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Quantum magnetic oscillations in Weyl semimetals with tilted nodes
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A Weyl semimetal (WSM) is a three-dimensional topological phase of matter where pairs of nondegenerate
bands cross at isolated points in the Brillouin zone called Weyl nodes. Near these points the electronic dispersion
is gapless and linear. A magnetic field B changes this dispersion into a set of positive and negative energy Landau
levels which are dispersive along the direction of the magnetic field only. In this set, the n = 0 Landau level is
special since its dispersion is linear and unidirectional. The presence of this chiral level distinguishes Weyl from
Schrödinger fermions. In this paper we study the quantum oscillations of the orbital magnetization and magnetic
susceptibility in Weyl semimetals. We generalize earlier works on these de Haas–van Alphen oscillations by
considering the effect of a tilt of the Weyl nodes. We study how the fundamental period of the oscillations in
the small B limit and the strength of the magnetic field B1 required to reach the quantum limit (i.e., where the
Fermi level is lying in the chiral level) are modified by the magnitude and orientation of the tilt vector t. We
show that the magnetization from a single node is finite in the B → 0 limit. Its sign depends on the product
of the chirality and sign of the tilt component along the magnetic field direction. We also study the magnetic
oscillations from a pair of Weyl nodes with opposite chirality and with opposite or identical tilt. Our calculation
shows that these two cases lead to a very different behavior of the magnetization in the small and large B limits.
We finally consider the effect of an energy shift ±�0 of a pair of Weyl nodes on the magnetic oscillations. We
assume a constant density of carriers so that both nodes share a common Fermi level and the density of carriers
is constantly redistributed between the two nodes as the magnetic field is varied. Our calculation can easily be
extended to a WSM with an arbitrary number of pairs of Weyl nodes.
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I. INTRODUCTION

A Weyl semimetal (WSM) [1] is a three-dimensional topo-
logical phase of matter where pairs of nondegenerate bands
cross at isolated points in the Brillouin zone called Weyl
nodes. Near these points, the electronic dispersion is gapless
and linear in momentum and the excitations satisfy the Weyl
equation, a two-component analog of the Dirac equation. Each
Weyl node has a chirality index χ , an integer reflecting the
topological nature of the band structure. For the Weyl points
to be stable, either time-reversal or inversion symmetry or
both must be broken so that the two bands that cross are
nondegenerate.

Weyl semimetals show a number of interesting transport
properties, such as an anomalous Hall effect [2] for a WSM
with broken time-reversal symmetry, a chiral-magnetic ef-
fect [3] for Weyl semimetals that break inversion symmetry,
gapless surface states called Fermi arcs [4], and a chiral
anomaly leading to a negative longitudinal magnetoresis-
tance [5].

A magnetic field replaces the linear dispersion by a set
of positive (n > 0) and negative (n < 0) energy levels. These
Landau levels are dispersive along the direction of the mag-
netic field. For n �= 0 and in the simplest case (no tilt or energy
shift of the nodes), the energy of each level is En �=0(k) =
(h̄vF /�)sgn(n)

√
k2�2 + 2|n|, where k is a wave vector in the

direction of the magnetic field, vF is the Fermi velocity, and

� = √
h̄/eB is the magnetic length with B the magnetic field.

The n = 0 Landau level is special since its dispersion is
linear, unidirectional, and independent of the magnetic field,
i.e., En=0(k) = −χ h̄vF k, where χ is the chirality index. The
presence of this chiral level affects many properties of Weyl
semimetals such as the optical absorption spectrum which is
different from that of Schrödinger or Dirac fermions [6,7] or
the Faraday and Kerr effects [8–10].

The magnetic susceptibility of Weyl semimetals also
shows unusual characteristics such as a diverging diamagnetic
susceptibility when the chemical potential is close to the neu-
trality point in the limit B → 0, a spontaneous magnetization
in this limit if the nodes are tilted in momentum space and
a phase shift of the de Haas–van Alphen oscillations with
respect to those due to Schrödinger fermions. The magnetic
susceptibility of Weyl and Dirac semimetals (and more gen-
erally near points in the Brillouin zone of crystals where
bands are degenerate [11,12]) has been studied by a number
of authors. A recent review (up to the year 2019) is given in
Ref. [13].

In the present paper we complement these earlier works by
considering Weyl nodes which are shifted in energy and/or
tilted in momentum space. We study the contribution of the
added electrons or holes to the orbital magnetization and
magnetic susceptibility. It has been shown before that a tilt
modifies the dynamical conductivity [14] and the selection
rules for electromagnetic absorption [15]. It can lead to
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interesting effects such as providing a signature of the valley
polarization [7] and the chiral anomaly [8], induces dichro-
ism [16], and an anisotropic chiral magnetic effect [17]. In the
present work we show that a tilt modifies the behavior of the
quantum oscillations of the orbital magnetization and mag-
netic susceptibility and renders them anisotropic with respect
to the orientation of the tilt vector. We use a mostly numerical
approach so that we can compute these oscillations for an
arbitrary magnetic field. We discuss the period P of the oscil-
lations in the small magnetic field limit (i.e., the fundamental
period) as well as the value of the magnetic field B1 required to
reach the quantum limit where the Fermi level is lying in the
chiral n = 0 Landau level. Both quantities can be measured
by torque magnetometry experiments [18,19]. For a single
Weyl node, the magnetization is finite in the B → 0 limit
and its sign depends on the product of the chirality χ = ±1
and sign of the component of the tilt along the magnetic field
direction tz. Hence, at least two nodes with opposite values of
the product χtz are necessary for the magnetization to vanish
in the classical (B = 0) limit as required on physical ground.

