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Diffusion and thermalization in a boundary-driven dephasing model
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We study a model of noninteracting spinless fermions coupled to local dephasing and boundary drive and
described within a Lindblad master equation. The model features an interplay between infinite temperature
thermalization due to bulk dephasing and a nonequilibrium stationary state due to the boundary drive and
dissipation. We revisit the linear and nonlinear transport properties of the model, featuring a crossover from
ballistic to diffusive scaling, and compute the spectral and occupation properties encoded in the single-particle
Green’s functions, that we compute exactly using the Lindblad equations of motion in spite of the interacting
nature of the dephasing term. We show that the distribution function in the bulk of the system becomes frequency
independent and flat, consistent with infinite temperature thermalization, while near the boundaries it retains
strong nonequilibrium features that reflect the continuous injection and depletion of particles due to driving and
dissipation.
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I. INTRODUCTION

Transport and thermalization are two fundamental phe-
nomena that occur at the macroscopic scale. Their micro-
scopic understanding has been the subject of a long standing
effort both in the classical statistical mechanics context [1]
as well as in the quantum domain [2]. One can generically
distinguish two settings, depending on whether the system
remains isolated from or interacts with an environment. In
the former setup, many-body interactions play the key role in
establishing the time scales for transport of conserved charges
and thermalization, whereas in the latter the environment dis-
sipation is responsible for the late time stationary state.

A specific instance that has attracted interest is the one of
open Markovian systems [3], in which the system is intrinsi-
cally mixed and described by a master equation for the density
matrix. Here the competition between unitary and dissipative
couplings can lead to nonequilibrium phase transitions be-
tween phases with different transport properties.

In this context, finding a simple model which captures the
key physical aspects of transport and thermalization while
being computationally tractable for large system sizes is
particularly important. An example that has attracted spe-
cific interest is the so-called dephasing model, describing a
free fermionic lattice system coupled to a local Markovian
environment described by a jump operator proportional to
the density of particles. This model has been introduced in
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Refs. [4,5] as a toy model for the emergence of diffusive
behavior for a single-particle system. The spectral proper-
ties of the model in terms of the Liouvillian spectrum have
been extensively discussed [6] as well as its transport prop-
erties [7–12] when the model is supplemented by a boundary
Markovian driving. The pure dephasing model is furthermore
exactly solvable [13,14], its Lindbladian spectrum being ob-
tainable through Bethe ansatz techniques [14–16]. Recent
works have discussed various extensions of this model [17].

In this paper we revisit the transport properties of the
dephasing model with boundary drive, and connect them to
the onset of thermalization as defined from the emergence
of a fluctuation-dissipation theorem in the single-particle
Green’s functions. We show how these can be computed
exactly using the Lindblad equations of motion, thus com-
plementing previous results obtained through an unraveling
of the master equation and a diagrammatic expansion in
the Markovian noise [18,19]. We focus in particular on the
crossover/transition as the system size is increased between
infinite temperature thermalization due to the bulk dephasing
and the onset of a nonequilibrium steady-state current at finite
size due to the boundary drive. We investigate the role of the
dephasing rate on this scenario, as well as of the deviation
from the linear response regime as the strength of the drive is
increased.

This paper is structured as follows. In Sec. II we introduce
the model and the nonequilibrium protocol. In Sec. III we
discuss the main quantities of interest, namely, the stationary
current and the local Green’s functions, and summarize the
results on how to compute them within the Lindblad equa-
tion. In Sec. IV we present numerical results, first recalling
the transport properties of the model and then discussing
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FIG. 1. The system when the boundary driving is open. The
boundary terms inject absorb particles from the system. In addition,
there is a uniform dephasing rate γ on each lattice site.

thermalization and effective temperature. We detail in the
Appendices derivations of the various results used in the main
text.

