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We assess the ground-state phase diagram of the J1-J2 Heisenberg model on the Kagome lattice by employing
Gutzwiller-projected fermionic wave functions. Within this framework, different states can be represented,
defined by distinct unprojected fermionic Hamiltonians that include hopping and pairing terms, as well as a
coupling to local Zeeman fields to generate magnetic order. For J2 = 0, the so-called U(1) Dirac state, in which
only hopping is present (such as to generate a π -flux in the hexagons), has been shown to accurately describe
the exact ground state [Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B 87, 060405(R) (2013);
Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys. Rev. X 7, 031020 (2017).]. Here we show that
its accuracy improves in the presence of a small antiferromagnetic superexchange J2, leading to a finite region
where the gapless spin liquid is stable; then, for J2/J1 = 0.11(1), a first-order transition to a magnetic phase with
pitch vector q = (0, 0) is detected by allowing magnetic order within the fermionic Hamiltonian. Instead, for
small ferromagnetic values of |J2|/J1, the situation is more contradictory. While the U(1) Dirac state remains
stable against several perturbations in the fermionic part (i.e., dimerization patterns or chiral terms), its accuracy
clearly deteriorates on small systems, most notably on 36 sites where exact diagonalization is possible. Then,
on increasing the ratio |J2|/J1, a magnetically ordered state with

√
3 × √

3 periodicity eventually overcomes the
U(1) Dirac spin liquid. Within the ferromagnetic J2 regime, evidence is shown in favor of a first-order transition
at J2/J1 = −0.065(5).

DOI: 10.1103/PhysRevB.104.144406

I. INTRODUCTION

The Heisenberg Hamiltonian

Ĥ =
∑
i, j

Ji, j Ŝi · Ŝ j, (1)

for spin-S operators, Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ), arranged on a crystal

lattice, represents one of the pillars of condensed-matter
physics, capturing fundamental phenomena in quantum
magnetism, such as symmetry breaking with Goldstone
excitations, quantum phase transitions, topological order, and
fractionalization emerging from exotic ground states [1,2].
Particularly interesting are the cases with small spins (e.g.,
S = 1/2) on highly frustrated low-dimensional lattices (e.g.,
featuring a triangular motif), for which there is increasing
theoretical and experimental evidence that unconventional
phases, which cannot be described by standard mean-field
approaches, may settle down at sufficiently low temperatures
[2,3]. Solid theoretical evidence for the existence of
spin-liquid phases has been worked out in models with
spin anisotropic superexchange couplings, most notably the
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compass Kitaev model on the honeycomb lattice, which repre-
sents a unique example of a nontrivial spin model that can be
exactly solved in two spatial dimensions. Here, both gapped
and gapless phases are present as ground states, as well as an
interesting chiral state in the presence of a (small) external
magnetic field [4]. By contrast, for Heisenberg models with
SU(2) spin symmetry, the situation is more debated. A pre-
dominant example, which has been intensively investigated in
the recent past, is given by the S = 1/2 Heisenberg model on
the Kagome lattice with nearest-neighbor antiferromagnetic
coupling (J1 > 0) only. The principal motivation comes from
both experimental and theoretical reasons. As far as the former
ones are concerned, it is remarkable that different families of
materials may be synthesized, providing a clean realization of
this spin model (e.g., perturbations coming from impurities,
Dzyaloshinskii-Moriya, or additional interplane interactions
are relatively small compared with the nearest-neighbor
superexchange). This is the case for ZnCu3(OH)6Cl2 [5–8],
where no evidence for the insurgence of magnetic order
is detected down to extremely small temperatures. From a
theoretical point of view, the S = 1/2 Heisenberg model on
the Kagome lattice represents one of the major challenges
in quantum magnetism, given its unconventional spectrum
with an exceedingly large number of low-energy singlet
excitations [9,10].
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A renewed effort to understand its physical properties fol-
lowed from density-matrix renormalization group (DMRG)
calculations, which suggested the possibility that the ground
state is a so-called Z2 spin liquid, with topological degeneracy
and a finite spin gap [11,12]. An alternative scenario sug-
gested the stabilization of a gapless spin liquid, as proposed
from a parton approach of the original spins [13,14]. Here,
Abrikosov fermions are introduced to define a mean-field
Hamiltonian, with π -fluxes piercing the hexagonal plaquettes
of the lattice. As a result, Dirac points are present in the free-
fermion band structure. This state has been dubbed the U(1)
Dirac state, since the leading gauge fluctuations that emerge
from the mean-field Hamiltonian have U(1) symmetry. When
the Gutzwiller projector is considered, in order to construct
a suitable variational wave function for the spin model, a re-
markably accurate energy is obtained for the nearest-neighbor
Heisenberg model [15]. In fact, further DMRG calculations
with special boundary conditions [16,17] supported the ex-
istence of Dirac cones in the spinon spectrum. Furthermore,
tensor networks on the infinite lattice [18] also suggested a
gapless spin liquid. This possibility immediately triggers the
question of the stability of the gapless ground state against
small perturbations.

