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Ground-state energy of the polarized dilute gas of interacting spin-1
2 fermions
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The effective field theory approach simplifies the perturbative computation of the ground-state energy of the
diluted gas of repulsively interacting fermions allowing in the case of the unpolarized system to easily rederive
the classic results up to the (kFa0)2 order (where kF is the system’s Fermi momentum and a0 the s-wave scattering
length) and (with more labor) to extend it up to the order (kFa0 )4. The analogous expansion of the ground-state
energy of the polarized gas of spin 1/2 fermions is known only up to the kFa0 order (where kF stands for kF↑
or kF↓); the order (kFa0)2 contribution has been computed (analytically) only using a specific (hard-core type)
interaction potential. Here we show that the effective field theory method also allows to easily obtain the order
(kFa0)2 correction to the ground state of the polarized gas in a way applicable to all repulsive interactions.

DOI: 10.1103/PhysRevB.104.144425

I. INTRODUCTION

Effective field theories are used in high energy physics
since already forty years (for a recent review of their ap-
plications to nuclear physics problems see Ref. [1]). Their
applications rely on the separation of energy scales involved
in physical problems which makes reliable the expansion of
the computed quantities in powers of their ratio and on the
possibility of fixing values of the parameters, which cannot be
obtained by matching onto the underlying more fundamental
theory, by directly extracting them from low energy data.
Relatively more recent are applications of the effective field
theory methods to nonrelativistic many body problems [2–6].
A particularly instructive is the application of this technique
[3] to the classic problem of computing the energy E� of the
ground state of the system of N fermions (enclosed in the
volume V ) interacting through a two-body spin independent
potential which may not be specified explicitly but is, instead,
characterized by the (in principle infinite) set of the scattering
lengths a� and the effective radii r� (� = 0, 1, . . . ) parame-
terizing the expansion of the resulting partial amplitudes of
elastic scattering of two fermions in powers of their relative
momentum. Stated in this form the problem is ideally suited
for handling it within the framework of an effective theory,
because the information on the fundamental dynamics (on
the two-body potential) is traded from the beginning for the
(infinite) set of low energy data. If the underlying interac-
tion potential is natural in the sense that the magnitudes of
the scattering lengths a� and the effective radii r� it gives
rise to are set by some common scale 1/� (this excludes
from the considerations attractive potentials which can lead
to bound states and formation of resonances), this scale is,
if the gas of fermions is sufficiently diluted, well separated
from its characteristic momentum scale set by the Fermi mo-
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mentum (wave vector) kF of the gas. The expansion of the
ground-state energy E�/N or E�/V in powers of kFa� ∝ kF/�

and kFr� ∝ kF/� naturally provided by the effective theory
methods is then reliable. This allows to drastically simplify
the classic treatment (Refs. [7–12]) of the problem summa-
rized in Ref. [13]. Owing to its simplicity the effective theory
method allowed to obtain [14] recently the complete fourth
(O(k4

F/�
4) and O((k4

F/�
4) ln(kF/�)) order terms which com-

plement the third, O(k3
F/�

3), order result obtained earlier [15]
by more conventional (semianalytic) methods.

The interest in properties of a diluted gas of fermions
stemmed originally from the study of nuclear matter, although
this model obviously cannot capture all realistic features of
systems of nucleons interacting through (mostly) attractive
potentials. More recently models of diluted gases (of fermions
and bosons) find their more natural application as continuum
models of interacting cold atomic gases bound in optical
or harmonic traps, complementing more traditional ways
of investigating properties of such systems based on lattice
models known generally as (paradigmatic for condensed mat-
ter physics) Hubbard models which, despite of more than
60 years of development, still leave many problems without
clear answers [16]. One of them is the mechanism of pos-
sible emergence of ferromagnetism in systems of mutually
repelling atoms which has been also investigated experimen-
tally [17]. Theoretical investigations of many questions of
interest related to this result, like the problem of itinerant
ferromagnetism in lattice models of mutually repelling spin
1/2 fermions as well as the possibility of spontaneous sepa-
ration of magnetic and nonmagnetic phases begun already in
the sixtieth of the XX century, but a successful explanation
of these phenomena with the help of the so-called dynamical
mean field theory (DMFT) approach [18] has been achieved
only some twenty years ago.

