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In recent years qubit designs such as transmons have approached fidelities of up to 0.999. However, even these
devices are still insufficient for realizing quantum error correction requiring better than 0.9999 fidelity. Topo-
logically protected superconducting qubits are arguably the most prospective for building a realistic quantum
computer as they are intrinsically protected from noise and leakage errors that occur in transmons. We propose
a topologically protected qubit design based on a π -periodic Josephson element and a universal set of gates:
A protected Clifford group and highly robust (with infidelity �10−4) nondiscrete holonomic phase gate. The
qubit is controlled via charge Q and flux � biases. The holonomic gate is realized by quickly, but adiabatically,
going along a particular closed path in the two-dimensional {�, Q} space—a path where computational states
are always degenerate but Berry curvature is localized inside the path. This gate is robust against currently
achievable noise levels. This qubit architecture allows building a realistic scalable superconducting quantum
computer with leakage and noise-induced errors below 10−4, which allows performing realistic error correction
codes with currently available fabrication techniques.
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I. OVERVIEW

The main challenge in building a realistic quantum com-
puter is building a qubit and developing logical operations that
can be used for efficient error corrections [1]. The problem
with currently existing qubits is twofold. First, the best fidelity
of the existing qubits is either insufficient for error correction
or requires an impractically large hardware overhead. Second,
the transmons displaying the best fidelity achieve it by re-
ducing nonlinearity, increasing leakage out of computational
space that is very difficult to correct within surface code [2–5].
With increasing complexity of the quantum algorithm, surface
codes require a rapidly increasing number of physical qubits
to perform error correction. As an alternative, it is desirable
to create qubits that are protected against noise-induced bit-
flip and phase errors on the hardware level. Arguably, the
most prospective design involves using a π -periodic element
[6–10], effectively a Josephson element that allows tunneling
of only an even number of Cooper pairs and has the phase-
energy (ϕ-E ) relation E (ϕ) = −E2 cos 2ϕ, with E2 being the
Josephson energy for double-Cooper-pair tunneling. Such an
element coupled to a large capacitor C with charging energy
EC � E2 [here EC = (2e)2/2C] forms the qubit [Fig. 1(a)]
in which two logical states are characterized by the charge
parity (i.e., the parity of the number of Cooper pairs) on
the superconducting island: “0” and “1” logical states are
encoded by even and odd charge states, respectively. The
dephasing rate for such a qubit is exponentially suppressed
with an increasing value of

√
E2/EC , which is a square of

the characteristic width of the wave function ψ (n) in the

charge space n. In this respect, the π -periodic qubit is sim-
ilar to the transmon, for which protection is achieved due
to the exponential suppression of the energy dispersion as
a function of the charge offset Q. However, unlike trans-
mons, π -periodic qubits are strongly anharmonic and have
nearly degenerate computational states well separated from
excited ones, preventing leakage outside of the computa-
tional space. At the same time, bit flips in this protected
qubit are exponentially suppressed due to an exponentially
small value of a cos ϕ term responsible for single-Cooper-pair
tunneling.

Ideally, a protected qubit should allow a universal set
of fault-tolerant operations during which the qubit remains
protected. Here the term “protected” implies exponential
suppression of any noise, and the term “robust” implies sup-
pression of linear noise. In this paper we show that a relatively
minor modification of the π -periodic qubit gives an almost
ideal protected qubit. Namely, it allows a fault-tolerant (i.e.,
with exponentially small error) Z ( π

2 ) discrete Clifford phase
gate and a robust nondiscrete (i.e., non-Clifford) holonomic
phase gate Z (�) along with the previously proposed [10]
X ( π

2 ) and [X ⊗ X ]( π
2 ) gates. Note that the nondiscrete gate

does not need to be exactly a π/8 rotation. Altogether, these
gates allow universal qubit control [11]. During all these
operations the qubit states remain degenerate. While this de-
generacy is exponentially protected during discrete gates, it is
insensitive in the linear order only to the charge noise for the
holonomic phase gate. Furthermore, due to degeneracy of the
computational states the holonomic operation is not sensitive
to a precise form of the pulse shape in the time domain and
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(a) (b)

FIG. 1. Schematics of (a) the protected π -periodic qubit and
(b) its modification that allows a full set of operations.

allows exponentially small Landau-Zener-type leakage out of
the computational space. Because holonomic operations are
robust but not exponentially protected, the resulting qubit is
almost ideal.

