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Correlations among STM observables in disordered unconventional superconductors
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New developments in scanning tunneling spectroscopy now allow for the spatially resolved measurement
of the Josephson critical current Ic between a tip and a superconducting sample, a nearly direct measurement
of the true superconducting order parameter. However, it is unclear how these Ic measurements are correlated
with previous estimates of the spectral gap taken from differential conductance measurements. In particular,
recent experiments on an iron-based superconductor found almost no correlation between Ic and the spectral
gap obtained from differential conductance g = dI/dV spectra, reporting instead a more significant correlation
between Ic and the coherence-peak height. Here we point out that the correlation—or the lack thereof—between
these various quantities can be naturally explained by the effect of disorder on unconventional superconductivity.
Using large-scale numerical simulations of a BCS d-wave pair Hamiltonian with many-impurity potentials,
we observe that “substitutional” disorder models with weak pointlike impurities lead to a situation in which
the true superconducting order parameter and Ic are both uncorrelated with the spectral gap from dI/dV
measurements and highly correlated with the coherence-peak heights. The underlying mechanism appears to
be the disorder-induced transfer of spectral weight away from the coherence peaks. On the other hand, smooth
impurity potentials with a length scale larger than the lattice constant lead to a large positive correlation
between the true superconducting order parameter and the spectral gap, in addition to a large correlation
between the order parameter and the coherence-peak height. We discuss the applicability of our results to
recent Josephson scanning tunneling spectroscopy experiments on iron-based and cuprate high-temperature
superconductors.
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I. INTRODUCTION

A good deal of what we presently know about cuprate
and other unconventional superconductors is due to scanning
tunneling spectroscopy (STS), which over the past several
decades has uncovered a panoply of exotic phenomena in
these materials [1]. Thanks to advances in experimental
techniques, the ability to resolve in great detail the spatial
features of these materials has shown that at least some of
the cuprates are strongly inhomogeneous. Manifestations of
the inhomogeneous character of the cuprates as seen by STS
include quasiparticle scattering interference [2–7], charge or-
der [8–13], and a strongly inhomogeneous superconducting
gap [14–21]. The main tool of STS is the measurement of the
differential conductance, which is proportional to the local
density of states (LDOS) and thus reveals much about the
electronic spectral properties of these materials.

Recent technical advances have resulted in a variant
of the experimental technique called Josephson scanning
tunneling spectroscopy (JSTS), which makes use of quantum-
mechanical tunneling of Cooper pairs between a supercon-
ducting tip and the sample to map the spatial variations of
the critical current [22–25]. The technique has recently been
applied to the underdoped Bi2Sr2CaCu2O8+δ (BSCCO) and to
the iron-based superconductor FeTe0.55Se0.45 (FeTeSe), both
of which were shown to exhibit strongly inhomogeneous su-

perconducting order [26]. In addition, BSCCO exhibits an
eight-unit-cell modulation of the superconducting wave func-
tion [27] [pair density wave (PDW)].

JSTS is similar to STS, but with superconducting tips in-
stead of metallic ones so that the tunneling process can be
understood as that of a very small superconductor-insulator-
superconductor junction. The critical current is observable at
very small bias voltages, reflecting Cooper-pair tunneling be-
tween the tip and the sample [28,29]. This is a key probe of the
ground-state properties of the superconducting condensate—
in particular, of the superconducting order parameter. The
measurement of the local critical current Ic from JSTS has
been shown in theoretical work, and confirmed here, to be an
excellent proxy for the superconducting order parameter, so
one may take the recent results from JSTS experiments to be
an accurate picture of the strongly inhomogeneous nature of
the superconductivity in these materials [30,31].

It is natural to compare results from differential conduc-
tance and JSTS, because prior to the advent of JSTS, the
spectral gap maps �(r) obtained from dI/dV measurements
were often assumed to represent the spatially resolved su-
perconducting order parameter �k(r), which itself is not
directly observable. Intuitively, there is no reason to suspect
that there should be a discrepancy between the spectral gap
and the Ic maps, since they should both reflect the under-
lying superconducting order parameter. For example, while
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the 8a0 critical current oscillations reported in BSCCO JSTS
were not initially observed in g(r) maps [27], their existence
was established recently [32]. However, the local correla-
tions between the two are not known. Understanding the
correlations among these observables may be the clue to iden-
tifying the type of disorder present in the BSCCO system, and
thereby help to isolate the intrinsic physics of the underdoped
cuprates.

A second indication that the correlation between the local
critical current and the spectral gap was weak was discovered
in the aforementioned JSTS measurement on FeTeSe, which
showed that the spectral gap was almost completely uncor-
related with the quantity I2

c R2
N , which should be proportional

to the square of the superconducting order parameter (RN is
the normal-state junction resistance) [26]. The discrepancy
between Ic and the spectral gap in FeTeSe was interpreted
as equivalent to that between the superfluid density ρs and
the superconducting order parameter—that is, I2

c R2
N was in-

terpreted as a proxy for ρs. However, there is no reason for
the two quantities to be proportional to one another, since
the latter is determined strictly by normal-state quantities
in BCS theory, while the former is related to the order pa-
rameter via the Ambegaokar-Baratoff relation [33]. Hence
the observed discrepancy between the spectral gap and I2

c R2
N

cannot be explained by interpreting the latter quantity as the
superfluid density. It was also found in the FeTeSe experi-
ment that the I2

c R2
N maps were instead much more correlated

with the coherence-peak height, but it was unclear as to
why this was the case. In any case, the evidence from the
first few sets of JSTS experiments is clear: the spectral gap
from dI/dV measurements and Ic are not necessarily corre-
lated with each other. Why this is the case is not presently
understood.

