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Landau-Lifshitz-Bloch equation for ferrimagnets with higher-order interaction
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We present a micromagnetic formulation for modeling the magnetization dynamics and thermal equilibrium
in ferrimagnetic materials at low and elevated temperatures. The formulation is based on a mean-field approxi-
mation (MFA). In this formulation, the ferrimagnet is described micromagnetically by two coupled sublattices
with corresponding interactions, including inter- and intrasublattice micromagnetic exchange as well as four-spin
interactions described as an intersublattice molecular field with a cubic dependence of the magnetization. The
MFA is used to derive a Landau-Lifshitz-Bloch type equation for ferrimagnetic material, including cases with a
ferromagnetic-antiferromagnetic phase transitions. For validation, the results obtained via the presented model
are compared with recent experimental data for phase transitions in FeRh.
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I. INTRODUCTION

There is an increased interest in using antiferromagnetic
(AFM) materials for creating reliable and compact sources of
coherent signals in the THz frequency. This is enabled due
to the fact that the frequency of antiferromagnetic resonances
ωAFMR can reach the THz range, significantly exceeding the
frequency of ferromagnetic resonances [1,2]. Several devices
for spin torque oscillators have been proposed that lever-
age the strong intersublattice AFM exchange as the source
of the THz signal [3] and using the spin current to induce
a canting angle between the two sublattices. Such devices
have been proposed as possible THz frequency comb gen-
erators to be used as artificial neurons for neuromorphic
computing due to their fast response time and threshold
behavior [4].

Recently, Medapalli et al. [5] showed that it is possible
to optically generate a THz pulse in a FeRh/Pt bilayer. In
the experiment, an ultrafast laser pulse excites metamagnetic
FeRh injecting a spin current into the nonmagnetic Pt interface
that is, then, converted into a spin current via the inverse spin
Hall effect [6,7]. The spin current in the AFM state can orig-
inate from a precessional response of FeRh during a partial
phase transition induced by the laser [8]. Such transformation
occurs on a subpicosecond timescale, much faster than any
lattice expansion [9]. The phase transition occurs due to the
competition between bilinear and the Rh mediated biquadratic
exchange interactions in an effective spin Hamiltonian [10].
Bilinear and biquadratic exchange energies strongly depend
on the temperature. Using atomistic simulations, it is possible
to reproduce such phase transitions by including both the
bilinear and biquadratic exchanges [11].

However, despite the computing power of modern com-
puters, to model realistic structures, a coarse-grained model
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for the dynamic of the magnetization is desirable. The
Landau-Lifshitz-Bloch (LLB) equation of motion for macro-
scopic magnetization vectors [12] has been used to accu-
rately model the behavior of complex magnetic structures
at high temperatures. Its usability has been extended by
Atxitia et al. [13] to ferrimagnets with two sublattices.
However, this model cannot describe phase transition be-
tween ferromagnetic and antiferromagnetic states as ob-
served in experiments [9,14] and may miss additional
effects related to the intersublattice micromagnetic exchange
interactions.

In this paper we present an LLB formulation for ferrimag-
netic materials introducing effects of higher-order exchange
and show that they are necessary to model a metamag-
netic AFM/FM transition driven by temperature. We derive
a macroscopic equation for the magnetization dynamics of
two-sublattice metamagnetic systems with higher-order ex-
change valid in the entire temperature range. As a concrete
test case, we consider metamagnetic FeRh particles. FeRh is
modeled as two sublattices, each with its length and direction,
coupled via an intersublattice exchange. We use the mean-
field approximation (MFA) to derive a macroscopic equation
for the magnetization of each sublattice. We study the mean-
field energy of the system to better understand the phase
transition and validate the model against the experimental
results.

