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Coupling between spin and charge degrees of freedom in electrons is a source of various electronic and
magnetic properties of solids. We theoretically study charge density waves induced by the spin-charge coupling
in the presence of magnetic orderings in itinerant magnets. By performing a perturbative calculation in the
weak-coupling limit of the Kondo lattice model, we derive a useful formula for the relationship between charge
and spin density waves, which can be applied to any magnetic orderings, including noncollinear and noncoplanar
ones composed of multiple spin density waves called multiple-Q magnetic orderings. We demonstrate the
predictive power for single-Q and double-Q states including skyrmion and meron-antimeron crystals on a square
lattice, in comparison with the numerical calculations. Moreover, we show that the charge density waves contain
richer information than the spin density waves, and are indeed useful in distinguishing the spin textures with
similar spin structure factors. We discuss the relation to bond modulation in terms of the kinetic bond energy and
the vector spin chirality. We also perform numerical calculations beyond the perturbative regime and find that
the charge density waves can be enhanced when the electron filling is commensurate. Furthermore, we investigate
the effect of the spin-orbit coupling, which can lead to additional charge density waves owing to effective
anisotropic magnetic interactions in momentum space. Our result will provide a way to identify complex

magnetic orderings and their origins from the charge modulations.
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I. INTRODUCTION

Itinerant magnets consisting of itinerant electrons and lo-
calized spins have long been studied in condensed matter
physics [1,2]. The key concept is spin-charge entanglement
that arises from the exchange coupling between the itinerant
electron spins and the localized spins. The interplay between
the spin and charge degrees of freedom results in a variety
of magnetic, transport, and optical properties. For example,
it stabilizes helical magnetic orderings through an effective
magnetic interaction via the kinetic motion of itinerant elec-
trons, which is called the Ruderman-Kittel-Kasuya-Yosida
interaction [3-5]. Besides, various types of noncollinear and
noncoplanar magnetic orderings consisting of multiple spin
density waves (SDWs) dubbed multiple-Q magnetic orderings
are also induced by effective multiple-spin interactions arising
from the spin-charge entanglement [6—12]. Conversely, the
magnetic structures of the localized spins affect the electronic
properties of itinerant electrons, such as the colossal mag-
netoresistance [13—17], the topological Hall effect [18-24],
the magnetoelectric effect [25-28], and nonreciprocal trans-
port [29-32].

Among rich spin-charge coupled physics, we focus on the
charge density wave (CDW) in itinerant magnets. The spin-
charge interplay brings about the possibility of spontaneous
formation of the CDW, without relying on repulsive Coulomb
interactions or electron-phonon interactions [33]. Indeed, it
was shown that a CDW appears in the Kondo lattice model
in one [34], two [35], and infinite dimensions [36,37]. Sim-
ilar instability was also discussed for the periodic Anderson
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model [38,39]. These CDWs are attributed to a quantum
many-body effect via the Kondo singlet formation, and thus
do not necessarily require magnetic orderings. Meanwhile,
CDWs can occur in the presence of magnetic ordering. In
this case, the internal field from the magnetic moments affects
the charge degree of freedom via the spin-charge coupling.
The typical examples were found in a partial magnetic disor-
der [40—45] and a ferrimagnetic order [46,47] on a triangular
lattice, and a noncoplanar triple-Q order on a cubic lat-
tice [48,49]. Interestingly, it was recently shown that such
a CDW appears in more complex spin textures, such as a
skyrmion crystal (SkX) [11,50-55].

In the spin-charge coupled systems, the identification of the
CDW provides us important information on the magnetic state
and its microscopic origin. A successful example has recently
been achieved in the centrosymmetric 4 f-electron material
GdRu,Si, [56-58], which hosts three multiple-Q magnetic
states in an external magnetic field [56]. Although one of the
three, the square SkX in the intermediate field region, has
been identified by a magnetic probe of the Lorentz transmis-
sion electron microscopy [56], the magnetic structures of the
other two were indirectly resolved by an electric probe of the
spectroscopic-imaging scanning tunneling microscopy mea-
surement [57]. The observed CDW modulations were well
reproduced based on the Kondo lattice model, which indicates
that the concomitant SDWs and CDWs in GdRu,Si, are a
consequence of the spin-charge coupling inherent to itinerant
magnets [58].

In the present study we investigate the CDW formation
in the presence of SDWs in a broader context, in order to
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understand their relationship in detail. On the basis of the
perturbation in terms of the spin-charge coupling, we derive
a compact formula for predicting the CDW modulation in-
duced by SDW ordering, which can be applied to arbitrary
complex multiple-Q states on any lattices. We test the formula
for several magnetic orderings including the double-Q (20Q)
SkX and the 2Q meron-antimeron crystal (MAX) on a square
lattice, and show that the associated CDW patterns obtained
by the numerical diagonalization are well accounted for by
the formula. In particular, we find that the 2Q coplanar state
and the MAX are clearly distinguished in terms of the CDWs,
although they look similar in terms of the spin structure factor.
We comment on the relationship between the CDW forma-
tion and the bond modulation by the underlying spin texture,
from the results for the kinetic bond energy and the vector
spin chirality. We also show that, in the strong spin-charge
coupling region beyond the perturbative regime, the CDW
can be enhanced and modulated when the electron filling is
commensurate and the electronic band structure tends to be
gapped. Moreover, we discuss the role of the spin-orbit cou-
pling in the CDW formation, which also induces additional
CDWs through effective anisotropic magnetic interactions
arising from the spin-orbit coupling. Our result indicates the
relevance of the CDW modulations to the identification of
complex magnetic orderings and their microscopic origins.

