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Non-Loudon-Fleury Raman scattering in spin-orbit coupled Mott insulators
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We revisit the theory of magnetic Raman scattering in Mott insulators with strong spin-orbit coupling,
with a major focus on Kitaev materials. We show that Kitaev materials with bond-anisotropic interactions are
generally expected to show both one- and two-magnon responses. It is further shown that, in order to obtain
the correct leading contributions to the Raman vertex operator R, one must take into account the precise,
photon-assisted microscopic hopping processes of the electrons and that, in systems with multiple hopping
paths, R contains terms beyond those appearing in the traditional Loudon-Fleury theory. Most saliently, a
numerical implementation of the revised formalism to the case of the three-dimensional hyperhoneycomb Kitaev
material β-Li2IrO3 reveals that the non-Loudon-Fleury scattering terms actually dominate the Raman intensity.
In addition, they induce a qualitative modification of the polarization dependence, including, e.g., the emergence
of a sharp one-magnon peak at low energies, which is not expected in the traditional Loudon-Fleury theory. This
peak is shown to arise from microscopic photon-assisted tunneling processes that are of similar type with the
ones leading to the symmetric off-diagonal interaction � (known to be present in many Kitaev materials), but
take the form of a bond-directional magnetic dipole term in the Raman vertex. These results are expected to apply
across all Kitaev materials and mark a drastic change of paradigm for the understanding of Raman scattering in
materials with strong spin-orbit coupling and multiple exchange paths.
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I. INTRODUCTION

Raman scattering has proven to be a powerful experimen-
tal technique to understand and characterize the physics of
strongly correlated systems [1]. Being a sensitive probe to
single-particle and multiparticle excitations over sufficiently
wide ranges of temperatures and energies, Raman scattering
has played an important role in elucidating ground state prop-
erties, symmetry, and statistics of magnetic excitations, as
well as the strength and nature of the exchange couplings in
magnetic insulators with both magnetically ordered and spin
liquid ground states [2–25]. In recent years, there has been
a series of Raman studies (both experimental and theoretical)
on a range of spin-orbit coupled (SOC) Mott insulators, with a
view to elucidate the nature of their magnetic excitations (and
lattice dynamics) and their proximity to the so-called Kitaev
quantum spin liquid ground states [13–34]. Most saliently, the
reported Raman scattering data in the Kitaev candidate mate-
rials α-RuCl3 [13,14,17–19] and the three-dimensional (3D)
iridates β-Li2IrO3 and γ -Li2IrO3 [16], revealed signatures of
both multiparticle continua, characteristics of the proximate
spin liquid phase, and sharp peaks, characteristic of magnon
excitations of the low-temperature ordered phases. These re-
sults call for a close reexamination of the Raman scattering
theory applied to strong spin-orbit coupled Mott insulators.

The history of understanding of the magnetic Raman scat-
tering goes back to the seminal paper by Fleury and Loudon
[35], in which they have identified three main mechanisms
for the coupling between light and magnetic excitations: (i)

direct coupling of photon to magnon through magnetic-dipole
interaction, (ii) indirect electric-dipole coupling, which mixes
the spin and orbital motion of the electrons, and (iii) second-
order electric-dipole coupling, which is very similar to an
exchange mechanism. The first mechanism (i) is very weak
and is usually neglected. The second (ii) is the Elliott-Loudon
mechanism [36], in which the Raman scattering from the mag-
netic degrees of freedom on a single ion proceeds via a pair of
allowed electric-dipole transitions through a spin-orbit active
intermediate state. In this process, the incident light excites
an electron from the ground state to an excited state keeping
the z component of the spin unchanged. The spin states with
different z components are then mixed in the excited state via
the spin-orbit coupling, and a transition back to the ground
state but with opposite spin polarization can occur by emitting
a Raman photon and a magnon with �Sz = ±1. Traditionally,
the Elliott-Loudon process is considered to be the main source
of the one-magnon scattering response, and this is indeed
the case in systems with weak SOC. The process (ii) also
gives rise to two-magnon scattering, but its intensity is several
orders of magnitude weaker compared to the one-magnon
process.

This brings us to the third mechanism (iii), which is
the exchange-scattering mechanism described by the well-
known Loudon-Fleury theory of magnetic Raman scattering
in Mott insulators [35]. The basic idea of this theory is
that the processes leading to the Raman response from Mott
insulators are similar to those leading to the exchange inter-
actions, except that the virtual electron hopping is (partly)
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assisted by photons. Consequently, the Loudon-Fleury Ra-
man operator is proportional to the sum over the individ-
ual spin-exchange interactions, weighted by bond-specific,
polarization-dependent factors that determine the ability of
photons to control the magnitude of the associated electron
hopping [1–3,8,10,11,20,24,35]. Traditionally, it is considered
that the processes involved in this mechanism contribute pre-
dominantly to the two-magnon scattering with �Sz = 0, in
which a pair of magnons is created or destroyed. This percep-
tion follows in part from a concluding remark in the original
paper of Loudon and Fleury [35] that “the exchange mech-
anism discussed here (being proportional to S+

i S−
j ) produces

magnons in pairs and hence there is no exchange-scattering
mechanism for one-magnon scattering.” Now we understand
that this statement is certainly far from being general and, in
particular, it does not apply to the SOC Mott insulators with
bond-dependent anisotropic interactions, which naturally give
rise to one-magnon response [17,18,30–33,37].

Here we show that in the SOC Mott insulators, the
exchange-scattering mechanism (iii) leads to essential con-
tributions beyond the Loudon-Fleury theory, and these
non-Loudon-Fleury terms can give rise to a significant one-
magnon Raman response, on top of the two-magnon response.
Quite remarkably, our numerical calculations for the repre-
sentative case of β-Li2IrO3 shows that the Raman intensity
(both in the one- and the two-magnon channels) is actually
dominated by the contribution from the non-Loudon-Fleury
terms by at least two orders of magnitude. In addition, these
terms give rise to a qualitative modification of the scattering
intensity including its polarization dependence. These include
a distinctive, one-magnon low-energy peak in the ac polar-
ization channel [37], which is not expected in the traditional
Loudon-Fleury theory. As we discuss below, similar results
are expected across all Kitaev materials, given that they all
share the same local geometry of virtual exchange paths and
the same order of magnitude of microscopic hopping and in-
teraction parameters. In this sense, the theoretical framework
presented below calls for a general reevaluation of Raman
scattering in Kitaev materials of current interest and systems
with strong spin-orbit coupling and multiple exchange paths
more generally.

The remainder of the paper is organized as follows. In Sec.
II, we begin with a brief discussion of the relevant materials:
strong SOC Mott insulators in which the magnetic moment
jeff =1/2 comes from the five electrons (or one hole) on the t2g

orbitals and their effective low-energy description. In Sec. III,
we present the main steps of the T -matrix formalism that lead
to the microscopic derivation of the Raman operator R. In
Sec. IV, we apply this framework to Kitaev materials, and
establish the leading contributions to the Raman vertex R
from the same microscopic processes that give rise to the
minimal J-K-� model. These include processes arising from
direct hopping, ligand-mediated hopping as well as processes
involving both direct and ligand-mediated hopping. We then
establish that the latter two types of processes are the ones
giving rise to the strong non-Loudon-Fleury contributions to
the Raman operator. In Sec. V, we proceed with the applica-
tion to magnetically ordered states. To that end, we express R
in terms of magnon operators and obtain the expressions for
the one- and two-magnon Raman intensities. The numerical

implementation of this theory to the three-dimensional Ki-
taev magnet β-Li2IrO3 is then presented in Sec. VI, where it
is demonstrated that the non-Loudon-Fleury terms dominate
the Raman intensity by at least two orders of magnitude.
Section VII provides a brief summary along with a general
perspective of the results. Some of the technical details and
auxiliary information are relegated to Appendix.

II. RELEVANT MATERIALS AND GENERIC
LOW-ENERGY DESCRIPTION

The theory developed below applies to SOC Mott in-
sulators, such as the Kitaev materials with Ir4+ and Ru3+
ions, in which the magnetic moment jeff =1/2 comes from
the five electrons (or one hole) on the t2g orbitals due
to the strong SOC [26,28,38–40]. These include, e.g., the
layered compounds Na2IrO3 [41,42], α-Li2IrO3 [43], and
α-RuCl3 [44–47], as well as the three-dimensional (3D) iri-
dates β-Li2IrO3 [48–50] and γ -Li2IrO3 [51,52], for which
most of the experimental Raman data has been reported so far.