II. MEAN-FIELD APPROXIMATION OF A TWO
SUBLATTICE SYSTEM WITH HIGHER-ORDER

INTERACTIONS

We start by considering an atomistic model for an FeRh
ferrimagnet as used by Barker et al. [11]. The effective
Hamiltonian H contains only the degrees of freedom of a
simple cubic (sc) Fe lattice, with the effect of the induced
Rh moment included into effective Fe-Rh-Fe interactions. The
Hamiltonian is augmented by the applied field H and uniaxial
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FIG. 1. Simplified model of the unit cell (a) with the nearest-
neighbor exchange (red dashed line) J〈001〉 and the second nearest-
neighbor exchange (blue dashed lines) J〈011〉. In (b) eight four-spin
cyclical interactions inside the unit cell (thick dark lines) are shown.

anisotropy:

H = −
∑

i

μiHSi+
∑

i j

Ji jηi j (Si,xS j,x + Si,yS j,y )−
∑

i j

Ji jSiS j

+ 1

3

∑
i, j,k,l

Di jkl [(SiS j )(SkSl ) + (SiSk )(S jSl )

+ (SiSl )(SkS j )]. (1)

Here Si is the normalized spin vector of the atoms i and
μi is its magnetic moment. Ji j are the Heisenberg exchange

interactions (bilinear), including the direct Fe-Fe and indirect
Fe-Rh-Fe contributions. Di jkl are the four-spin exchange (bi-
quadratic) coefficients, which only have contributions from
the Fe-Rh-Fe interactions. The parameter ηi j � 1 defines the
strength of the anisotropy in the direction perpendicular to
the easy axis [12]. For the Heisenberg exchange interactions,
only the nearest neighbors and the second nearest neighbors
inside the unit cell are considered [Fig. 1(a)]. The cyclical
four-spin interaction inside each unit cell is given by pairwise
interactions between the three nearest neighbors converging
on one of the vertices of the sc lattice [Fig. 1(b)].

The free energy of the system described by H in Eq. (1) can
be given as F = −T lnZ , where Z is the partition function
and T is the temperature. In the mean-field approximation we
consider each spin on a site i as an isolated spin subjected to
the effective field due to the mean values of the neighboring
spins.

Since in the AFM state the nearest neighbors tend to be
antiparallel to each other and the second nearest neighbors
tend to be parallel, and taking into account the symmetry of
the system, we can consider this mean field as the field pro-
duced by the two sublattices mA,i = 〈SA,i〉 and mB,i = 〈SB,i〉.
The mean-field Hamiltonian is then obtained from Eq. (1) as

HMFA = H00 −
∑

i

∑
μ=A,B

μμHMFA
μ,i Sμ,i. (2)

The term H00 is given by

H00 = J〈011〉
2

∑
i j

∑
μ=A,B

(mμ,imμ, j ) + J〈011〉
2

∑
i j

∑
μ=A,B

∑
k=x,y

ημ(mμ,i · êk )(mμ, j · êk )

+ J〈001〉
2

∑
i j

(mA,imB, j ) − 12D〈Q〉
∑

i

∑
μ = A, B
μ �= ν

(mμ,imμ,i )(mμ,imν,i ), (3)

where J〈011〉 is the intersublattice exchange coefficient, J〈001〉 is the intrasublattice exchange coefficient, and êk is the unit vector
in the direction of k = x, y. The molecular field for the two sublattices μ, ν = A, B is given by

μμHMFA
μ,i = μμH + J〈011〉

∑
j

mμ, j + J〈011〉
∑

j

∑
k=x,y

ημ(mμ, j · êk )êk

+ J〈001〉
2

∑
j

(mν, j ) − 8D〈Q〉(mμ,imν,i )mμ,i − 4D0
(
m2

μ,i + m2
ν,i

)
mν,i. (4)

The solution of the one-spin problem in Eq. (2) leads to

F = H00 − NT ln(4π ) − T
∑

i

∑
μ

�(ξμ,i),

�(ξ ) = ln

(
sinh (ξ )

ξ

)
, (5)

where N is the total number of spins, ξμ,i = |ξμ,i| is the
reduced field for the sublattice μ and spin i with ξμ,i =
μμβHMFA

i , and β = 1/T , where the temperature T is given
in the units of energy. The MFA free energy in Eq. (5) can be
minimized with respect to the average magnetization mμ,i to
find the equilibrium solution of the system.