After studying the single node case, we consider the mag-
netic oscillations from a pair of Weyl nodes with opposite
chirality. We compute the magnetic oscillations for two nodes
with the same or opposite value of the tilt component tz. Since
the density of states is not the same for positive or negative
value of tz, the density of carriers in each node is also different
for a given Fermi level. Indeed, the total density of carriers
(electrons minus holes, measured with respect to the vacuum
state), and not the chemical potential, is fixed in our calcula-
tion, so that the two nodes share a common Fermi level. The
density of carriers in each node is constantly readjusted as the
magnetic field is varied to produce the quantum oscillations.
This re-equilibration of the carrier density and the dependence
of the fundamental period on the tilt vector leads to a complex
behavior for the magnetic oscillations. We complete our study
by discussing the behavior of the oscillations from a pair of
Weyl nodes shifted in energy by a bias ±�0 but untilted.
For large �0, the density in the two nodes can be made very
different thus modifying more importantly the pattern of the
quantum oscillations.

Our paper is organized as follows. In Sec. II we describe
the formalism needed to compute the magnetization and
differential magnetic susceptibility. We study the magnetic
oscillations from a single node in Sec. III and from a pair of
Weyl nodes in Sec. IV. We conclude in Sec. V.

II. FORMALISM

A. Landau levels for a WSM in a magnetic field

The Hamiltonian for the electrons in a node of a WSM at
wave vector Qτ in the Brillouin zone is given for small wave
vector k measured from Qτ by

hτ (k) = h̄vF,τ (−χτσ · k + Q0,τ σ0 + tτ · kσ0), (1)

where τ = 1, 2, 3, . . . is the node index. Each node can have
its own Fermi velocity vF,τ , chirality χτ , energy bias �0,τ =
h̄vF Q0.τ and tilt tτ (a unitless vector). In this equation, σ is
a vector of Pauli matrices in the 1/2 pseudospin state of the
bands at their crossing point and σ0 is the 2 × 2 unit matrix.
We restrict our analysis to type I WSMs where |tτ | < 1 and

assume that the energy bias �0,τ and the range of |k| are small
enough for the dispersion to remain linear so that we can work
in the confine of the continuum model. Hereafter and until
Sec. IV we study the quantum oscillations of a single node.
We thus drop the index τ to simplify the notation.

In a magnetic field B = B0̂z, the kinetic energy is quantized
into Landau levels with index n = 0,±1,±2, . . . . Level n =
0 is called the chiral Landau level and its dispersion is given
by [15,20–22]

en=0(k) = Q0� + (tz + χβ )k�, (2)

where, from now on, k is a wave vector along the magnetic
field direction. For Landau levels n �= 0, the dispersion is

en �=0(k) = Q0� + tzk� + sgn(n)β
√

k2�2 + 2β|n|, (3)

where sgn is the signum function and we have defined

tz = t cos θ, (4)

t⊥ = t sin θ, (5)

β =
√

1 − t2
⊥, (6)

with � = √
h̄/eB0 the magnetic length and θ the polar angle of

the tilt vector. All energies are given in units of h̄vF /� unless
specified otherwise. The dispersion of the Landau levels and
the other physical quantities that we compute in this paper
do not depend on the azimuthal angle ϕ of the tilt vector.
Figure 1 shows the Landau level dispersion for a WSM with
two nodes of opposite chirality χ1 = −χ2 = 1 and (unitless)
bias Q0,1� = −Q0,2� = 0.5 for (a) same tilt t1,z = t2,z = 0.4
and (b) opposite tilt t1,z = −t2,z = 0.4 A finite value of t⊥
(positive or negative) decreases the separation in energy be-
tween adjacent Landau levels (not shown in the figure). A
positive (negative) bias Q0� shifts the Landau levels upward
(downward) in energy.

The minimal (maximal) energy in level n > 0 (n < 0) is
given by

min[en>0] = Q0� +
√

2βγ n, (7)

max[en<0] = Q0� −
√

2βγ |n|, (8)

where we have defined

γ = 1 − t2. (9)

These extrema occur at wave vector

(k�)ext = −sgn(n)

√
2|n|β

γ
tz. (10)

The energy bias in real energy units �0 is independent of
the magnetic field while the unitless energy bias Q0� varies
with the magnetic field according to the relation

Q0� = �0

h̄vF /�
. (11)

The dispersion En=0 = h̄vF
�

en=0 of the chiral level in real en-
ergy units is independent of the magnetic field.
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FIG. 1. Energy in units of h̄vF /� for the first Landau levels for
two nodes with opposite chirality and bias. Parameters are χ1 =
−1, Q0,1� = 0.5 for the node on the left and χ2 = +1, Q0,2� = −0.5
for the node on the right and (a) t1,z = t2,z = 0.4 and (b) t1,z =
−t2,z = 0.4. The blue lines and the black dots are the chiral level
and Dirac point in each node. The separation between the nodes is
arbitrary.

B. Density of states

At energy e, the level index of the highest partially occu-
pied Landau level in each node is

nmax(e) = sgn(e − Q0�)

⌊
(e − Q0�)2

2βγ

⌋
, (12)

where �� is the floor function.
The density of states (DOS) g(e) per unit volume V is

g(e) = 1

V
Nϕ

∑
n,k

δ

(
h̄vF

�
[e − en(k)]

)

= α

β + χtz
+

nmax(e)∑
n=1

∑
j=±1

α
(e − Q0�)∣∣tz + βkn, j�√
k2

n, j�
2+2βn

∣∣
+

−1∑
n=nmax(e)

∑
j=±1

α
(Q0� − e)∣∣tz − βkn, j�√
k2

n, j�
2+2β|n|

∣∣ , (13)
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FIG. 2. Density of states as a function of the energy e for a single
node with zero bias, chirality χ = −1, and for tz = ±0.4. The black
line is the B = 0, tz = ±0.4 result which does not depend on the sign
of tz.

where the constant α is defined by

α = 1

4π2�3

1

h̄vF /�
. (14)

(Note that β + χtz > 0 for all angles θ .) Each Landau level
(n, k) has a degeneracy given by Nϕ = S/2π�2, where S is
the area of the WSM perpendicular to the magnetic field. In
Eq. (13) the wave vectors kn,±� are defined by

kn,±� = − 1

γ
(e − Q0�)tz ± β

γ

√
(e − Q0�)2 − 2|n|βγ . (15)

The kn,±� are the two k points in each level n �= 0 where
en(kn,±�) = eF with eF the unitless Fermi level. At a band
extremum they merge into a single point with wave vector
kn, j=±� = (kn�)ext given by Eq. (10). At this particular point,
the denominator in the third line of Eq. (13) goes to zero and
the density of states diverges as shown in Fig. 2.