In this paper, we set out to explain this conundrum by
revisiting a very well-trodden path: disorder in d-wave su-
perconductors [34–52]. We demonstrate that the lack of
correlation between the spectral gap and the true order pa-
rameter, as probed by Ic, is a natural consequence of disorder.
We illustrate various scenarios in which this absence of corre-
lation between ostensibly similar quantities arises for some
models of disorder, but not others. The models of disorder
we study in detail are weak pointlike scatterers, binary-alloy
disorder, and smooth screened Coulomb-potential disorder.
We find that when disorder is pointlike in nature, the corre-
lation between the spectral gap and the true order parameter
(which correlates very strongly with the critical current) is
typically quite weak. On the other hand, when the disorder
potential is extended, these two quantities become much more
strongly correlated with each other. By obtaining these corre-
lation coefficients for different disorder strengths, we identify
disorder regimes that appear to describe BSCCO and FeTeSe
well.

We also find a strong correlation between the order pa-
rameter and the coherence-peak height. We illustrate this
mechanism for isolated impurities, and we find that even
when disorder takes on a more complex form, this correlation
between the order parameter and the coherence-peak height
persists. We find that this mechanism describes these particu-
lar correlations in FeTeSe well, but we find that for BSCCO
this picture needs to be bolstered by strong-coupling effects

to account fully for the material’s STS phenomenology, in
particular the necessity of a spatially dependent scattering rate
(presumably due to interaction effects) that is neglected in our
disorder-only model [21].

II. MODEL AND METHODS

In this section, we will discuss the model and methods used
in the study of the correlations between the superconducting
order parameter and various spectroscopic quantities that can
be extracted from STS experiments. Our starting point is
a square-lattice tight-binding model with attractive nearest-
neighbor interactions. The Hamiltonian is

H = −
∑
i jσ

ti jc
†
iσ c jσ + V0

2

∑
〈i j〉σσ ′

c†
iσ ciσ c†

jσ ′c jσ ′ . (1)

〈i j〉 in the second term of Eq. (1) signifies that the sum over i
and j is restricted to nearest-neighbor pairs of sites. Treating
interactions within mean-field theory, we define �(i, j) =
V0〈ci↑c j↓〉, where i and j are nearest-neighbor sites; this
leads us to the following mean-field Hamiltonian describing a
d-wave superconductor:

H = −
∑
i jσ

ti jc
†
iσ c jσ +

∑
i j

[�(i, j)∗ci↑c j↓ + H.c.]. (2)

The hopping matrix elements are

ti j =

⎧⎪⎨
⎪⎩

Vimp(i), i = j,

t, i and j are n.n.,

t ′, i and j are n.n.n.,

(3)

where Vimp(i) is the impurity potential on site i, and t = 1 and
t ′ = −0.3 are the nearest-neighbor (n.n.) and next-nearest-
neighbor (n.n.n.) hopping matrix elements, respectively.
Throughout this work, we choose the chemical potential so
that the hole doping of the clean system is 10%, relative to
half-filling. Because the chemical potential, rather than the
electron density, is fixed, the impurity potential will dope
the system; however, in all cases we choose Vimp(i) such that
the doping is small.

To obtain the LDOS and the superconducting order pa-
rameter efficiently for large system sizes, we use a Green’s
function formalism. The Green’s function G(i, j, ω) is defined
as

G(i, j, ω) = [ω + iη − H]−1
i, j , (4)

where [ ]−1 is a matrix inverse in Nambu space, and η is a
small broadening parameter that we take to be a constant.
G and H are both 2NxNy × 2NxNy matrices, with Nx and
Ny the dimensions of the system in the x- and y-directions,
respectively. By imposing periodic boundary conditions along
the y-direction and open boundary conditions along the
x-direction, one can rewrite H to be block-diagonal. This im-
plies that the diagonal subblocks of G, and hence the LDOS,
can be obtained very efficiently using a recursive algorithm
described in detail elsewhere in the literature [47,48,53,54].
Consequently, very large system sizes with O(105) sites are
accessible with this method.
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The order parameter is obtained from the self-consistent
solution of