The rest of the paper is organized as follows. After in-
troducing the Kondo lattice model in Sec. II, we present the
results obtained by the perturbative calculation and the nu-
merical diagonalization in a complementary way in Sec. III.
Section IV is devoted to the summary.

II. MODEL

We consider the Kondo lattice model, which is one of the
prototypical models for itinerant magnets. The model consists
of itinerant electrons and localized spins, which are coupled
via the exchange coupling. The Hamiltonian is given by

H==> tijchcio+J Y chosociy S (1)

i,j,o i,0,0'

where c; (cis) 1s a creation (annihilation) operator of an itin-
erant electron at site i and spin o, and S; is a localized spin at
site i. The first term in Eq. (1) represents the kinetic energy of
the itinerant electrons with the hopping parameter #;; between
sites i and j. The second term stands for the on-site exchange
(spin-charge) coupling between the itinerant electron spins
s;i =(1/2) Z(w, c};awrciar and §;, where 0 = (0%, 07, 0%) s
the vector of Pauli matrices. The coupling constant is denoted
as J. We regard S; as the classical spin with |S;| = 1; the sign
of J is irrelevant and no Kondo screening occurs.

The Kondo lattice model in Eq. (1) is simple but appropri-
ate to examine the relation between SDW and CDW, since
it exhibits a variety of multiple-Q magnetic states, such as
SkXs [11,55,59-61], chirality density waves [62—64], and
vortex crystals [65]. This is due to effective spin interactions
that arise from the spin-charge coupling combined with the
kinetic motion of itinerant electrons. Indeed, it was shown
that the Kondo lattice model generally includes effective
multiple-spin interactions described in momentum space, e.g.,

(Sq, - Sq,)(Sq, - Sg,), by the perturbation in terms of J, where
S4 is the Fourier transform of S; [66].

In the following we discuss the CDW under the SDW
by postulating magnetic textures for S; in the ground state.
As will be discussed in Sec. III A, the charge modulation
is caused by multiple spin scatterings of itinerant electrons,
which are formulated by effective spin interactions in mo-
mentum space arising from the kinetic motion of itinerant
electrons [see Eq. (3)]. Thereby, the following results can
also be applied to other itinerant electron models, such as the
Hubbard model and the periodic Anderson model in the region
where the effective interactions are described by the multiple
spin interactions in momentum space.

III. RESULTS

In this section we study the CDW modulation in the pres-
ence of SDW for the Kondo lattice model in Eq. (1). First, we
derive a general formula for the CDW induced by the SDW
on the basis of the perturbation in terms of the spin-charge
coupling in Sec. IIT A. Then, we test the formula for represen-
tative examples, in comparison with the numerical results by
the direct exact diagonalization. Specifically, we take single-Q
(1Q) and 2Q magnetic orderings on a square lattice. While the
formula holds for generic cases, for simplicity we take into
account only the nearest-neighbor hopping ¢ = 1 in the model
in Eq. (1) on the square lattice in the calculations. In Sec. III B
we discuss the CDW in the 1Q sinusoidal orderings with and
without a net magnetization. We further investigate the CDWs
in the presence of the 2Q magnetic orderings composed of
superpositions of two SDWs in Sec. IIIC. In Sec. IID we
show the relationship between the CDW and the other spin
and charge related quantities, the vector chirality and the ki-
netic bond energy. We discuss the CDW in a wider parameter
region beyond the perturbative regime in Sec. III E. We also
discuss the effect of the antisymmetric spin-orbit interaction
on the CDW for a polar tetragonal system in Sec. IITF.

A. Perturbative analysis

For the preparation of the perturbative argument, we per-
form the Fourier transform of the model in Eq. (1) as

H=Y erc cro + % S Goorchrar - Sp @)
k,o k,q,0,0’
where & is the energy dispersion and N is the number of
sites; cza and ¢y, are the Fourier transform of c[a and c;,, re-
spectively. The second term denotes the scattering of itinerant
electrons by the localized spins with momentum transfer q.
In the presence of SDW, the CDW modulation of itinerant
electrons is caused by the scattering by the localized spins S,
in the second term of Eq. (2). When the spin-charge coupling
J is sufficiently small compared to the bare bandwidth of itin-
erant electrons, we can estimate the charge density with wave
vector ¢, ng = (1/N) " c;(' g0 Cko> by using the perturbative
expansion in terms of J. The lowest-order contribution comes
from the second-order process, as represented by the Feynman
diagram in Fig. 1. The diagram consists of two scattering
vertices by the localized spins and three bare propagators of
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FIG. 1. Feynman diagram for the lowest-order contribution to the
charge density n, in the perturbation expansion in terms of the spin-
charge coupling J, see Eq. (3). The vertices with wavy lines denote
the scattering of the itinerant electrons by the localized spins, and
the solid lines with arrows represent the bare propagators of itinerant
electrons.

the itinerant electrons, which is explicitly given by

2J?
_ = 0 ~0 0 )
ng = NzT § E :Gka+quk+q1+q2(Sql qu)aqﬁqz,qHGs
k.q,.q, ®n

3

where T is the temperature (the Boltzmann constant is taken
as unity), G,(z(ia),,) = [iw, — (&x — w1 s noninteracting
Green’s function, w, is the Matsubara frequency, u is the
chemical potential, § is the Kronecker delta, and G is the re-
ciprocal lattice vector (/ is an integer). We drop the spin index
for Green’s function because the kinetic term in the Hamil-
tonian is spin independent (we will discuss a spin-dependent
case in Sec. III F). We note that the summation with respect to
the Matsubara frequency is analytically taken as

Ty GGGy
_ S(er)(ew — e )+ flew) e — ex)+ f e )(ex— &x)
(ex— ex ) (ex— ex) (&g — &x7) '

“

The expression in Eq. (3) indicates that the CDW mod-
ulation with wave vector ¢ is predominantly induced by the
two-spin scattering in the form of §,, - S,, which satisfies the
momentum conservation ¢ = ¢; + ¢q,. In other words, only
the magnetic correlations with nonzero S, - S4—4, contribute
to the CDW modulation with wave vector ¢. In addition, the
magnitude of the CDW modulation is strongly affected by
the band structure and the electron filling through Green’s
functions in Eq. (3).