At zero tilt and bias, Eq. (13) reduces to the known re-
sult [23]

g(e) = α

[
1 + 2|e|

|nmax(e)|∑
n=1

1√
e2 − 2|n|

]
, (16)

and at zero magnetic field to

g(E ) = 1

2π2

(E − �0)2

(h̄vF )3

1

(1 − t2)2
, (17)

which is represented by the black line in Fig. 2.
The term in the second line of Eq. (13) is the contribution

of the chiral level to the density of states. It is independent
of the energy but increases linearly with the magnetic field.
The density of states depends on the chirality and tilt vector
only through the product χtz only. As for the contribution
of the n �= 0 levels, it can be deduced from Eq. (3) and the
summation over k in Eq. (13) that it is independent of the
sign of tz because of the symmetry relation en �=0(k, tz, Q0�) =
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en �=0(−k,−tz, Q0�). It is also independent of the chirality in-
dex. It is thus convenient to define the density of states for a
node as the sum of the two contributions:

g(e) = g0,χ + g>(e − Q0�), (18)

where g>(e) is the density of states from levels n �= 0 defined
with Q0 = 0 and

g0,χ = α

β + χtz
(19)

is the contribution of the chiral level.
Figure 2 shows the sawtooth behavior of the density of

states as a function of the unitless energy e for a single node
with zero bias, chirality χ = −1, and for tz = ±0.4. The den-
sity of states from the chiral level is reduced (increased) from
its tz = 0 value when χtz > 0 (χtz < 0). Equation (7) shows
that the gap between the positive and negative energy levels
is reduced by a finite value of |t|. A finite bias only shifts the
function g(e) globally to e > 0 (e < 0) for Q0 positive (neg-
ative). The separations between the square root singularities
in the density of states scale as

√
B for a Weyl fermions in

contrast with three-dimensional Schrödinger fermions where
it increases linearly with the magnetic field.

C. Magnetization and magnetic susceptibility

Throughout our paper we work at T = 0 K so that the
magnetization per electron in units of the Bohr magneton
μB = eh̄/2me (where me is the bare electron mass) is obtained
by taking the derivative of the electronic energy per electron
U (which we define below) with respect to the magnetic field
at constant density:

m = − 1

μB

∂U

∂B

∣∣∣∣
ne

. (20)

Differentiating the energy a second time gives the (differ-
ential) magnetic susceptibility per electron in units of Bohr
magneton per Tesla:

χm = − 1

μB

∂2U

∂B2

∣∣∣∣
ne

= ∂m

∂B

∣∣∣∣
ne

. (21)

III. MAGNETIC SUSCEPTIBILITY FROM A SINGLE
WEYL NODE

In this section we derive the magnetic oscillations from the
electrons in a single node. We can set Q0 = 0 in all formulas
since shifting the zero of energy (the Dirac point) of a node
when its density ne is fixed does not change its magnetization
or susceptibility.

A. Fermi level and density of carriers

The vacuum state is defined as the filled valence band of the
Dirac cone. We define the carrier density with respect to that
vacuum state. It is positive for electrons (eF > 0) and negative
for holes (eF < 0). According to Eqs. (7) and (8), the Fermi
level is in the chiral level when |eF | <

√
2βγ and intersects

the Landau level n �= 0 when

|eF | �
√

2|n|βγ . (22)

The density of carriers is related to the chemical potential by
the equation

ne = h̄vF

�

∫ eF

0
g(e)de

= 1

4π2�3

eF

χtz + β
+ 
(eF )

4π2�3

n=nmax(eF )∑
n=1

�n(eF )

− 
(−eF )

4π2�3

n=−1∑
n=nmax(eF )

�n(eF ), (23)

where we have defined

�n(e) = kn,+�(e) − kn,−�(e) = 2
β

γ

√
e2 − 2|n|βγ . (24)

The oscillations of the Fermi level eF (B) with magnetic field
are found by solving Eq. (23) with ne fixed. A numerical
evaluation shows that, when B → 0, Eq. (23) reduces to the
classical result

EF = sgn(ne)h̄vF [6π2
(
1 − t2

)2|ne|]1/3. (25)

B. Electronic energy

At zero temperature, the kinetic energy per carrier is

U = 1

|ne|
(

h̄vF

�

)2 ∫ eF

0
g(e)ede. (26)

It is positive for both electron (ne > 0, eF > 0) or hole (ne <

0, eF < 0) carriers. Using the definition of the density of
states, the energy becomes

U = 1

2
ζ

e2
F

β + χtz
+ ζ
(eF )

nmax(eF )∑
n=1

∫ kn,+�(eF )

kn,−�(eF )
en(x)dx

− ζ
(−eF )
n=−1∑

n=nmax(eF )

∫ kn,+�(eF )

kn,−�(eF )
en(x)dx, (27)

where we have defined

ζ = h̄vF /�

4π2|ne|�3
= 0.385

B2

|ne|vF (meV). (28)

We define ne and vF as the unitless carrier density and Fermi
velocity by ne = ne × 1022 m−3 and vF = vF × 105 m/s. In
our numerical calculation we use vF = 3 and ne = 2. For
comparison, in the Weyl semimetal TaAs, vF ≈ 3.6 and ne ≈
0.42 for the W1 nodes and ne ≈ 0.00105 for the W2 nodes.

The integrals in Eq. (27) can be evaluated analytically to
give ∫

en(x)dx = 1

2
x2tz + 1

2
sgn(n)βx

√
x2 + 2β|n|

+β2n ln(x +
√

x2 + 2β|n|). (29)

Equation (27) reduces to the energy result given by Eq. (33)
of Ref. [23] calculated in the absence of tilt and bias. At
equal density, the energy U is the same for electron and hole
carriers. The magnetization and susceptibility are then also
the same and we can, without loss of generality, consider only
electron carriers for the rest of this section.
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FIG. 3. (a) Magnetic susceptibility at zero bias from a single
node for different chiralities and sign of the z component of the
tilt vector. The green line is for a node where the chiral level has
been artificially removed. The large B behavior is shown in the
inset. (b) Magnetisation for a node with chirality −1 and tilt vector
tz = 0, 0.4, −0.4 showing the different behaviors in the small B limit.