�(i, j) = −Vi j

π

∫ ∞

−∞
dω n f (ω, T )Im[G12(i, j, ω)], (5)

where

Vi j =
{

V0, i, j are n.n.,

0, otherwise
(6)

is the pairing interaction, and n f (ω, T ) is the Fermi func-
tion. Equation (5) appears to require the evaluation of the
off-diagonal (in real space) blocks of G. However, since we
are interested only in nearest-neighbor d-wave pairing, we
merely need to obtain the elements of G corresponding to
nearest-neighbor pairs, which requires the evaluation of only
the lower and upper diagonal subblocks of G, and hence the
amount of computational time does not scale up dramatically;
these subblocks can be obtained by recursion from the di-
agonal subblocks, which are the first set of outputs of the
algorithm. The main obstacle turns out to be the frequency
integral, which requires a wide range of energies over which
G is calculated; however, the calculational effort scales only
linearly in the number of frequencies used and is therefore
manageable under most circumstances. All our calculations
are performed in the limit T → 0; we focus on this limit
because the experimental JSTS studies on unconventional
superconductors published thus far have been performed at
very low temperatures deep within the superconducting state
[26,27]. The possibility that the pairing interaction itself is
disordered was discussed previously [45,49,55]; we neglect
this possibility here, but note that �(i, j) is disordered in
response to the random impurity potentials discussed in this
paper.

We are primarily interested in four main quantities: the
d-wave superconducting order parameter; the Josephson crit-
ical current Ic obtained from Cooper-pair tunneling from a
d-wave superconducting tip to a d-wave superconducting
sample; the spectral gap obtained from differential conduc-
tance measurements; and the height of the coherence peaks,
also obtained from differential conductance measurements.
The d-wave component of the order parameter is computed
on each lattice site as

�d (i) =
∑

δ

(−1)δy�(i, i + δ), (7)

where δ = (δx, δy) connects i to its four nearest neighbors. For
the calculation of Ic, we follow Graham and Morr [31], with

Ic = 2
4e

h̄
t2
0

∫ ∞

−∞

dω

2π
n f (ω, T )W (ω). (8)

Here, t0 is the tunneling amplitude between the tip and the
sample, and W (ω) is

W (ω) =
∑
i, j

Im
[
Gtip

12 (i, j, ω)Gsample
12 ( j, i, ω)

]
.

To simplify matters, we have taken the tip to be a site-centered
“filter” with five atoms in the shape of a cross (this is the
smallest tip one can make which measures d-wave correla-
tions in an x-y-symmetric fashion). We further assume this tip

-0.5 0 0.5
0
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1.2
Imp. Site, V = 0.25
Imp. Site, V = 0.50
NN Site, V = 0.25
NN Site, V = 0.50

FIG. 1. Plots of the LDOS vs energy on two sites (impurity site,
black, and nearest-neighbor site, blue) for a single impurity with
strength V = 0.25 (solid line) and V = 0.50 (dashed line), showing
how the quantities shown in Fig. 2 are obtained. Vertical lines show
the spectral gap, while horizontal lines show the height of the coher-
ence peaks. The blue horizontal dashed line denotes the baseline for
the nearest-neighbor LDOS plots. Energies are expressed in units of
t , and the LDOS in states/t/unit cell.

to be made of the same d-wave superconductor, but without
disorder, as was done in Ref. [31].

For each position i, we obtain the spectral gap and
coherence-peak height from the LDOS at i. This is illustrated
in Fig. 1, which shows LDOS spectra for sites on and ad-
jacent to an isolated weak-scattering impurity. As shown in
the figure, the coherence-peak height is given by the largest
value of the LDOS at positive energies, and the spectral gap is
the energy at which the peak occurs. We focus on the LDOS
at positive energies to avoid complications arising from a
van Hove singularity that is found at negative energies. Note
that the shifts in peak height and spectral gap in Fig. 1 are
relatively small, but, as we show below, they are substantially
larger when the impurity density is high.

Throughout this paper, we are interested in the correlations
among scanning tunneling microscopy (STM) observables. To
quantify this, we use the correlation coefficient r, which is
defined for two real-space quantities Pi and Qi with similar
dimension as

r =
∑

i(Pi − P̄)(Qi − Q̄)√∑
i(Pi − P̄)2

√∑
i(Qi − Q̄)2

, (9)

where P̄ and Q̄ are the spatial averages of Pi and Qi, and
the sums run over spatial sites. This is the same definition
used by Cho et al. in their analysis of JSTS data [26]. In
our calculations, we use a system consisting of 1000 × 50 =
50 000 sites, and we use the middlemost 336 × 48 subsection
of the system for the calculation of r. This choice gives us
over 16 000 distinct values of Pi and Qi in Eq. (9), which is
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FIG. 2. Plots of (a) the d-wave order parameter, (b) Ic (in units of
4et2

0 /h̄), (c) the spectral gap, and (d) the coherence-peak height taken
within a region with a single isolated impurity. It can be seen that Ic

is almost identical to the true order parameter, while the spectral gap
hardly resembles the true order parameter.

large enough for our correlation analyses to be statistically
meaningful.

III. POINTLIKE IMPURITIES

In this section, we explore the correlations between the
four quantities of interest—the order parameter, the Josephson
current Ic, the spectral gap, and the coherence-peak height—
that are induced by a concentration p of pointlike impurities.
The impurity potential takes the form

Vimp(i) =
{

V, i ∈ {i}imp,

0, otherwise,
(10)

where {i}imp is the set of lattice sites that host an impurity.
Two limits, the low- and high-impurity concentration limits,
can be understood qualitatively, and these are discussed in turn
below. This form of disorder is very well-studied and can be
understood analytically in the weak-impurity Born limit and
the unitary limit of the disorder-averaged theory [34–36,41],
but it is also known that nontrivial multi-impurity effects
not amenable to analytical treatment naturally result when
the concentration of impurities becomes sufficiently large
[56,57].