The modification that gives an almost ideal qubit is the
ability to vary the value of the Josephson energy E2 together
with the offset charge Q. Thus, we control two parameters, and
a closed path in the two-dimensional (2D) parameter space
produces the Berry phase of the qubit. Variation of the effec-
tive E2 can be achieved by replacing a π -periodic element by a
dc-SQUID-like loop (where SQUID indicates a superconduct-
ing quantum interference device) of two similar π -periodic
elements connected in parallel [Fig. 1(b)]. We refer to this
circuit as π -SQUID with effective Josephson energy E eff

2 de-
pending on flux � through the loop. For � = 0, effective E eff

2
is the largest, and the qubit behaves like a regular protected
0-π qubit. Increasing � decreases E eff

2 . When
√

E eff
2 /EC � 1

a relatively slow variation of the parameters (an estimate will
be given below) squeezes the qubit wave function to only one
or two charge states, and protection is lifted. This temporary
removal of protection creates a strong charge Q dispersion and
allows us to perform different phase gates.

We show below that flux and charge bias variables {�, Q}
form a 2D parameter space, in which the qubit possesses
the Berry curvature shown in Fig. 2(a) that is obtained an-
alytically. The Berry curvature has a strong peak at (� =
�0/4, Q = 0). The nondiscrete phase gate is performed by

adiabatically going in a loop around this peak and gaining
different Berry phases for the two logical states. It is cru-
cial that one can choose the path so that at every point the
computational states remain degenerate and Berry curvature
is zero. The preservation of degeneracy implies that the gate
is holonomic: Lifting protection does not cause a gain of
the unwanted time-dependent dynamic phase. Furthermore, it
provides exponential protection against flux noise, while the
symmetric nature of the Q = 1/2 point implies the absence of
the linear response to charge noise. Throughout the paper we
use units of h̄ = 2e = 1 and �0 = 2π .

The protected Clifford Z ( π
2 ) phase gate is performed by

turning the π -SQUID off, thereby allowing the qubit to evolve
only under the quadratic capacitor Hamiltonian HC = ECn2.
Analogously to the X ( π

2 ) gate [10], by choosing the proper
gate timing we can make even states gain zero dynamic phase
and all odd states gain a dynamic phase of −π/2. Similar to
the X ( π

2 ) gate, this transformation is protected, and the errors
are flagged by the qubit excitation to a high-energy state.

II. QUALITATIVE DESCRIPTION
OF THE HOLONOMIC GATE

Figure 2(a) shows the path (dashed orange loop) along
which the holonomic gate is performed. Red areas depict
protected regions where � is close to zero (or π ) and√

E eff
2 (�)/EC � 1. Outside that region (

√
E eff

2 /EC � 1) the
qubit is in an unprotected regime.

The loop can be split into two branches: Top (Q > 0) and
bottom (Q < 0). First, we go along the Q > 0 branch applying
a positive charge bias on the superconducting island while
keeping the qubit protected [Figs. 2(a) and 2(b), point 1].
Then, increasing the flux through the loop, we lift the pro-
tection against dephasing and squeeze the even wave function
into only one charge state of n = 0 and the odd wave function
into n = 1 (points 2 and 3). Importantly, the flux through
the π -SQUID loop also creates a gauge transformation that
rotates each charge state n on the island by a different phase
factor n�̃, where �̃ is some gauge-related rotation angle that