We can also obtain higher-order contributions to n, by
higher-order expansions in terms of J. Note that no odd-order
terms in J appear in the presence of time-reversal symme-
try. As expected from Eq. (3), the 2nth-order contribution
is given in the form of (S;, - S¢,)(Sg, - S¢,) - (Sq,,_, - Sgy,):
for example, the fourth-order contribution is proportional to
(Sq, - Sq,)(Sq, - Sq,) withg = ¢, + ¢, +q5 + q, + [G.

B. Single-Q spin states

To test the perturbative argument in Sec. IIT A, we first
numerically evaluate Eq. (3) for 1Q states on a square lattice
as the simplest example, and compare the results with those

by the direct diagonalization of the Kondo lattice Hamiltonian
in Eq. (1). We discuss the CDW in the 1Q sinusoidal SDW
without a net magnetization in Sec. IIIB 1 and that with a
nonzero magnetization in Sec. III B 2.

1. Without a net magnetization

The spin texture characterized by the 1Q sinusoidal wave
is represented by

S; = Ni(0,0,cosQ, - r;), 5)

where r; is the position vector at site i and N; represents the
normalization to satisfy |S;| = 1 at each site. Here we take
the ordering vector @, = (7 /3, 0) (the lattice constant is set
to unity). The spin configuration is shown in the left panel of
Fig. 2(a), where the spins are aligned in an up-up-up-down-
down-down way along the x direction, and hence, there is
no net magnetization. This spin state shows dominant Bragg
peaks at =@, in the spin structure factor, and in addition,
higher harmonics at 30, as shown in the middle left panel
of Fig. 2(a). Here the spin structure factor for the localized
spins is calculated as

1 S
S'@) =5 D_Si-S;e ", (6)
ij

In this situation we can predict the CDW modulation by
using Eq. (3). Specifically, by plugging £0, and £3Q), into
¢, and g, in Eq. (3), we find that only the ¢ = +20, com-
ponents of n, become nonzero in the first Brillouin zone.
Note that there are three combinations that contribute to nag, :
(41 92) = (1. Q)). (=0,.3Q)), and (3Q,, —Q,) (£3Q, are
equivalent as they are on the zone boundary). In Fig. 3(a), the
solid lines show the chemical potential .« dependence of |n;g, |
calculated by Eq. (3) for the k-space mesh of 1440 x 1440
(N = 1440%). We choose a small value of J = 0.05, as the
expression in Eq. (3) is derived in the limit of the weak
spin-charge coupling. The result for u < 0 is obtained from
that for i > 0 by using particle-hole symmetry of the model;
@ = 0 corresponds to the half-filling. As shown in Fig. 3(a),
|n2g, | shows a nonmonotonic behavior against u. The sign of
nag,, which corresponds to the phase of the CDW, changes
at particular values of u; nag, > 0 for 0.35 < v < 1.42 and
3.13 S u S 4, otherwise nyg, < 0.

Independently we can evaluate the CDW modulation by the
direct numerical diagonalization of the Kondo lattice model
in Eq. (1). Substituting the 1Q sinusoidal state in Eq. (5) into
Eq. (1), the local charge density modulation is calculated as
Ani=)", (c:facm) — n*°, where n®® is the average charge
density. The real-space distribution of An; at u = 3 is shown
in the middle right panel of Fig. 2(a). The data are calculated
for the system size N = 967 (the figure shows a part of the
whole system with 24 sites). The characteristic wave vectors
of this CDW is extracted from the charge structure factor
defined by

1 ,
N@) = D AniAnjet . 7
iJ
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(a) 1Q sinusoidal wave without
a net magnetization
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FIG. 2. Left: Real-space spin configurations of the 1Q sinusoidal spin state with Q, = (7 /3, 0), (a) without a net magnetization in Eq. (5)
and (b) with a nonzero magnetization M? = 0.7 in Eq. (9). The contour shows the z component of the spin moment. Note that the spin states
are collinear: (a) up-up-up-down-down-down and (b) up-up-up-up-up-down. Middle left: The square root of the spin structure factor for the
localized spins in the first Brillouin zone. Middle right: Real-space distributions of the local charge density measured from the average density.
Right: The square root of the charge structure factor. The data for the CDW modulations are obtained by the direct diagnalization of the
Hamiltonian in Eq. (1) atJ = 0.05 and j« = 3 for the system size with N = 962 under the periodic boundary conditions.

Note that |ng| = /N¢(q)/N. The result is plotted in the right
panel of Fig. 2(a). We find that the Bragg peaks appear only
at £20,, as predicted by the perturbative formula in Eq. (3).

In order to quantitatively test the perturbative argument, we
compare the u dependences of |nyg, | between the results by
Eq. (3) and the direct diagonalization at J = 0.05 in Fig. 3(a).
We find good agreement in the whole range of x including
the sign change of g, , which validates the perturbative argu-
ment. Figure 3(b) shows further comparison for larger J. The
results by the diagonalization gradually deviate from that by
the perturbative calculations while increasing J, whereas we
do not find any additional CDW modulations at other g within
this range (see Sec. III E for larger J).