Here we consider the case where a next-nearest-neighbor
superexchange coupling (J2) is included, with both ferromag-
netic and antiferromagnetic character. In the recent past, only
a few works have investigated the nature of the ground state
of the J1-J2 Heisenberg model on the Kagome lattice [18–22].
For J2/J1 > 0, an antiferromagnetic phase with q = (0, 0)
pitch vector is expected to exist for sufficiently large values of
the next-nearest-neighbor interactions; instead, for J2/J1 < 0,
another magnetically ordered phase with a

√
3 × √

3 pattern
is present. In addition, valence-bond crystals (VBCs), with
possibly large unit cells (e.g., containing 12 or even 36 sites)
may represent competitive states, as suggested in previous
works [23–29].

Within the Abrikosov-fermion approach, different varia-
tional wave functions can be defined by allowing different
terms in the fermionic state, which can induce the opening
of a spin gap (e.g., in a Z2 spin liquid), the breaking of
translational symmetry (leading to a VBC), or the onset of
magnetic order. The main outcome of the present paper is
that the gapless spin liquid is stable in a finite region of the
J1-J2 model. Indeed, for J2/J1 > 0, its accuracy to reproduce
the exact ground state improves with respect to the J2 = 0
case, as indicated by a direct comparison with exact diago-
nalization on small clusters (the overlap between the gapless
spin liquid and the exact ground state on 36 sites increases
from 0.687 at J2 = 0 to 0.875 at J2/J1 = 0.05). Then, by
increasing the ratio J2/J1, the variational wave function devel-
ops magnetic order with q = (0, 0), namely, a finite Zeeman
field can be stabilized (in the thermodynamic limit) within
the fermionic Hamiltonian (on top of the hopping pattern of
the π -flux state). The transition is located at J2/J1 = 0.11(1)
and is weakly first order, being characterized by a jump in the
Zeeman field.

For J2/J1 < 0, the situation is more delicate. For small val-
ues of |J2|/J1, the gapless spin-liquid wave function remains
stable when allowing additional terms in the fermionic state.
On increasing |J2|/J1, its variational energy is overcome by

FIG. 1. The antiferromagnetic order parameter for the J1–J2

Heisenberg model on the Kagome lattice. Different colors indicate
the various ground-state phases: Magnetic phases with q = (0, 0)
(red) or

√
3 × √

3 periodicity (blue) and gapless spin liquid (yellow).
The values are estimated in the thermodynamic limit (the error bars
are smaller than the symbols), as shown below. The spin patterns for
the two magnetically ordered phases are also shown. The U(1) Dirac
state is expected to represent the paramagnetic region for J2 > 0;
instead, for J2 < 0 the situation is more controversial. The exact
nature of the J2/J1 < 0 non-magnetic phase is still controversial (see
text) as labelled by the question mark.