FIG. 2. Berry curvature and phase. (a) Berry curvature in parameter space {�, Q}. The protected region is shown in red; the unprotected
region is in green and blue. The holonomic transformation is achieved by changing the parameters along the dashed orange line that starts
at point 1 in the protected regime. (b) Cartoons of the wave function at a few characteristic points in parameter space. Dashed lines show
projections of wave functions onto the complex plain. Points 1, 4, and 7 correspond to protected regime; points 2, 3, 5, 6 correspond to the
unprotected one (see text).
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will be discussed and derived further. As a result, on the Q > 0
branch the n = 0 state remains unaffected, but the strongest
odd state [Fig. 2(b), points 2 and 3] n = +1 gains the phase
of (+1)�̃. Then we return to our initial state through the
Q < 0 branch [Fig. 2(b), points 4–7]. On this branch the gauge
transform is performed in the opposite direction (�̃ → −�̃).
The dominant even state n = 0 is again unaffected, but the
odd state, now represented by the n = −1 charge state, gains
the phase of (−1)(−�̃), which has the same sign as on the
Q > 0 branch. Thus, on both halves of the path the odd state
is rotated in the same direction, causing a nondiscrete rotation
that is smaller than π by a value proportional to the asymmetry
of the π -SQUID.

III. QUANTITATIVE DESCRIPTION
OF THE HOLONOMIC GATE

First, let us discuss the properties of the Hamiltonian and
its eigenfunctions. We focus on the designs of π -periodic
elements in which computational energy levels are well sepa-
rated from excited ones [6,7]. The energy of the π -SQUID is
E (ϕ) = −E2 cos(ϕ − �/2) − E ′

2 cos(ϕ + �/2). In this case
the relevant low-energy degrees of freedom of the qubit are
described by the Hamiltonian

H = EC (n − Q)2 − E eff
2 (�) cos 2[ϕ − �̃(�)]. (1)

Here

E eff
2 (�) =

√
E2

2 + E ′2
2 + 2E2E ′

2 cos(2�), (2)

�̃(�) = 1

2
arctan

(
sin �

E2 + E ′
2

,
cos �

E ′
2 − E2

)
, (3)

with Josephson energies E2 and E ′
2 for the two π -periodic ele-

ments. We choose parameters so that E2 + E ′
2 � EC � |E2 −

E ′
2|. This allows us to have both protected [E eff

2 (0)/EC � 1]
and unprotected [E eff

2 (π/2)/EC � 1] regimes. The eigenfunc-
tions ψ (n) of such a Hamiltonian are represented by either
even or odd charge states enclosed by an envelope function
with a width ∼(E eff

2 /EC )1/4 that is centered around n = Q in
the charge space [Fig. 2(b), points 1 and 2]. Note that for half-
integer Q even and odd eigenstates have mirror symmetry,
which means that for half-integer Q computational states are
degenerate regardless of �. Thus, the offset charge Q changes
the balance between even and odd states. Flux bias, in turn,
changes the width of the wave function by modifying E eff

2 .
However, flux bias has another crucial effect: Although it is
tempting to disregard the phase offset �̃ in (1), it should not
be done because in our gate �̃ is a function of �, which
is not constant. In fact, this term plays a key role in real-
izing the gate: Since the potential in (1) is shifted by �̃ in
the ϕ space, the wave function ψ (ϕ) is also transformed as
ψ (ϕ) → ψ (ϕ − �̃). In the charge space this results in a gauge
transformation ψ (n) → exp(in�̃)ψ (n), as mentioned in the
previous section.

IV. CALCULATING BERRY CURVATURE

The phase accrued by the computational states when going
along the loop is calculated as an integral of the Berry cur-

vature over the area enclosed by the loop. In this section we
derive the expression for the Berry curvature.