The minimal electronic Hamiltonian of such SOC Mott
insulators contains the following terms:

H = Hint + Hpd + HSOC + Ht , (1)

where Hint is the interaction part of the three-orbital Hub-
bard Hamiltonian, Hpd = �pd

∑
i,σ niσ is the charge-transfer

Hamiltonian (where �pd stands for the charge-transfer energy
of one electron from the magnetic ion to the ligand ion),
and HSOC described the on-site SOC, and Ht stands for the
hopping. Specifically,

Hint =
∑

i

(
U1

∑
α

niα↑niα↓ + 1

2
(U2 − JH )

∑
α �=α′,σ

niασ niα′σ

+ U2

∑
α �=α′

niα↑niα′↓ + JH

∑
α �=α′

d†
iα↑d†

iα↓diα′↓diα′↑

− JH

∑
α �=α′

d†
iα↑diα↓d†

iα′↓diα′↑

)
, (2)

where d†
iασ denotes the creation operator of the d electron of

the magnetic ion on the t2g orbitals α = xy (Z ), yz (X ), zx (Y )
(in the local axes bound to the oxygen octahedron) with spin
σ =↑,↓. The constants U1 and U2 denote the Coulomb re-
pulsion among d electrons on the same and on the different
t2g orbitals, respectively, JH denotes the Hund’s coupling con-
stant, and U1 = U2 + 2JH , due to the cubic symmetry. The
spin-orbit coupling (SOC) is given by

HSOC = λ
∑

i

si · li, (3)

where si is the spin of the ith electron, and the SOC has been
projected into the t2g manifold, leading to the effective orbital
angular momentum l = 1. Finally, the hopping term Ht has
the general form

Ht =
∑
i, j

∑
α,β

∑
σ

tαβ
i j,σ d†

iασ d jβσ

+
∑̃
i, j

∑
α,β

∑
σ

[
t̃αβ
i j,σ d†

iασ p jβσ + H.c.
]
, (4)
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where the first line gives the direct hopping between magnetic
ions, and the second line gives the hopping between magnetic
ions and ligand ions, with p jβσ denoting the annihilation of
an electron on the βth p orbital of the ligand ion at site j.
The hopping amplitudes tαβ

i j,σ and t̃αβ
i j,σ are determined by the

overlaps between the orbitals and are material dependent.
A technical comment is in order here. Usually, the hole

picture (in which the magnetic degrees of freedom come from
the one-hole states in the jeff =1/2 doublets) is used for the
description of the magnetic properties of the Kitaev materials,
which are in the main focus of this paper. To change all the
formulas to the hole picture, one can replace d†

iασ with d̃iασ ,
diασ with d̃†

iασ , and niασ with 1 − niασ . With these substitu-
tions, the eigenenergies remain the same (up to the constant
energy shift), but we obtain an overall negative sign on each
hopping amplitude. Therefore, to keep the above formalism
unchanged for the hole picture we simply absorb this negative
sign in the hopping parameters. In the following we will omit
the tilde of the hole operators for a simpler notation.

A standard superexchange expansion1 of the above ex-
tended Hubbard model delivers a low-energy effective spin
Hamiltonian that, for Kitaev materials such as β-Li2IrO3, can
be well described by the nearest-neighbor (NN) J-K-� model,

Heff =
∑
〈i j〉ν

J Si · S j +K Sαν

i Sαν

j +σν�
(
Sβν

i Sγν

j +Sγν

i Sβν

j

)
, (5)

where Si denotes the pseudospin jeff =1/2 operator at site i,
(αν, βν, γν )= (x, y, z), (y, z, x), and (z, x, y), respectively, for
ν ∈ {x, y, z} labeling the three different types of NN Ir-Ir or
Ru-Ru bonds; the prefactor σν equals +1 for two-dimensional
materials and can be +1 or −1 (depending on the bond) for
the three-dimensional systems β- and γ -Li2IrO3. Here K is
the Kitaev coupling, J is the Heisenberg coupling and � is the
so-called symmetric exchange anisotropy, which is present in
many Kitaev materials [54–59]. These interactions should be
thought of as a minimal starting model, as other terms may
also be relevant for materials with lower symmetry.

Crucially, the J , K , and � couplings originate from very
different microscopic processes. Specifically, as it has been
shown in the literature [55,60–63], the Heisenberg interaction
J arises from direct virtual hopping processes between d
orbitals of magnetic ions, whereas the dominant contribution
to the Kitaev interaction K arises from the ligand-mediated
hopping. As for �, this arises from a combination of direct
and ligand-mediated hopping. As we discuss below, the Ra-
man operator stems from the same underlying microscopic
processes as the superexchange Hamiltonian, and each type
of these processes gives rise to a different contribution to the
Raman response.

1In case of Kitaev materials, the superexchange expansion usually
does not include processes when two holes meet at the same oxy-
gen site in the intermediate state since these intermediate states are
higher-energy states and their inclusion only slightly modifies the
effective couplings but does not change the picture qualitatively. We
note, however, that in systems with small spin-orbit coupling, such
as the cuprates, such processes can also lead to small anisotropic
interactions [53].

III. MICROSCOPIC DERIVATION OF THE
RAMAN OPERATOR

We first review a number of key steps in the derivation
of the Raman operator R in Mott insulators, with a view on
Kitaev materials with strong spin-orbit coupling (SOC). The
first step is to write down the total microscopic Hamiltonian,

Htot = H + Hγ + Hc, (6)

consisting of the extended Hubbard Hamiltonian H, the free
photon Hamiltonian

Hγ =
∑
k,ε

ωkα
†
k,εαk,ε, (7)

where α
†
k,ε and αk,ε are the creation and destruction operators

of a photon with wave vector k and polarization ε, and ωk
is the corresponding frequency, and the perturbation Hc that
describes the interaction of the electrons (holes) with the elec-
tromagnetic (EM) field. The latter arises from the coupling of
the light to the electric dipoles induced by the virtual charge
transfers between different lattice sites. This coupling can
be described by the Peierls substitution, in which a Wilson
line operator is attached to the electron (hole) hopping term
between magnetic ions as [1,2,8]

d†
iασ d jβσ → d†

iασ d jβσ e
ie
h̄c

∫ ri
r j

dr·A(r)
(8)

(and similarly for the hopping between magnetic and ligand
ions), where A(r) denotes the vector potential of the radiation
field. This substitution amounts to replacing Ht + Hc with

Ht,A =
∑

i j

∑
αβ

∑
σ

tαβ
i j,σ d†

iασ d jβσ e
ie
h̄c

∫ ri
r j

dr·A(r)

+
∑̃

i j

∑
αβ

∑
σ

[
t̃αβ
i j,σ d†

iασ p jβσ e
ie
h̄c

∫ ri
r j

dr·A(r) + H.c.
]
.

(9)

As usual, we consider the case where the wavelengths of the
incoming and outgoing photons are much longer than the
lattice constant, which allows us to safely replace

ie

h̄c

∫ ri

r j

dr · A(r) 
 ie

h̄c
A · δri j, δri j ≡ ri − r j, (10)

and then perform an expansion of Ht,A in powers of the vector
potential (which is appropriate for the weak EM fields of
Raman experiments), namely

Ht,A = Ht + H(1)
t,A + · · · . (11)

Here Ht is the hopping in the absence of light, and H(1)
t,A is the

leading photon-induced hopping,

H(1)
t,A =

∑
i j

∑
αβ

∑
σ

tαβ
i j,σ d†

iασ d jβσ

(
ie

h̄c
A · δri j

)

+
∑̃

i j

∑
αβ

∑
σ

[
t̃αβ
i j,σ d†

iασ p jβσ

(
ie

h̄c
A · δri j

)
+ H.c.

]
.

(12)

We can then express the vector potential in terms of creation
and annihilation photon operators, and to that end, it suffices
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to keep only the terms referring to the incoming and outgoing
photons, namely,

A = ginεinαkin,εin eikin·δri j + goutεoutα
†
kout,εout

eikout·δri j


 ginεinαkin,εin + goutεoutα
†
kout,εout

. (13)

Here, kin and εin (respectively, kout and εout) denote the wave
vectors and polarizations of the incoming (respectively, out-
going) photons, and gin and gout are constants depending on
the photon frequencies [2,8]. Furthermore, in the second line
we replaced eikin·δri j ∼ eikout·δri j ∼ 1, which is accurate in our
long-wavelength limit.