Figure 3 shows an example of quantum oscillations of the
magnetic susceptibility and magnetization for χ = ±1, tz =
0,±0.4, and ne = 2. The oscillations are identical for two
nodes with the same sign of the product χtz. For the suscep-
tibility (magnetization) they increase (decrease) in amplitude
as 1/B increases. Each discontinuity in the slope of the oscil-
lations indicates a transition of the Fermi level from n to n + 1
if 1/B increases. At high magnetic field, the WSM enters the
quantum regime where the Fermi level intersects only the
chiral level. In this regime the magnetization is positive and
increases as 1/B2 while the susceptibility increases as 1/B3

(see below where we derive these results). We denote the
critical magnetic field where the WSM enter the quantum limit
by B1 and study its behavior in the next section.

To see the importance of the chiral level, we show (the
green curve in Fig. 3) the behavior of the susceptibility when

the chiral level is artificially removed from the calculation.
Note that, in this case, the first discontinuity near 1/B ≈
0.4 T−1 corresponds to the transition of the Fermi level from
n = 1 to n = 2 and not from n = 0 to n = 1 as in real WSM.
With no chiral level, the oscillations are phase shifted with
respect to those of a real WSM. Their large B behavior is also
different. Without the chiral level, the susceptibility is positive
instead of negative at large B as shown in the inset of Fig. 3.
Moreover, at large B, the electrons condense at the bottom of
the n = 1 level so that the susceptibility χm ∼ B3/2. The large
B behavior of χm in the WSM can also be contrasted with
that of the three-dimensional Schrödinger fermions where
χm ∼ B−4.

The magnetization goes to zero at small B in the absence
of a tilt as expected on physical grounds. When χtz < 0,
however, the magnetization tends to a constant positive value
m0 at small B and inversely if χtz > 0 where it tends to −m0.
In all cases, however, the magnetization due to the added
carriers increases linearly with B at small B and the magnetic
susceptibility χ = dm/dB > 0. The response is paramag-
netic. For a WSM with two nodes of opposite chirality, the
minimal number of nodes required by the Nielsen-Ninomiya
theorem [24], both nodes would need to have the same tilt
in order for the magnetization to vanish in the B → 0 limit.
This is not possible, however, if inversion symmetry is to be
preserved since opposite tilts are then required. There would
thus be a spontaneous magnetization in this case. To preserve
time-reversal symmetry, at least four nodes are required and
the summation of χtz over these nodes gives zero hence no
spontaneous magnetization. This spontaneous magnetization
has been discussed before (see Ref. [13]).

We can consider a Dirac node as two Weyl points of op-
posite chiralities but with the same tilt located at the same
wave vector k0 in the Brillouin zone. From the previous
paragraph, the spontaneous magnetization is then zero for a
Dirac node. A Dirac node has two chiral levels (n = 0) with
opposite chiralities and the Landau levels n �= 0 are twofold
degenerate in spin. Apart from this degeneracy, these n �= 0
levels have the same dispersion than the Landau levels in
a Weyl node (assuming no energy bias). The Weyl node,
however, has only one chiral level. The different behavior with
respect to the spontaneous magnetization thus comes from the
chiral level, i.e., from the first term on the right-hand side of
Eq. (27). For a Weyl node, the energy of the electron gas in

the n = 0 level is UW = ζ
e2

F /2
β+χtz

, while for a Dirac node it is

UD = ζ
e2

F /2
β+χtz

( 1
β+χtz

+ 1
β−χtz

). We can write

UW = 1

2
UD − 1

2
χtzζ

e2
F /2

β2 − t2
z

, (30)

so that the magnetization of a Weyl node is half that of a Dirac
node but with a correction that depends on the product χtz.
(We recover in this way Eq. (36) of Ref. [13].)

To obtain the magnetization of the WSM and not just that
of the added carriers, one must also consider the contribution
of the filled states in the valence band (the vacuum). This
contribution has been studied in a number of papers (for a
review, see Ref. [13]). It is found that the occupied states in the
valence band are responsible for a giant diamagnetic anomaly

144409-5



SAMUEL VADNAIS AND RENÉ CÔTÉ PHYSICAL REVIEW B 104, 144409 (2021)

in the magnetic susceptibility which diverges as the Fermi
level goes to zero when B → 0, i.e., χm ∼ − ln( Ec

EF
), where

Ec is a high-energy cutoff. Moreover, it has been shown [23]
that, at zero tilt, the vacuum gives a negative contribution to
the magnetization which is linear in B and so a negative con-
tribution to the magnetic susceptibility. It does not contribute
to the magnetic oscillations, however. At the opposite, in the
extreme quantum limit where the magnetization due to the
added carriers goes to zero, the vacuum diamagnetic response
will dominate the response of the Weyl semimetal, giving a
magnetization that increases without limit as B increases. This
is the so-called magnetic torque anomaly [18]. (See also the
last paragraph in Sec. III where we comment more on this
point.)

C. Behavior of B1 and the quantum limit

For a single node with chirality χ and tilt t filled with a den-
sity of electrons ne, the peaks in the oscillations of the physical
quantities occur each time the Fermi energy is at the bottom
of an energy level n > 0, i.e., whenever eF = min[en>0]. From
Eq. (23) the magnetic field at these particular values is given
by

1

Bn
= κ (t)F (n), (31)

where we have defined the function

F (n) =
[ √

n

χtz + β
+ 2β

γ

n′=n−1∑
n′=1

√
n′

]2/3

(32)

and the parameter

κ (t) =
( e

h̄

)(
(2βγ )1/2

4π2ne

)2/3

= 0.356
(βγ )1/3

ne
2/3 . (33)

In particular, the transition of the Fermi level from the chiral
level to n = 1, i.e., the transition to the quantum limit, occurs
at a magnetic field B1 given by

1

B1
= κ (t)

1

(χtz + β )2/3 = 0.356

(ne)2/3 ϒ (t, θ ), (34)

where we have defined the function

ϒ(t, θ ) = ((1 − t2)
√

1 − t2 sin2 θ )1/3

(χt cos θ +
√

1 − t2 sin2 θ )2/3
. (35)

The quantum limit is reached at a smaller B field when the
density is decreased. The angular dependence of the function
ϒ is shown in Fig. 4 for tilts t = 0 and tz = 0.4 and for
the two chiralities. There is no angle dependence at zero
tilt. The field B1 can be measured by torque magnetometry
experiments [18].