If we consider the continuum limit we can go from the
sums in Eqs. (3) and (4) to volume integrals. For small
anisotropy and assuming small changes of the magnetization
between spins in the same sublattices, we can rewrite the
short-range interaction between the nearest neighbors and sec-
ond nearest neighbors as∑

j

J〈001〉mν, j ≈ J1mν,i + Aex,μν	mν,i, (6)

∑
j

J〈011〉mμ, j ≈ J2mμ,i + Aex,μμ	mμ,i. (7)

Here 	 is the Laplace operator acting on the sublattice mag-
netization mA(r). In addition, J1 = zJ〈001〉 is the average of
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the exchange interactions for z = 6 nearest neighbors in the
sc lattice and J2 = qJ〈011〉 is the average over the second near-
est neighbors with q = 12. For the sc lattice, the exchange
constants are given by Aex,μμ = 2J2a2

0/q and Aex,μν = J1a2
0/z,

where a0 is the lattice spacing assumed to be the same in both
directions.

Substituting Eqs. (7) and (6) in Eqs. (3) and (4) and taking
the continuum limit in Eq. (5), one obtains

F

J2
= 1

v0

∫
dr

∑
μ = A, B
μ �= ν

{
1 − 6d (mμmν )

2
m2

μ + j
mμmν

2
+

(
mμ, heff

μ − hμ

)
2

− 1

βJ2
�(ξμ)

}
− NT

J2
, (8)

where v0 is the unit-cell volume, j = J1/(2J2) < 1 is the normalized intersublattice exchange coefficient, and d = 4D〈Q〉/J2 <

1/6 is the normalized four-spins coefficient. The reduced field and the normalized effective fields for the sublattice μ are given
by

ξμ = βJ2

{
[1 − 2d (mμmν )]mμ +

[
j

2
− d

(
m2

μ + m2
ν

)]
mν + heff

μ

}
, (9)

heff
μ = hμ + Aex,μμ

J2
	mμ + Aex,μν

J2
	mν − ημ

∑
k=x,y

(mμ · êk )êk, (10)

where hμ = μμH/J2 � 1 is the normalized applied field and
heff

μ,i acting on the sublattice μ.
The reduced field given in Eq. (9) and the effective field

given in Eq. (10) can be used to formulate an LLB equation
for ferrimagnets with higher-order interaction, as we show in
the next section.

III. LLB EQUATION FOR HIGHER-ORDER
FERRIMAGNET

To derive a two component LLB model, we follow the pro-
cedure outlined by Atxitia et al. [13]. By substituting Eqs. (7)
and (6) into Eq. (4) we obtain the mean-field approximation
of the molecular field:

HMFA
μ,i = Heff

μ,i + H‖
Eμ,i

+ H⊥
Eμ,i

, (11a)

μμHeff
μ,i = μμH + Aex,μμ	mμ,i + Aex,μμ	mμ,i

−μμHK,μ

∑
k=x,y

(mμ,i · êk )êk, (11b)

H‖
Eμ,i

= J‖
μ,i

μμ

mμ,i, (11c)

H⊥
Eμ,i

= −J⊥
μ,i

μμ

mν,i × (mν,i × mμ,i )

m2
ν,i

, (11d)

J‖
μ,i = J2

[
[1 − 2d (mμ,imν,i )] +

( j

2
− d

(
m2

μ,i + m2
ν,i

))

× 
(mν,i, mμ,i )
]
, (11e)