Clearly, any study of the emergence of magnetism in sys-
tems of N mutually repelling spin 1/2 fermions must start
with the computation of the ground-state energy of such a
system for N↑ �= N↓, where N↑ and N↓ (N↑ + N↓ = N) are the
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(conserved by the assumed interaction) numbers of spin up
and spin down fermions. Within the continuum model apply-
ing the ordinary Rayleigh-Schrödinger perturbative expansion
to the Hamiltonian (see Ref. [13,19])

H =
∑

p,σ=↑,↓

h̄2p2

2m f
a†

p,σ ap,σ

+ 1

2V

∑
q

Ṽpot (q)
∑
p1,p2

∑
σ1,σ2=↑,↓

a†
p1+q,σ1

a†
p2−q,σ2

ap2,σ2 ap1,σ1 ,

it is easy to obtain the relevant expression in the first order in
the s-wave scattering length a0 (this result can be given also a
mathematically more rigorous foundation [20,21]):

E� = V

6π2

3

5

h̄2

2m f

(
p5

F↑ + p5
F↓

) + V
4π h̄2

m f
a0

p3
F↑

6π2

p3
F↓

6π2

= V
3

5

h̄2

2m f
(6π2)2/3(ρ5/3

↑ + ρ
5/3
↓

) + V
h̄2

2m f
8πa0ρ↑ρ↓,

(1)

where ρ↑/↓ = N↑/↓/V and p3
F↑/↓ = 6π2ρ↑/↓. The next order

term has been computed analytically using the traditional
approach only within the hard spheres model interaction [22].
This approach does not allow, however, to easily recognize
the universality of this result (in the class of natural spin-
independent repulsive potentials). Apart from these result,
there are also Monte Carlo simulations [23,24] which—while
providing quite reliable numerical estimates of the exact (non-
perturbative) ground-state energy—must necessarily employ
concrete model potentials and therefore suffer from the lack
of universality.

In this paper, we compute the second-order correction to
the ground-state energy of the polarized gas of spin 1/2
fermions with the help of the effective theory method. It
makes it clear from the outset that this correction can only
depend on the s-wave scattering length a0 and, therefore,
that the result of Ref. [22] is universal. Nevertheless, it is
interesting to recover it using this new method as this may
pave the way to extend the computation to yet higher orders.
From the conceptual point of view, this task reduces to only
a minor modification of the computation performed in [3] for
N↑ = N↓, but it is a little bit more involved from the technical
point of view. While the order a2

0 correction to the ground-
state energy is in Ref. [3] given in a completely analytic form,
and, as the result of Ref. [22] shows, the same is possible
also in the case of N↑ �= N↓, we do not attempt to perform
the resulting integrals analytically and content ourselves with
providing the formulas which involve integrals which can
be easily evaluated numerically with the help of a three-line
Mathematica code.

Our computation parallels that of Ref. [3] but instead of
using the dimensional reduction as the regularization method,
we cut off divergent integrals over the wave vectors at the
scale �. While being technically more troublesome (but only
in higher orders) this regularization prescription seems more
in line with the main idea of the effective theory method
and moreover it allows to partly control the correctness of
the calculation, which is not possible with the dimensional
regularization which automatically sets to zero all powerlike

divergences. We begin in Sec. II by recalling the relevant
effective Lagrangian and how one relates its couplings to
the “low energy data,” that is, to the scattering lengths a�

and effective radii r�. In Sec. III, we compute the second-
order correction to the ground-state energy using the effective
theory method, demonstrate explicitly cancellation of the de-
pendence on the cutoff � and give the result in the form
dependent on a single function of the ratio of Fermi momenta
of spin up and spin down fermions which is evaluated nu-
merically. We also compare our perturbative result with the
existing nonperturbative estimates based on Monte Carlo sim-
ulations. We summarize the results in Sec. IV and speculate
about perspectives of generalizing them.

II. EFFECTIVE FIELD THEORY APPROACH

A convenient method of computing the ground-state en-
ergy based on the effective theory has been proposed in
Ref. [3]. The most general Lagrangian density consistent with
the Galileo, parity and time-reversal symmetries with respect
to which the dynamics of the spinor field is assumed to be
invariant, has the form (spinor indices of field in the brackets
are implicitly contracted)

L = ψ†

(
ih̄∂t + h̄2∇2

2m f

)
ψ − C0

2
:(ψ†ψ )2:

+ C2

16
:[(ψ†ψ†)(ψ

↔∇2ψ ) + H.c.]: + · · · (2)

It consists of infinitely many local operator structures of in-
creasing dimensions. Their coefficients C0, C2, etc. have to
be determined by comparing the scattering amplitude of two
fermions1 computed using this effective theory with the one
known from the potential scattering (i.e., the one parametrized
by the scattering lengths etc.), or—if it is explicitly given—by
matching onto the “fundamental” theory in which fermions
interact through a well-defined two-body potential.