In the dilute limit, the correlations are determined by the
spatial patterns of the quantities of interest around each impu-
rity. We thus start with a discussion of a single weak-scattering
impurity in isolation. We take the impurity potential to be
V = 0.25 and calculate the superconducting order parameter
self-consistently. In Fig. 2(a), it can be seen that the order
parameter is reduced slightly at the impurity site and relaxes
towards its clean-limit value over a length scale of a few lattice
spacings. The corresponding Josephson current [Fig. 2(b)]
has an almost identical spatial pattern to the order parameter,
which confirms a similar result obtained by Graham and Morr
[31]. This is not only the case for isolated weak-scattering

impurities; rather, the cross-correlation coefficient r between
the order parameter and Ic is consistently very high (r ≈ 0.99)
for all disorder types and strengths we have studied. Ic is thus
an almost perfect indicator of the spatial dependence of the
order parameter. In the Appendix, we provide evidence for
the near-perfect matching between the order parameter and Ic

across various disorder types and strengths.
In contrast, both the spectral gap [Fig. 2(c)] and coherence-

peak heights [Fig. 2(d)] have spatial patterns that differ visibly
from that of the order parameter. The influence of the impurity
potential on the spectral gap is short-ranged, extending only to
the adjacent site where the spectral gap is enhanced relative to
its bulk value. Since the order parameter is reduced on sites
adjacent to the impurity, there is a weak negative correlation
between the order parameter and the spectral gap. However,
as shown below, this result is not universal and depends
on the details of the impurity potential and the amount of
disorder.

The coherence-peak height [Fig. 2(d)] has a relatively
complex spatial pattern. Like the order parameter, it is re-
duced at the impurity site and relaxes to its bulk value within
a few lattice sites. Unlike the order parameter, there are
additional short-wavelength oscillations of the peak height.
Despite this difference, the coherence-peak height has a strong
positive correlation with the order parameter and a corre-
sponding strong negative correlation with the SG. As we
show below, these correlations persist up to large impurity
concentrations.

Next, we consider an ensemble of weak pointlike impuri-
ties that are randomly distributed throughout the sample, such
that each lattice site has a probability p of hosting an impu-
rity with on-site potential strength V = 0.25. Since we are at
fixed chemical potential, the impurities change the electron
density. At the largest impurity concentration considered in
this section, p = 20%, we estimate that this dopes the system
by ∼0.01 electrons per unit cell, which is negligible.

Figure 3 shows the spatial patterns of the d-wave order
parameter, the spectral gap, and the coherence-peak height,
for a high concentration (p = 20%) of weak-scattering impu-
rities. Such an impurity distribution might, for example, be
a model for Sr ions in overdoped La2−xSrxCuO4 [51,52,58].
Certain similarities with the single impurity case are evident in
the figure: Notably, the order parameter has a smooth spatial
profile, while the spectral gap responds to the impurity po-
tential on a short length scale, and the coherence-peak height
shows short-range oscillations on top of a smooth envelope.
There are also important differences: notably, the variations
of both the spectral gap and the coherence-peak height are
significantly larger here than for the single-impurity case,
although the range of order parameter values is about the
same.

At low impurity concentrations, the similarities with the
single-impurity case are reflected in the correlations between
the different quantities of interest (Fig. 4): The correlation
coefficient r between the order parameter and the spectral gap
(OP-SG) is small and negative; the correlations between the
order parameter and the coherence-peak height (OP-CPH) are
large and positive; and the correlations between the spectral
gap and the coherence-peak height (SG-CPH) are large and
negative. For each of these, r measures correlations between
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FIG. 3. Plots of (top to bottom) the d-wave order parameter, the spectral gap, and the coherence-peak height for a d-wave superconductor
with weak pointlike impurities with strength V = 0.25 and concentration p = 20%.

individual patterns near isolated impurities, as in the single-
impurity case.

Two of the correlation functions (SG-CPH and OP-CPH)
are nearly independent of impurity concentration, while the
third (OP-SG) depends significantly on p, changing from
negative to positive and then decreasing towards zero as p
increases. The small value of the OP-SG correlation coef-
ficient at high impurity concentrations can be explained by

0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
OP-SG
OP-CPH
SG-CPH

FIG. 4. Correlation coefficients r for various pairs of quantities
as a function of impurity concentration p. Here the impurities are, as
described in the main text, weak scatterers with V = 0.25.

the differing length scales over which the order parameter
and spectral gap respond to the impurities: at a position i,
the order parameter depends on the distribution of impurities
within a coherence length of i, while the spectral gap responds
locally to individual impurities. The two quantities are thus
uncorrelated when the number of impurities in a correlation
volume is large (note that in our simulations, the average BCS
coherence length of the clean system is about ξ0  3 lattice
constants).