J⊥
μ,i = J2

[
j

2
− d

(
m2

μ,i + m2
ν,i

)]
, (11f)

where d = 4D〈Q〉/J2, j = J1/J2, HK,μ = J2ημ/μμ is the
anisotropy field, and H‖

Eμ,i
and H⊥

Eμ,i
are the intrasublattice

parallel and perpendicular exchange, respectively. Given two

vectors vA and vB, the function


(vA, vB) = vA · vB

v2
B

(12)

is the projection of the vector mA in the direction of the vector
mB. We substitute the MFA for the field in Eq. (11) into
the dynamic formulation of the mean magnetization obtained
through the Fokker-Planck equation [12]. The corresponding
set of coupled LLB equations for each sublattice μ is given by

dmμ

dt
= γμ

[
mμ × HMFA

μ

] − �μ,‖

(
1 − mμm0,μ

m2
μ

)
mμ

− �μ,⊥
[mμ × (mμ × m0,μ)]

m2
μ

, (13)

where γμ is the gyromagnetic ratio, �μ,‖ and �μ,⊥ are the
longitudinal and transverse relaxation rates, and the instan-
taneous equilibrium magnetization m0,μ is given by

m0,μ = B(ξμ)
ξμ

ξμ

, ξμ = βμμHMFA
μ . (14)

Here ξμ = |ξμ| is the reduced field and B(x) = coth(x) − 1/x
is the Langevin function. The parallel and perpendicular re-
laxation rates are given by

�μ,‖ = �μ

B(ξμ)

ξ0,μB′(ξμ)
, (15)

�μ,⊥ = �μ

2

[
ξμ

B(ξμ)
− 1

]
, (16)

where �μ = 2γμλμ/βμμ is the characteristic diffusion re-
laxation rate given by the Néel attempt frequency with the
atomistic damping constant λ.

Equation (13) with Eqs. (14) and (11) can be directly used
for numerical modeling. However, it is possible to rewrite it in
a more compact form if the parallel intrasublattice exchange
is large in comparison with the other components of the
MFA field (i.e., |H‖

E ,μ| 
 |H eff
μ | and max [ j, 4d − j] � 2),

which is valid in the entire range of temperatures for many
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ferromagnetic and ferrimagnetic materials [12]. Using this
approximation, we can expand the Langevin equation to the
first order of the Taylor series around H‖

E ,μ:

m0,μ ≈ B(ξ0,μ)

mμ

mμ + μ0,μβB′(ξ0,μ)

(
mμHeff

μ

)
mμ

m2
μ

, (17)

where ξ0,μ = βJ‖
μmμ. Using Eq. (17) we can write the LLB

equation in the standard form:

dmμ

dt
= γμ

[
mμ × (

Heff
μ + H⊥

Eμ

)]

− γμα‖,μ

(
1 − B(ξ0,μ)/mμ

μ0,μβB′(ξ0,μ)
− mμHeff

μ

m2
μ

)
mμ

− γμα⊥,μ

mμ × [
mμ × (

Heff
μ + H⊥

Eμ

)]
m2

μ

, (18)

where the parallel and perpendicular damping coefficients are
functions of the temperature and the angle between the two
sublattices:

α‖,μ = 2λμT

βJ‖
, α⊥,μ = λμ

[
1 − T

βJ‖

]
. (19)

Since the perpendicular intrasublattice exchange in Eq. (18)
only appears in the precessional and the longitudinal damping
terms, the contribution of mν,i in the direction of mμ,i in the
cross product mμ,i × mν,i is zero by geometrical reasoning,
and H⊥

Eμ,i
in Eq. (11d) can be replaced by an equivalent quan-

tity using the triple vector product identity and the function 


defined in Eq. (12):

H⊥
Eμ,i

→ J⊥
μ,i

μμ


(mμ,i, mν,i )mν,i. (20)

IV. RESULTS

In this section we use the MFA of the energy and LLB
formulations developed in Secs. II and III to study the phase
transition in an example material. We choose FeRh for the
readily available experimental literature [9,14,15] and atom-
istic simulations [11]. First, we consider the equilibrium
conditions by minimizing the free energy with respect to the
magnetization to obtain the critical point at which we have the
transition between the AFM and FM states. Then, we study
the magnetization behavior via the modified LLB equation
and compare it with experimentally results.