Following Refs. [2,3,8], in which the Raman scattering is
treated in the framework of the T -matrix formalism, with the
photon-induced hopping terms H(1)

t,A + H(2)
t,A + · · · treated as

a perturbation, one arrives at the leading contribution to the
Raman operator, which is second order in A (describing a one
photon in, one photon out process) [2,8]:

R = H(1)
t,A

1

E − (H + Hγ ) + iη
H(1)

t,A, (14)

where η → 0+ and E = 2E1h + ωin is the eigenenergy of the
initial state, in which all magnetic ions have one hole in the
jeff =1/2 doublet. The next step is to treat Ht as a weak
perturbation compared to

H0 ≡ Hint + HSOC + Hpd + Hγ . (15)

This allows to expand R as follows:

R = H(1)
t,AG

∞∑
n=0

(HtG)nH(1)
t,A, (16)

where we have defined the resolvent

G = (E − H0 + iη)−1. (17)

Note that both H(1)
t,A and Ht include hopping terms on all

bonds of the lattice. However, since both the initial and final
states belong to the ground-state manifold, only pathways
consisting of closed loops contribute to the Raman operator.

Incidentally, replacing H(1)
t,A by Ht in Eq. (16) gives the

leading contributions to the effective spin Hamiltonian Heff.
More specifically,

Heff = Ht G
∞∑

n=0

(Ht G)n Ht + other terms, (18)

where the other terms in the formal expansion [64] of Heff can
be safely disregarded for our purposes.

IV. RAMAN OPERATOR IN KITAEV MATERIALS

We are now ready to apply the above general formalism to
the case of the Kitaev materials and highlight the main new
insights of this work. In particular, we will explicitly demon-
strate that despite the fact that the microscopic processes
underlying the Raman operator and the superexchange Hamil-
tonian are very similar in the Kitaev materials [55,60,61,63],
the presence of multiple nonequivalent superexchange paths
contributing to the coupling between the magnetic moments
on a given bond leads to the contributions to the Raman
operator that goes beyond the Loudon-Fleury theory [35].

FIG. 1. The square plaquette that is relevant for the superex-
change processes between two magnetic ions sharing a z bond in
A2IrO3 compounds (e.g., β-Li2IrO3). The same plaquette provides
the superexchange processes in α-RuCl3 with substitution Ir → Ru,
O → Cl.

Recall that in the Loudon-Fleury theory, the contribution Ri j

to the total Raman operator from a given bond (i j), is simply
given by the superexchange interactions Heff,i j on that bond,
weighted by a bond-specific polarization-dependent factor.
However, in systems with multiple nonequivalent superex-
change paths, the polarization factors that come from the
operators H(1)

t,A appearing at the first and last steps of the
perturbative expansion of Eq. (16) give unequal weights to
different paths. Hence, the summation over these paths leads
to a Raman operator Ri j (on the given bond), which is, in
general, not proportional to Heff,i j (obtained by summing up
the contributions from all possible paths with equal weight).

Let us now begin with reexamining the various superex-
change paths contributing to the effective spin Hamiltonian of
the Kitaev materials. In all of them, the local environment of
the magnetic ions is that of an octahedron ligand cage, see,
e.g., Fig. 5 for the case of β-Li2IrO3. The virtual hopping
processes leading to the J-K-� model (and the ones con-
tributing to the Raman operator) are confined to a plaquette
consisting of two magnetic ions and two ligand ions. For
iridium Kitaev materials, for example, the plaquette is formed
by two iridium and two oxygen ions (see, e.g., Fig. 1 for the
case of two Ir4+ ions sharing a z bond in β-Li2IrO3), while
for α-RuCl3 it is formed by two ruthenium and two chlorine
ions. For concreteness, in the following discussion we will use
notations for the iridates, but the final results will be exactly
the same for α-RuCl3 as well.

We will carry out our analysis for a z bond formed by two
iridium ions, Ir1 and Ir2. The results for other types of bonds
can be obtained in a similar way (or simply by symmetry,
if present). Using the frame of Fig. 1, the vector connecting
these two ions is di j = x + y (in appropriate length units),
while the vector connecting the two oxygen sites, O1 and O2,
is d⊥

i j = x − y. Finally, the vectors connecting Ir1 with O1 and
O2 are, respectively, y and x. The hopping matrix elements
corresponding to this z bond are listed in Table I.

TABLE I. The matrix elements of Ht (in the hole picture) related
to the z bond for β-Li2IrO3. All matrix elements are real.

transfer path hopping amplitude

Ir[xz(Y ) or yz(X )] → O(pz) t
Ir1 [xz(Y )] → Ir2 [xz(Y )] t1

Ir1 [yz(X )] → Ir2 [yz(X )] t1

Ir1 [xy(Z )] → Ir2 [xy(Z )] t3

144412-4
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FIG. 2. Direct hopping (a-b and b-a).

There are three different types of paths on the plaquette
of Fig. 1: (i) direct hopping (Fig. 2), (ii) oxygen-mediated
hopping (Fig. 3), and (iii) mixed hopping (Fig. 4). The direct
hopping contributes at the lowest order of the perturbation
[n = 0 in Eq. (16)], the oxygen-mediated hopping processes
arise at fourth order (n = 2), and the mixed direct/oxygen-
mediated hopping processes arise at third order (n = 1).
Mathematically, the corresponding amplitudes for each of
these types of processes can be obtained by performing a
spectral decomposition of the resolvent G of Eq. (17) in terms
of the relevant virtual excitations. These include the inter-
mediate two-hole states on iridium sites, |Dμ〉, where μ =
1, 2, . . . , 15, obtained by the diagonalization of Hint [62,63]
(see also Table IV in Appendix 1), and the intermediate one-
hole states on oxygen sites, |Oν〉, where ν = 1, 2 labels one of
the two oxygen ions:

G=
15∑

μ=1

|Dμ〉〈Dμ|
(2E1h−E2h−E0h)+ωin+iη

+
2∑

ν=1

|Oν〉〈Oν |
ωin−�pd+iη

≡ GD + GO. (19)

Here ωin is the incoming photon frequency, �pd is the charge
transfer energy between Ir4+ and O2−, and we have also
defined E0h, E1h, and E2h to be the zero-, one-, and two-hole
eigenenergies.

FIG. 3. The eight different oxygen-mediated hopping paths con-
necting Ir1 and Ir2 in the plaquette of Fig. 1.

FIG. 4. The eight different mixed hopping paths connecting Ir1

and Ir2 in the basic plaquette of Fig. 1.

The effective Raman operator lives in the low-energy sec-
tor with magnetic ions being in their jeff = 1/2 ground state
manifold. For two neighboring Ir ions, this space is spanned
by the four configurations written in the | jz

eff,1, jz
eff,2〉 represen-

tation:

{|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉}
≡ {∣∣ 1

2 , 1
2

〉
,
∣∣ 1

2 ,− 1
2

〉
,
∣∣− 1

2 , 1
2

〉
,
∣∣− 1

2 ,− 1
2

〉}
.

One then evaluates the matrix elements 〈ψn|R|ψn′ 〉 of the
Raman operator in this 4 × 4 basis, and then expresses the
resulting matrix in terms of the pseudospin operators Si and
S j to obtain the effective spin representation of R.

For what follows, it is also expedient to define the follow-
ing generic polarization factors that arise from the coupling
of the incoming and outgoing photon to, respectively, the first
and last bond of the virtual hopping paths involved in Eq. (16)
as

Pdd ≡ ζ (εin · di j ) (εout · di j ),

Pd⊥d⊥ ≡ ζ (εin · d⊥
i j ) (εout · d⊥

i j ),

Pdd⊥ ≡ ζ (εin · di j ) (εout · d⊥
i j ),

Pd⊥d ≡ ζ (εin · d⊥
i j ) (εout · di j ), (20)

where ζ = − e2

h̄2c2 gingout.