The 20, CDW modulation for the @, sinusoidal SDW
is also intuitively understood from the real-space picture.
When the itinerant electrons move on the up-up-up-down-
down-down spin texture, the effective hopping amplitude is
modulated in a different way for neighboring parallel (up-up
or down-down) spins and antiparallel (up-down or down-up)
spins. This modulation of the kinetic energy results in the
CDW modulation. As the period of the modulation of the
kinetic energy is a half of that of the SDW, the period of the
charge modulation is also halved, which results in the 20,
CDW. (Detailed analysis will be given for the 2Q cases in
Sec. IIID.)

Similar results will apply to the 10 SDW states with spin
spirals, at least, when the spirals are elliptically modulated as

Si :M(Ov ay Sian 'rivaZCOSQI 'ri)’ (8)

with a, # a.; note that Eq. (8) with a, = 0 and a, # 0 reduces
to the 1Q sinusoidal spin state in Eq. (5). Meanwhile, the
CDW modulation vanishes for the 1Q circular spiral state with
a, = a, since nag, in Eq. (3) becomes zero owing to the can-
cellation between S, S, and S, S, . This is reasonable from
the real-space picture: the effective hopping is renormalized
but remains spatially uniform because of the uniform twist of
spins.

2. With a net magnetization

We further perform the comparison for the 1Q sinusoidal
spin configuration with a net magnetization given by

S; = N:i(0,0, M* + cos Q, - r;). C)

We take M* = 0.7 so that the real-space spin configuration be-
comes the up-up-up-up-up-down spin configuration, as shown
in the left panel of Fig. 2(b). Note that M is not the actual
value of the net magnetization. In contrast to the case without
the magnetization, this spin state shows additional peaks at
q = 0 and £20), in the spin structure factor, as shown in the
middle left panel of Fig. 2(b). Reflecting the additional Fourier
components, the perturbative formula in Eq. (3) predicts ad-
ditional CDW modulations at ¢ = +Q; and +30, owing to
nonzero spin products of SinSf) and S:ZthSftZQl' This is in-
deed confirmed by the direct diagonalization, as shown in the
real-space charge modulation and the charge structure factor
in the middle right and right panels of Fig. 2(b), respectively.
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FIG. 3. (a) |nyg,| under the 1Q sinusoidal spin ordering with
Q, = (7r/3,0)in Eq. (5) as a function of the chemical potential y for
J =0.05 and N = 14402, The squares show the results obtained by
the direct diagonalization of Eq. (1) and the solid lines show those by
the perturbative formula in Eq. (3). The blue (green) shaded regions
represent nog, > 0 (129, < 0). (b) The same plot as (a) for / = 0.1,
0.3, and 0.5, where |nyg, | is renormalized by J? for comparison.

C. Multiple-Q spin states

The above analysis can be straightforwardly applied to
more complex spin configurations. In this section we demon-
strate it for four types of the 2Q spin textures with the
ordering vectors Q; = (7 /3,0) and @, = (0, w/3): the 20
chiral stripe state in Sec. IIIC 1, the 2Q coplanar state in
Sec. IIC2, the 20 MAX in Sec. IIIC3, and the 2Q SkX
in Sec. [IIC4. We show that while all these spin states are
described by superpositions of two SDWs, the characteristic
wave vectors of the corresponding CDWs are different from
each other, which are in good agreement with the predictions
from the perturbative argument. Throughout this section the
numerical calculations by the direct diagonalization are done
for J = 0.05 and ¢ = 3, and the system size with N = 962.

1. 20 chiral stripe

We begin with a superposition of the 1Q spiral wave along
the @, direction and the 1Q sinusoidal wave along the Q,
direction. This is called the 2Q chiral stripe state, whose spin

configuration is given by [64]

bsinQ, -r; '

S = N[ 1 =252 @, -ricos, i | 10y

1 —B?sin® Q, -r;sinQ, - r;

where b is a parameter that controls the mixture of the second
component with Q,; we here take b = 0.8. The real-space
spin configuration is shown in the left panel of Fig. 4(a),
which consists of a periodic array of vortices and antivortices
in the xy-spin components and the stripe modulation in the
z-spin component. Owing to the noncoplanar spin texture, this
state accompanies a density wave of the scalar spin chiral-
ity defined by the triple product of three neighboring spins,
S - (S x Sk), along the Q, direction, which is the reason
why this spin state is called the 2Q chiral stripe. There is
no net scalar chirality, and hence, no topological Hall effect
occurs in this state. The spin structure factor exhibits the
Bragg peaks at £0, and +0, with different intensities and at
the higher harmonics at =0, =+ 20Q,, as shown in the middle
left panel of Fig. 4(a). The nonzero intensities at £0, + 20,

are attributed to the factor v/ 1 — b? sin® 0, -r; in Eq. (10),
which includes the contribution of cos 2Q, - r;. This 2Q chiral
stripe has been widely found in itinerant magnets on various
lattices, e.g., the Kondo lattice model on the square [58,64,66],
triangular [66—68], and cubic [69] lattices, and the d-p model
on the square lattice [70].

The right two panels of Fig. 4(a) represent the real-space
charge distribution and the charge structure factor in the 20
chiral stripe state. The local charge density oscillates only
along the Q, direction, and indeed, the charge structure factor
exhibits the peaks only at +20,. At first glance the result
appears to contradict with the perturbative argument for the
given peaks in the spin structure factor at +Q;, +0Q,, and
+0, £ 20,, but it is understood as follows. Equation (10) is
represented by a superposition of the circular spiral wave with
|Sél| = |Sé] | along the Q, direction and the sinusoidal wave
along the @, direction. The latter gives rise to nonzero nag,,
whereas the former does not lead to any CDW, as discussed
in Sec. III B 1. Thus, the CDW with +20, is compatible with
the perturbative formula in Eq. (3).