A. Energy and thermal equilibrium analysis

To study the equilibrium conditions, we consider an
isotropic case with heff

μ = 0. This case allows obtaining an an-
alytical solution for the energy and demonstrating the model
use in a clear way, including the AFM to FM transitions. An
external field or anisotropy can also be added. These addi-
tional field components only change the preferential direction
of the system and their effects can be studied numerically
via the perturbation theory, e.g., as done for the ferromag-
netic case in Ref. [16]. We minimize the terms between
the brackets in Eq. (8) with respect to the magnetization
vector. In the absence of an external field the system is
symmetric with respect to the polar angle φ. The energy
minimization can be accomplished by obtaining the values
of pcr = {mA,cr, mB,cr, θA,cr, θB,cr} for which ∂F/∂mμ|p=pcr =
∂F/∂mμr̂ + 1/m · ∂F/∂θμθ̂ = 0 and ∂2F/∂mi∂m j |p=pcr > 0.
If we use one of the sublattices as the reference of our system,
we can set θν = 0 and obtain a solution with respect to the
angle only for θμ = θ , which allows reducing the system with
6 degrees of freedom to an equivalent system with 3 degrees of
freedom for the vector p = {mA, mB, θ}. The first derivative of
�(x) is the Langevin function B(x) = coth(x) − 1/x and the
reduced field is given by

ξμ = βJ2

√√√√ {
mμ[1 − 2dmμmν cos(θμ − θν )] cos(θμ) + mν

[ j
2 − 2d

(
m2

μ + m2
ν

)]
cos(θν )

}2

+{
mμ[1 − 2dmμmν cos(θμ − θν )] sin(θμ) + mν

[ j
2 − 2d

(
m2

μ + m2
ν

)]
sin(θν )

}2
.

(21)

Due to the symmetry of the system, at the equilibrium we
expect to have mA = mB = me and ξA = ξB = ξe. This is true
when θ = nπ with n = 0, 1, 2, . . . or when j = 4dm2

e . The
minimum condition of the energy Eq. (5) for me and ξe leads
to a modified Curie-Weiss equation:

me,μ = B[ξe(T, me, θμ, θν )]
ξe(T, me, θμ, θν )

ξe(T, me, θμ, θν )
. (22)

We define the value of the critical equilibrium magneti-
zation as mcr = √

j/4d . When the magnetization of the two
sublattices is above the critical value m > mcr the effective
exchange between the two sublattices is AFM, and the equilib-
rium condition is reached for θ = π . When the magnetization
of the two sublattices is below the critical value m < mcr the
equilibrium is reached for θ = 0 and the material is in the FM
state (Fig. 2).

Since the equilibrium magnetization me and the the ef-
fective exchange are functions of the angle between the two
sublattices (Fig. 3), it is possible for the two sublattices to
be in either the AFM or FM configuration depending on the
previous history of the system (i.e., hysteretic behavior of the
phase transition).

B. LLB analysis

To validate the LLB model, we first study the phase transi-
tion observed in FeRh as a function of the temperature [14,15]
and then the timescale of phase transition as a function of λ.
We conclude this section by presenting an application of our
model, for a theoretical material exhibiting a ferrimagnetic
to ferromagnetic first-order phase transition. A good example
of such material are the Heusler alloys, which show similar
ferri- to ferromagnetic transition close to room temperature
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FIG. 2. Derivative of the free energy with respect to (a) the magnetization length and (b) the angle between the magnetization of the
sublattices as a function of the magnetization length m and the angle θ .

[17]. Similarly, to FeRh, the phase transition in these alloy
can be explained via the interaction between the bilinear and
the biquadratic exchange [18,19].