A. Raman operator from direct hopping

There are two direct hopping processes (see Fig. 2) con-
necting the two Ir4+ ions of the basic plaquette of Fig. 1. Since
these processes are of second order in the hopping [i.e., n = 0
in Eq. (16)] and do not involve the oxygen sites, the corre-
sponding Raman operator is given by Rdir = H(1)

t,A GD H(1)
t,A,

or, equivalently,

Rdir =
∑

μ

H(1)
t,A|Dμ〉〈Dμ|H(1)

t,A
(2E1h − E2h − E0h) + ωin + iη

. (21)

The details of the computation of the matrix elements of Rdir

are provided in Appendix 1. The resulting expression for Rdir
i j

144412-5
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TABLE II. Polarization factors for the eight oxygen-mediated
hopping paths of Fig. 3, and Pdd , Pd⊥d⊥ , Pdd⊥ , and Pd⊥d are defined
in Eq. (20).

path � polarization factor pO
�

1 ζ (εin · y) [εout · (−y)] = −(Pdd + Pd⊥d⊥ − Pdd⊥ − Pd⊥d )/4
2 ζ [εin · (−x)] (εout · x) = −(Pdd + Pd⊥d⊥ + Pdd⊥ + Pd⊥d )/4
3 ζ (εin · y) [εout · (−x)] = −(Pdd − Pd⊥d⊥ + Pdd⊥ − Pd⊥d )/4
4 ζ [εin · (−y)] (εout · x) = −(Pdd − Pd⊥d⊥ + Pdd⊥ − Pd⊥d )/4
5 ζ (εin · x) [εout · (−y)] = −(Pdd − Pd⊥d⊥ − Pdd⊥ + Pd⊥d )/4
6 ζ [εin · (−x)] (εout · y) = −(Pdd − Pd⊥d⊥ − Pdd⊥ + Pd⊥d )/4
7 ζ (εin · x) [εout · (−x)] = −(Pdd + Pd⊥d⊥ + Pdd⊥ + Pd⊥d )/4
8 ζ [εin · (−y)] (εout · y) = −(Pdd + Pd⊥d⊥ − Pdd⊥ − Pd⊥d )/4

on the bond 〈i j〉z in terms of spin operators is

Rdir
〈i j〉z

= −Pdd
(
J (2)Si · S j + K (2)Sz

i Sz
j

)
, (22)

where K (2) and J (2) are coupling constants (explicit analytic
expressions of them are given in Appendix 4, and we will
comment on their numerical values for the case of β-Li2IrO3

in Sec. VI), and the superscript (2) specifies that they are
obtained in second-order perturbation theory. We should note
here that K (2) and J (2) depend on the frequency ωin of the
incoming light, but in the limit ωin → 0, they reduce to the
second-order contributions to the effective couplings K and
J of the effective J-K-� model, as they arise from the same
microscopic processes. Indeed, starting from Eq. (18) one can
show that, for ωin → 0, the spin terms inside the bracket of
Eq. (22) are precisely the contributions to Heff,〈i j〉z from direct
hopping, namely,

ωin �→ 0 : Rdir
〈i j〉z

= −Pdd Hdir
eff,〈i j〉z

. (23)

Hence, the leading Raman operator coming from direct hop-
ping processes has a Loudon-Fleury form.

B. Raman operator from oxygen-mediated hopping

Turning to oxygen-mediated hopping processes, their lead-
ing contribution to the Raman operator appears at fourth order
in the hopping [n = 2 in Eq. (16)] and has the form

Rmed = H(1)
t,AGOHtGDHtGOH(1)

t,A. (24)

In total, for the bond 〈i j〉z, there are eight different paths
contributing to this operator, labeled by � = 1, . . . 8, four of
which begin from Ir1 and the other four from Ir2, see Fig. 3.
Each path � gives rise to a polarization factor pO

� (provided in
Table II) multiplying an effective spin operator HO

� , namely,

Rmed
〈i j〉z

=
8∑

�=1

pO
� HO

� (25)

(see details in Appendix 2). The final form of the Raman
operator from oxygen-mediated hopping is given by

Rmed
〈i j〉z

=−Pdd

4
K (4)Sz

i Sz
j − Pd⊥d⊥

4

(
J ′(4)Si · S j +K ′(4)Sz

i Sz
j

)
,

(26)

where the frequency-dependent constants K (4), J ′(4), and
K ′(4) can be obtained numerically for the convenience of

TABLE III. Polarization factors of the eight mixed hopping paths
of Fig. 4. For the definitions of Pdd , Pd⊥d⊥ , Pdd⊥ , and Pd⊥d see
Eq. (20).

path � polarization factor pm
�

1 ζ (εin · y) [εout · (−di j )] = −(Pdd − Pd⊥d )/2
2 ζ [εin · (−di j )](εout · x) = −(Pdd + Pdd⊥ )/2
3 ζ (εin · di j )[εout · (−y)] = −(Pdd − Pdd⊥ )/2
4 ζ [εin · (−x)](εout · di j ) = −(Pdd + Pd⊥d )/2
5 ζ (εin · di j )[εout · (−x)] = −(Pdd + Pdd⊥ )/2
6 ζ [εin · (−y)](εout · di j ) = −(Pdd − Pd⊥d )/2
7 ζ (εin · x)[εout · (−di j )] = −(Pdd + Pd⊥d )/2
8 ζ [εin · (−di j )](εout · y) = −(Pdd − Pdd⊥ )/2

calculation (see Appendix 4 for their analytic expressions).
Comparing with the corresponding contributions to the effec-
tive spin Hamiltonian (computed with ωin = 0),

Hmed
eff,〈i j〉z

=
8∑

�=1

HO
� = KSz

i Sz
j, (27)

shows that the Raman operator from oxygen-mediated hop-
ping does not take a Loudon-Fleury form, i.e., Rmed

〈i j〉z
computed

on a given bond is not proportional to Hmed
eff,〈i j〉z

.

C. Raman operator from mixed hopping

Let us now discuss virtual processes that involve both di-
rect and oxygen-mediated hopping. The leading contributions
to the corresponding Raman operator appear first at third order
in the hopping [n = 1 in Eq. (16)], and take the form

Rmix = H(1)
t,AGHtGH(1)

t,A. (28)

In total, for the bond 〈i j〉z, there are again eight different paths
contributing to this operator (see Fig. 4), labeled by � = 1–8.
As in the case of oxygen-mediated hopping, here too, each
path � gives rise to a polarization factor (provided in Table
III) multiplying an effective spin operator Hm

� , namely,

Rmix
〈i j〉z

=
8∑

�=1

pm
� Hm

� (29)

(see details in Appendix 3), which takes the form

Rmix
〈i j〉z

=−Pdd

2
�(3)

(
Sx

i Sy
j +Sy

i Sx
j

) − Pd⊥d −Pdd⊥

2
i h(3)

�

(
Sz

i +Sz
j

)
,

(30)

where the frequency-dependent constants �(3) and h(3)
� are de-

termined numerically again (see Appendix 4 for their analytic
expressions), and the additional factor i in front of the real
parameter h(3)

� ensures time-reversal symmetry. Comparing
again with the corresponding contributions to the effective
spin Hamiltonian (computed with ωin = 0),

Hmix
eff,〈i j〉z

=
8∑

�=1

Hm
� = �

(
Sx

i Sy
j +Sy

i Sx
j

)
, (31)

we see that, as in the case of oxygen-mediated hopping,
the Raman operator from mixed processes does not take a
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Loudon-Fleury form, i.e., Rmix
〈i j〉z

is not proportional to Hmix
eff,〈i j〉z

.
In particular, the extra, non-Loudon-Fleury term [second term
in Eq. (30)] takes the form of an effective, local magnetic field
term ∝ h(3)

� , along the quantization axis z associated with the
Ir1-Ir2 bond of Fig. 1.

D. Total Raman operator

Collecting the various contributions to the Raman operator
on z bonds, and the analogous expressions for x bonds and y
bonds gives the total Raman operator

R=
∑
〈i j〉ν

{
Pi j,J Si · S j +Pi j,K Sαν

i Sαν

j + Pi j,�
(
Sβν

i Sγν

j +Sγν

i Sβν

j

)
+Pi j,h�

S
(
Sαν

i + Sαν

j

)}
, (32)

where notations for (αν, βν, γν ) are the same as in Eq. (5) and

Pi j,J ≡ −Pdd J (2) − 1
4 Pd⊥d⊥J ′(4),

Pi j,K ≡ −Pdd
(
K (2) + 1

4 K (4)
) − 1

4 Pd⊥d⊥K ′(4),

Pi j,� ≡ − 1
2 Pdd�

(3),

Pi j,h�
≡ − 1

2 (Pd⊥d − Pdd⊥ )i h(3)
� /S . (33)

We repeat here that the various constants entering the Raman
operator, i.e., J (2), J ′(4), K (2), K (4), K ′(4), �(3), and h(3)

� , are
frequency dependent and are not directly related to the ef-
fective couplings in the original superexchange Hamiltonian
(5). However, the following relations hold, up to fourth order
in Ht ,

ωin → 0 : J (2) = J, K (2) + K (4) = K, �(3) = � . (34)

Note further that the constants J ′(4), K ′(4), and h(3)
� do not

appear in the effective spin Hamiltonian and are the ones that
are responsible for the non-Loudon-Fleury Raman scattering.