II. MODEL

We consider an open Markovian quantum system the
density matrix of which evolves according to the Lindblad
equation

∂t ρ̂t = Lρ̂t = −i[Ĥ, ρ̂t ] + D[ρ̂t ]. (1)

We denote with [Â, B̂]({Â, B̂}) the commutator (anticommu-
tator) between Â and B̂. In Eq. (1), H is the Hamiltonian
of the system, while the dissipation superoperator D collects
the dissipation/dephasing terms. We set these objects in the
following.

We consider a system of noninteracting spinless fermions
defined in a one-dimensional chain of L sites with next-
neighboring hopping rate J:

Ĥ =
L−1∑
i=1

J (ĉ†
i ĉi+1 + H.c.) + hĉ†

i ĉi =
N∑

i, j=1

ĉ†
i Hi, j ĉ j,

Hi, j = Jδi, j+1 + Jδi+1, j + hδi, j . (2)

In Eq. (2) ĉi (ĉ†
i ) are the annihilation (creation) fermionic op-

erators acting on the ith site, the one-particle Hamiltonian H
is a L × L Hermitian and tridiagonal matrix, and we consider
open boundary conditions.

We couple the left and right edge sites (Fig. 1), respec-
tively, to a source and a sink. Specifically, particles are
injected with a rate ∝� on the first site, and are depleted with
the same rate on the Lth site. These two terms are responsible
for a direct current (DC) in the stationary state. In addition, on
every lattice site we include a dephasing bath with rate ∝γ ,
which provides an energy relaxation channel. These three pro-
cesses are collectively captured by the following dissipators:

D[◦] = Dd[◦] + Dbnd,l[◦] + Dbnd,r[◦], (3)

Dd[◦] = γ

2

L∑
i=1

(
n̂i ◦ n̂i − 1

2
{n̂i, ◦}

)
, (4)

Dbnd,l[◦] = �

2

(
ĉ†

1 ◦ ĉ1 − 1

2
{ĉ1ĉ†

1, ◦}
)

, (5)

Dbnd,r[◦] = �

2

(
ĉL ◦ ĉ†

L − 1

2
{ĉ†

LĉL, ◦}
)

. (6)

Above, we introduced the fermion number n̂i ≡ ĉ†
i ĉi. Equa-

tion (4) is the dephasing contribution, Eq. (5) is the
particle-injection contribution acting on the first site, while
Eq. (6) is the particle-ejection contribution acting on the last
site.

We emphasize that this model is not quadratic due to the
dephasing processes, yet as we will discuss, it is simpler than
a fully interacting many-body system while retaining some in-
teresting nontrivial aspects. The boundary driving introduces
a further source of translational invariance breaking (other
than the open boundary condition), which manifests in the
presence of a stationary current. (See however Appendix C
for the translational invariant version of the model discussed
in this paper.)

In the following, we are interested in characterizing the
stationary state of the system obtained under the Markovian
evolution (1). In particular, we will focus on the single-particle
correlation functions at equal times, and on the single-particle
Green’s functions, from which physical quantities can be ob-
tained such as the average current or the local density of states
(DOS). In the next section, we introduce these quantities and
discuss how to evaluate them exactly for our model.

III. OBSERVABLES

A. Equal-time correlation function and current

We introduce the single-particle correlation matrix C, with
elements

Cn,m(t ) = 〈ĉnĉ†
m〉t = tr[ρ(t )ĉnĉ†

m]. (7)

This function encodes the average particle density

nm(t ) ≡ 〈n̂m〉t = tr[ρ(t )ĉ†
mĉm] = 1 − Cm,m(t ), (8)

as well as the average current operator. We note in fact that
both the Hamiltonian and the dephasing dissipator commute
with the total particle number, and therefore allow us to de-
fine a conserved current which is then transported due to the
boundary drive terms. This reads, from the continuity equation
for the Hamiltonian part only [see Eq. (2)],