2. 20 coplanar

Next, we consider the 2Q coplanar state, which is charac-
terized by a superposition of two sinusoidal waves. The spin
configuration is given by

Si = Ni(—cosQ, -ri,cos Q, - r;, 0). (11)

The real-space picture of the localized spins is shown in the
left panel of Fig. 4(b). This state also consists of a periodic
array of vortices and antivortices like the 2Q chiral stripe
state, but all the spins are coplanar with no z-spin compo-
nent. Owing to the normalization condition of |S;| = 1, the
spin structure factor shows the peaks at higher harmonics
+0,+20Q, and £2Q,+30, (v,v' =1,2,v # V'), in ad-
dition to 0, and +30Q, expected for each sinusoidal wave,
as shown in the middle left panel of Fig. 4(b). This state has
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FIG. 4. Left: Real-space spin configurations of (a) the 20 chiral stripe state in Eq. (10), (b) the 2Q coplanar state in Eq. (11), (c) the 20
MAX in Eq. (12), and (d) the 2Q SkX in Eq. (13). The arrows and the contour show the xy and z components of the localized spins, respectively.
Middle left: The square root of the spin structure factor for the localized spins in the first Brillouin zone. Middle right: Real-space distributions
of the local charge density measured from the average density. Right: The square root of the charge structure factor.

been discussed in itinerant magnets at zero field [71] and in
frustrated and itinerant magnets under an external magnetic
field [58,66,72,73].

In the 2Q coplanar state, the local charge density is mod-
ulated in both the x and y directions unlike the 2Q chiral
stripe, as shown in the middle right panel of Fig. 4(b). The
charge structure factor exhibits the peaks at £2Q, & 20,, in
addition to 20, and £20, which are expected from each
sinusoidal wave. This is because there are nonzero contribu-
tions from, e.g., Sg, - Sg,+20, and S3g, - S29,—g,, to 1, with
q =20, + 20, in Eq. (3).

3. 20 MAX

The 20 MAX is obtained as a modulation of the 2Q copla-
nar state by adding a nonzero z-spin component as
T
—cosQ, -r;
cosQ, -r;
—sinQ, -r; —sinQ, - r;

Si=N (12)

This is regarded as a superposition of two spin helices: one
is in the yz-spin component with wave vector @, and the
other is in the xz-spin component with @,. The real-space
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spin configuration is shown in the left panel of Fig. 4(c).
Reflecting the modulation in the z-spin component, the 20
MAX consists of a periodic array of meron and antimeron
characterized by a half skyrmion number each with opposite
sign [74-76]. The cancellation of the skyrmion number be-
tween the merons and antimerons leads to no topological Hall
effect. The peak positions of the spin structure factor are the
same as those in the 2Q coplanar state, as shown in the middle
left panel of Fig. 4(c). This state has been discussed in chiral
magnets [77], frustrated magnets [73], and polar itinerant
magnets [78,79].

In spite of the same set of the Bragg peaks in the spin struc-
ture factor, the CDW modulations are qualitatively different
between the 20 coplanar state and the 2Q MAX, as shown in
the right two panels of Figs. 4(b) and 4(c), respectively. The
primary difference is found in the +£0, + @, components in
the charge structure factor; the 20 MAX has nonzero ng, +o,,
while the 2Q coplanar state does not. This is because the 20
structure in the z-spin component in the 20 MAX gives a
contribution of SjEQISjEQ2 to n, withq = =0, + @, in Eq. (3).
Furthermore, it is worthwhile mentioning that the 20 MAX
state exhibits the CDW modulations, although the constituent
waves are the circular spiral waves rather than the sinusoidal
waves. This appears to contradict with the observations in
the 1Q case in Sec. III B 1, but can be understood from the
different amplitudes between the xy- and z-spin components;
the former has the 1Q component, whereas the latter has 20,
which effectively make the xy and z spins inequivalent. Thus,
the multiple-Q spiral states may be accompanied by CDW
modulations which are unexpected for the 1Q state with the
constituent wave.

4. 20 SkX

Lastly, we discuss the CDW in the 2Q SkX. The spin con-
figuration is obtained by adding a uniform z-spin component
to the 20 MAX in Eq. (12), which is given by

—cosQ, -r; T
cosQ, - r; . (13)
M —sinQ, -r; —sinQ, - r;

Si=N

We here set M? = 0.7. As shown in the left panel of Fig. 4(d),
the skyrmion cores defined by S; ~ —1 form a square lat-
tice, and hence, this state is called the square SkX. Different
from the 2Q MAX, this spin configuration shows a nonzero
net value of the scalar spin chirality, which results in the
topological Hall effect. Owing to the nonzero magnetization,
there are additional peaks in the spin structure factor at g = 0,
0, £ 0,, £20,, £20,, and £20, £ 20,, as shown in the
middle left panel of Fig. 4(d) (we note that there are also peaks
with weak intensity on the Brillouin zone boundary, e.g., at
30, + Q,). This state has been widely discussed in itinerant
magnets [58] and in localized magnets [72,73].

The additional ¢ components of spins induce additional
charge modulations, as shown in the right two panels of
Fig. 4(d). The intensities become nonzero at multiples of Q,
and Q,, i.e., m;Q, + myQ, where m; and m, are integers,
all of which are accounted for by the perturbative formula in
Eq. (3).

(a) 2Q chiral stripe /Be(q) X'\fec(q)
T
1 8x10°
a4y 0 | | Iy
i 4x107
s 0 -
- 0 T g 0 n
Qx 4z
(b) 20 coplanar /B<(q) % X{/cc(q>
T
[{1x107
9y 0 “ Iy
- 0
= 0 i
qx
(c) 20 MAX

i

ay 0

-
-

qx

(d) 20 SkX VB(@ Xleo(@)
T T
12
= 2x10°
9y 0 N (]
6
- ' 0 -T 0
- T -T 0 T
Gz qz

FIG. 5. The square root of the structure factor for the kinetic
bond energy of the itinerant electrons (left) and the vector chirality of
the localized spins (right) for (a) the 2Q chiral stripe state in Fig. 4(a),
(b) the 2Q coplanar state in Fig. 4(b), (c) the 20 MAX in Fig. 4(c),
and (d) the 2Q SkX in Fig. 4(d).