We begin with the region of � ≈ π/2, where E eff
2 � EC

and the computational eigenfunctions are squeezed to only
one or two charge states (Fig. 2, point 2). For any value of Q it
is convenient to write the effective Hamiltonian in terms of the
two charge states n nearest to Q. For example, for 0 < Q < 1
the odd state can be written in the basis of two wave func-
tions ψ±1(ϕ) = (2π )−1/2 exp(±iϕ), corresponding to n = ±1
charge states, while relevant even states are ψ0(ϕ) = (2π )−1/2

and ψ2(ϕ) = (2π )−1/2 exp(2iϕ):

Hodd
eff ≈ − 1

2 E eff
2 (σ x cos 2�̃ + σ y sin 2�̃) + QECσ z, (4)

Heven
eff ≈ − 1

2 E eff
2 (σ x cos 2�̃ + σ y sin 2�̃) + (1 − Q)ECσ z.

(5)

Here σ x,y,z are Pauli matrices in the space of | + 1〉, | − 1〉
charge state vectors in (4) and in the basis of |0〉, |2〉 in (5).
The ground states of Heven

eff and Hodd
eff represent even and odd

computational states, respectively. Note that such splitting of
the Hamiltonian into two subspaces is possible due to an
exponentially small cos ϕ component of the potential of a
well-fabricated protected 0-π element. Higher eigenstates of
Hodd(even)

eff lie outside of the computational space. For the path
shown in Fig. 2(a) the excited states always remain separated
from the computational states by a large energy gap, so the
effect of these excited states can be ignored. For − 1

2 � Q � 1
2

the accumulated phase is due to only odd eigenstates. To avoid
the excitations of the higher-energy states of Hodd(even)

eff the gate
speed needs to be much slower than the smallest energy gap
between the eigenvalues of Hodd(even)

eff on the path, i.e.,

τ−1
gate � EC, (6)

where τgate is the characteristic time of the gate operation. In
the vicinity of a point � ≈ π/2, Q = 1/2, Hamiltonians (4)
and (5) assume a simple Landau-Zener form:

Hodd/even
eff ≈ −E2 + E ′

2

2
σ x

(
� − π

2

)
+ |E2 − E ′

2|
2

σ y + EC

2
σ z.

(7)

Analytically, assuming |E2 − E ′
2| � EC , the probability of

Landau-Zener tunneling from the even (odd) computational
state to the even (odd) excited state can be evaluated from the
Hamiltonians (4), (5), and (7) as [12,13]

P = exp
[ − τgateE2

C/(E2 + E ′
2)

]
. (8)

The ground state of (4) is described by a spinor, |spinor〉 =
(e−iξ/2 cos θ/2, e+iξ/2 sin θ/2)T . Polar and azimuthal an-
gles of the spinor are related to the qubit parameters as

ξ = 2�̃(�),

θ = arctan

(
−E eff

2 (�)

2
, ECQ

)
. (9)

In order to obtain the Berry curvature we perform a co-
ordinate transform [� = �(ξ ), Q = Q(θ, ξ )] and map the
well-known Berry curvature of a spin �

spin
ξθ = (1/2) sin θ onto

variables (�, Q) as �eff
�Q = ∂ξ

∂�
∂θ
∂Q�

spin
ξθ . Since ∂�̃

∂�
and ∂ξ

∂�
have
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FIG. 3. Coordinate transformations. (a) Mapping of � onto �̃ for
δ = 0.01, 0.05. (b) Coordinate transformation that relates the loop in
the qubit parameter space � and Q to the effective field acting on
the spin, characterized by Euler angles ξ and θ : Mapping of our loop
onto the Bloch sphere.

a maximum at � = π/2 [Fig. 3(a)], most of the Berry cur-
vature is concentrated in the vicinity of half-integer values of
�/π . This allows us write equations in the vicinity of � =
�0/4 = π/2. Let us introduce the new notations α

def= � −
π/2, E�

def= E2 + E ′
2, δ

def= |E ′
2 − E2|/E� , and eC

def= 2EC/E� .
For large α � eC Eqs. (4) and (5) break down, but this regime
gives little contribution to the Berry phase because in it the
Berry curvature, along with the qubit charge dispersion, is
exponentially suppressed with (α/eC )1/2.

The dimensionless parameter that controls the Berry phase
accumulated in the adiabatic evolution is

η = δ/eC = |E ′
2 − E2|/2EC .