a different Gutzwiller-projected state, with
√

3 × √
3 mag-

netic order and hopping terms with a different flux pattern
(π flux on hexagons and up triangles and 0 flux on down
triangles). The transition to a magnetically ordered phase is
found at J2/J1 = −0.065(5). In addition, VBC states with
large unit cells (e.g., 36 sites) may also be stabilized and
have competing energies close to the magnetic transition. The
variational phase diagram, as obtained within our approach, is
shown in Fig. 1. However, some care must be put on small
negative values of J2, where the U(1) Dirac spin liquid no
longer represents an accurate wave function, as shown on a
comparison to the exact ground state on small clusters. This is
due to the presence of level crossings (on 12 sites) or avoided
crossings (on 36 sites) that happen in the low-energy singlet
sector when varying J2/J1 close to J2 = 0. Whether these
crossings correspond to some phase transition in the thermo-
dynamic limit is hard to resolve. Still, the situation remains
more controversial on the J2 < 0 side of the phase diagram,
suggesting that an alternative approach may be needed when
ferromagnetic superexchange couplings are present.

The paper is organized as follows: In Section II, we
describe the variational method that has been used; in
Section III, we discuss our numerical results; finally, in
Section IV, we draw our conclusions.

II. VARIATIONAL WAVE FUNCTIONS

The Abrikosov-fermion representation allows us to express
the S = 1/2 spin operators as products of fermionic creation
and annihilation operators [30–32]:

Ŝi = 1

2

∑
α,β

ĉ†
i,ασα,β ĉi,β , (2)

where σ = (σx, σy, σz ) is a vector of Pauli matrices and ĉ†
i,α

(ĉi,α) creates (destroys) a fermion at site i with spin α =↑,
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↓. This representation fulfills the spin commutation relations,
but enlarges the Hilbert space of the system by including
unphysical states with empty or doubly occupied sites. The
variational states employed in this work are defined by pro-
jecting Abrikosov-fermion wave functions into the physical
spin space by using the Gutzwiller projector

P̂G =
∏

i

(n̂i,↑ − n̂i,↓)2, (3)

where n̂i,α = ĉ†
i,α ĉi,α . The fermionic state |�0〉 is obtained as

the ground state of a noninteracting Hamiltonian, featuring
hopping, pairing, and a fictitious Zeeman field. In particular,
different symmetries of the pairing term can be considered,
following the classifications of Ref. [33]. However, the vari-
ational minimization suggests that they are not stabilized for
the values of J2/J1 considered in this work. Then, the best
wave function is obtained from a noninteracting Hamiltonian
that contains only hoppings and Zeeman fields:

Ĥ0 =
∑

(i, j),α

χi j ĉ
†
i,α ĉ j,α + h

∑
i

Mi · Ŝi. (4)

In the following, we will include nearest- and next-nearest-
neighbor hopping, |χ1| = 1 (to fix the energy scale) and χ2 (as
a variational parameter), respectively; an additional parameter
is the amplitude of the magnetic field h, while the spatial
periodicity is fixed by the unit vector Mi, which lies in the XY
plane, i.e., Mi = [cos(q · Ri + φi), sin(q · Ri + φi ), 0] (where
q is the pitch vector, Ri is the coordinate of the unit cell of site
i, and φi is a sublattice-dependent angle). The same Hamil-
tonian may also give rise to VBC states, by setting h = 0
and allowing hoppings to break the space group symmetries,
e.g., considering different values of |χ1| and |χ2| for different
bonds within an enlarged unit cell [25,26]. Additionally, a
spin-spin Jastrow factor is included:

Ĵz = exp

(
1

2

∑
i j

ui j Ŝ
z
i Ŝz

j

)
, (5)

where ui j defines a set of additional variational parameters,
one for each distance |Ri − R j |. Finally, the projection P̂z

onto the subspace with
∑

i Ŝz
i = 0 is also performed. As a

result, the variational wave function is written as

|	var〉 = ĴzP̂zP̂G|�0〉. (6)

It is worth mentioning that the existence of magnetic long-
range order is directly related to the presence of a finite
parameter h in the thermodynamic limit. Within magnetically
ordered phases, the Jastrow factor of Eq. (5) plays an indis-
pensable role by introducing transverse quantum spin fluctu-
ations around the classical spin state [34]. In contrast to the
previous study [20], performed with two different Ansätze for
magnetic and nonmagnetic states, the present choice, based on
the noninteracting Hamiltonian (4), allows us to have a unique
unified framework for these phases, also including VBC.