V. BOSONIC REPRESENTATION OF R IN
MAGNETICALLY ORDERED STATES

Having established the leading contributions to the Raman
operator, we can now turn to its magnon representation in
the low-temperature, magnetically ordered states of iridates,
such as β-Li2IrO3. To describe the magnon excitations above
an ordered state we first need to relabel the positions of the
spins i → (R, μ), where R is the position of the magnetic
unit cell, and μ labels the different spin sublattices in the
given magnetic state around which we wish to perform the
1/S semiclassical expansion. The relabeling allows for the
substitutions

Si →SR,μ, S j →SR+tμμ′ ,μ′ ,Pi j,I →Pμμ′,I ,
∑
〈i j〉ν

→ 1

2

∑
R,(μμ′ )ν

,

where tμμ′ is a primitive translation of the magnetic superlat-
tice that connects the sites i and j. Next, we rotate the spin
operators from the global laboratory frame to local reference
frames

S̃R,μ = Uμ · SR,μ, (35)

where Uμ is a rotation matrix, which depends on the direction
of the μth spin sublattice in the classical configuration,

and express the operators S̃R,μ in terms of bosonic operators
aR,μ via the standard Holstein-Primakoff expansion (to
leading order),

S̃x
R,μ 


√
S/2(a†

R,μ + aR,μ),

S̃y
R,μ 
 −i

√
S/2(aR,μ − a†

R,μ),

S̃z
R,μ = S − a†

R,μaR,μ . (36)

Replacing in Eq. (32) and expanding in powers of 1/
√

S gives

R = R0 + R1 + R2 + O(S1/2), (37)

where R0 corresponds to a constant term and does not
contribute to the scattering, whereas R1 and R2 describe,
respectively, one-magnon and two-magnon scattering.

Knowing the Raman operator, we can then compute the
Raman intensity as

I (�) = 1

2π

∫ ∞

−∞
dtei�t 〈R(t )R(0)〉, (38)

where � = ωin − ωout is the total energy transferred to the
system (in units of h̄ = 1) and 〈· · · 〉 denotes the ground state
average. In the following, we will assume that � � ωin, out.

A. One-magnon scattering

The one-magnon Raman operator in Eq. (37) reads

R1 =
∑

R,(μμ′ )ν

{
V (1)

μμ′ (aR,μ + aR+tμμ′ ,μ′ ) + H.c.
}
, (39)

where

V (1)
μμ′ = S3/2

2
√

2

{
Pμμ′,J

[
Uμ · U−1

μ′
]

x−iy,z

+Pμμ′,K [Uμ]x−iy,αν

[
U−1

μ′
]
ανz

+Pμμ′,�
(
[Uμ]x−iy,βν

[
U−1

μ′
]
γνz + [

Uμ

]
x−iy,γν

[
U−1

μ′
]
βνz

)
+Pμμ′,h�

[
U−1

μ

]
αν,x−iy

}
, (40)

where we use the notation [· · · ]x−iy,α ≡ [· · · ]xα − i[· · · ]yα ,
(αν, βν, γν ) follows the same definition given after Eq. (5),
and x, y, z in the subscript indicate the first, the second, and
the third component of the matrix, respectively (e.g. [. . . ]xy

denotes the element from the first row and the second column
of the matrix [. . . ]).

Next we switch to momentum space via Fourier transform,

aR,μ = 1√
N /Nm

∑
q

eiq·(R+ρμ )aμ,q, (41)

where N is the total number of sites, Nm is the number of sites
inside the magnetic unit cell, and ρμ denotes the position of
the μth sublattice inside the unit cell. Keeping only the q = 0
components, we can write

R1,q=0 = V(1) · xq=0, (42)

where xq = (a1,q, . . . , aNm,q, a†
1,−q, . . . , a†

Nm,−q)T and V(1) is

a 1 × (2Nm) vector with elements V (1)
μ = ∑

μ′ V
(1)
μμ′ .
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Note that xq appears also explicitly in the quadratic part of
the effective spin Hamiltonian, in the form

HLSW = S

2

∑
q

x†
q · Hq · xq, (43)

where Hq is a (2Nm) × (2Nm) coupling matrix. This Hamil-
tonian is diagonalized via a standard Bogoliubov transfor-
mation, xq = Tq · yq, where Tq is the canonical transfor-
mation matrix, yq = (b1,q, . . . , bNm,q, b†

1,−q, . . . , b†
Nm,−q)T,

which leads to

HLSW =
∑

q

Nm∑
μ=1

ωμ,q

(
b†

μ,qbμ,q + 1

2

)
, (44)

where the new bosons b†
μ,q describe the magnon excitations

with frequencies ωμ,q.
Coming back to the Raman operator and expressing

xq=0 = Tq=0 · yq=0 in Eq. (42) leads to the following expres-
sion for the relevant, q = 0 part of the one-magnon Raman
operator:

R1,q=0 = M(1)(q = 0) · yq=0, (45)

where M(1)(q = 0) = V(1) · Tq=0. At zero temperature, it
suffices to keep the terms involving b†

μ,q=0, since only the pro-
cesses with a magnon creation on the Nm modes (μ, q = 0)
are allowed. Therefore, the zero-temperature one-magnon Ra-
man intensity [Eq. (38) with R → R1,q=0] can be written as

I1(�) ∝
∑

μ

∣∣M(1)
Nm+μ

(q = 0)
∣∣2

δ(� − ωμ,q=0) . (46)

The above equation is the basis for the numerical calculation
of the one-magnon Raman scattering intensity. The δ

functions are treated by allowing for a small, but otherwise
arbitrary Lorentzian broadening δ(x) → 1

π

η

x2+η2 with a small
enough value for η.

B. Two-magnon scattering

The two-magnon scattering involves the second-order term
in Eq. (37), which reduces to

R2 =
∑

R,(μμ′ )ν

{
V (2)

μ+Nm,μ′aR,μaR+tμμ′ ,μ′

+ V (2)
μ+Nm,ν+Nm

aR,μa†
R+tμμ′ ,μ′ + V (2)

μ,μa†
R,μaR,μ

+ V (2)
μ′,μ′a

†
R+tμμ′ ,μ′aR+tμμ′ ,μ′ + H.c.

}
, (47)

where the various prefactors V (2) can be obtained from
Eq. (32), similarly to the one-magnon case (we do not, how-
ever, write them down here since the respective expressions
are rather cumbersome). Using again the Fourier transform
and symmetrizing with respect to q → −q, we obtain

R2 =
∑

q

x†
q · V(2)(q) · xq =

∑
q

y†
q · M(2)(q) · yq, (48)

where V(2)(q) and M(2)(q) = T†
q · V(2) · Tq are (2Nm) ×

(2Nm) matrices.
While the operator R2 contains all combinations of the bi-

linear terms bμ,qb†
μ′,q, bμ,qbμ′,−q, b†

μ,−qb†
μ′,q, b†

μ,−qbμ′,−q, at

FIG. 5. Sketch of a hyperhoneycomb lattice of β-Li2IrO3. The
orthorhombic unit cell is defined by the crystallographic axes
{â, b̂, ĉ} related to the Cartesian axes {x̂, ŷ, ẑ} appearing in the spin
Hamiltonian by the following relations: x̂ = (â + ĉ)/

√
2, ŷ = (ĉ −

â)/
√

2, ẑ = −b̂. The five NN bonds of the J-K-� model are marked
in red for d ∈ {x, x′}, green for d ∈ {y, y′}, and blue for d ∈ {z}. Each
octahedral denotes to the IrO6 cage.

zero temperature only those corresponding to two creation op-
erators contribute to two-magnon scattering. Also, momentum
conservation requires that the momenta of the two magnons
must be opposite to each other, i.e., q′ = −q. This leads to

R2 =
∑

q

Nm∑
μ,μ′=1

M (2)
μ,μ′+Nm

(q)b†
μ,qb†

μ′,−q + H.c. (49)

Replacing in Eq. (38) (with R → R2) and using a Lehmann
spectral representation into the relevant two-magnon space
leads to the (zero temperature) two-magnon Raman intensity

I2(�) ∝
∑

q,μμ′

∣∣M (2)
μ,μ′+Nm

(q)
∣∣2

δ(� − ωμ(q) − ωμ′ (q)), (50)

which is the basis for our numerical calculations (with the ap-
propriate Lorentzian broadening as in the one-magnon case).

VI. APPLICATION TO β-Li2IrO3

We are now ready to apply the theory developed in the pre-
vious sections to compute the Raman intensity for β-Li2IrO3.
This compound crystallizes in a hyperhoneycomb structure,
with a conventional orthorhombic unit cell defined by the
crystallographic axes {â, b̂, ĉ}, see Fig. 5.