We note that a similar CDW modulation is expected for the
collinear 2Q bubble crystal without the xy spin components in
Eq. (13), which might be realized in CeAuSb, [80-82].

D. Relation to bond modulation

As discussed for the 1Q case in Sec. IIIB 1, the CDW
formation in the 2Q cases can be understood from the modula-
tion of the effective hopping amplitude on the underlying spin
texture. This is demonstrated in the left panels of Fig. 5 for (a)
the 20 chiral stripe state in Eq. (10), (b) the 2Q coplanar state
in Eq. (11), (c) the 20 MAX in Eq. (12), and (d) the 2Q SkX
in Eq. (13). Here we plot the structure factor for the kinetic
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bond energy defined by

c 1 ig-(ri—r;
B@)= ZK,-B KT, (14)
ijé
where Kj; is the local kinetic energy between site i and i + &
as

Kis = ) (i cirss + He). (15)

o

Here § = & and § denote the shift with lattice constant along
the x and y directions, respectively. We find that B°(g) shows
the peaks at the same positions as the charge structure factor
N¢(g) in the right panels of Figs. 4(a)-4(d). This is because
the hopping of itinerant electrons is modulated depending
on the relative angle of the localized spins, as discussed in
Sec. IIIB 1.

While the above quantity is related to the inner product
of the localized spins S; - S, we find that the outer product
S; x §;, which is called the vector spin chirality, also has
a correlation with the CDW. In the right panels of Fig. 5
we plot the structure factor for the vector spin chirality
defined by

! o
Heel@) =~ D Xis - X", (16)
ij8

where x;; = Si X Sits. The result shows that vaec(q) ex-
hibits the peaks at the same positions as N°(q) as well as
B¢(q). The origin of the correspondence is not clear but it
might be attributed to the relation between the vector spin
chirality and the local electronic polarization as p;; o F;; X
(S; x §;), where #; is the unit vector from the site i to
J [83-85]. Although this relation holds for the insulating
systems, we speculate that the CDW in our metallic system
is also affected by the vector spin chirality through a similar
relationship between spin and charge. We note, however, that
the correspondence does not hold for the collinear magnetic
orderings, for which ;s are all zero.

E. Parameter dependence

In the previous sections, we confirmed that the perturbative
formula in Eq. (3) well explains the CDW formation in the
model in Eq. (1) for weak J. In this section, we examine how
the CDW evolves while increasing J beyond the perturbative
regime. We take the 20 coplanar state in Eq. (11) as an
example. Figure 6(a) displays the intensity of |nog, | while
varying J and the electron filling n. Again, the results for less
than half-filling are obtained by using the particle-hole sym-
metry. In the weak J region, |nyg, | increases while increasing
J owing to the factor of J? in Eq. (3) [see also Fig. 3(b)].
Meanwhile, the behavior of |nyg,| deviates largely from
Eq. (3) for J 2 0.5 and depends on J and n in a complicated
manner, as shown in Fig. 6(a). We find that the value of |nyg, |
tends to be enhanced around some commensurate fillings
to multiples of 1/9, e.g., n =10/9, 11/9, and 17/9 in the
large J region. This is attributed to the tendency of the gap
opening in the band structure of the itinerant electrons at the
commensurate fillings. We demonstrate this for J = 4.5 in
Fig. 6(d), where the system opens an energy gap atn = 10/9

11.2x1072

0.6x10

0.0

n
(b) |n2Q1+2Q2|
1.2x1072

10.8x102

0.4x107

0.0

1 4/3 5/3 2
n

(c) In2q, | — 12, +2Q.|
T 2x1072

T ¥ T T

S W
T
I

1x10?

(98
T
1

-~

1 - & ' 1
0 : -1x10°2
1 4/3 5/3 2
n
R 8
//\
T —— 6
e
2 4 < 4 p
R — I 2
T
0 J=45 | L,
0,0) (m,0) (m,m) (0,001 43 53 2
(kl'v ky) "

FIG. 6. Contour plot of (a) |ng, |, (b) |n2g, 420, 1, and (¢) |nag, | —
|n29,420,| in the n-J plane in the case of the 20 coplanar state.
(d) (left) Energy dispersion of the 2Q coplanar state at J = 4.5.
(right) Chemical potential w as a function of n corresponding to the
left panel.

and 17/9, and remains gapless but semimetallic at n = 11/9.
Thus, the strong spin-charge coupling provides the possibility
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to enhance the CDW modulation through the significant
modification of the band structure.

Besides, we find that, depending on J and 7, the dominant
CDW modulation appears at a different wave vector from
the prediction by the perturbative formula in Eq. (3). This is
demonstrated in Fig. 6(b) which plots |19, 429, |. In the weak
J region, |nyg, 120, | is smaller than |nyp, | owing to the factor
of 84, - 8¢, in ng; the dominant contribution of |n2g, 120,| is
So, - Sg,+20,, which is smaller than that of |nzg |, Sg, - Sg,.
since Sg, > Sg,+20, [see the middle left panel of Fig. 4(b)].
Meanwhile, there are regions for |n29 129,| > |n29,| beyond
the perturbation regime, which is clearly shown in the plot
of the difference |nyg, | — In2g,+2¢,| in Fig. 6(c). The results
indicate that the strong spin-charge coupling leads to not only
the enhancement but also the modulation of CDW.