The local (i.e., singular) nature of the interaction terms
of the Lagrangian density (2) results in short-distance (i.e.,
ultraviolet) divergences (absent in the “fundamental” theory)
in various quantities computed with the help of it. These
should be regularized and removed by applying the stan-
dard renormalization procedure. Since we are interested here
only in a directly measurable quantity (the ground-state en-
ergy E�), renormalization can be straightforwardly carried
out by simply computing (using the same regularization) an
appropriate set of observables other than E� itself (in this
case the scattering lengths a� and effective radii r� in the
expansion of the elastic scattering amplitude of two fermions)
and expressing the computed quantity, E�, in terms of them.
Any consistent regularization can be used for this purpose
because when the computed physical quantities (such as E�)
are expressed in terms of other observables (a�’s and r�’s) they
become independent of it (in the limit of removed regulariza-
tion). The most popular in high energy physics computations

1The proliferation of possible operator structures of higher dimen-
sions has the effect that also amplitudes of three-body scattering must
be used as the input to determine all independent coefficients in (2).
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(in which preservation of gauge invariance is the main con-
cern) is the dimensional regularization and it is the one which
was used in the seminal paper [3]. Here we implement reg-
ularization by cutting off all integrals over the wave vectors
k at the scale �.2 Once energy E� is expressed in terms of
observables as a�, r� the cutoff can be safely removed by
formally taking the limit � → ∞.

The procedures of expressing the scattering lengths in
terms of the coefficients Ci of the Lagrangian density (2) is
well known (see, e.g., Refs. [1,3]). One way is to compute
the S-matrix element corresponding to the elastic scattering of
two fermions (of oppositely oriented spins, in order to directly
extract the relevant part of the amplitude) in their center of
mass system (CMS) using the formula [25]

Sβα ≡ δβα − i

h̄
(2π )4δ(4)(k′

1 + k′
2 − k1 − k2)A

= 〈k′
1 ↑, k′

2↓|T exp

(
− i

h̄

∫ ∞

−∞
dtV I

int (t )

)
|k1↑, k2↓〉 (3)

(T is here the symbol of the chronological ordering and V I
int (t )

is the interaction picture counterpart of the minus interaction
term of the Lagrangian density (2); employed is the four-
vector notation in which k0 = ωk ≡ h̄k2/2m f , k = |k|) and
to apply the rule

− m f

4π h̄2 A(k, θ ) = f (k, θ ), (4)

to obtain the standard scattering amplitude f (k, θ ).
Evaluating to the first nontrivial order the matrix element

(3) for k2 = −k2 ≡ k one finds

f (k, θ ) = − m f

4π h̄2 C0

{
1 +

(C0

ih̄

)(m f

ih̄
I0

)
+ · · ·

}
, (5)

where

I0 =
∫

d3q
(2π )3

1

q2 − k2 − i0
. (6)

This integral is divergent and requires regularization.
Imposing the UV cutoff � on q = |q|, one obtains

I0(k,�) = 1

4π2

∫ �

0
dqq

[
1

q − k − i0
+ 1

q + k + i0

]

= i

4π
k + 1

2π2
� − 1

2π2

k2

�
+ . . . (7)

upon using the standard Sochocki formula 1/(x ± i0) =
P(1/x) ∓ iπδ(x) (P stands for principal value). Matching then
the amplitude (5) onto the expansion f (k, θ ) = −a0 + O(k)
of the scattering amplitude one obtains

C0 = 4π h̄2

m f
a0

(
1 + 2

π
a0� + . . .

)
. (8)

In general, the procedure leading to C0 is slightly more com-
plicated when the cut-off regularization is used (instead of
dimensional regularization) and the resulting C0 is given in

2It is this regularization which (in conjunction with the counterterm
technique) has been used in the recent computation [14] of the fourth-
order corrections to E� of the unpolarized gas of fermions.

FIG. 1. The effective theory connected vacuum diagram of order
C0 reproducing the first-order correction E (1)

� . Solid and dashed lines
represent propagators of fermions with opposite spin projections.

the form of an infinite power series in a0� (this is why the
dimensional regularization is more convenient) but, as will be
seen, allows to better control cancellation of divergences in
physical quantities.

III. CORRECTIONS TO THE GROUND-STATE ENERGY

We now compute the corrections E (1)
� and E (2)

� to the
ground-state energy diagrammatically, treating the terms of
the Lagrangian (2) as the interaction vertices. The calculation
closely parallels that of Ref. [3] except that we do not assume
that the numbers N↑ and N↓ of spin up and spin down fermions
are equal. The basic formula (relying on the adiabatic princi-
ple) employed for this purpose reads3

lim
T →∞

exp(−iT (E� − E�0 )/h̄)

= lim
T →∞

〈�0|T exp

(
− i

h̄

∫ T/2

−T/2
dtV I

int (t )

)
|�0〉. (9)

In other words, −iT (E� − E�0 )/h̄ is (in the limit T → ∞,
V → ∞) given by (2π )4δ(4)(0) times the sum of the mo-
mentum space connected vacuum diagrams (diagrams without
external lines). The factor (2π )4δ(4)(0) arising in evaluating
diagrams in position space (expressing the overall four-
momentum conservation) is interpreted as V T . It follows that
ih̄ times the expression arising from summing the momentum
space connected vacuum diagrams is just (E� − E�0 )/V .