As previously mentioned, the U(1) Dirac spin liquid rep-
resents a very accurate variational wave function for the
nearest-neighbor model (J2 = 0). This state is defined by a
fermionic Hamiltonian Ĥ0 with hopping terms χ1 generating
a π -flux through hexagonal plaquettes and 0-flux through

triangles [33] (an additional χ2 gives a small energy gain). For
sufficiently large values of the next-neighbor superexchange,
the ground state acquires magnetic order, with two different
pitch vectors depending on the sign of J2; see Fig. 1. On the
one hand, in the q = (0, 0) ordered phase, the optimal nonin-
teracting Hamiltonian Ĥ0 contains a translationally invariant
magnetic field (with sublattice angles φi such as to have a
relative 120◦ orientation between neighboring spins in the unit
cell) and the same hopping structure of the U(1) Dirac state.
On the other hand, within the

√
3 × √

3 ordered phase, a mag-
netic unit cell of 9 sites is required, with neighboring spins still
having a relative 120◦ orientation (see Fig. 1). The optimal
variational Ansatz is constructed from the Hamiltonian with
a q = (4π/3a, 0) magnetic field (where a is the length of the
Bravais lattice vectors) and the hopping terms of a different
U(1) state, dubbed [π, π ], with π fluxes through hexagons
and up triangles (and 0 flux through down triangles) [33].

Our variational calculations are mostly performed on N =
3 × L × L clusters, with a few exceptions (including results of
Lanczos diagonalization) in which the tilted N = 9 × L × L
clusters have been employed. All the finite-size clusters con-
sidered in this work fulfill the point-group symmetries of
the Kagome lattice, and periodic boundary conditions for the
Heisenberg Hamiltonian are imposed. On the contrary, the
fermionic Hamiltonian (4) may have periodic or antiperiodic
boundary conditions along the two vectors that define the
cluster. Among these four possibilities, one of them gives
rise to zero-energy modes in the fermionic spectrum of the
U(1) Dirac state. The other three choices give the same vari-
ational energy after Gutzwiller projection; however, each one
of them breaks rotational symmetries on finite clusters [35].
Within the variational calculations, one of these three possibil-
ities has been considered. To evaluate the expectation values
for a given variational state, we perform a quantum Monte
Carlo sampling [36]. For the optimization of the variational
parameters, we make use of the stochastic reconfiguration
technique [37].

III. RESULTS

Let us now discuss our variational results. First of all,
we investigate the case with antiferromagnetic next-nearest-
neighbor superexchange, i.e., J2/J1 > 0. Here we consider a
variational wave function that is generated from the uncorre-
lated Hamiltonian (4), including a fictitious Zeeman field with
q = (0, 0). In this regime, the best choice of the hoppings is
such to obtain the U(1) Dirac state. In particular, both nearest-
and next-nearest-neighbor hoppings are allowed [25], which
together with the antiferromagnetic parameter h and all the
independent ui j’s of the spin-spin Jastrow factor (5) constitute
the variational parameters. After optimizing on cluster sizes
up to L = 24 (with 190 variational parameters, among which
188 for the Jastrow factor), we find that for J2/J1 � 0.12, the h
parameter extrapolates to a finite value in the thermodynamic
limit [see Fig. 2(a)], suggesting the existence of magnetic
order. By contrast, for J2/J1 � 0.10, strong frustration is able
to stabilize a quantum spin-liquid ground state; indeed, here
the h parameter goes to zero as 1/L2 for L → ∞, consis-
tent with a power-law decay of the spin-spin correlations of
the U(1) Dirac state [38] [see Fig. 2(a)]. We remark that,
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FIG. 2. Finite-size scalings of the fictitious Zeeman field h, see Eq. (4), and the square of the sublattice magnetization m2 [panels (a) and
(b) refer to the q = (0, 0) order; panels (c) and (d) refer to the