In contrast, correlations between the coherence-peak
height and the order parameter (OP-CPH) or spectral gap
(SG-CPH) are both large and nearly independent of doping.
It appears that the intuitive correlations one can obtain from
Figs. 2(c) and 2(d) continue to hold even in a multi-impurity
setting: the correlations involving CPH involve mainly the
nearest-neighbor sites, where both the CPH and the OP are
suppressed but the SG is enhanced. Since the main effect
of the CPH on the cross-correlations is localized on a small
number of sites surrounding each impurity, these correlations
are largely independent of p.

IV. BINARY-ALLOY DISORDER

We next consider a binary-alloy model, in which each
lattice site has an equal probability of hosting one of two ions,
with ionic potentials ±Vb. Such a model might be appropriate
for the iron-based superconductor FeTeSe, in which the Te
and Se ions form a solid solution, and which is a highly
inhomogeneous superconductor with no easily identified cor-
relations between topographic and electronic maps [26]. This
disorder model had previously been employed by Berthod
in a numerical study of vortices in FeTeSe [59]. To the best
of our knowledge, no analytical studies on superconductivity
employing this model have been performed. This form of
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FIG. 5. Plots of (top to bottom) the d-wave order parameter, the spectral gap, and the coherence-peak height for a d-wave superconductor
with binary-alloy disorder with strength Vb = 0.250.

disorder can still be understood within the weak-impurity
Born limit as long as Vb is very small. However, for stronger
impurities, no such analytical treatment exists, since the con-
centration of impurities in this case is so large that the standard
T -matrix approximation for multi-impurity systems ceases to
be valid.

While we keep the relative proportions of each ionic com-
ponent fixed, we tune Vb from 0.0625 to 0.5, which covers
the evolution of disorder from the weak Born limit to the
strongly disordered limit where superconductivity is strongly
suppressed. We use the same tight-binding parameters here as
in the previous simulations and keep the background chemical
potential fixed. While our model consists of a single band with
d-wave pairing, we believe that the qualitative aspects should
carry over to systems with a general sign-changing gap order
parameter, like s± in Fe-based, multiband superconductors
such as FeSeTe.

In Fig. 5 we show spatially resolved plots of the d-wave
order parameter, the spectral gap, and the coherence-peak
height for Vb = 0.25. Similar to what was seen in Fig. 3,
each quantity has its own characteristic response to the im-
purity potential. The order parameter has a patchy structure
that emerges despite the sharply varying atomic-scale disor-
der present in the system; the spectral gap has pronounced
variations on the atomic length scale; and the coherence-
peak height exhibits short-wavelength oscillations on top of
a smoothly varying envelope. However, because the density
of impurities is high, there is no limit in which one can make
a direct connection to the single-impurity case. Indeed, as we
show below, there are important differences with the pointlike
impurity model discussed in Sec. III.

Two-dimensional histograms showing both the d-wave
order parameter and either the spectral gap or the coherence-

peak height are shown in Fig. 6 for several different
values of Vb. The key result for this figure is that there
is a clear positive correlation between the order parame-
ter and the coherence-peak height, while the spectral gap
is, at best, weakly correlated with the order parameter.
This is similar to what was found for pointlike impuri-
ties; however, the dependence on the amount of disorder is
different.

This is illustrated by Fig. 7, which shows the OP-SG,
OP-CPH, and SG-CPH correlation coefficients as a function
of the impurity potential. The OP-CPH correlation coefficient
is near r = 0.4 at small Vb, and grows with increasing Vb,
except for the last point at Vb = 0.5. This is consistent with the
obvious increase of the correlation between the two quantities
in Fig. 6 with increasing Vb. Figure 6 also reveals that the drop
in correlations at Vb = 0.5 is connected to the suppression of
superconductivity by the large disorder potential.

Figure 7 also reveals that the OP-SG correlation coeffi-
cient is small, which is again consistent with the absence of
any obvious correlation in Fig. 6. Finally, Fig. 7 shows that
the SG-CPH correlation coefficient is negative and large at
weak disorder, but decreases towards zero as the disorder
potential is increased. The anticorrelation is clear from the
single-impurity results at short distances shown in Fig. 2,
but is evidently destroyed by interference as impurity wave
functions begin to overlap.

In summary, we find that even for a highly inhomogeneous
superconductor, with impurities spread densely throughout
the sample, a strong correlation can be seen between the order
parameter (or, equivalently, Ic) and the coherence-peak height,
but not the spectral gap. This is in fact what is reported in the
iron-based superconductor FeTeSe [26]: a large correlation
(r ≈ 0.6) was measured between the coherence-peak height
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FIG. 6. Two-dimensional histograms between the order parameter and the spectral gap (top row) and the order parameter and the
coherence-peak height (bottom row), shown for varying binary-alloy disorder strength Vb (left to right). Note that the scales of the x- and
y-axes are not the same as Vb increases.

and the quantity I2
c R2

N , which in our analysis is essentially
equivalent to a strong correlation between the CPH and OP.
On the other hand, there was no observed correlation between
the spectral gap and I2

c R2
N in experiment. These results find a

natural explanation here from the response of the supercon-
ducting condensate to disorder.
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FIG. 7. Correlation coefficients r for various pairs of quantities
as a function of binary-alloy impurity strength Vb.