As explained in Ref. [3], to compute the order (kFa0)2

correction to the ground-state energy only the interaction term
proportional to C0 of (2) is needed. It simplifies consider-
ably if there are only two possible spin projections, because
ψ†

αψ†
α = ψαψα = 0 (one can treat fields as anticommuting),

and reads4

Vint = C0

∫
d3x:(ψ†

+ψ+)(ψ†
−ψ−):. (10)

The right-hand side of the formula (9) can be evaluated using
the standard rules of quantum field theory. In the momentum
space, lines of Feynman diagrams correspond to the propaga-
tors (see, e.g., Ref. [13])

iG̃(0)
± (ω, k) = i

[
θ (|k| − pF±)

ω − ωk + i0
+ θ (pF± − |k|)

ω − ωk − i0

]
(11)

3The symbol T of the chronological ordering should not be con-
fused with T denoting time.

4In what follows, we will denote by + (−) quantities and operators
pertaining to the spin projection of larger (smaller) density; thus we
will use the Fermi momenta pF+ and pF− (pF+ � pF−) understanding
that pF+ = pF↑ when pF↑ � pF↓.
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kpk+q p−q

FIG. 2. The only nonvanishing three loop connected vacuum
diagram contributing to the ground-state energy of the diluted gas
of spin-1/2 fermions. The solid and dashed lines correspond to
propagators of fermions having opposite spin projections. The two
kinds of propagators differ by the values of the Fermi momenta: we
assume that pF+ � pF−.

and, to account for the normal ordered form of the interaction,
one has only to add the rule [13] that if a line originates from
and ends up in one and the same vertex, the propagator (11)

corresponding to this line has to be multiplied by eiωη with the
limit η → 0+ taken at the end.

In the first order in C0, there is only one connected
vacuum graph shown in Fig. 1. Applying the Feynman
rules one immediately obtains (iG(0)

± (0) are “position” space
propagators)

T E (1)
� = C0V TiG(0)

+ (0)iG(0)
− (0) = C0V T

p3
F−

6π2

p3
F+

6π2
,

recovering, after using (up to the first order in a0) the result
(8), the second-order term of (1).

Several connected vacuum diagrams of the next order can
be drawn but, as explained in [3], nonzero is only the one
shown in Fig. 2. The contribution of this diagram is given
by (d4q = d3qdq0)

E (2)
�

V
= − i

2!

C2
0

h̄

∫
d4q

(2π )4

∫
d4 p

(2π )4

∫
d4k

(2π )4
iG̃(0)

− (p)iG̃(0)
− (p − q)iG̃(0)

+ (k)iG̃(0)
+ (k + q). (12)

Evaluating the integrals over the frequencies q0, p0, and k0 using the standard residue method, one obtains the sum of two
terms each involving three integrals over q, p, and k. These two terms become manifestly equal after making in the second one
the substitutions k + q = −k′, p − q = −p′. In this way, one arrives at the expression

E (2)
�

V
= C2

0

h̄

∫
d3q

(2π )3

∫
d3p

(2π )3

∫
d3k

(2π )3

θ (pF+ − |k|)θ (pF− − |p|)θ (|k + q| − pF+)θ (|p − q| − pF−)

ωk + ωp − ωk+q − ωp−q + i0
.

The last step [3] is to pass to the integrations over the variables s, t, and u defined by the relations (the Jacobian J = 8)

k = s − t, p = s + t, q = t − u.

The denominator of the integrand then becomes equal (t2 − u2 + i0)/m f . Defining

I =
∫

d3s
∫

d3t
∫

d3u
θ (pF− − |t + s|)θ (pF+ − |t − s|)θ (|u + s| − pF−)θ (|u − s| − pF+)

t2 − u2 + i0
,

one can write the combined first- and second-order contribu-
tions in the form

E (1)
� + E (2)

�

V
= C0

p3
F− p3

F+
36π4

+ 8C2
0

h̄2 m f
I

(2π )9
.

After using (8), i.e., replacing C0 by (4π h̄2/m f )a0(1 +
2a0�/π ), one gets

E (1)
� + E (2)

�

V
= p3

F− p3
F+

9π3

h̄2

m f
a0 + 2p3

F− p3
F+

9π4

h̄2

m f
a2

0�

+ h̄2

m f
32a2

0
I

(2π )7
. (13)

The regions of integrations over d3u and over d3t in I
are determined by the intersections of two Fermi spheres of
unequal radii, pF− and pF+, the centers of which are displaced
from the origin of the u (of the t) space by the vectors −s (s
will be taken to determine the z-axes of the u and t spaces
in the integrals over d3u and d3t) and s, respectively. The
integral over u is over the infinite exterior of both spheres
and is, therefore, divergent; the integration over t covers the
intersection of the two spheres. For this reason, the outermost
integration over s ≡ |s| is restricted to s � smax = 1

