] [Zk %Fk(ium)]
= . - ! . B7)
Zk F(ivy)

Now we are in the position to integrate out other fields one after another. In principle this process leads to multiple additional
renormalizations of all remaining propagators x. However, as mentioned above the strength of the coupling between the
remaining fluctuating fields is marginal compared to their bare propagators. Therefore integrating out the remaining fluctuations
yields the renormalization of their coupling to the vector potential. Each field then yields an additional contribution to the
current-current kernel, such that in total it reads

piij =

Kij = Koij + Kpij + Ka,ij + Ko,ij + Kayij + Karij, (B8)
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where the additional contributions are

(A7) [ Xk G/ D)Fciva) ][ i€/ A)Fclivin)]
> [AA% — (ivy) 1 Fi(ivi)
[ S/ D) Fitiva)] [ L 5 Fiv) | [ S/ B)Fitivm)]| L 5 Fitivan) |

x|1- g 1— . . (BY)
[ i/ D)% Ftiva) |[ i Fitiva)] [ St/ 25 Activn) || T Ftiv)]

Kp,,ij(ivy) =

(v Lo S Rcivm) |[ 2 S Fetivm) | |
’ i 2o, (B10)
(2B — Gvm)’] me?

Kg,,»j(ivm) = hm —
q—0

(4A?%)? [Zk(ék/A)yk,d %Fk(ivm)] I:Zk(sk/A)yk,d%Fk(ivm)jl
7 = Lk EevaFi(ivn)

Kn ij(ivn) = — ) (BI1)

and
AP [ a5 Beivn) || T a5 Becivm) |
7 = Lk Eenl g Ficiva)

tanh(BE; /2)
Ex[4E2—(ivp)?]
representation. Using this we immediately find that for all contributions to the kernel the relations Ky, «x(iv) = Ky, ,y(iv,) and
Ky, xy(ivm) = Ky, yx(ivy) hold. From Eq. (A22) it is clear that this is also true for the bare kernel. For the kernels K, ;;, Kaij,
and Kj ;; one additionally finds K, . (iv,) = K,, «y(iv,), such that for these contributions all components of the kernel are
equal. This is different for the contributions due to the d-wave field K, Alij and Kar ij- Since the d-wave form factor changes
its sign upon rotation by 7 /2 one finds that K A xx (ivy) = —K Afl/”,xy(i V). For the bare kernel Kj ;; such a relation between the
xx and the xy component depends on the specific band structure. These relations lead to the specific polarization dependencies

Karij(ivy) = — (B12)

Before evaluating these kernels we note that Fy = transforms trivially under rotation by 7 /2 according to the Ay,

discussed in the main text.
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