V. SMOOTH DISORDER

Lastly, we consider smooth disorder—i.e., disorder with
a length scale larger than the lattice constant. This form of
disorder has been hypothesized to be central to cuprates such
as BSCCO that host dopants located in the insulating layers
away from the copper-oxide planes [58,60], although other
work suggests that the actual disorder model for BSCCO is
more complex [45,47]. It is nonetheless instructive to consider
a smooth potential as a point of comparison to the models of
Secs. III and IV, which feature atomic-scale variations of the
potential.

Smooth disorder can be understood simply as impurities
that generate mostly forward scattering. Despite the seem-
ing intractability of this disorder model, disorder-averaged
treatments of weak purely forward scatterers in d-wave su-
perconductors exist, which allow straightforward conclusions
to be drawn as to the strength of pair-breaking and the ef-
fects on Tc due to these impurities. It was found that in the
weak purely forward-scattering limit, no pair-breaking occurs
due to these impurities, similar to Anderson’s theorem for
s-wave superconductors with nonmagnetic scatterers [61,62].
It was also found that the suppression of Tc within a purely
forward-scattering disorder model is much smaller than that
within a pointlike Born scattering model for a given con-
centration of scatterers [63]. Nevertheless, the complicated
nature of this form of disorder demands a primarily numerical
approach when studying its applications to the cuprates; in
particular, the subtle effects of self-consistency in the order
parameter are neglected by these analytical approaches. In
this paper we study smooth-disorder levels that are beyond
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FIG. 8. Plots of the potential of a single off-plane scatterer vs the
x-coordinate under the tuning protocol used in the paper, shown for
various values of L.

the weak-disorder regimes that are accessible by analytical
treatments.

We assume that the disorder originates from randomly
distributed off-plane dopants that generate screened Coulomb
potentials that act as perturbations to the on-site potential
[45,47,48,55,64]. We take our model for the smooth disorder

potential to be a screened Coulomb potential,

Vimp( j) =
∑

i∈{i}imp

αiVs
e−ri j/L

ri j
, (11)

where ri j =
√

|i − j|2 + z2
0 is the distance between lattice site

j and an impurity situated a distance z0 above site i. Here,
L is the screening length, and Vs governs the strength of
the single-impurity potential. The factor αi takes the values
±1 with equal probability, and is introduced to reduce the
amount of electron doping induced by disorder. We present
simulations assuming that the dopants are located a distance
z0 = 2 lattice constants away from the CuO2 plane.

The parameter L governs the range of the potential, with
small L corresponding to pointlike impurities. We wish to
highlight the influence of the finite range of impurities to
compare to the other cases considered here, but a direct com-
parison allowing isolation of this effect is not straightforward.
We illustrate one possible comparison in Fig. 8, which shows
the potential plotted within the superconducting plane created
by a single impurity. In each case, Vs is chosen to give the same
value at x = 0. Note that even when L = 0.25, the potential is
still spread out such that its value on the nearest-neighbor site
(x = ±1) is around a third of its value at x = 0. It is only at
L = 0.125 where the potential is close to the pointlike limit.

In the case of sufficiently smooth disorder, L � ξ , we
expect superconductivity to be essentially uniform in the pres-
ence of a local chemical potential set by disorder. In this
extreme case, we expect the order parameter and the spec-
tral gap to be well correlated with each other. The approach
to this limit can already be seen to some extent in Fig. 9,
which shows plots of the d-wave component of the order
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FIG. 9. Plots of (top to bottom) the d-wave order parameter, the spectral gap, and the coherence-peak height for a d-wave superconductor
with smooth disorder with screening length L = 2.
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FIG. 10. Two-dimensional histograms between the order parameter and the spectral gap (top row) and the order parameter and the
coherence-peak height (bottom row), shown for smooth disorder with varying screening length strength L (left to right). Note that the scales
of the x- and y-axes are not the same as L increases.

parameter, the spectral gap, and the coherence-peak height for
the smooth-disorder case with L = 2 and p = 20%. Unlike
in the pointlike-disorder cases shown earlier, here there is a
visible correlation between the order parameter and the spec-
tral gap. One can make a fairly straightforward match between
features belonging to one map and those belonging to another.
There is also a visible similarity between the order parameter
and the coherence-peak height. However, the features seen
in both the spectral gap and the coherence-peak height maps
have more structure than those in the order-parameter map,
and one can see significant fluctuations of the peak height
in regions where the order parameter is large and uniform.
We believe this represents an impurity interference effect in
this limit: while the order parameter averages over a region
of order ξ , the spectral gap and coherence-peak height are
determined by the interference of the nearby impurity wave
functions. When smooth disorder is present, quasiparticle
interference at energies near the gap edge is dominated by
scattering wave vectors q whose magnitudes are parametri-
cally smaller than 2kF [47,48,55]. This nevertheless gives rise
to modulations in the LDOS whose length scale is set by q−1,
and consequently to the real-space variations clearly visible in
the coherence-peak height plots.