D. Periodicity of the oscillations in the B → 0 limit

If Bn is the magnetic field where the Fermi level is just
below level n and Bn+1 where it is just below n + 1, then
the separation between two discontinuities in the slope of the
oscillations is given by

P(t, n) ≡ 1

Bn+1
− 1

Bn
= κ (t)[F (n + 1) − F (n)], (36)

θ

Υ(θ,t)
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30
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90

120

150

180
0 1

t=0
t=0.4,χ=1
t=0.4,χ=-1

FIG. 4. Angular dependence ϒ(t, θ ) of 1/B1 for tilts t = 0 and
tz = 0.4 and both chiralities.

in units of T−1. Figure 5 shows that P(t, n) depends on n. The
oscillations contain multiple Fourier components in 1/B, they
are not periodic in 1/B in contrast with the oscillations from
two-dimensional Schrödinger fermions. For large n, however,
Fig. 5 indicates that P(t, n) is constant and we can write in
this limit:

lim
n→∞ F (n + 1) − F (n) → 2

(
2

9

)1/3(2β

γ

)2/3

. (37)

It is thus possible to define a period (in units of T−1) in this
small B limit by

lim
n→∞ P(t, θ, n) = 2

(
2

3

)2/3 e

h̄

(
1

4π2ne

)2/3

�(t, θ )

= 0.430 89

(
1

ne

)2/3

�(t, θ ), (38)

�(t, θ ) =
√

1 − t2 sin2 θ

(1 − t2)1/3 (39)

n

1/
B

n+
1-

1/
B

n
(T

-1
)

10 20 30
0.26

0.27

0.28

0.29

0.30

0.31

χ=1,tz=0
χ=1,tz=0.4
χ=-1,tz=0.4

FIG. 5. The function P(t, n) as a function of n for differ-
ent values of the chirality and tilt. The full lines gives the limit
limn→∞ P(t, χ, n).
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FIG. 6. Angular dependence of the function �(t, θ ) entering in
the fundamental period of the magnetic oscillations.

shows the anisotropy of the period. In the absence of tilt, this
period P is precisely that given by the dominant oscillatory
term in the Poisson formula for the magnetization [23] [if the
chemical potential in Eq. (38) of this reference is replaced by
the B = 0 result given by our Eq. (25)]. With a tilt along z,
the Fermi surface becomes ellipsoidal instead of spherical and
limn→∞ P(t, θ = 0, n) = 2πe/h̄S is nothing but the usual de
Haas–van Alphen period with S the area in k space of the
maximal orbit for B along the z direction. This period does not
depend on the chirality or on the sign of the tilt component tz
or on the Fermi velocity. It has the angular dependence shown
in Fig. 6.

It is interesting to compare Eq. (31) with the corresponding
results for three-dimensional Schrödinger’s fermions which
have the dispersion

En =
(

n + 1

2

)
h̄ωc + h̄2k2

2me
, (40)

with me the electron mass and ωc = eB/me the cyclotron
frequency. A calculation following exactly the same steps as
above gives in the Schrödinger case

1

Bn,S
= 2

e

h̄

(
1

4π2ne

)2/3
(

n∑
n′=1

√
n′

)2/3

, (41)

while for Weyl fermions with no tilt

1

BW,n
= 2

( e

h̄

)(
1

4π2ne

)2/3
[
−1

2

√
n +

n∑
n′=1

√
n′

]2/3

. (42)

In the large n limit, both expressions give the same period for
the oscillations, namely (setting t = 0 for the Weyl node)

lim
n→∞ P(n) = 2

(
2

3

)2/3 e

h̄

(
1

4π2ne

)2/3

. (43)

Moreover, in the large n limit, we find the relation

1

Bn,S
≈ 1

2

[
1

Bn+1,W
+ 1

Bn,W

]
, (44)

so that the Schrödinger and Weyl oscillations are out of phase
by half a period as pointed out in Ref. [23].

E. Magnetization and susceptibility in the quantum limit

The quantum limit is reached when the magnetic field is
such that the Fermi level intersects only the chiral level, i.e.,
eF ∈ [0, min[e1]] for electron or eF ∈ [max[e−1], 0] for holes.
From Eq. (23), the Fermi level is then given by

eF = 4π2�3ne(χtz + β ). (45)

It asymptotically approaches the neutrality point eF → 0 at
large B. With this expression in Eq. (27), the energy per carrier
in this limit is given by

U = |ne|h2vF

2eB
(χtz + β ) (46)

and so the magnetization and susceptibility per carrier are
given by

m = |ne|h2vF

2μBeB2
(χtz + β ) (47)

and

χm = −|ne|h2vF

μBeB3
(χtz + β ). (48)

The magnetization of Weyl electrons is positive in this
limit (since χtz + β > 0) a behavior observed in the Weyl
semimetal NbAs for example [18]. It also goes to zero as
B → ∞. This contrasts with the behavior of Schrödinger
electrons in the quantum limit where the magnetization per
electron goes to the negative value m = −1 (in units of μB) at
large B.

The susceptibility increases or decreases with respect to its
value at zero tilt depending on the sign of the product χtz. As
we pointed out above, one can show in the strong magnetic
field limit that for a Weyl semimetal the susceptibility χm ∼
1/B3/2 if the chiral level is removed (see Fig. 3) while χm ∼
−1/B4 for three-dimensional Schrödinger fermions and χm ∼
1/B3 for Weyl fermions.