At zero field, β-Li2IrO3 orders magnetically below TN =
38 K. The magnetic structure is characterized by a non-
coplanar, incommensurate (IC) modulation, with propagation
wave vector Q= (0.57, 0, 0) (in orthorhombic frame units),
and two counter-rotating sets of moments [48]. According to
previous theoretical works, the magnetism of β-Li2IrO3 can
be accurately described by the J-K-� model of Eq. (5) with
J =0.4 meV, K =−18 meV and �=−10 meV [56,57,65–69].
Furthermore, it has been shown [65,66] that the IC order
of β-Li2IrO3 can be treated as a long-distance twisting of
a nearby commensurate period-three state with Q= 2

3 â (in
units 2π

a ). This state is amenable to a semianalytical treatment,
which delivers a very accurate representation of the ground
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FIG. 6. Linear spin wave spectrum along a high symmetry path
in the Brillouin zone of the orthorhombic unit cell (inset).

state properties and the magnon excitation spectrum [65–68].
For the latter, we take a magnetic supercell composed of three
orthorhombic unit cells along the a axis, and thus Nm = 48
spin sites [65]. The ensuing 48 magnon branches delivered
by the numerical diagonalization of HLSW is shown in Fig. 6
along a high symmetry path in the Brillouin zone of the or-
thorhombic unit cell [65,67]. Note that the spectrum features
a nonzero spin gap, which reflects the presence of anisotropic
exchange interactions and the absence of continuous transla-
tional symmetry.

Turning to the Raman operator and Eq. (32), we will need
the numerical values of the various quantities appearing in Eq.
(33). These include the vectors di j and d⊥

i j of Eq. (20), as well

as the parameters J (2), J ′(4), K (2), K (4), K ′(4), �(3), and h(3)
� . For

the former, there are five types of bonds in β-Li2IrO3, labeled
by x, x′, y, y′, and z (see Fig. 5), with

dx = d⊥
x′ = 1

2 [1,
√

2,−1],

d⊥
x = dx′ = 1

2 [1,−
√

2,−1],

dy = d⊥
y′ = − 1

2 [1,
√

2, 1], (51)

d⊥
y = dy′ = 1

2 [−1,
√

2,−1],

dz = [0, 0, 1], d⊥
z = [1, 0, 0],

in the orthorhombic frame. The remaining parameters appear-
ing in Eq. (32) depend on the hopping matrix elements t1,
t2 = t2/�pd, and t3, where �pd is the charge transfer energy,
and the interaction terms U2, JH , and λ. Fixing the latter to the
typical values of U2 = 1.8 eV, JH = 0.4 eV, and λ = 0.4 eV,
allows us to adjust t1, t2, and t3 so that we reproduce the values
of J , K , � mentioned above. This gives t1 = −0.042 eV,
t2 = 0.332 eV, and t3 = 0.190 eV, which are within the typical
range of density functional theory (DFT) calculations, see,
e.g., Ref. [70]. Furthermore, we assume that the incoming
light is off resonance and neglect the frequency of the in-
coming light, i.e., we set ωin = 0 in the expressions for the
Raman operator. With these assumptions and numerical es-
timates we arrive at: J (2) = 0.4 meV, J ′(4) = −101.797 meV,
K (2) = 3.49 meV, K (4) = −21.49 meV, K ′(4) = 210.757 meV,

�(3) = −10 meV, and h(3)
� = 14.615 meV. Quite remarkably,

the parameters J ′(4) and K ′(4) that are partly responsible for
the non-Loudon-Fleury Raman scattering, have much larger
magnitude compared to the corresponding values of J (2) and
K (2) + K (4) of the Loudon-Fleury terms. Similarly, the mag-
nitude of h(3)

� , which does not have any analog in the spin
Hamiltonian, is appreciably high as well. This tells us that the
Raman intensity (which scales quadratically with the parame-
ters) is dominated by the non-Loudon-Fleury scattering terms.
This significant result will be demonstrated explicitly below.

Having the numerical values of the various quantities
appearing in Eq. (32) we can now calculate the one- and two-
magnon Raman intensity of β-Li2IrO3 using Eqs. (46) and
(50), respectively. In particular, we will focus on scattering
geometries corresponding to incoming and outgoing light po-
larizations along the orthorhombic crystal axes. Among these
are the diagonal polarization channels where εin = εout = a
or b or c (which we will label by Raa, Rbb, and Rcc, respec-
tively), as well as off-diagonal polarization channels where,
e.g., εin = a and εout = b (which we label as Rab), etc. A
symmetry analysis based on the D2h point group2 shows that
Raa, Rbb, and Rcc transform according to the Ag irreducible
representation, while Rab, Rac, and Rbc transform as B1g, B2g,
and B3g, respectively [21,71].

One-magnon response. Figures 7(a)–7(b) show the one-
magnon Raman scattering intensities in the polarization
channels mentioned above, as obtained from numerical cal-
culations based on Eq. (46) with a Lorentzian broadening
parameter η = 0.5 meV. To disentangle the contributions
coming from the non-Loudon-Fleury terms we perform cal-
culations with [Fig. 7(b)] and without [Fig. 7(a)] these terms.
A quick inspection of the intensity scales in the two panels
demonstrates the dramatic impact of the non-Loudon-Fleury
terms announced above, namely that these terms dominate
the scattering. Another significant ramification of these terms
is that the sharp peak at � ∼ 3 meV, appearing in the ac-
polarization channel in Fig. 7(b), is absent from Fig. 7(a). This
one-magnon q = 0 peak, therefore, originates from the non-
Loudon-Fleury terms. We have checked, in particular, that
this peak stems from the magnetic dipole-active terms ∝ h(3)

� ,
see inset of Fig. 7(c). It is furthermore noteworthy that this
peak is absent in the remaining polarization channels shown
in Fig. 7(b), which can be used as a smoking-gun diagnostic
feature in experiments.3

The strong polarization dependence is not special to the
low-energy peak, but manifests in the higher-energy part of
the response as well, as shown in Fig. 7(b). Comparing with
Fig. 7(a), the non-Loudon-Fleury terms play a decisive role,
as they modify significantly the relative intensity and overall
shape of the high-energy peaks.

2The zero-field ground state of β-Li2IrO3 [48–50] breaks some of
the symmetries of the lattice [65,67], but the point group of this state
is isomorphic to D2h so we can still use this group for the analysis of
the Raman scattering channels.

3This peak has, in fact, been observed experimentally [37] and will
be discussed elsewhere.
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FIG. 7. One-magnon (a)–(b) and two-magnon (c)–(d) Raman intensities, computed with [(b) and (d)] and without [(a) and (c)] taking
into account the non-Loudon-Fleury scattering terms, see main text. Lines with different colors correspond to different polarization channels
(with the color scheme being consistent across all the panels). The inset of (b) shows the Raman response without the non-Loudon-Fleury,
magnetic-dipole term ∝ h(3)

� . The inset of (d) shows the two-magnon density of states ρ2 of Eq. (52).

Two-magnon response. We now turn to the two-magnon
intensities shown in Figs. 7(c)–7(d). As above, we disentangle
the contributions from the non-Loudon-Fleury terms by per-
forming calculations with [Fig. 7(d)] and without [Fig. 7(c)]
these terms. The intensities are computed using Eq. (50),
where the sum over q in Eq. (50) is carried out on a finite-size
grid of 25200 q points within the magnetic Brillouin zone,
and the Lorentzian broadening parameter is chosen to be
η = 0.6 meV.

Quite generally, the two-magnon response features a broad
continuum, mainly due to the fact that Eq. (50) involves a sum
over all q modes. This sum has the form of a convolution
between a polarization-dependent weight |M (2)(q)|2 and the
two-magnon density of states, defined as

ρ2(ω) =
∑

μ,μ′,q

δ(ω − ωμ(q) − ωμ′ (−q)) . (52)

The latter is calculated using a histogram method and is shown
for comparison in the inset of Fig. 7(d) and reproduces well
the bandwidth and overall shape of the response.

A quick inspection of the intensity scales in Figs. 7(c) and
7(d) shows that the two-magnon intensity too is dominated

by the non-Loudon-Fleury terms. Furthermore, these terms
change significantly the relative intensities of the various po-
larization channels. For example, the Raa channel features
the largest response, unlike the computed intensities based on
the Loudon-Fleury terms alone [Fig. 7(c)]. These significant
changes come with distinctive features, which can again be
tested experimentally.