We show the two-dimensional histograms between the
order parameter and both the spectral gap and the coherence-
peak height for increasing screening lengths L in Fig. 10. The
plots for L = 0.125 are similar to the pointlike case discussed
in Sec. III: the spectral gap is weakly correlated with the order
parameter, but there is a strong positive correlation between
the order parameter and coherence-peak height. As in Fig. 9,
the significant difference from the pointlike case is that, as L
increases, a positive correlation develops between the order
parameter and the spectral gap. The relationship between the
two quantities is approximately linear, but it shows a slight
upwards curvature at large L. This curvature is much more
pronounced in the relationship between the order parameter
and the coherence-peak height. This upturn is a reflection
of what we have observed in Fig. 9, namely that there are
large variations of the coherence-peak height in areas where

the order parameter is uniform and large. Such regions are
approximately perfectly clean d-wave superconductors, so
that the coherence-peak height is in principle logarithmically
infinite.

The correlation coefficients r, shown in Fig. 11, confirm
the observations we have made from Figs. 9 and 10. r be-
tween the order parameter and the spectral gap is as high as
0.76 when L = 4, decreasing monotonically as L is lowered,
and even when L = 0.25, r ≈ 0.47, much larger than what
can be seen in the dilute-impurity and binary-alloy models
we have encountered in the earlier sections. However, the
OP-SG correlation goes down sharply for L = 0.125, rapidly
approaching the pointlike limit, with a small r ≈ 0.2. These
results suggest that the crossover between the smooth limit
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FIG. 11. Correlation coefficients r for various pairs of quantities
as a function of smooth-disorder screening length L.
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and the pointlike limit is complicated and can depend on the
quantity in question, again because the atomic scale impurity
wave functions influence the LDOS-derived quantities more
than the order parameter.

Interestingly, r between the order parameter and the
coherence-peak height is almost a constant function of
L for 0.25 � L � 4, with its value around r ≈ 0.6. This
r is also markedly higher than the corresponding corre-
lation coefficients we have found for weak binary-alloy
disorder. In contrast to pointlike disorder, we find an over-
all positive correlation between the spectral gap and the
coherence-peak height for most of the range of L, which
varies from around 0.2 when L = 0.25 to 0.5 when L =
4. When L = 0.125, however, the SG-CPH correlation be-
comes negative, similar to the pointlike disorder cases studied
earlier.

VI. DISCUSSION AND CONCLUSION

In this paper, we have examined the correlations between
various experimentally measurable quantities, and we find
that the observed lack of correlation between the true order
parameter (as measured from Ic maps) and the spectral gap (as
obtained from dI/dV measurements) can be explained simply
as the effect of disorder. When one has significant levels of
pointlike disorder, consistent, e.g., with disorder in overdoped
cuprates, the correlation is weak for a wide range of disorder
strengths. In contrast, the correlation is found to be strong
when disorder is smooth in the sense that the impurity range
or disorder correlation length is comparable to or larger than
the coherence length ξ0. We also find a fairly prominent cor-
relation between the order parameter and the coherence-peak
height, which can be attributed to spectral-weight transfer due
to the presence of weak impurities.

We do not intend to claim that disorder alone is responsi-
ble for these effects—clearly the phenomenology of BSCCO
demands that interaction effects that act inhomogeneously
throughout the system (e.g., a spatially varying scattering
rate) be present; these are not taken into consideration in
our models. Our main point is that disorder could account
for a good part of the mystery of why the order parameter
and the spectral gap are not necessarily correlated with each
other. This explanation is founded on the observation that
Ic maps are a near-perfect proxy observable for the super-
conducting order parameter—not the superfluid density—and
once this is taken into consideration, the discrepancy between
the two sets of quantities arises as a simple consequence
of the reorganization of spectral weight in the presence of
disorder. In fact, for FeTeSe, where interaction effects may
not be as important as in the cuprates, the phenomenol-
ogy contained in binary alloy models provides a surprisingly
comprehensive explanation for all of the correlations (or the
lack thereof) seen between various pairs of experimental
measurables.

For the cuprates, on the other hand, the situation is murkier.
There is as yet no published systematic analysis establishing
definitively the sort of correlation that exists between Ic and
the spectral gap in the cuprates. However, our results can shed
light on possible explanations should a strong correlation (or

the absence thereof) be found between these two quantities
in experiment. If the Ic maps and the dI/dV spectral-gap
maps are highly correlated (i.e., r > 0.5) with each other, then
the smooth-disorder model discussed previously provides a
minimal explanation that accounts for this agreement. The
observed distribution of spectral gap values in STM studies on
BSCCO precludes an explanation in terms of smooth disorder
in the extreme limit L � ξ , however [45,47,55], so answers
will unfortunately depend on details.

If, on the other hand, there is a lack of correlation of the
order parameter and the spectral gap, any one of the point-
like models considered in this paper is a likely candidate to
explain this effect. The absence of a strong correlation would
suggest too that if the disorder in the cuprates were due to off-
plane dopants, then these are in the well-screened limit such
that they may be treated as pointlike scatterers. It is known,
however, that STS experiments on BSCCO find a strong anti-
correlation between the spectral gap and the coherence-peak
height [15,18,21]. From what we have seen in the models we
have considered, this can be partially explained by pointlike
disorder (weak dilute impurities, binary-alloy disorder, and
off-plane disorder with very small potential range), but not
by smooth disorder, which gives rise to a positive correlation
instead. It has previously been argued that it is possible to ac-
count for this anticorrelation using a phenomenological model
of small patches where pairing is enhanced or suppressed em-
bedded within a region with a spatially uniform d-wave gap
[18]; however, this treatment leaves unanswered the question
of why these spectral gap “swimming pools” or “plateaus”
form at all. It has been suggested [18,45] that these pools may
arise naturally as a consequence of disorder, perhaps in the
pointlike limit. It is intriguing that the negative SG-CPH cor-
relation seems to indeed emerge from finite disorder models,
consistent with the “plateau/pool” picture.