√
3 × √

3 order with q = (4π/3a, 0)]. For J2 > 0, we employed 3 × L × L
clusters with L = 4n (n = 1, . . . , 6); for J2 < 0, we used L = 6n (n = 1, . . . , 4). The hopping structure of the fermionic Hamiltonian (4)
reproduces the U(1) Dirac state for J2/J1 � −0.06, while it gives the [π, π ] state for J2/J1 � −0.07. The insets in (b) and (d) show the
finite-size scaling of m2 within the spin-liquid regime, as a function of 1/L2, which is consistent with a power-law decay of the spin-spin
correlations of the U(1) Dirac state [38].

on each finite cluster, the Jastrow factor always leads to an
improvement of the variational energy, although in the spin-
liquid regime, the effect is less pronounced.

Previous studies [18,19,21,22,39–42] (see Table I) inves-
tigated the onset of magnetic order for J2 > 0. Apart from
one-loop pseudo-fermion functional renormalization group
calculations [19] (which are expected to be significantly al-
tered at high-loop orders where convergence is reached), all
other methods obtained values ranging between J2/J1 ≈ 0.05
and ≈0.20. Our estimate of the transition point lies in this
range, slightly smaller than DMRG calculations [21,22] but
larger than the tensor-network evaluation [18]. We mention
that in a previous work of ours [20], we used a simplified

variational wave function to describe the magnetic phase
[including only the fictitious magnetic field h but not the
fermionic hopping in Eq. (4)], leading to a substantial shift
of the magnetic transition to larger values of J2/J1 (or, in
other words, enlarging the stability region of the spin liquid
by reducing the variational manifold of the magnetic states).

In order to have solid evidence for magnetic order-
ing, we compute the sublattice magnetization m, which is
obtained from the expectation value of the spin-spin corre-
lation at maximum distance (for two spins within the same
sublattice),

m2 = lim
|i− j|→∞

〈Ŝi · Ŝ j〉, (7)

TABLE I. The value of the transition between the spin-liquid and q = (0, 0) (for J2 > 0) and
√

3 × √
3 (for J2 < 0) magnetic orders

obtained from our present calculations compared with different methods for the J1-J2 Heisenberg model on the Kagome lattice. Here, PFFRG
stands for pseudo-fermion functional renormalization group.

Phase I Phase II Method J2/J1

J2–Antiferromagnetic Spin liquid q = (0, 0) Variational Monte Carlo (present work) 0.11(1)
Variational Monte Carlo [39] 0.08

DMRG [21] 0.15 − 0.20
DMRG [22] 0.20

Tensor networks [18] 0.045(10)
Exact diagonalization [40] 0.16
Exact diagonalization [41] 0.10

Coupled-cluster method [42] 0.127
One-loop PFFRG [19] 0.7

J2–Ferromagnetic Spin liquid q = (4π/3a, 0) Variational Monte Carlo (present work) −0.065(5)
DMRG [22] −0.10

Tensor networks [18] −0.03
Exact diagonalization [40] −0.06
Exact diagonalization [41] −0.10

Coupled-cluster method [42] −0.07
One-loop PFFRG [19] −0.4
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(a) (b)

FIG. 3. Variational energy as a function of the fictitious Zeeman
field h. The energy landscape has been computed for J2/J1 = 0.10
(a) and J2/J1 = 0.12 (b). Clusters with 3 × L × L sites have been
used, with L = 12, 16, 20, and 24.