Here we also note that the two-magnon intensities shown
in Figs. 7(c)–7(d) are obtained without taking into account
the effects of the final-state magnon-magnon interactions [36],
which might be not small given the complex nature of the
magnetic ordering in β-Li2IrO3. In principle, their effect can
be taken into account by computing the vertex corrections to
the bare Raman vertex in Eq. (49), although this is a tech-
nically rather tedious task due to the large number of magnon
bands in β-Li2IrO3. Qualitatively, we expect that these correc-
tions can lead to a shifting of the two-magnon peaks to lower
energies and to the formation of an even broader continuum
at the higher energies, similarly to the cases considered in
Refs. [4] and [10].

Finally, we point out that the numerical results presented
here correspond to the case where the incoming light is off
resonance. The case of resonance, i.e., when the frequency of
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the incoming photon is comparable to the charge gap, requires
further analysis [4,5].

VII. DISCUSSION

We have revisited the theory of magnetic Raman scatter-
ing in Mott insulators with strong spin-orbit coupling with
a special focus on Kitaev materials. A detailed considera-
tion of the precise photon-assisted, virtual hopping processes
that contribute to the magnetic Raman scattering reveals that
the Raman vertex R contains terms beyond those appearing
in the traditional Loudon-Fleury theory. Quite remarkably,
these non-Loudon-Fleury terms are shown to dominate the
scattering intensity in the three-dimensional Kitaev material
β-Li2IrO3 by at least two orders of magnitude. In addi-
tion, the non-Loudon-Fleury terms give rise to a qualitative
modification of the polarization dependence, with distinctive
signatures that can be tested experimentally. Most saliently, in
β-Li2IrO3 the non-Loudon-Fleury terms give rise to a sharp
magnetic dipole-active magnon peak at low energies, which
is absent in the traditional Loudon-Fleury theory. This peak
has been observed recently in the predicted ac-polarization
channel [37], lending strong support to the importance of the
non-Loudon-Fleury terms. The peak is shown to arise from
virtual tunneling processes involving both direct and ligand
mediated paths. These processes are of similar type with the
ones leading to the symmetric off-diagonal interaction �, but,
in the Raman vertex, they take the form of a bond-directional
magnetic dipole term. In particular, these processes involve
an intermediate hopping to the ligand (oxygen in β-Li2IrO3),
which does not conserve the projection of the total pseudospin
along the corresponding axis (e.g., Sz

i +Sz
j for the z type of

bonds).
On a broader perspective, we would also like to emphasise

that our theory is fully applicable to any strong spin-orbit
coupled Mott insulator, in which the magnetic moments jeff =
1/2 come from the five electrons (or one hole) on the t2g

orbitals. For Kitaev materials, in particular, we even expect
similar quantitative results with the ones presented here for
β-Li2IrO3, as the underlying local geometry (and the effective
spin Hamiltonian description) of β-Li2IrO3 is common in
all Kitaev materials. Specifically, we expect the same type
of non-Loudon-Fleury terms (including the magnetic dipole
term ∝ h(3)

� ) to be present generically across all Kitaev ma-
terials, and we also anticipate that these will dominate the
scattering intensity, given the similar order of magnitude of
the microscopic parameters U2, JH , λ, and �pd. The presented
analysis therefore underpins a drastic change of paradigm
for the understanding of Raman scattering in materials with
strong spin-orbit coupling and multiple exchange paths. In
addition, it calls for a general reevaluation of Raman scatter-
ing in Kitaev materials of current interest, as this would help
to elucidate their correct microscopic description and their
relative proximity to the sought-after quantum spin liquid.

Note added. We recently became aware that a modification
of exchange interactions similar to the one presented here for
R has been discussed for Kitaev materials under magnetic
field [72] and circularly polarized light [73]. In particular,
Ref. [72] reports an effective magnetic field term similar to
h(3)

� , which also arises from mixed hopping terms.
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APPENDIX: TECHNICAL DETAILS OF THE DERIVATION
OF THE RAMAN OPERATOR

1. Raman operator from the processes involving the
direct hoppings

Since it is more convenient to represent the hopping matrix
Ht in the orbital basis, we project the jeff = 1/2 pseudospin
degree of freedom to the orbital basis using∣∣∣∣ jz

eff = +1

2

〉
= − 1√

3
(|X,↓〉 + i|Y,↓〉 + |Z,↑〉)∣∣∣∣ jz

eff = −1

2

〉
= − 1√

3
(|X,↑〉 − i|Y,↑〉 − |Z,↓〉). (A1)

Next we notice that there are 15 intermediate states |Dμ〉
with two holes on the iridium ion, which can be obtained by
the diagonalization of Hint and can be easily written in the
two-hole orbital basis at the zero SOC limit λ → 0. Explicitly,
we denote the two-hole orbital basis in the way given in the
Table IV.

There are several processes that contribute to the spin in-
teraction and we consider those involving the direct hopping
only. These processes give rise to the effective spin coupling at
the second order of perturbation theory. The half of the direct
hopping path projected into all possible orbital channels is
shown in Fig. 8. In this process, the hopping starts from the
Ir1 ion from one of the jz

eff = ±1/2 states and ends on Ir2 ion
in one of the 15 states belonging to the two-hole orbital basis.

For example, in Fig. 8(a), we show the action of the
hopping term on the |ψ1〉 state, which we denote as
Ht |ψ1〉 ≡ Ht | + 1/2; +1/2〉. The hole on Ir1 is first projected
to the orbital basis |X ↓〉, |Y ↓〉 and |Z ↑〉. Each of these states
overlaps with the two-hole states on Ir2. Recalling that we are
interested only on those two-hole states, in which one hole
is the original hope on the | jz

eff = 1/2〉2, we should take into
account the projection of | jz

eff = 1/2〉2 to the orbital basis. The
product of weights from the projection gives the weights for
each channel of hopping in the orbital basis. The sum of all the
contributions allows us to explicitly compute the matrix

TABLE IV. Intermediate, two-hole (Slater determinant) states.

|X ↑, X ↓〉 ≡ |1〉 |Y ↑, Z ↑〉 ≡ |6〉 |X ↓,Y ↑〉 ≡ |11〉
|Y ↑,Y ↓〉 ≡ |2〉 |X ↓,Y ↓〉 ≡ |7〉 |X ↑, Z ↓〉 ≡ |12〉
|Z ↑, Z ↓〉 ≡ |3〉 |X ↓, Z ↓〉 ≡ |8〉 |X ↓, Z ↑〉 ≡ |13〉
|X ↑,Y ↑〉 ≡ |4〉 |Y ↓, Z ↓〉 ≡ |9〉 |Y ↑, Z ↓〉 ≡ |14〉
|X ↑, Z ↑〉 ≡ |5〉 |X ↑,Y ↓〉 ≡ |10〉 |Y ↓, Z ↑〉 ≡ |15〉

144412-11



YANG, LI, ROUSOCHATZAKIS, AND PERKINS PHYSICAL REVIEW B 104, 144412 (2021)

FIG. 8. Direct hopping from one-hole state on Ir1 and Ir2 to the intermediate two-hole states (denoted in Table IV) on Ir2 from one of four
possible |ψn〉 ground states: (a) |ψ1〉 ≡ | + 1/2; +1/2〉, (b) |ψ4〉 ≡ | − 1/2; −1/2〉, (c) |ψ3〉 ≡ | + 1/2; −1/2〉, and (d) |ψ2〉 ≡ | − 1/2; +1/2〉.

element 〈Dμ|Ht |ψ1〉, where |Dμ〉 denotes the two-hole
intermediate state in the μ = 1, 2, . . . , 15th state entering
into Eq. (21). The same calculation can be performed for
other states Ht |n〉 as illustrated in Figs. 8(b)–8(d). Next we
compute 〈Dμ|Ht |n〉 and 〈Dμ|Ht |m〉∗ to form the complete
hopping path. The process starting from Ir2 gives exactly the
same result.

When we consider the Raman operator, we should recall
that the incoming light must couple to the hopping on the first
bond, and the outgoing light must couple to the hopping on
the last bond of the path. With only two hopping bonds in
the direct hopping path, the polarization factor can only be
(εin · di j )[εout · (−di j )], and so we can compute the Raman
operator originated from the direct hopping as

Rdir
〈i j〉z

= − 2ζ (εin · di j )(εout · di j )
∑
n,n′

∑
μ

〈Dμ|Ht,i j |ψn〉∗ · 〈Dμ|Ht,i j |ψn′ 〉
2E1h + ωin − (E2h + E0h)

|ψn〉〈ψn′ |, (A2)

where εout as the outgoing light polarization, and |ψn〉, |ψn′ 〉 again represent the four states of the low-energy sector of two
magnetic ions, namely, | 1

2 , 1
2 〉, | 1

2 ,− 1
2 〉, | − 1

2 , 1
2 〉, | − 1

2 ,− 1
2 〉.