2 (pF+ +
pF−) because if s > 1

2 (pF+ + pF−), the two spheres which
determine the region of integration over t are disjoint. It will
be convenient to write I = 8(2π )3J (pF−, pF+) with

J (pF−, pF+) =
∫ smax

0
dss2 1

4π

∫
d3tθ (pF− − |t + s|)θ (pF+ − |t − s|)g(t, s),

g(t, s) ≡ g(|t|, s) = 1

4π

∫
d3u

θ (|u + s| − pF−)θ (|u − s| − pF+)

t2 − u2 + i0
. (14)

As far as the integral g(t, s) is concerned, the range of the variable s splits into two domains: 0 � s � s0 = 1
2 (pF+ − pF−)

and s0 � s � smax. Correspondingly, the integral (14) will be written as the sum J = J1 + J2.
If 0 � s � s0 = 1

2 (pF+ − pF−), the sphere of radius pF− is entirely contained inside the one of radius pF+ (see Fig. 3) and
plays no role in determining the domain of integration over u: this domain is then just the (infinite) exterior of the sphere of
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(a) (b) (c)

ϑ0

FIG. 3. Configurations of the Fermi spheres. Dots mark their centers shifted by ∓s from the origin of the space. (a) pF−/pF+ < 1/3; in
this case, if pF− < s < (pF+ − pF−)/2, the smaller sphere is entirely in the left half of the space. (b) pF−/pF+ > 1/3; in this case, part of
the smaller sphere is always in the right half of the space. (c) The spheres intersect for (pF+ − pF−)/2 < s < (pF+ + pF−)/2. Marked is the
“critical” polar angle ϑ0.

radius pF+ the center of which is at uz = 0, when s = 0 and moves to the right as s increases but the origin of the u space always
remains inside this sphere. The details of computing the integral over d3u are given in Appendix. The resulting formula for the
function g(t, s) in the range 0 � s � s0 is

g(t, s) = −� + 1

2
pF+ + t

4
ln

(pF+ − t )2 − s2

(pF+ + t )2 − s2
+ p2

F+ − s2 − t2

8s
ln

(pF+ + s)2 − t2

(pF+ − s)2 − t2
. (15)

Integrated over t , η and then over s from 0 to s0 this function
gives the corresponding contribution to the ground-state en-
ergy density. The integration over t and η is in this case over
the interior of the (smaller) sphere of radius pF−. Since the
origin of the t space remains inside this sphere [see Fig. 3(b)]
in the entire range 0 < s < s0 only when pF−/pF+ > 1/3,
performing the remaining integrations in the original vari-
ables would, if pF−/pF+ < 1/3, require further splitting the
integration over s into two parts: over 0 � s � pF− and over
pF− � s � s0. This can be avoided by shifting the variable
t, that is by writing t = t′ − s and introducing the spherical
coordinate system in the t′ space with the t ′

z axis taken in the
direction of the vector s. Then5

J1 = 1

2

∫ s0

0
dss2

∫ 1

−1
dη

∫ pF−

0
dt ′t ′2g

(√
t ′2 − 2t ′sη + s2, s

)
.

Since when g(t, s) ≡ 1 the integrations over η and t give
(2/3)p3

F−, the divergent part of J1 is

Jdiv
1 = 1

3
s3

0
1

3
p3

F−(−�) = − 1

72
(pF+ − pF−)3 p3

F−�. (16)

We now compute the function g(t, s) for s0 � s � smax and
the corresponding contribution J2 to the integral (14). In this
regime, the two Fermi spheres which determine the ranges of
integrations over u and over t intersect one another. In the u
space, the z coordinate uz of the intersection and its distance

5Another way of evaluating (the finite part of) J1 without distin-
guishing the cases pF− > 1

3 pF+ and pF− < 1
3 pF+ is to use the MATH-

EMATICA package instruction 0.5NIntegrate[s2t2g[t, s]Boole[t2 +
2tsx + s2 < p2

F−], {s, 0, s0}, {x, −1, 1}, {t, 0, ∞}].

u0 from the origin are determined by solving the equations

u2
⊥ + (uz − s)2 = p2

F+,

u2
⊥ + (uz + s)2 = p2

F−,

which give

u0
z = − p2

F+ − p2
F−

4s
, u2

0 = 1

2

(
p2

F+ + p2
F−

) − s2. (17)

In the spherical system, the “critical” angle ϑ0 corresponding
to the intersection of the spheres [marked in Fig. 3(c)] is
given by

cos ϑ0 = ξ0 = u0
z

u0
= − p2

F+ − p2
F−

4s
√

1
2

(
p2

F+ + p2
F−

) − s2
. (18)