for the variational state |	var〉. The magnetization displays a
similar scaling as the h parameter, thus confirming the extent
of the spin-liquid regime; see Fig. 2(b). The magnetization
estimate in the thermodynamic limit is shown in Fig. 1. Here
we observe a relatively sharp jump in m on traversing the
phase boundary, suggesting that the transition is not contin-
uous. Because a continuous transition between the U(1) Dirac
spin liquid and the q = (0, 0) state is, in principle, allowed
[43], we attempt to ascertain the order of the phase transition
in our numerical simulations. For this purpose, we chart out
the variational energy landscape as a function of the ficti-
tious Zeeman field h: This is done by fixing the field h to
a grid of different values and optimizing only the remaining
variational parameters to get the lowest energy. In Fig. 3, we
show this energy landscape for different system sizes and for
two values of J2/J1, one on either side of the transition. At
J2/J1 = 0.10 (i.e., inside the spin-liquid regime), there are
two minima: The lowest-energy one, extrapolating to h = 0
in the thermodynamic limit, and another one at higher energy
for finite field h ≈ 0.3. A finite-size scaling of the energy
difference between these minima shows that it remains finite
in the thermodynamic limit. At J2/J1 = 0.12 (i.e., inside the
magnetic regime), the two minima switch, the one at h ≈ 0.3
corresponding now to the lowest energy. The energies for the
two possible states (with small and large Zeeman fields) are
shown in Fig. 4 as a function of J2/J1. Hence, our varia-
tional approach clearly indicates that, in the thermodynamic
limit, the best-energy solution has a jump from h = 0 to a
finite value for J2/J1 = 0.11(1), indicative of a first-order
transition.

Let us now discuss the accuracy of the variational wave
function when compared with the exact ground state for small
finite-size lattices, e.g., the 36 sites cluster (namely, 9 × 2 × 2,
still possessing all the symmetries of the infinite Kagome
lattice). Here, in order to make a neat comparison with the
exact ground state, we construct a fully symmetric U(1) Dirac
state (taking nearest-neighbor hoppings only). In fact, even
though in Ref. [35] it was claimed that this is not possible
on 36 sites, we verified that a suitable linear combination of
the three possible choices of boundary conditions that do not
give zero-energy modes corresponds to a state, |	sym〉, which

FIG. 4. Variational energies as a function of J2/J1 on the 9 × 8 ×
8 cluster. Different wave functions are considered, including a VBC
state with 36 sites in the unit cell. When two local minima in the
energy landscape are present (with small and large Zeeman fields,
as in Fig. 3), both variational energies are shown. We note that the
energy landscape of the [π, π ] state with a (4π/3a, 0) field has a
single minimum as a function of h.

lies in the same symmetry subspace of the exact ground state,
|	ex〉. First of all, we compute the overlap between |	sym〉
with the first few exact eigenstates in the same symmetry
subspace as a function of J2/J1. The results are shown in
Fig. 5, where the case of a small cluster with 12 sites is also
reported. Remarkably, the overlap with the exact ground state
increases when going from J2 = 0 up to J2/J1 ≈ 0.05.

FIG. 5. Overlap between the symmetrized U(1) Dirac state
|	sym〉 and few low-energy exact eigenstates on the 36-site cluster,
obtained by Lanczos diagonalization. Both the area and the colors
of the circles represent the value of the overlap. On the horizontal
axis we report the value of J2/J1, while on the vertical axis we show
the energy gap 
 of the exact eigenstates with respect to the ground
state, in units of J1. Notice that the variational Ansatz |	sym〉 has a
finite overlap only with the exact eigenstates belonging to the same
symmetry sector. In the inset, analogous results on the 12-site cluster
are reported.
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FIG. 6. Energy Ep [see Eq. (9)] versus variance σ 2
p [see Eq. (10)]

starting from the initial state given by the symmetrized U(1) Dirac
Ansatz for three values of the ratio J2/J1. The energy (variance) is
given in units of J1 (J2

1 ). Calculations are done for a cluster with 36
sites.