2. Raman operator from the processes involving the oxygen-mediated hopping

There are eight paths that include the oxygen-mediated hopping. These processes give rise to the effective spin coupling at
the fourth order of perturbation theory, and the sum over all eight contributions gives us the superexchange Hamiltonian with the
dominant Kitaev interaction [55,61,63]. Each of these paths also gives the contribution to the Raman operator (24), which apart
from the corresponding polarization prefactor is proportional to

HO
� = Ht GO Ht GD Ht GO Ht = Ht

|Oν ′ 〉〈Oν ′ |
ωin − �pd

Ht

(∑
μ

|Dμ〉〈Dμ|
2E1h + ωin − (E2h + E0h)

)
Ht

|Oν〉〈Oν |
ωin − �pd

Ht

=
∑
n,n′

∑
μ

(〈ψn|Ht |Oν ′ 〉〈Oν ′ |Ht |Dμ〉)(〈Dμ|Ht |Oν〉〈Oν |Ht |ψn′ 〉)

[2E1h + ωin − (E2h + E0h)](ωin − �pd)2
|ψn〉〈ψn′ |. (A3)

The choice of |Oν〉 determines whether the upper path or the lower path is considered [see Figs. 9(a) and 9(f), respectively]. The
explicit construction of Ht |Oν〉〈Oν |Ht |ψn′ 〉 with all projection factors is obtained on the similar way as for the paths with the
direct hopping only and is shown in Fig. 9.
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FIG. 9. Oxygen mediated hopping from one-hole state on Ir1 and Ir2 to the intermediate two-hole states (denoted in Table IV) on Ir2 from
one of four possible |ψn〉 ground states. (b)–(e) represent the hopping via the upper path (a) and (g)–(j) represent the hopping via the lower
path (f).

Once we have 〈Dμ|Ht |Oν〉〈Oν |Ht |ψn′ 〉 computed for all ν and β, we can assemble the hopping path for the oxygen-mediated
hopping as

(〈Dμ|Ht |Oν ′ 〉〈Oν ′ |Ht |ψn〉)∗ · (〈Dμ|Ht |Oν〉〈Oν |Ht |ψn′ 〉).

This gives us the following expressions for HO
� :

HO
� =

∑
n,n′

∑
μ

(〈Dμ|Ht |Oν ′ 〉〈Oν ′ |Ht |ψn〉)∗ · (〈Dμ|Ht |Oν〉〈Oν |Ht |ψn′ 〉)

(2E1h + ωin − (E2h + E0h))(ωin − �pd)2
|ψn〉〈ψn′ |, (A4)

where the combination of the indices ν and ν ′ determines the path involved in the process; e.g., when ν = 1 and ν ′ = 1, the hole
only hops through O1 hence giving HO

1 . Symmetry leads to the following equivalence relations between HO
� corresponding to

the processes starting from Ir2 and processes starting from Ir1 ions:

HO
2 ∼ HO

7 ,HO
4 ∼ HO

3 ,HO
6 ∼ HO

5 ,HO
8 ∼ HO

1 , (A5)

in which the equivalence relation means the equality of matrix elements involving ψ2 and ψ3 under interchanging ψ2 �→ψ3 and
ψ3 �→ψ2. For example, 〈ψ2|HO

2 |ψ2〉 = 〈ψ3|HO
7 |ψ3〉, 〈ψ2|HO

2 |ψ3〉 = 〈ψ3|HO
7 |ψ2〉, and so on. Summing up over all paths (both

starting at Ir1 and Ir2) with the corresponding polarization prefactors in the way given in Eq. (3) leads to the final expression
Eq. (26) for the Raman operator Rmed

〈i j〉z
coming from oxygen-mediated processes.

3. Raman operator from the processes involving mixed direct and the oxygen-mediated hopping

The mixed hopping can be viewed as the combination of the direct hopping and the oxygen-mediated hopping, so we can
compute Hm

i associated with each path as

Hm
� =

∑
n,n′

|ψn〉〈ψn|Ht G Ht G Ht |ψn′ 〉〈ψn′ | =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
n,n′

∑
μ

(〈Dμ|Ht |ψn〉)∗ · (〈Dμ|Ht |Oν〉〈Oν |Ht |ψn′ 〉)

(2E1h + ωin − (E2h + E0h))(ωin − �pd)
|ψn〉〈ψn′ |

∑
n,n′

∑
μ

(〈Dμ|Ht |Oν〉〈Oν |Ht |ψn〉)∗ · (〈Dμ|Ht |ψn′ 〉)

(ωin − �pd)(2E1h + ωin − (E2h + E0h))
|ψn〉〈ψn′ |

,

where the first case represent the path starting from the oxygen-mediated hopping and the second one from the direct hopping.
The overlap matrix elements 〈. . . 〉 in (A6) are computed either for the direct hopping process or for the oxygen-mediated hopping
process, so no additional consideration needs to be taken here. The equivalence relations between the processes starting from Ir2
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and from Ir1 are given by

Hm
2 ∼ Hm

5 ,Hm
4 ∼ Hm

7 ,Hm
6 ∼ Hm

1 ,Hm
8 ∼ Hm

3 , (A6)

where the equivalence has the same meaning as in Eq. (A5) above. Finally, summing up over all paths with the corresponding
polarization factors leads to the final expression of Eq. (30) for the Raman operator Rmix

〈i j〉z
coming from the mixed processes.

4. Analytic expressions of the prefactor constants in the Raman operator

Here we provide the analytic expressions for the prefactor constants entering the Raman operator. For simpler algebra
manipulation, the calculations are done using the total-J basis (e.g., |J, Jz〉) instead of the orbital basis. The details of using
this basis can be found at [62]. Denoting

f1 = − 1

3

(
JH + 3(U1 + 3λ − ωin)

6J2
H + JH (U1 + 4λ − ωin) − (U1 − ωin)(U1 + 3λ − ωin)

)
, (A7)

f2 =4

3

(
3JH − U1 − 3λ + ωin

6JH − 2U1 − 3λ + 2ωin

)
JH

6J2
H − JH (8U1 + 17λ − 8ωin ) + (2U1 + 3λ − 2ωin)(U1 + 3λ − ωin)

, (A8)

f3 = 7JH − 3U1 − 9λ + 3ωin

6J2
H − JH (8U1 + 17λ − 8ωin ) + (2U1 + 3λ − 2ωin)(U1 + 3λ − ωin)

, (A9)

f4 = 1

6JH − 2U1 − 3λ + 2ωin
, (A10)

the various coupling constants take the following form:

J (2) = 4
9 f1 (2t1 + t3)2 − 8

9 f2
(
9t2

4 + 2(t1 − t3)2), (A11)

K (2) = 8
3 f2

(
3t2

4 + (t1 − t3)2), (A12)

�(2) = 8 f2 t2
4 , �′(2) = − 8

3 f2 t4(t1 − t3), (A13)

�(3) = 16
3 f2 t2(t1 − t3), �′(3) = 8 f2 t2t4, (A14)

K (4) = −8 f2 t2
2 , (A15)

where we have introduced t4 for the general case with lower
bond symmetry (in the main text t4 = 0). In the limit ωin → 0,
these coupling constants reduce to the superexchange cou-
pling constants for the nearest-neighbor J-K-�-�′ model, and
are in agreement with expressions given in Ref. [74]. The
remaining coupling constants that are associated with the non-
Loudon-Fleury processes take the form:

J ′(4) = 16
9 ( f2 − f1)t2

2 , (A16)

K ′(4) = 8
9 (4 f1 − f2)t2

2 , (A17)

h(3)
� = 8

3

(
1
2 f2 + 1

3 f4
)
t2(t1 − t3), (A18)

h′(3)
� = 1

3 ( f3 + f4)t2t4, (A19)

�̃(3) = − 2
9 ( f3 − 3 f4)t2t4 . (A20)

The last two coupling constants, which are associated with
t4, give rise to the following additional terms in the Raman
operator:

−1

2

∑
〈i j〉ν

(Pd⊥d − Pdd⊥ )ih′(3)
�

(
Sβν

i + Sγν

i + Sβν

j + Sγν

j

)
(A21)

−1

2

∑
〈i j〉ν

(Pd⊥d + Pdd⊥ )�̃(3)(Sαν

i (Sβν

j − Sγν

j )

+ (Sβν

i − Sγν

i )Sαν

j

)
, (A22)

which are ignored in the main text where t4 = 0.
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