We remark that Eqs. (47) and (48) are obtained by dif-
ferentiating the energy (or equivalently the Helmholtz free
energy at T = 0 K) with respect to the magnetic field keeping
the density constant. Differentiation of the grand potential �

at constant Fermi energy (or chemical potential at T = 0 K)
gives, instead, in the extreme quantum limit,

m = 1

2

eE2
F

h2vF μB(χtz + β )
(49)

for the magnetization (in units of Bohr magneton per volume)
and the susceptibility is

χm = 0. (50)

Thus, when the Fermi level is kept constant and the WSM
enters the extreme quantum limit, the magnetic susceptibility
goes to zero and the filled states in the valence band dominate
the magnetic response.

IV. QUANTUM OSCILLATIONS FROM
TWO WEYL NODES

The Nielsen-Ninomiya theorem [24] requires that the num-
ber of Weyl points in the Brillouin zone be even so that Weyl
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TABLE I. Parameters for the two-node Weyl semimetals 1 and 2.

WSM1 WSM2

χ1 = −χ2 = 1 χ1 = −χ2 = 1
tz,1 = tz,2 = tz tz,1 = −tz,2 = tz

�0,1 = −�0,2 = �0 �0,1 = −�0,2 = �0

nodes must occur in pairs of opposite chirality. For simplicity,
we analyze the quantum oscillations due to a pair of nodes of
opposite chirality and bias but with the same tilt modulus |t|.
We compute the total magnetization and susceptibility for the
two cases tz,1 = ±tz,2 (but the same value of t⊥). We name
these two cases WSM1 and WSM2. Their parameters are
defined in Table I. In both cases, β1 = β2 = β; γ1 = γ2 = γ

where the subscript here is the node index. For the numerical
calculations we take ne = 2 × 1022 m−3 for the total elec-
tronic density and vF = 3 × 105 m/s for the Fermi velocity.
We define tz and �0 as positive. The energy scale is set
by

h̄vF

�
= 7. 70

√
B meV. (51)

We implicitly assume that the bias is not too large so that
the two Weyl nodes have a separate Fermi surface. In a real
system, if the Fermi level lies too far from the Dirac point, the
two surfaces may merge into one surface that encompasses
both nodes.

If there were no scattering between the nodes, we would
compute the common Fermi level for some initial magnetic
field B and find the corresponding density of electrons in each
node. Then as the magnetic field is increased or decreased
to study the quantum oscillations, the Fermi level of the two
nodes would differ but the electron density in each node will
not change. At large B, the Fermi level EF,i in node i will
approach its neutrality point. Thus, for independent nodes, the
total susceptibility would simply be the sum of the suscepti-
bility of each node.

For dependent nodes, scattering at finite temperature will
modify the density in each node so that they will always
share the same Fermi level as the magnetic field changes.
In our calculations, we assume a finite doping so that EF >

�0 initially. Upon increasing the magnetic field, the com-
mon Fermi level can eventually cross the neutrality point
in the node with the positive bias thus creating holes in
that node (i.e., a negative electron density). The total den-
sity of electrons, however, must remain constant. We study
the case of dependent nodes which is the real physical
situation, for the rest of this section. We assume electron
doping, i.e., ne > 0.

If the two nodes of WSM1 are located at the same wave
vector k0, and if there is no energy bias, then WSM1 can
be considered as a node of a Dirac semimetal while WSM2
(with the two nodes located at ±k0) represent a Weyl semimal
with space inversion symmetry. As we mentioned above, at
zero energy bias, the distinction between the two metals as
regards their magnetic behavior comes from the difference in
the chiral level.

e
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FIG. 7. Density of states for the two WSMs for bias Q0� = 0.5
and tilt tz = 0.6.

A. Density of states and ground state energy

Using Eqs. (18) and (19), the density of states for the two
nodes in WSM1 and WSM2 can be written as

g1(e) = g0,+ + g0,− + g>(e − Q0�) + g>(e + Q0�), (52)

g2(e) = 2g0,+ + g>(e − Q0�) + g>(e + Q0�). (53)

They differ by the constant

g1(e) − g2(e) = g0,− − g0,+ = 2αtz
1 − t2

. (54)

A finite tilt tz increases the density of states in WSM1
and decreases it in WSM2. The difference between the two
densities of states increases rapidly with tz. Figure 7 shows
the two densities of states for Q0� = 0.5 and tz = 0.6 and a
fixed magnetic field. Note that the gap �e between the peaks
at n = −1 and n = 1 decreases as �e = 2

√
2 − 2Q0� with

increasing bias. Equation (7) shows that the position in energy
of the peaks in the density of states does not depend on the
chirality or sign of tz so that both densities of states have the
same structure in energy at any bias, apart from the shift due
to the chiral Landau level.

The Fermi level for either WSM is found by solving the
equation

ne = h̄vF

�

∫ eF

Q0�

g1(e)de + h̄vF

�

∫ eF

−Q0�

g2(e)de, (55)

and the total energy per electron is then given by

U = 1

ne

(
h̄vF

�

)2 ∫ eF

Q0�

g1(e)ede+ 1

ne

(
h̄vF

�

)2 ∫ eF

−Q0�

g2(e)ede.

(56)

B. Magnetic oscillations at zero tilt and finite bias

Figure 8 shows the oscillations in the Fermi level, node
density, magnetization, and susceptibility, for different values
of the bias, when t = 0 in which case there is no difference
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FIG. 8. Quantum oscillations as a function of the inverse magnetic field for a WSM with zero tilt and for different values of the bias �0:
(a) Fermi level, (b) node densities, (c) magnetization, and (d) magnetic susceptibility. The dashed lines in (a) are set at the different values of
�0. The density is ne = 2 × 1022 m−3.

between the two WSMs and the magnetization goes to zero at
B = 0.