In the following we assume that η � 1. The protection is
removed when α � eC � 1 and restored when α � eC . In
the former regime the adiabatic evolution leads to accumu-
lation of significant Berry phase. From (2) we approximate
E eff

2 (α) ≈ E�

√
δ2 + α2, and Berry curvature for the Hamilto-

nian (4) reduces to a simple form:

�
peak
�Q

(π

2
+ α, Q

)
= eC

2

δ

(δ2 + α2 + (eCQ)2)3/2
{1 + O(α2)}.

(10)

The total Berry curvature (the difference between �
peak
�Q

for even and odd states) that determines the phase difference
gained between odd and even states can be evaluated as

��Q(�, Q) =
{

�
peak
�Q (�, Q) − �

peak
�Q (�, Q − 1), Q > 0,

�
peak
�Q (�, Q) − �

peak
�Q (�, Q + 1), Q < 0.

(11)

Since ��Q is an odd function of Q − 1/2, it is equal to zero at
half-integer values of Q. This expression holds for |Q| � 1/2
and 0 � � � π but can be generalized to the entire {�, Q}
space by keeping in mind that ��Q has a period of π in
� and a period of 2 in Q. Also, at half-integer values of
Q the computational states are degenerate. Additionally, as
mentioned above, the Berry curvature and energy splitting
between the two lowest states are exponentially suppressed for
� ≈ 0 and � ≈ π . Thus, we choose our holonomic adiabatic
path to go through these regions of � = 0, π and Q = ±1/2.

FIG. 4. Phase gates. (a) Phase � as a function of the π -SQUID
asymmetry δ assuming eC = 0.1. (b) Sketch of the Berry curvature
map with a depiction of paths that realize different gates. Orange
dashed line: Rectangular adiabatic loop to realize the holonomic
phase gate. Black solid line: Quick diabatic X (π/2) gate realized by
quick frustration of the π -SQUID. Dark-blue dashed line: Example
of an idle gate that can be used in CPMG or multiple echo se-
quences. During the idle gate only accrual of the positive or negative
noise-induced dynamic phase occurs. This can be used to create
a multiple charge-echo effect to partially compensate the random
dynamic phase accrued during the holonomic gate.

V. BERRY PHASE

Let us evaluate the Berry phase that is given by the integral
of the Berry curvature (10) over α and Q in the leading
approximation in η � 1. The integral is dominated by the
region {|α| � δ, |eCQ| � δ}. For δ � eC this implies that α �
eC, Q � 1, which justifies the use of (10). If we were to
integrate the curvature (10) in the infinite limits of α and Q, we
would get �0 = π for the Berry phase. However, exponential
suppression of curvature for α > eC and the finite size of the
loop limited by Q ≈ ±1/2 imply that the actual Berry phase
is given by the integral that is cut off in these directions:

� ≈
∫ ∼eC

∼−eC

dα

∫ ≈eC/2

≈−eC/2
d (eCQ)

δ/2

[δ2 + α2 + (eCQ)2]3/2

≈ π − A δ

eC
, (12)

giving us the leading approximation in η = δ/eC . This simple
analytical computation does not give the value of the constant
A ∼ 1 which we determined numerically. Simple analytical
estimates provided above can be easily performed in the limit
of δ � eC � 1. However, for the other parameter regime of
δ ∼ eC the gate will still work, but the rotation angle needs
to be calculated numerically. We performed such numerical
calculations [see Fig. 4(a)] to verify the predicted behavior
of the gate. Our numerical calculations done by diagonalizing
the Hamiltonian (1) in the basis of the 201 charge-state wave
vector {| − 100〉, | − 99〉, ..., | + 100〉} and going along the
contour with a step of 0.001π in � and 0.01 in Q determine
the numerical constant A = 2.97 ± 0.02. While (12) works
for small δ, eC , and η, numerical simulations work for any pa-
rameter range and match (12) in this small-parameter regime.