Therefore, if s0 � s � smax is given by6

g(t, s) = 1

2

∫ 1

ξ0

dξ

∫ ∞

u+(ξ,s)
du

u2

t2 − u2 + i0

+ 1

2

∫ ξ0

−1
dξ

∫ ∞

u−(ξ,s)
du

u2

t2 − u2 + i0
, (19)

6Actually this way of computing g(t, s) in this regime (s0 < s <

smax) is justified geometrically only for s not greater than some
critical value (depending on the ratio pF−/pF+) which is smaller than
smax. For s greater than critical, the dashed line in Fig. 3(c) passes
through the interior of the smaller sphere and the justification of the
formula (19) hinges on the fact that, as can be shown, the integral
of an even function of u = |u| over the interior of the sphere not
involving the origin of the u space, which should in principle be done
as if the origin remained inside the interior.
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where now u+(ξ, s) = sξ +
√

p2
F+ − s2(1 − ξ 2), u−(ξ, s) =

−sξ +
√

p2
F− − s2(1 − ξ 2); of course u+(ξ0, s) = u−(ξ0, s) ≡

u0. Details of the evaluation of these integrals are given in
Appendix. The resulting function g(t, s) takes, in the range
s0 � s � smax the form

g(t, s) = −� + 1

4
(pF+ + pF− + 2s) + t

4
ln

pF+ + s − t

pF+ + s + t
+ t

4
ln

pF− + s − t

pF− + s + t

+ p2
F+ − t2 − s2

8s
ln

(pF+ + s)2 − t2

u2
0 − t2

+ p2
F− − t2 − s2

8s
ln

(pF− + s)2 − t2

u2
0 − t2

, (20)

in which u2
0 is given by (17).

It is now straightforward to compute Jdiv
2 and to check the cancellation of �. Indeed, the integral

1

4π

∫
d3tθ (pF− − |t + s|)θ (pF+ − |t − s|)(−�),

can be done using the already computed integrals: shifting the origin of the coordinate system of the t space so that the
intersection of the two Fermi spheres occurs at t ′

z = 0, one readily obtains the result

−�

2

{[
1

3
p3

F− − 1

2
p2

F−(s − ε) + 1

6
(s − ε)3

]
+

[
1

3
p3

F+ − 1

2
p2

F+(s + ε) + 1

6
(s + ε)3

]}
,

with ε = (p2
F+ − p2

F−)/4s ≡ −u0
z . This should be integrated from s0 = 1

2 (pF+ − pF−) to smax = 1
2 (pF+ + pF−) with the weight

s2. MATHEMATICA does it readily and the result is

Jdiv
2 = −�

(
p2

F+ p4
F−

24
− pF+ p5

F−
24

+ p6
F−

72

)
.

Combining this with the divergent part (16) of J1 one gets

Jdiv
1 + Jdiv

2 = −�
p3

F+ p3
F−

72
,

which is precisely what is needed to cancel in (13) the term explicitly proportional to � which comes from expressing C0 in terms
of the scattering length in the first-order result. Thus, as expected, the divergences disappear when observable quantities (the
ground state energy) computed within the effective theory are expressed in terms of other observable quantities (the scattering
lengths).

In the limit pF− = pF+ = kF, the expression (20) this goes over into the function

g(t, s) = −� + 1

2
(kF + s) + t

2
ln

kF + s − t

kF + s + t
+ k2

F − s2 − t2

4s
ln

(kF + s)2 − t2

k2
F − s2 − t2

.

arising in the case of equal densities of spin up and spin down fermions. In this case, in which the integral J1 is zero, the remaining
integrals over s, η and t which give J2 = J can be even worked out explicitly [3] with the result

J (kF, kF) = − 1

72
�k6

F + k7
F

11 − 2 ln 2

24 · 35
.

If pF− < pF+, the integrals over s, η and t can be easily evaluated numerically.7 It is convenient to write the complete function
J (pF−, pF+) defined in (14), setting � = 0 as p7

F+J (r, 1) with 0 � r ≡ pF−/pF+ � 1. The function J (r, 1) is shown in Fig. 4.
The complete result can be therefore written as

E�

V
= h̄2 p2

F+
m f

p3
F+

6π2

{
3

10
(1 + r5) + 2

3π
r3(pF+a0) + 96

π2
(pF+a0)2J (r, 1) + . . .

}
. (21)

7The simplest way is to use the MATHEMATICA numerical integration routine to integrate over the domain s0 � s � smax, −1 � x � 1, 0 �
t � ∞, imposing the conditions t2 + 2tsx + s2 < p2

F− and t2 − 2tsx + s2 < p2
F+ but we have also evaluated it using other methods always

with the same results.
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It is, however better to express it in terms of kF = (3π2ρ)1/3, where ρ = N/V —the Fermi wave vector in the case N↑ = N↓ =
N/2, which does not change when the ratio r = pF−/pF+ (i.e., the system’s polarization) is varied. Since pF+ = kF(2/(1 +
r3))1/3,

E�

V
= h̄2k2

F

2m f

k3
F

3π2

(
2

1 + r3

)5/3{ 3

10
(1 + r5) + 2

3π
r3

(
2

1 + r3

)1/3

(kFa0) + 96

π2

(
2

1 + r3

)2/3

(kFa0)2J (r, 1) + . . .