However, the suppression of the coherence peaks within
regions with large spectral gaps is an effect that appears
to be beyond the minimal disorder-based models we have
considered, since what is seen in experiment is not merely
the suppression of the coherence peak within large-spectral
gap regions, but a concurrent broadening of the spectra. It is
likely that this broadening is due to inelastic scattering, which
ensures that large-spectral gap regions are broadened much
more than small-spectral gap regions, driven by “local dop-
ing” wherein large-spectral gap and small-spectral gap regions
behave similarly to underdoped and overdoped cuprates on
average, respectively. This strong-coupling explanation is sup-
ported by STS studies which find that a large scattering rate
is necessary to account for the suppression of the coherence-
peak height in these large-spectral gap regions [21]. One can
in fact model this anticorrelation phenomenologically with a
spatially dependent pairing interaction V (r, r′) and scatter-
ing rate η(r), as Graham and Morr had already previously
considered within a gap-disorder-only model [31]. However,
explaining why both the pairing interaction and the scatter-
ing rate are necessarily spatially correlated with each other
requires a microscopic treatment that goes beyond our simple,
mean-field-based disorder-only model. We hope in any case
that the results shown in this paper prove useful to the in-
terpretation of the latest STM experiments on unconventional
superconductors.
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FIG. 12. Plots of (a) the d-wave order parameter, (b) the critical current, and (c) the normalized difference between (a) and (b) [i.e.,
�(r)/� − Ic(r)/Ic] for a d-wave superconductor with weak pointlike impurities with strength V = 0.25 and concentration p = 20%.
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APPENDIX: CORRELATIONS BETWEEN THE ORDER
PARAMETER AND THE CRITICAL CURRENT

In this Appendix, we discuss the correlation coefficient r
between the d-wave order parameter and Ic. We had earlier
alluded to the fact that r ≈ 1 for all disorder types we have
considered. The very close similarity between the aforemen-
tioned quantities had already been seen by Graham and Morr
in a single-impurity context [31]. For s-wave superconduc-
tors, Graham and Morr had also noted the nearly identical
spatial dependence of these two quantities in the presence of
various types of impurities [30]. Here we show a number of

explicit examples demonstrating the robustness of the correla-
tion across different disorder types.

In Figs. 12, 13, and 14, we show three different quantities
for three different types of disorder. The first two plots are
of the d-wave order parameter [Figs. 12(a), 13(a), and 14(a)]
and Ic [Figs. 12(b), 13(b), and 14(b)], while the last set of plots
is for the normalized difference between the order parameter
and the critical current—i.e., �(r)/� − Ic(r)/Ic—which we
use to highlight differences between the two quantities. The
disorder types used are the same ones we had already shown
in Figs. 3, 5, and 9 (weak pointlike disorder with p = 20%,
binary-alloy disorder with Vb = 0.250, and smooth disorder
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FIG. 15. Two-dimensional histograms between the order parameter and Ic, shown for three different disorder types corresponding to those
plotted in Figs. 3, 5, and 9. The values of r for these plots are 0.9958, 0.9893, and 0.9984, respectively.
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FIG. 16. Correlation coefficient r between the order parameter and Ic for three different disorder types (weak pointlike disorder, binary-
alloy disorder, and smooth disorder), shown as a function of disorder parameters (impurity concentration p for weak pointlike scatterers,
impurity strength Vb for binary-alloy disorder, and screening length L for smooth disorder).

with L = 2, respectively). It can be seen that the d-wave order
parameter and Ic look almost identical to each other, regard-
less of the disorder type used. There are differences between
these two quantities, as can be seen in Figs. 12(c), 13(c), and
14(c), but the normalized difference is generally very small
and is at most of the order of a few percent. In Fig. 15 we show
two-dimensional histograms of the d-wave order parameter
and Ic for the aforementioned three types of disorder. It can
be seen that the two quantities track each other very closely,
with almost no deviation from the linear trend, regardless of
the disorder type present. The correlation coefficients are all
extremely close to 1.

We show the correlation coefficient r between the order pa-
rameter and Ic as a function of disorder parameters discussed
in detail in the main text (i.e., impurity concentration for weak
pointlike scatterers, impurity strength for binary-alloy disor-
der, and screening length for smooth disorder) in Fig. 16. Here
we repeat the presentation of the correlation coefficients pre-
viously shown in Figs. 4, 7, and 11. It can be seen across the
three plots that r ≈ 1, regardless of the disorder parameter—a
much stronger correlation than any between any other pairs of
quantities. These results make it clear that Ic is an extremely
good measure of the d-wave order parameter, regardless of the
type or amount of disorder present in the super-conductor.
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