F. Effect of spin-orbit coupling

Thus far we have examined the CDW induced by the SDW
via the isotropic interaction in spin space like S, -S,, in
Eq. (3). On the other hand, an anisotropic interaction can arise
from the cooperation between the spin-orbit coupling and the
crystalline electric field. In this section we consider the effect
of such anisotropic interactions on the CDW modulation.

We introduce an antisymmetric spin-orbit interaction by
supposing mirror symmetry breaking with respect to the
two-dimensional plane of the square lattice and inversion
symmetry breaking, whose contribution is given by

Z 8k - Ckl,aarr/cka ) (17)

k,o,0' |

%ASOC

where g, is an antisymmetric vector with respect to k:

g = (k. g, &) = a(sinky, —sink,,0) = —g_,.  (18)

The antisymmetric spin-orbit interaction in Eq. (17) corre-
sponds to the Rashba-type antisymmetric spin-orbit interac-
tion [86,87]. By taking into account #AS°C in addition to H
in Eq. (2), the spin space in the total Hamiltonian becomes
anisotropic, which results in effective long-range anisotropic
magnetic interactions by tracing out the itinerant electron
degree of freedom [78,88]. There are mainly two types of
effective anisotropic interactions in the lowest order in terms
of J: One is the antisymmetric interaction in the form of
Sq X S_q and the other is the symmetric anisotropic inter-
act10n in the form of S;qu and S;Sy_q [78,89,90]. Note that
the Hamiltonian H + H"S9C including the other type of spin-
orbit coupling was shown to exhibit a variety of multiple-Q
magnetic states [91].

In a similar procedure to that in Sec. III A, we derive the
lowest order contribution to the charge modulation in terms of
J for the Hamiltonian H + HAS9C, which is given by

0
UDDED DD IP I Lo It v

g =2
aN k.q,.q,0,0',0" aff w,
apf
X Mg 000750, 50,30+, 4416 (19)
where 1%° represents the form factor, and Green’s

(kq,4,)(00'0") o . )
functions depend on the spm index o reflecting the spin

anisotropy. For example, n* kg,a) (111D is explicitly given by

_ X ~ ~ ~ ~ ~ R ~ ~y
Mgttt = 1+ &ilirg, T Zerg, Biraiva, T 8ra+a, 8k = BiBhrg, — Brrg, Bvg rar T Bhrg, 10,800 (20)
vy _ s o o 5 ) sy 5 5
H(k‘ll‘lz)(TTT) =1- g};g)’(‘ﬂll - g}(€+qlg§‘+%+qz + g);‘“llﬂlzg;‘ + g},‘gk"‘ql + g};"r‘hg}f""ll"r‘h + g;""‘ll""‘lzgly" 2D
X~ ~ ~ ~ ~ ~V ~Y ~V ~V ~V ~
H?’ZC%%)(TTT) =1- 8)]ch2+ql o g)’C‘JF'IIg;ﬁL‘IlJF’Iz + g;c+q1+ngi o gkg;“"ql - gk+‘11g;‘+‘11+‘12 + g;‘+‘11+‘12g]y" (22)

xy
H(kqlllz)(TM)

= %8irg, t Bhraq,8kiq,1a,
= —i(g — Birg, + 8kig +a,
=i(g} — Bhrg, t 8hig,+a,
= l(gi - §c+q1 + g;;+ql+qz

— i@

yx
H(k‘ll‘lz)(TTT)

o g/;;g’i"r'llgi'F‘h""'Iz

vz

H(k‘ll‘h)(TTT)
2y

H(k‘llfh)(TTT)

Xz ~y
Mieg,a111) A

X _ ~y ~V
g0 Zrg, T Bitgrra,

where g7 = g¢/ |gk| for « =x and y. The diagonal com-
ponents of I'I(kq o) in Egs. (20)—(24) represent the
contributions from the symmetric spin interaction including
even power of the spin-orbit coupling, while the off-diagonal
ones in Egs. (25)—(28) represent the contributions from
the antisymmetric spin interaction including odd power of
the spin-orbit coupling. One can obtain the expression of

*p », for the other spin components in a similar

(kq,q,)(00'c
manner.

= g;cg;;+q, + g;(+qlgl);+ql+q2 + gz-kql-k—ngi + g;;gi-&-q] + g;;+qlgi+ql+q2
- gf,‘(+q|+ng§; + g)};g;c-&-q, + g};Jrqlgl:+ql+qz + g?chqlJrngIYc’ (24)
- gigz+q1glyc+ql+q2 - gl);gi-i-ql g;;JrqlJrqz + giglyqulg;c-&-ql-ﬁ-qz)’ (25)

- gjl(cgi+q|g/;c+ql+qz + g/lvcg;;+q1g;;+ql+q2 - g;;g;c+q]g;;+ql+q2 - g;;gyc+q]gi+q|+qz)’ (26)

= Zirgia. i (23)

- g;cg/lvc-kqlg;c-k—ql-&-qz - g;;g;qu,g;-kql-&-qz + 5’7c§7c+q1§’§c+ql+qz)’ @n

- g;;gqu,g;;Jrqﬁqz + gzg;‘-*-‘llg’i‘*qrf'qz

- gig;;+q1g/lvc+ql+qz - g/lvcgi-kqlgrwqﬁrqz)’ (28)

(

As exemplified below, an important observation in the
presence of the antisymmetric spin-orbit coupling in Eq. (19)
is that the CDW modulation depends on not only the magnetic
texture but also the form of the effective spin interaction. In
other words, additional CDW modulations can appear by tak-
ing into account the antisymmetric spin-orbit coupling even
for the same magnetic structure. This implies that one can
deduce the relevant spin-orbit coupling once the patterns of
the CDW and the SDW are identified in experiments. In the
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FIG. 7. Left: Real-space charge distributions measured from the
average charge density in (a) the 2Q chiral stripe state in Eq. (10)
and (b) the 2Q coplanar state in Eq. (11) at J = 0.05, @ = 0.5, and
1 = 3 in the presence of the Rashba-type antisymmetric spin-orbit
coupling in Eq. (17). Right: The square root of the charge structure
factor.

following we demonstrate additional CDW modulations for
the 2Q chiral stripe state in Sec. Il F 1 and the 2Q coplanar
state in Sec. IITF2.