We define the magnetization as the mean of the magne-
tization in the two sublattices M = (MA + MB)/2M0 and the
Néel vector as MN = (MA − MB)/2M0, where M0 = (MS,A +
MS,B)/2 and MS,A, MS,B are the saturation magnetization in the
two sublattices [20]. For sublattices with the same magnetic
moments, such as FeRh, the magnetization and Néel vector
are defined as

M = mA + mB

2
, MN = mA − mB

2
, (23)

where mA, mB are the magnetization vectors of the sublattice
A and B, respectively, normalized with respect to the satura-
tion magnetization MS,A = MS,B = MS .

FIG. 3. Equilibrium magnetization me as a function of the angle
θ for different temperatures. The black dashed line is the critical
equilibrium magnetization mcr = √

j/4d .

Since by using the MFA we neglected the higher-order
wave fluctuations, we update the parameters obtained from
the atomistic model for FeRh [11] by a correction factor ε to
match the experimental results quantitatively. The correction
factors are given in Table I. To avoid using a correction factor,
we can obtain J2, j, and d directly from the experimental data
for TC and the phase transition temperatures.

We first consider an isotropic particle of 5 × 5 × 5 nm3

initially in the AFM state with a critical atomistic constant
λ = 1. The temperature is increased stepwise from 1 up to
720 K. At every thermal step, the system is let to relax for
40 ps to reach the equilibrium. The magnetization length
and the antiferromagnetic Néel vector length are obtained by
averaging over a 20 ps period after the system reaches the
equilibrium.

The particle is let to evolve according to the dynamics
described in Eq. (18) augmented with the uncorrelated thermal
field acting on the longitudinal and perpendicular relaxation
terms of each sublattices described in Ref. [21]. The system
is integrated numerically using a semi-implicit scheme [22] to
accurately solve the stochastic differential equation in a way
that satisfied the Stratonovich calculus [23].

Figure 4 shows the equilibrium magnetization as a func-
tion of the temperature. Similar to what is done with FM
materials, we can relate the Curie temperature of the mate-
rial with the effective exchange constant in each sublattice
J2(1 + j) = 3kbTC [16]. As shown in Sec. IV A, the material
is susceptible to a phase transition when the magnetization in
the two sublattices is close to the critical value mcr = √

j/4d .

TABLE I. Corrected magnetic parameters and correction factor ε.

Value ε Unit

J2 2.44035×10−20 0.7025 J
j 7.7743×10−22 1.5202
d 3.2046×10−22 1.7081
mcr 0.7788
μFe 3.15 μb
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FIG. 4. Magnetization (solid line) and Néel vector (dashed line)
for an isotropic macrospin of FeRh as a function of the temperature.

The magnetization of the material in the region close to the
transition temperature TM (i.e., mμ,e ∼ mcr) is a function of the
magnetization history of the material. This hysteretic behav-
ior, expected from the analysis of the free energy and observed
in the experiments [11,14,15], can be explained by looking at
the interaction between the reduced parameters j and d . Due
to the presence of the the four-spin exchange, the equilibrium
magnetization in the two phases is a function of the material
state and it is given by

me,AFM/FM = B(ξAFM/FM),

ξAFM/FM = βJ2

[
1 ∓

(
j

2
− 3dm2

)]
m2. (24)

At lower temperature T � TM the contribution of the four-
spin interactions is dominant (i.e., j � 6dm2) and me,AFM >

me,FM while at higher temperatures the cubic component of
the four-spin interactions drops faster than the linear com-
ponent of the nearest neighbors (i.e., j 
 6dm2), leading
to me,AFM < me,FM. Depending on the initial phase of the
system, the magnetization in the two sublattices reaches the
critical point mcr at different temperatures, depending on
the initial configuration of the system, hence the hysteresis
loop. By controlling the parameters j and d , it is possi-
ble to engineer the position and the width of the phase
transition.