As was the case for a single node, the discontinuities in
the quantum oscillations occur every time the magnetic field
is such that the chemical potential reaches the minimum of an
energy band, i.e., whenever the condition

eF (Bn) = min[en>0,τ ] = Q0,τ � +
√

2βτγτ n (57)

is satisfied for a given node τ and Landau level n. The corre-
sponding magnetic field Bn is found by solving

ne = h̄vF

�

∫ min [en>0,τ ]

Q0�

g1(e)de + h̄vF

�

∫ min [en>0,τ ]

−Q0�

g2(e)de,

(58)

where en>0,τ in the integration limit is an energy level of either
node since the Fermi level passes through many of them as the
magnetic field is varied.

In our calculation we choose the density and bias such
that the Fermi level always satisfy eF > max[en=−1,1] so that
we do not need to consider the possibility that Landau levels
n � −1 in node 1 may be occupied with holes. Holes may be
present in the chiral level of node 1, however, when electrons

are transferred to node 2. This happens when the Fermi level
EF drops below �0, a situation that occurs at �0 = 10.5 meV
in Fig. 8(a). There is correspondingly a negative density of
electrons in node 1 as can be seen in the Fig. 8(b). The first
peak in 1/B in Fig. 8(c) corresponds to 1/B1 for node 2 for
which �0 < 0. This node has the largest density of electrons
and so reaches the quantum limit at a higher magnetic field.
The dashed lines in Fig. 8(a) give the position of the Dirac
point in the left node while the dashed-dotted lines indicate
the energy of the Landau level n = 1, in the left node, below
which the Fermi level enters the quantum limit. For �0 =
10.5 meV, this node is always in the quantum limit and the
oscillations are due to the electrons in the second node. The
doubling of the peaks in Fig. 8(a) for �0 = 2 meV is a clear
indication that the system has not reached the quantum limit
in either node.

The pattern of oscillation changes if we include a tilt of the
Weyl nodes in addition to the bias and if we consider the nodes
as independent instead of as sharing a common Fermi level.
We show an example of the difference between dependent and
independent nodes in Fig. 9 for WSM1 with bias �0 = 2 meV
and tilt vector tz = 0.5. In the independent case we calculate
the initial position of the Fermi level at B = 0.5 T, assuming
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FIG. 9. Susceptibility per carrier calculated for WSM1 for de-
pendent and independent nodes assuming the same total density ne =
2 × 1022 m−3, bias �0 = 2 meV, and tilt tz = 0.5. The number above
or below each peak indicates the Landau level that is crossed by the
Fermi level. Black (blue) numbers are for dependent (independent)
nodes and n (n′) stand for node 2 (1). Node 1 (2) is shifted upward
(downward) in energy (see Table I).

an equilibrium between the two nodes at that initial field.
We assume the same total density ne = 2 × 1022 m−3 in both
cases.

The difference between dependent and independent nodes
is more pronounced when the WSM is compensated, i.e.,
when there is initially an equal number of electrons and holes.
If the nodes are dependent, the Fermi level will not move
with a variation of the magnetic field since ne = 0 and so the
susceptibility will be zero [see Eqs. (67) and (68) below]. For
WSM1, the Fermi level will be lying between −�0 and +�0

since |tz/β| < 1, while for WSM2, it will be exactly at EF =
0. For independent nodes, the susceptibility of each node does
not depend on the sign of the carrier and the susceptibility will
be twice that of a single node for the susceptibility per volume.

C. Quantum limit at finite tilt and bias

The quantum limit is reached when the Fermi level is in the
chiral level of both nodes. When this occurs, the behavior of
the Fermi level with the magnetic field is given by

EF,WSM1 = h2vF neγ

2βe

1

B
− �0tz

β
, (59)

EF,WSM2 = h2vF ne(β + tz )

2e

1

B
, (60)

and is linear in 1/B as shown in Fig. 8(a). When B is very large
EF,WSM1 → −�0tz

β
and EF,WSM2 → 0, i.e., the Fermi level

asymptotically approaches the neutrality point of each WSM.
At zero tilt, EF → 0 for both WSMs at large B, in contrast to
the case of independent nodes (no scattering) where the Fermi
level in each node approaches the corresponding neutrality
point ±�0.

The total energy per carrier is given in this limit by

UWSM1 = 1

2
ζ

e2
F − (Q0�)2

β + tz
+ 1

2
ζ

e2
F − (Q0�)2

β − tz

= evF

4π2ne

1

β

(
4π4h̄2n2

eγ

e2B
− 4π2 h̄neQ0tz

e
− BQ2

0

)
(61)

and

UWSM2 = 1

2
ζ

e2
F − (Q0�)2

β + tz
+ 1

2
ζ

e2
F − (Q0,τ �)2

β + tz

= 1

2

evF

4π2ne

(
2

β + tz

)(
4π4h̄2n2

e (β + tz )2

e2B
− BQ2

0

)
.

(62)

Equations (20) and (21) give for the magnetization per car-
rier

mWSM1 = h2nevF

4μBeB2

γ

β
+ e

μBh2nevF

�2
0

β
, (63)

mWSM2 = h2nevF

4μBeB2
(β + tz ) + e

μBh2nevF

�2
0

β + tz
, (64)

and for the susceptibility per carrier

χm,WSM1 = − h2nevF

2μBeB3

γ

β
, (65)

χm,WSM2 = − h2nevF

2μBeB3
(β + tz ). (66)

When the Fermi level is in the chiral level of node 2, the
susceptibility of the two WSMs are independent of the bias.
Moreover, the two WSMs then differ only in their dependence
on the tilt direction which is given by

χm,WSM1 ∼ (1 − t2)/
√

1 − t2 sin2 θ, (67)

χm,WSM2 ∼
√

1 − t2 sin2 θ + t cos θ. (68)

The 1/B2 behavior of the magnetization is clearly visible in
Fig. 8(c). When only the chiral level is occupied, our calcu-
lation shows that the susceptibility is negative at large B and
there is a constant contribution to the magnetization at finite
bias. This constant is very small. At zero tilt, for example, it
is given by

m = e�2
0

μBh2nevF
= 8. 528 5 × 10−3 �

2
0

ne
(69)

in Bohr magneton per electron.