}
. (22)

This energy density is plotted in Fig. 5 as a function of the sys-
tem’s polarization P = (N+ − N−)/N (0 � P � 1; it is related
to the variable r by r = [(1 − P)/(1 + P)]1/3) for five differ-
ent values of the expansion parameter kFa0. We have checked
that our result agrees with that of Ref. [22].8 The computed
correction of order (kFa0)2 is rather small, ∼1% for kFa0 =
0.2 and r = 1 and decreases with decreasing r. All curves
assume at P = 1 the same value 22/3 = 1.5874—due to the
Pauli exclusion principle interactions do not induce any cor-
rections to the ground state of a fully polarized (P = 1, r = 0)
system of fermions.9 Note also that the prefactor h̄2k5

F/6π2m f

in (22) can be written in the form (N/V )(h̄2k2
F/2m f ). There-

fore our Fig. 5 can be directly compared to Fig. 3 of Ref. [23]:
our curve for kFa0 = 0.6 corresponds to the lowest curve in
this plot obtained for a model repulsive potential by a numeri-
cal estimate of the exact ground state energy. It is seen that the
result of the second-order expansion is somewhat lower than
the numerical estimate. This agrees with the comparison of
the ground-state energies of the unpolarized system (P = 0,
r = 1) performed in Fig. 2 of Ref. [23] which shows that the
perturbative expansion of the ground-state energy in powers

8The precise relation, checked numerically, of the function I (P)
used in Ref. [22] (the variable r used there is our polarization P) to
the function J defined by (14) evaluated with the cutoff � = 0 and
pF+ = 1 is

I (P) = 160(1 + P)7/3J (r(P), 1), r(P) = ((1 − P)/(1 + P))1/3.

9This readily follows from the form of the effective interaction
written in terms of the field operators ψ±, ψ†

± introduced in (10) and
the absence of the “sea” of oppositely polarized fermions.

FIG. 4. Plot of the function J (r, 1). The value J (1, 1) =
0.0114449 = (11 − 2 ln 2)/840 is the result of Ref. [3].

of kFa0 remains reliable up to kFa0
<∼ 0.5 but is systematically

below the numerical estimates of the exact value.

IV. SUMMARY

We have recomputed the order (kFa0)2, where a0 is the
s-wave scattering length and kF = (3π2N/V )1/3, correction to
the ground state energy of a polarized gas of (nonrelativis-
tic) fermions of spin 1/2 using the effective theory approach
proposed in Ref. [3], which does not require specifying ex-
plicitly the (spin independent) interaction potential. We have
demonstrated the cancellation of ultraviolet divergences when
the result is expressed in terms of the scattering length. Our
result obtained by the method applicable to arbitrary repulsive
interaction potentials is identical with that of Ref. [22] ob-
tained with the help of traditional methods within the specific
model of hard spheres. That it should be so is almost obvious
in the effective theory approach but was not such in the old
framework.

Second-order corrections to the energy levels of systems
of spin 1/2 fermions have been used to investigate the or-
der of the phase transition from the paramagnetic to the
ferromagnetic state [26] and of the separation of phases in
mixtures of fermions of different masses [27]. While poten-
tially important, such study seem to require, however, better
approximations to system’s energy levels than the second
order one. Since the main technical problem of this approach
is only isolating ultraviolet divergences and working out can-
cellation of imaginary contributions, it seems that with some
more labor the computations presented here could be extended
to yet higher orders of the expansion, similarly as was done

FIG. 5. Energy density E�/V in units (3/5)h̄2k5
F/6π 2mf =

(N/V )(h̄2k2
F/2mf )(3/5) of the polarized gas of spin 1/2 fermions as

a function of its polarization P = (N+ − N−)/N for different values
(from below) 0.1 (blue), 0.2 (yellow), 0.3 (green), 0.4 (red), and 0.6
(blue) of the expansion parameter kFa0.
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in the case of unpolarized system in Refs. [3,14]. A more
challenging task would be obtaining a rigorous estimate of the
high-order terms of the perturbative expansion which could
allow to assess the range of its convergence.

In this paper, we have considered the polarized diluted
gas of (nonrelativistic) interacting spin 1/2 fermions, working
in the continuum version of the theory. Our results can be
most naturally applied to atomic gases bound in traps. An
analogous problem can of course be also formulated using
the lattice version, that is within the paradigmatic Hubbard
model, with obvious applications to atomic gases bound in
periodic laser traps and to the solid state systems. As far as we
know, there are no second order results similar to ours in this
other version (rigorous first-order results have been given in
Refs. [28,29]) and it would be interesting to try to obtain them.
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APPENDIX

We give here details of the calculation of the integrals over
the Fermi spheres.