Most importantly, the resulting phase rotation is non-
Clifford: It deviates from a rotation of π by a value that
can be controlled by tuning the qubit design. For reasonably
achievable values of δ ∼ 10−2 and eC ∼ 10−1, η ∼ 0.1, and
the non-Clifford rotation is Aη ∼ 0.3 rad. A value of η � 0.1
gives a rotation � � π − π/8, which is a desired π/8 rotation
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modulo a Clifford rotation. However, non-π/8 rotations also
allow for universal quantum computing. The non-Clifford na-
ture of this gate can be understood by mapping the rectangular
path in the {�, Q} space onto a Bloch sphere {ξ, θ} using
Eqs. (9). As shown in Fig. 3(b), the path covers an area which
is somewhat less than half of the Bloch sphere. Moreover,
our numerical modeling shows that further increasing of η

can yield any phase [Fig. 4(a)] from � ≈ π for η � 1 to
� → 0 for η � 1, the regime when the qubit does not leave
the protected state [Eeff

2 (∀�) � EC] and ��Q remains ex-
ponentially small. Although the analytical derivations above
provide some intuition for understanding the gate in the δ �
eC regime, numerical simulations show that the gate also pro-
vides a significant phase rotation of � ∼ 0.1 rad for η = δ/eC

up to η ∼ 3. In practice it is easier to controllably fabricate
devices with larger asymmetry δ.

VI. GATE ERRORS AND TIMING

Since the part of the path sensitive to the flux noise
(� ≈ 0, π ; − 1

2 � Q � 1
2 ) is located in the protected regime

of E eff
2 /EC � 1, the effects of the flux noise are expo-

nentially suppressed. In order to estimate the effect of the
low-frequency charge noise, assume that the horizontal (i.e.,
in the � direction) part of the path is shifted vertically by
a small value εQ, so that Q = 1/2 + εQ instead of Q = 1/2.

This path would give a Berry phase that differs from (12) by

�� ∼
∫ ∼+eC

∼−eC

dα

∫
dεQ��Q

(
π

2
+ α,

1

2
+ εQ

)

∼
∫

ηεQdεQ ∼ ηε2
Q. (13)

Here we used the fact that ��Q ∼ ηεQ is linear with εQ

near Q = ±1/2. Thus, from (12) the relative error of the
non-Clifford part (� mod π ) of the phase rotation � is
εrel
� ∼ ��/η ∼ ε2

Q. Assuming a high value of the charge noise
εQ ∼ 10−2 on few-second timescales [14–17], we arrive at a
relative gate error as low as εrel

� ∼ 10−4, yielding a very small
infidelity.

In order for the gate to be considered adiabatic to a rea-
sonable degree, we want to have the previously estimated
probability of Landau-Zener tunneling (8) out of the com-
putational space to be P = exp[−τgatee2

CE�/4] ∼ 10−4. For
reasonable values eC ∼ 10−1 and E� ∼ 2π × 40 GHz [6], we
get the gate timing τgate � 15 ns.

Finally, we consider the strongest source of error due to
accumulation of an unwanted dynamic phase. We consider
this to be the bottleneck problem for any protected qubit
design because in order to perform a non-Clifford rotation
one needs to temporarily remove the protection by either (a)
lifting the degeneracy of the computational states, which leads
to error linear with error in gate timing, or (b) keeping the
degeneracy of the computational states (like in our case) at a
cost of gaining linear dispersion of the computational states,
which leads to error linear in noise amplitude. In our gate,
for example, the qubit remains in the unprotected regime
{� ≈ π

2 ± eC, Q = ± 1
2 } during the time τu ∼ eCτgate, when it

gains dynamic phase γ . There the computational states are de-
generate, but their charge dispersion �E1,0(εQ) is linear with

TABLE I. Gate infidelities due to charge-induced dynamic phase
error. The values were obtained via numerical simulations with the
following parameters: A basis of 201 charge states (as before), charge
and flux steps of �Q = 0.01 and �� = 0.001π , and qubit energy
scale E� = 2π × 40 GHz. For each parameter set we run 10 trials
using a 1/ f random function εQ(t ) with amplitude A1/2, calculate the
dynamic phase γ = ∫ 2τgate

0 �E10[εQ(t )]dt , with dt = 9.1 × 10−4τgate,

and obtain an average deviation value γ 2. The characteristic gate
timing is τgate = 15ns for eC = 0.1 and τgate = (0.1/0.05)2 × 15 =
60ns for eC = 0.05 in order to satisfy the adiabaticity condition (8).
Simulation results in the form (1 − F )min ∼ (1 − F )max for the range
of experimentally reported values of A1/2 = (1.5 ∼ 6.5) × 10−4 are
shown.