To study the dynamical response of the macromagnetic
particle to a rapid change of temperature, we consider the
effect of a subpicosecond laser pulse modeled as a Gaussian
thermal pulse. In FeRh, the initial magnetization response due
to an ultrafast thermal pulse is observed in the first 500 fs,
significantly faster than the lattice expansion time that is of
the order of several picoseconds [9,24]. In the experiments
a bias field is applied in the direction of the easy axis for a
particle displaying a weak uniaxial anisotropy and the change
in longitudinal magnetization Mz is measured through the
transient magneto-optics Kerr effect (MOKE).

To simulate the response of such a particle to an ultra-
fast thermal pulse we consider an anisotropy parameter η =
0.0001 (equivalent to an HK ≈ 0.08 T) and an applied field

TABLE II. Two temperature model parameters for Eq. (25).

Value Unit

γe 3.5×10−3 J mol−1 K−2

Cl 4.45×101 J mol−1 K−1

Gel 1.05×1012 J mol−1 K−1 s−1

P0 1.5×1016 J mol−1 s−1

τpulse 100 fs

field of H = 0.1 T, similar to what is used in Ref. [9]. We
introduce the heating produced by the thermal pulse in our
model via a two temperature model (2TM) [25], where the
magnetization of the particle is coupled via the effective elec-
tron temperature Te. The 2TM is defined as

Ce(T )
dTe

dt
= −Gel (Te − Tl ) + P(t ), (25a)

Cl
dTl

dt
= Gel (Te − Tl ), (25b)

where Tl is the lattice temperature, Ce = γeTe is the electron
specific heat capacity, γe is the electron heat capacity constant,
Cl is the lattice specific heat capacity, and Gel is the electron-
lattice exchange. The ultrafast laser pulse is introduced as a
Gaussian pulse:

P(t ) = P0 exp

[
−2.77

(
t − 3τpulse

τpulse

)]
, (26)

where τpulse is the duration of the laser pulse and P0 is the
nominal optical power. The parameters for the 2TM used in
the simulations are given in Table II. The power of the pulse
is chosen such that the electron temperature Te rises above
the Curie temperature (TC = 715 K) in the first 100 fs when
the pulse is applied, and Te equilibrates with Tl after τeq =
10 ps, where Tl (τeq) is below the phase transition temperature
TM ≈ 350 K.

The results for different values of the atomistic damping
parameter λ = 0.01, 0.05, 0.1 are shown in Fig. 5. The phase
transition depends on the damping parameter. In the low-

FIG. 5. Time dependence of the magnetization for an isotropic
particle after laser heating with a 100 fs laser pulse for λ = 0.01 (red
line), λ = 0.01 (green line), and λ = 0.1 (blue line). The red shaded
area defines the electron temperature profile and the green shaded
area defines the sublattice temperature.
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TABLE III. Material parameters for an hypothetical Heusler al-
loy showing a first-order ferrimagnetic to ferromagnetic transition
near room temperature.

Value Unit

TC,A 411 K
TC,B 531 K
J2,A 1.357×10−20 J
J2,B 1.764×10−20 J
J1 3.751×10−22 J
D〈Q〉 0.808×10−22 J
μA 3.0 μb

μB 1.5 μb

damping regime (λ = 0.01), the contribution of the transverse
intrasublattice exchange H⊥

Eμ
to the perpendicular damping

is not strong enough for the phase transition to occur in
the timescale of the temperature pulse, which is due to
the low coupling with the magnetic system. Higher damp-
ing (λ = 0.05) leads to a partial phase transition into the
FM phase. This FM phase transition lasts for approximately
20 ps before decaying back to the AFM phase. For still
larger damping parameters (λ = 0.10), the perpendicular field
leads to a complete transition into the FM phase. The in-
creased stability due to the larger equilibrium magnetization
Eq. (14) after the cool down leads to the FM state to persists
for hundreds of picoseconds. Increasing the damping further
leads to a faster collapse into the AFM phase due to the
increased magnitude of the force exercised by the perpendic-
ular intrasublattice exchange in the perpendicular relaxation.
The results obtained are consistent with what has been ob-
served in the experimental results [9] as well as the atomistic
simulations [11].