As explained, if 0 � s � s0 = 1
2 (pF+ − pF−) the integra-

tion over d3u in (14) is just over the exterior of the larger
sphere of radius pF+. Thus, in the spherical variables ux =
u sin ϑ cos ϕ, uy = u sin ϑ sin ϕ, and uz = u cos ϑ ≡ uξ , the
integration over du is bounded from below by the condition
u2 − 2usξ − (p2

F+ − s2) = 0:

g(t, s) = 1

2

∫ +1

−1
dξ

∫ ∞

u(ξ,s)
du

u2

t2 − u2 + i0

=
∫ ∞

0
du

u2

t2 − u2 + i0

+ 1

2

∫ +1

−1
dξ

∫ u(ξ,s)

0
du

u2

u2 − t2 − i0
,

where u(ξ, s) = sξ +
√

p2
F+ − s2(1 − ξ 2). The first, diver-

gent, integral is, when regularized by the cutoff �, propor-
tional to the integral (6). The second one can be worked
out using the trick given in Appendix C of Ref. [5], that is,
introducing under the integral over ξ the factor 1 = dξ/dξ ,
taking this integral by parts and then trading the remaining
integration over ξ for the integration over u(ξ, s). This, upon
using the result (7), leads to (v = u2(ξ, s); terms of (7) van-
ishing in the limit � → ∞ are omitted)

g(t, s) = −i
π

2
t − � + 1

2

{∫ u(1,s)

0
du

u2

u2 − t2 − i0

+
∫ u(−1,s)

0
du

u2

u2 − t2 − i0

− 1

4s

∫ u2(1,s)

u2(−1,s)
dv

v − (
p2

F+ − s2
)

v − t2 − i0

}
.

The sum of imaginary parts of the three integrals should
cancel the explicit imaginary contribution which resulted from

the divergent integral. In fact, of the three integrals only the
first two do develop an imaginary part.10 They are evaluated
using the Sochocki formula and give∫ umax

0
du

u2

u2 − t2 − i0
= i

π

2
t + umax + t

2
ln

umax − t

umax + t
.

(A1)

The remaining integral in which one can omit −i0 in the
denominator is then also easy to evaluate and, taking into
account that u(1, s) = pF+ + s, u(−1, s) = pF+ − s one ob-
tains the result (15) which is real (all imaginary parts have
canceled) as it should be. In the range s0 � s � smax, the
function g(t, s) is given by the sum (19) of two integrals.
Their divergent parts, extracted as previously, combine to the
integral −2π2I0 and one obtains

g(t, s) = −� − i
π

2
t + 1

2

∫ 1

ξ0

dξ

∫ u+(ξ,s)

0
du

u2

u2 − t2 − i0

+ 1

2

∫ ξ0

−1
dξ

∫ u−(ξ,s)

0
du

u2

u2 − t2 − i0
.

To work out the imaginary parts of the two remaining
integrals, we again use the trick with taking the integral over
ξ by parts after inserting into it 1 = dξ/dξ . This gives∫ 1

ξ0

dξ

∫ u+(ξ,s)

0
du

u2

u2 − t2 − i0

=
∫ u+(1,s)

0
du

u2

u2 − t2 − i0
− ξ0

∫ u+(ξ0,s)

0
du

u2

u2 − t2 − i0

− 1

4s

∫ u2
+(1,s)

u2+(ξ0,s)
dv

v − (
p2

F+ − s2
)

v − t2 − i0
,

and, similarly,∫ ξ0

−1
dξ

∫ u−(ξ,s)

0
du

u2

u2 − t2 − i0

= ξ0

∫ u−(ξ0,s)

0
du

u2

u2 − t2 − i0
+

∫ u−(−1,s)

0
du

u2

u2 − t2 − i0

+ 1

4s

∫ u2
−(ξ0,s)

u2−(−1,s)
dv

v − (
p2

F− − s2
)

v − t2 − i0
.

Since u+(ξ0, s) = u−(ξ0, s) = u0, the terms explicitly propor-
tional to ξ0 mutually cancel out. The first integrals on the right
hand sides of these formulas are of the form (A1); the imag-
inary part of their sum [the above expression enters g(t, s)
divided by two] precisely cancels the imaginary part which
arose from the divergent integral. The remaining integrals (in
which i0 in the denominators can be omitted) can be then
easily evaluated giving the result (20).

10Indeed, it is easy to see geometrically that the maximal value of
t reached in the outer integral is s + pF−, whereas the lower limit of
the third integral is (pF+ − s)2; since the function g(t, s) computed
here is valid only up to s � s0 = (pF+ − pF−)/2, the variable t2 never
exceeds the lower limit of integration over v.
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