Further, highly convincing evidence that the ground-state
wave function is well approximated by the U(1) Dirac spin-
liquid Ansatz comes from performing the Lanczos technique,
which allows us to obtain the exact ground state on a small
cluster by an iterative procedure [44]. Starting from an arbi-
trary quantum state |	0〉, after p iterations, an estimate of the
ground state is given by

|	p〉 =
(

p∑
k=0

αkĤk

)
|	0〉, (8)

where the coefficients αk are found by minimizing the energy

Ep = 〈	p|Ĥ|	p〉. (9)

Here we choose |	0〉 ≡ |	sym〉 and compute the energy Ep as
a function of the variance

σ 2
p = 〈	p|Ĥ2|	p〉 − 〈	p|Ĥ|	p〉2, (10)

which tends to zero when p → ∞. The results are shown in
Fig. 6 for different values of J2/J1. For both J2 = 0 and 0.05,
an approximately linear behavior Ep ≈ Eex + const × σ 2

p is

observed, suggesting a smooth convergence of the initial
wave function to the exact ground state. Indeed, an extrap-
olation of the total energy based on the first three steps of
the Lanczos procedure (p = 0, 1, 2) gives E/J1 ≈ −15.769,
compared with the exact value Eex/J1 = −15.781, for J2 =
0. Similar results are also obtained for J2/J1 = 0.05, i.e.,
E/J1 ≈ −15.826 compared with Eex/J1 = −15.835. These
results confirm the ones reported in Fig. 5, showing that the
variational wave function has a large overlap with the exact
ground state (for these values of J2/J1). Therefore, we are
confident that the U(1) Dirac state faithfully represents the
exact ground state of the Heisenberg model on the Kagome
lattice, especially in the presence of a small antiferromagnetic
J2/J1.

Then, we move towards investigating the regime with fer-
romagnetic J2, i.e., J2/J1 < 0. Here we fix q = (4π/3a, 0)
in the fermionic Hamiltonian (4). In Fig. 4, we compare the
energies for different wave functions, corresponding to local
minima in the variational energy landscape. While for J2/J1 �
−0.06, the best Ansatz is given by the U(1) Dirac state with a
small h parameter [eventually extrapolating to zero in the ther-
modynamic limit, see Fig. 2(c)], for J2/J1 � −0.07, the best
state is magnetically ordered and obtained by employing a
different flux pattern, i.e., the [π, π ] state defined in Ref. [33].
Therefore, a first-order transition is expected. A detailed size
scaling of the magnetization is reported in Fig. 2(d), confirm-
ing the existence of a magnetic state for J2/J1 � −0.07. Our
estimate of the phase boundary is in good agreement with
those from other methods as shown in Table I. In previous
works that used similar Ansätze for the ground-state wave
function [25,26], we proposed that the U(1) Dirac spin liquid
should give way to a 36-site VBC for J2/J1 ≈ −0.045; how-
ever, the present results, with magnetic ordering emerging for
J2/J1 � −0.06, suggest that a phase with VBC order is highly
unlikely, or may be stabilized only in a sliver of parameter
space close to the

√
3 × √

3 magnetic ordered region; see
Fig. 4. Indeed, in this regime, the variational energies of the
VBC candidates are similar to those of other competing states,
i.e., the U(1) Dirac state and the magnetic one [28].

In spite of these variational results, we must emphasize that
the accuracy of the spin-liquid wave function strongly deteri-
orates as soon as a small ferromagnetic J2 is included. Indeed,
the overlap of the symmetrized U(1) Dirac state with the exact
ground state is very small, as shown in Fig. 5 for a 36-site
cluster. Rather, the U(1) Dirac state has a significant overlap
with an exact excited eigenstate. The Lanczos procedure also
confirms that this variational state is not smoothly connected
to the exact ground state, since the linear extrapolation con-
verges to an energy that is well above that of the ground state;
see Fig. 6. In fact, on the 36-site cluster there is an avoided
crossing at J2/J1 ≈ 0 (in the fully symmetric subspace) [45]:
The lowest-energy state for J2 > 0 is well described by the
U(1) Dirac spin liquid, while the one for J2 < 0 is not. On
12 sites, a similar behavior is observed, with an actual level
crossing for J2 slightly larger than 0. These results put some
doubts into the variational outcomes, for which the Dirac
state remains stable up to J2/J1 ≈ −0.06 with no other wave
functions that we are able to construct, within the present
Gutzwiller-projected states, having a lower energy. Indeed,
we verified that both symmetric and lattice nematic Z2 [33]
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as well as chiral U(1) and Z2 [46] states cannot be stabilized
(or are not energetically competing with the Dirac state). In
addition, a few VBCs with a 12-site unit cell (of the diamond
type [11,29]) have been assessed, with no gain in energy.