The dynamics phase transition observed in the micromag-
netic model shows a sharper transition into the FM phase for
λ = 0.05 than the one observed using the atomistic model.
These differences can be explained by the finite dimension
effects in the computation of the effective damping for small
particles shown both in theory [26,27] and numerical simula-
tions [28].

The presented framework is also applicable to materials
with different magnetic moments in the two sublattices, i.e.,
for ferrimagnetic materials. To demonstrate the model for
such a case, we consider a ferrimagnetic material with the
magnetization moments in the two sublattices given by μA =
3μb and μB = 1.5μb. We also assume for the two sublat-
tices different Curie temperature TC,A = (J2,A + J1)/3kB and
TC,B = (J2,B + J1)/3kB. The parameters used in the simula-
tions are given in Table III.

For the considered ferrimagnetic material, which has a
magnetic moments μA > μB, if TC,A < TC,B, the magnetiza-
tion in the the sublattice A decreases as a function of the
temperature faster than the magnetization in the sublattice B
[Fig. 6(a)]. The material, initially in the ferrimagnetic phase,
transitions to the ferrimagnetic phase Fig. 6(b)], when the
magnetization length is below the critical magnetization for
each sublattice (i.e., me,μ < mcr,μ). The Curie temperature of

FIG. 6. (a) Magnetization as a function of the temperature for the
two sublattices of a ferrimagnetic material described by the param-
eters in Table III. (b) Normalized magnetization and Néel vector for
the ferrimagnetic material.

the material is given by the largest of the Curie temperatures
of the sublattices (i.e., TC ≈ TC,B).

For a material with J2,A �= J2,B, we cannot assume me,A =
me,B = me as we did in Sec. IV A, and we expect mcr,A �=
mcr,B. However, the critical magnetization mcr = √

J1/4D〈Q〉
obtained in the previous section can still be used to estimate
the transition temperature of the material, since it can be
observed that the critical magnetization for the faster decaying
sublattice is mcr,A � mcr.

The Néel vector decreases until it becomes zero at the
compensation temperature TCP, where MA(TCP ) = MB(TCP ).
It increases for T > TCP when MB(T ) > MA(T ) up to a max-
imum before going back to zero at the Curie temperature.

V. CONCLUSIONS

We presented a micromagnetic formulation for modeling
ferrimagnetic materials at low and high temperatures, includ-
ing cases with metamagnetic (AFM to FM) phase transitions.
The model is based on a mean-field approximation (MFA) of
the system energy that is used to derive an LLB equation. The
ferrimagnet is described micromagnetically by two coupled
sublattices as in the previous work by Atxitia et al. [13]. How-
ever, our model includes one inter- and one intrasublattice
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micromagnetic exchange. In addition, four-spin interactions
are introduced via an intersublattice molecular field and a
perpendicular molecular field with a cubic dependence in the
magnetization of the two sublattices. The LLB equation is
presented in two forms: a general form and a form simpli-
fied under the assumption of a strong homogeneous exchange
field, which is applicable to most ferromagnetic and ferrimag-
netic materials.

The presented formulation was used for modeling the ther-
mal equilibrium and metamagnetic phase transitions in FeRh.
The simulations show that the origin of such transitions is
in the intersublattice molecular field obtained from the near-
est neighbors and second nearest neighbors as well as the
molecular field with cubic dependence in the magnetization
obtained from the four-spin interactions [10,11]. The formula-
tion reproduces the hysteretic AFM to FM transition behavior
and timescales observed in recent experiments [9,14,15] and
atomistic simulations [11].

The model we developed can be considered as an extension
of previous micromagnetic models and it is able to simulate
ferrimagnetic materials showing similar first-order phase tran-
sitions, like Heusler alloys [17], and it can be used to model a

wide range of ferrimagnetic materials and phenomena, includ-
ing recently observed all-optical driven THz spintronic effects
observed in FeRh [5,8] as well as memory application that
exploit phase transitions [29].
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