1 − F = γ 2/2 (×10−6)

δ = 0.01 δ = 0.05 δ = 0.1

eC = 0.10 1.3∼26 1.0∼19 0.50∼9.5
eC = 0.05 2.6∼48 0.97∼18 0.18∼3.3

deviation εQ of charge offset from Q = ±0.5. At � = π/2
the dispersion is �E1,0(εQ) = sgn(Q)E�eCεQ. Notably, for
the Q > 0 and Q < 0 parts of the path the dynamic phase
has opposite signs. Such accumulation of dynamic phase is
identical to charge-echo experiments [15,18,19], which are
sensitive to only high-frequency ( f � τ−1

u ) noise. Approxi-
mating the “turn-on” function for the unprotected regime as
a square pulse, we can characterize the dynamic phase by its
mean square using a well-known expression [18,19]:

γ 2 ∼
∫

dω�E2
1,0

A

ω

(
sin(ωτu/2)

ω/2

)2

∼ A(�E10τu)2.

Here A/ω is the spectral density of 1/ f noise. We can now
estimate the infidelity of the phase gate. Assume that the ideal
gate acting on the initial qubit state |initial〉 gives the state
|ideal〉 = Z (�)|initial〉. The physical gate gives instead a state
|real〉 = Z (� + γ )|initial〉 with γ � 1. Define the mean in-
fidelity as 1 − F = 1 − |〈ideal|real〉| ≈ γ 2/2. Assuming the
same parameters as above, E� ∼ 2π × 40 GHz, eC = 0.1,
τgate = 15 ns, and high-frequency 1/ f charge noise with
amplitude εQ = A1/2 between 1.5 × 10−4 × (2e) and 6.5 ×
10−4 × (2e) [15,18,20,21], we get 1 − F between ∼10−4 and
∼10−5. This estimate relies on the assumption that charge
noise follows 1/ f dependence up to gigahertz frequencies,
similar to the charge-sensitive devices studied in works by
Astafiev et al. [15] and expected theoretically by Faoro and
Ioffe [22]. In order to verify the estimated values of the
charge-induced dynamic phase errors we used the afore-
mentioned numeric model to calculate the dynamic phase
contribution due to the effects of the charge noise for different
qubit parameters. The flux and charge offsets are varied with
time t as (�(t ), Q(t ) + εQ(t )), where {�(t ), Q(t )} go along
the original ideal square loop shown in Fig. 4(b). Table I gives
the simulated gate infidelities.

Compared to our conservative analytical estimate, the nu-
merical results suggest infidelities that are on the low side
with 1 − F < 10−5. Note that once again, we see that higher
δ and lower eC are preferable. For example, a realistic param-
eter set δ = 0.1, eC = 0.05 with η = 2 yields rotation angle
� ≈ π/12.5 with infidelity ∼10−6.
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In the regime of η ∼ 2 the dephasing can also be re-
duced by shortening the gate timing: In this regime, the
Landau-Zener gap in (7) becomes bigger due to the larger
σ y component. The dephasing can be decreased even further
by controlling the qubit using Gradient Ascent Pulse Engi-
neering (GRAPE) [23] pulses to further minimize gate timing
and by using Carr-Purcell-Meiboom-Gill (CPMG)-like [24]
or multiple-echo sequences to filter out 1/ f noise [Fig. 4(b)].
This would give us further improvement in fidelity. This gate
performance appears to be much better than in any currently
existing qubit [25–27], especially considering a complexity of
non-Clifford gates.