D. Behavior of B1 and periodicity of the oscillations
at finite tilt and bias

The first peak at small 1/B occurs when the Fermi level
eF (B) = min[e1,2], i.e., when the system enters the quantum
limit. It is then in the chiral level of both nodes so that only the
contribution to the density of states of these levels need to be
considered. The magnetic lengths �1 and �2 (corresponding
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FIG. 10. Effect of a finite tilt on (a) the magnetic susceptibility
and (b) magnetization of both WSMs at zero bias.

to 1/B1 ) for WSM1 and WSM2 are given by solving the
equations

�3
1 + Q0

ξ
�1 − 1

2π2ne

√
2β3

γ
= 0, (70)

�3
2 + Q0

ξ
�2 −

√
2βγ

ξ
= 0, (71)

where Q0 � 0 and we have defined the constant

ξ = 2π2ne(β + tz ). (72)

If there is no tilt, the magnetic length at this peak is instead
given by the solution of the equation

�3
0 + Q0

2π2ne
�0 − 1√

2π2ne

= 0. (73)

In particular, at zero bias the position in 1/B of the first peak
is

1

B1
= 0.564 62

1

n2/3
e

T−1, (74)

which is simply Eq. (34) with a electronic density ne/2.
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FIG. 11. Position of the first peak in 1/B of the quantum oscilla-
tions for WSM1 and WSM2.

E. Magnetic oscillations and quantum limit at zero bias

Figure 10 shows the effect of a finite tz on the magnetic
susceptibility and magnetization of both WSMs for zero bias.
The spacing between the oscillations increases with tz for both
WSMs while it decreases with a finite t⊥ (not shown in the fig-
ure). The susceptibility decreases with tz, more so for WSM2
than for WSM1. As discussed in Sec. III, the magnetization
does not go to zero at small B for WSM2 since the two nodes
have χtz = 1.

At zero bias, Eq. (38) can be generalized for WSM2 (op-
posite tilts) to

lim
n0→∞ λ(t, n0) = 2

(
2

3

)4/3 e

h̄

(
1

4π2ne

)2/3(
β

γ 1/3

)
, (75)

taking into account that, in this case, the node density is ne/2.
Figure 11 shows 1/B1 for both WSMs as a function of

the polar angle θ for different values of the bias �0 and tilt
modulus t . If there is no tilt, there is no distinction between
the two WSMs at any bias. For a finite tilt, 1/B1 (WSM1)
>1/B1 (WSM2) if tz > 0 (i.e., θ < π/2) and vice versa. Both
peaks are shifted to lower values of 1/B by a finite bias. A
finite tilt thus introduces a dephasing that is different for the
two Weyl semimetals and which is also anisotropic.

At zero bias we can simplify Eq. (58) by using Eqs. (52)
and (53) with Q0� = 0. We get for the density

ne = α

∫ √
2βγ n

0
f (e)de, (76)

where we have defined f (e) = g(e)/α and use the fact that
βτ , γτ have the same value for both nodes. For WSM1 and
WSM2, this gives for the magnetic field at the peak n,

�3
1(n) = 1

4π2ne
( f0,+ + f0,−)

√
2βγ n

+ 1

2π2ne

∫ √
2βγ n

√
2βγ

f>(e)de (77)
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and

�3
2(n) = 1

2π2ne

[
f0,+

√
2βγ n +

∫ √
2βγ n

√
2βγ

f>(e)de

]
, (78)

with the definition

f0,± = 1

β ± tz
. (79)

We thus find for the dephasing between the oscillations of the
two WSMs the relation

1

B3/2
1

= 1

B3/2
2

+ 1

4π2ne

(
2e

h̄

)3/2[ t
√

n cos θ√
1 − t2

(1 − t2 sin2 θ )1/4

]
(80)

= 1

B3/2
2

+ 0.424
1

ne

t
√

n cos θ√
1 − t2

(1 − t2 sin2 θ )1/4. (81)

Hence, the dephasing increases with the Landau level index n
and with the tilt t .

V. CONCLUSION

In this paper we have studied the contribution of the added
carriers (electron or hole) to the orbital magnetization and
magnetic susceptibility of a simple two-node model of a Weyl
semimetal. We have studied how the behavior of the quantum
(de Haas–van Alphen) oscillations of the magnetization and
magnetic susceptibility is modified by a tilt of the Weyl nodes
and, considering a pair of nodes with opposite chirality, how
these oscillations change when both nodes have the same or
opposite value of the component of the tilt vector along the
magnetic field direction. We have also considered the effect
of an energy bias between the two nodes. Throughout our
study we emphasized the importance of the chiral level in
distinguishing the magnetic oscillations of Weyl semimet-
als from those of Schrödinger fermions or between Weyl
and Dirac fermions. We discussed the anisotropic behavior

induced by the tilt vector in the fundamental period of oscilla-
tion and in the magnetic field B1 needed to reach the quantum
limit. Finally, we showed the difference in the quantum os-
cillations between two nodes with and without internode
scattering.

As we were concerned with the role of the added carriers
in the magnetic properties, we did not include the contribution
of the filled states in the valence band (the vacuum). Although
they do not affect the magnetic oscillations, they contribute to
the magnetization and are required to understand the magnetic
torque anomaly at large magnetic field as well as the giant
diamagnetic anomaly at small magnetic field when the Fermi
level is close to the neutrality point.

Our simple model cannot, of course, reproduce the ex-
perimental results for real Weyl semimetals. In real WSM,
there may be different types of Fermi surface pockets, both
trivial and nontrivial (topological) which contribute to the
magnetic oscillations [25]. Moreover, the Fermi velocity and
so the Fermi surface may be anisotropic so that the period will
depend in general on the orientation of the magnetic field with
respect to the crystallographic axis. The energy bias and tilt of
the different nodes at the Fermi energy may differ. Finally, the
Fermi arcs may contribute to the magnetization.

The magnetic susceptibility of a single Weyl (or Dirac)
node in the continuum (linear) approximation that we use can
be compared with that obtained from a lattice model where the
bandwidths are finite. Such a comparison is made in Ref. [26]
where it is confirmed that the continuum approximation is
quite good if, as expected, the Fermi level is not too far from
the Dirac point.
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