IV. CONCLUSIONS

In this work, we analyzed the S = 1/2 J1-J2 Heisen-
berg model by using a family of variational wave functions
constructed from Abrikosov fermions able to describe both
spin-liquid and magnetic phases on the same footing. This
approach was previously shown to be successful for the case
with nearest-neighbor interactions only [15]. Here we pro-
vided evidence that, for antiferromagnetic values of the next-
nearest-neighbor superexchange, the U(1) Dirac state remains
stable up to J2/J1 = 0.11(1); then, for larger values of J2/J1,
a magnetically ordered state settles down, with q = (0, 0)
pitch vector, in agreement with other numerical methods
[18,21,22,39–42]. Note that, although a first-order transition
is found, a continuous transition between the Dirac state and
the q = (0, 0) magnetic phase is not forbidden [43]. Within
the (gapless) spin-liquid regime, no energy gain is obtained
by allowing pairing terms in the noninteracting fermionic
Hamiltonian (4), analogous to what has been emphasized for
the case with J2 = 0 [47,48]. In addition, no VBC order has
been detected by allowing nonuniform hopping amplitudes.
The fact that the U(1) Dirac state faithfully represents the
exact ground state of the J1-J2 model for 0 � J2/J1 � 0.10
also follows from a direct comparison with exact calculations
on small clusters. For example, on the 36-site cluster, a linear
combination of Dirac states with three different boundary
conditions can be constructed to have all the symmetries of
the infinite lattice. This variational state (with no adjustable
variational parameters) has quite a large overlap with the exact
ground state, e.g., 0.875 for J2/J1 = 0.05.

By contrast, the ferromagnetic regime, i.e., J2/J1 < 0, is
more problematic and asks for future investigations. Indeed,
the U(1) Dirac state continues to give the lowest energy
within Gutzwiller-projected fermionic Ansätze up to J2/J1 =
−0.065(5), where a magnetic state, with

√
3 × √

3 period-
icity, becomes the best variational wave function. No signal
for opening of a spin gap has been detected for −0.06 �
J2/J1 � 0, including the instability toward symmetric and
lattice nematic Z2 spin liquids [33], U(1) and Z2 chiral spin
liquids [46], or VBCs with different unit cells (most notably
containing 12 or 36 sites) [25,26]. Nonetheless, a comparison
with exact calculations on small sizes shows that the U(1)
Dirac state no longer accurately represents the ground state

of the J1-J2 model. For example, on 36 sites for J2/J1 =
−0.05, the overlap between the (symmetrized) spin-liquid
state and the exact ground state is only 0.063. This fact roots
itself in the existence of an avoided crossing that changes
the nature of the ground-state wave function. The resulting
lowest-energy state does not seem to be described by any
simple Gutzwiller-projected fermionic Ansatz. Whether this
change in the low-energy sector is relevant for the true thermo-
dynamic limit or is only peculiar to the 36-site cluster is hard
to ascertain. Certainly, the J2 = 0 point is at the crossroads
between different quantum phases (including the gapless spin
liquid and magnetic phases, but possibly also VBC and chiral
states, or even more exotic possibilities), and a crucial ques-
tion to address in the future is the character of the several
singlet states that populate the low-energy spectrum [49].
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