VII. FAULT-TOLERANT CLIFFORD Z(π/2) GATE

The proposed qubit can also be used to perform a pro-
tected Clifford exp(−iπσ z/4) gate. The idea is similar to
the gate proposed in work by Brooks et al. [10]. In con-
trast to our non-Clifford gate, this gate is not performed
adiabatically, but by quick modification of the Hamiltonian.
While the adiabatic change of � leads to squeezing of the
wave function in the charge space, in the case of the quick
modification of the Hamiltonian, the wave function does not
have time to squeeze and remains as it was, delocalized in
the charge space. In more detail, we start with the qubit
in the protected state with � = 0 and Eeff

2 = E� . Then we
quickly change the flux to � = π/2. For δ � eC, this ef-
fectively turns off the π -SQUID, leaving only the capacitive
part of the Hamiltonian H(π/2) = n2/2C + O(δE� cos 2ϕ),
and hence, the qubit evolves under the operator Uπ/2(t ) ≈
exp{−in2(2C)−1t}. After time T = πC the qubit is brought
back into the initial state. With this gate timing Uπ/2(T ) ≈
exp{−iπn2/2}. As a result, all even charge states are multi-
plied by a factor of exp{−iπn2

even/2} = 1, and odd states are
multiplied by exp{−iπn2

odd/2} = −i. Hence, we realize an
exp(−iπσ z/4) gate. This gate is dual to the gate proposed in
the work by Brooks et al. [10] and therefore has similar expo-
nential stability against gate timing error T → πC + �T (see
Sec. VI of [10]) and perturbation stability (e.g., against small
perturbation O(δE� cos 2ϕ) in the Hamiltonian; see Sec. XI
of the work by Brooks et al. [10]).

Since in a protected state (� = 0) our qubit is identical to
a standard 0-π qubit [9,10] it is also possible to implement
the exp(iπσ x/4) gate described by Brooks et al. [10]. With
these two discrete gates it is possible to realize the topo-
logically protected Clifford group C1 and a two-qubit gate
[10] exp(iπX ⊗ X/4). In combination with the semiprotected
holonomic gate described above it results in universal qubit
control [11] with high fidelity.

VIII. CONCLUSION

We showed that by adding one more degree of freedom
to the protected qubit architecture based on double periodic
Josephson junctions it is possible to realize two more types
of gates: A discrete protected gate and a robust continuous
holonomic gate that is not sensitive to the flux noise or to
charge noise in the linear order. Together with previously ex-
isting one- and two-qubit flip gates [10] it is possible to build
a realistic scalable quantum computer with universal qubit
control and infidelity of the order of <10−4/gate (importantly,
with potential for further improvement). Similar to existing
gates for 0-π qubits[28] our scheme also requires temporary
lifting of the protection. However, it also has two significant
differences: (a) our gate can be implemented with only local
on-chip bias lines without the need for RF pulses requiring
additional cables and without the danger of frequency crowd-
ing; (b) since our gate is holonomic, we always stay inside the
computational space with exponentially small probability of
leakage, and keeping computational states nearly degenerate
makes the gate robust against errors in pulse timing and shape.
The time independence of the gate provides room for further
gate optimization using optimized GRAPE pulses. The ability
to have exponentially small leakage (8) is crucial as leakage
errors are exceptionally harmful for fault-tolerant computing
[2–5].

For the holonomic gate, in principle, one can also choose
a different, more complicated path in the {�, Q} space and
achieve different phase gates with different noise sensitivities.
This diversity arises due to the nontrivial Berry curvature
landscape of an essentially two-dimensional system that is
controlled by two bias channels. We expect that by creating
more complex circuits with more degrees of freedom one can
create systems with more complex Berry curvature landscapes
and gauge fields. In the future it will be interesting to gener-
alize this approach to other types of protected or robust qubits
such as fluxonium [29–31]. We hope that further development
of similar holonomic qubit architectures will allow achieving
higher degrees of protection for continuous gates.
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