1. 20 chiral stripe

Figure 7(a) shows the real-space charge distribution (left
panel) and the charge structure factor (right panel) in the
2Q chiral stripe state, which is obtained by the direct diag-
onalization of #H + HAS°C at J =0.05, @ = 0.5, and p =
3. We consider the same spin configuration in Eq. (10) in
order to show the effect of the spin-orbit coupling. Com-
pared to the result in Fig. 4(a), the local charge density
shows a modulation along the x direction in addition to
the y direction, as shown in the left panel of Fig. 7(a).
By performing the Fourier transformation, there are addi-
tional three peaks in the charge structure factor at £20,,
+(0, + 0,), and =(Q, — Q,) in addition to £20Q,, as shown
in the right panel of Fig. 7(a). The appearance of nyg, is
owing to H(kQ 0 )(MJ,)SV SV # IG0.0,)00'0)S0 SQ [for
instance, see Egs. (21) and (22)] whlle that of ng, 1 g, is owing
to nonzero H(kQQ )(UU/U,,)S Sx Sz ISQ2 [for

instance, see Eqgs. (24) and (28)]

(kQ 0,)(oa’a")

2. 2Q coplanar

Figure 7(b) shows the CDW in real and momentum spaces
in the 2Q coplanar state with the same model parameters as
in Sec. IIIF 1. The spin configuration is given by Eq. (11).
Although the local charge density in the left panel of Fig. 7(b)
looks similar to that in Fig. 4(b), additional components at
q = £0, £ 0, are found in the charge structure factor by
introducing the antisymmetric spin-orbit coupling, as shown

in the right panel of Fig. 7(b). This additional modulation
originates from nonzero l'l(kQ QZ)(M,U,,)S 'IS@ [for instance,
see Eq. (24)]. '

IV. SUMMARY

To summarize, we have investigated the CDW induced by
the SDW in itinerant magnets. We analyzed the Kondo lattice
model on the basis of the analytical perturbative calculations
and the numerical diagonalization. Our perturbative formula
provides a clear correspondence between the charge and spin
degrees of freedom, which is useful in identifying the CDW
modulation from the SDW modulation and vice versa. We
confirmed that the perturbative formula predicts correctly not
only the wave numbers but also the amplitudes of the CDW
semiquantitatively in the weak spin-charge coupling regime,
for various single-Q and double-Q SDWs including the SkX
and MAX. Moreover, we showed that the CDW may provide
richer information than the SDW by showing that it can dis-
tinguish the MAX clearly from the coplanar state although the
two states have similar spin structure factors. We also estab-
lished the relation between the CDW and bond modulation
in terms of the kinetic bond energy and the vector chirality.
In addition, we found that the CDW is sensitively modulated
by the spin-charge coupling and electron filling in the region
beyond the perturbative regime; in particular, the CDW is
enhanced at some commensurate electron fillings due to the
tendency toward gap opening in the electronic band structure.
Furthermore, we examined the role of the spin-orbit coupling
in the CDW modulation, which brings about additional CDW
modulations through the effective long-range anisotropic in-
teractions arising from the spin-orbit coupling.

Our formula in Eq. (3) is generic to any magnetic structures
on any lattice structures. Indeed, it well explains the behavior
of the CDW under the multiple-Q spin textures, such as the
SkX and the 2Q coplanar state, in GdRu,Si, [57]. Since the
concomitant of CDW and SDW implies the coupling between
the spin and charge degrees of freedom, the CDW observation
in the materials with showing multiple-Q SDWs will indi-
cate the importance of itinerant electrons [12]. The candidate
materials are Y3CogSny hosting the 30 vortex crystal [92],
EuPtSi [93-97] and Gds;Ru4Alj; [98-100] hosting the 3Q
SkX, and MnSi;_,Ge, [69,101-105] and SrFeO3 [106-109]
hosting the 3Q and 40 hedgehog crystals. Furthermore, our
finding will provide a clue to understand complex charge
and magnetic orderings recently found in materials, such as
GdSb, Te,_,—s [110] and EuAly [111-113]. Thus, the present
results stimulate a further study of exotic spin-charge entan-
glement in itinerant magnets.

It is noteworthy to mention a possibility of controlling
the SDW by the CDW through their intimate relation in the
spin-charge coupled systems. In the present Kondo lattice
model, the CDW is always induced by the SDW via the ef-
fective spin-channel interactions arising from the spin-charge
coupling rather than the charge-channel interaction, since the
itinerant electrons have no bare Coulomb interactions. In
this case, the optimal magnetic spin configuration is given
by the effective magnetic interactions [66]. Meanwhile, the
charge-channel interaction may also contribute to the mag-
netic orderings, since the characteristic wave vectors of the
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CDW can be different in the presence of charge-charge in-
teractions. Thus, an extension of the model by taking into
account, e.g., Coulomb interactions and electron-phonon cou-
plings might result in yet another stabilization mechanism of
the multiple-Q SDWs. Indeed, a periodic array of nonmag-
netic impurities, which mimics a CDW, in insulating magnets
gives rise to a plethora of multiple-Q SDWs including the
SkX [114]. Such an interesting analysis is left for future
study.
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