ĵm ≡ iJ (ĉ†
m−1ĉm − ĉ†

mĉm−1),

jm(t ) ≡ 〈 ĵm〉t = 2J Im Cm,m−1(t ). (9)

Its dynamics can be obtained by the Lindblad equation
Eq. (1), with dissipator Eq. (3), and using the cyclic property
of the trace [3]. We have

∂tCm,n(t ) = −iJCm−1,n(t ) − iJCm+1,n(t )

+ iJCm,n+1(t ) + iJCm,n−1(t )

+ �δm,Nδn,N − γ (1 − δm,n)Cm,n(t )

− �

2
(δ1,n + δ1,m + δN,n + δN,m)Cm,n(t ). (10)

Notice that here we imposed C0,k (t ) = Ck,N+1(t ) = 0 at every
time step in Eq. (10), as open boundary conditions apply.
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Remarkably, despite the fact that the dephasing acts as a
four-body interaction, the equation of motion for the two-
point function is closed and can be exactly computed. In fact,
for the system of interest, the k-point equal time correlation
function presents a hierarchical structure, where the k-point
equal time correlation function decouples from higher order
ones [6], whereas the state is non-Gaussian [18] and highly
entangled [20].

It is convenient to rephrase Eq. (10) in matrix form. The
terms proportional to the imaginary unit i are due to the
commutation with the Hamiltonian, which in the fermionic
representation is completely specified by H [see Eq. (2)].
The remaining terms are related to the dissipation. We define
the matrix D, the elements of which are Dm,k = δm,k (γ +
δm,1� + δm,N�)/2, and the matrix P, the elements of which
are Pm,k (t ) = δm,k (γCm,m(t ) + �δm,Nδk,N ) ≡ δm,k pk (t ). With
these choices, and defining, we have

∂tC = −i[H,C] − {D,C} + P ≡ −iHeffC + iCH†
eff + P.

(11)

In the last step, we defined the first-quantization non-
Hermitian Hamiltonian. In fact, manipulating Eq. (1) we
obtain the natural non-Hermitian Hamiltonian

Ĥeff =
L∑

i, j=1

ĉ†
i Heff ĉ j . (12)

In the following we show that the spectral properties of the
non-Hermitian Hamiltonian determine the stationary values of
the particle density and current, and of the Green’s function
(Sec. III B).

Despite the fact that the simulation of the whole dynamics
Eq. (11) is polynomial in resources, the stationary solution is
obtained exactly by solving ∂tC = 0. This is given by [21,22]

C(∞) =
∫ ∞

0
dτe−iHeff τ P(∞)eiH†

eff τ . (13)

This integral equation is simplified once the eigendecompo-
sition of the matrix Heff is considered (see Appendix A for
a coordinate Bethe ansatz solution). Its non-Hermitian nature
gives rise to inequivalent left and right eigenvectors: Heff =∑

p λp|ϕR(p)〉〈ϕL(p)|. We fix the ambiguity in the eigenvec-
tor by choosing them biorthonormal 〈ϕL(q)|ϕR(p)〉 = δp,q. In
this way, the series expansion reduces to the trivial

eiτHeff =
L∑

k=1

eiτλk |ϕR(k)〉〈ϕL(k)|. (14)

Defining the components ϕ
R/L
i (p), and performing the inte-

gral, Eq. (13) transposes to

Ci, j (∞) = �
i, j,L + γ

L∑
k=1


i, j,kCk,k (∞),


i, j,l ≡ −
L∑

p,q=1

ϕR
i (p)

[
ϕL

l (p)
]∗[

ϕR
j (q)

]∗
ϕL

l (q)

iλp − iλ∗
q

. (15)

Solving this linear system we obtain both the density of par-
ticles nm(∞) [see Eq. (8)] and the stationary current jm(∞)
[see Eq. (9)].

We point out that the knowledge of the full tensor 
 is
not required to obtain nm and jm. In fact, the density profile
requires O(N2) terms, whereas the stationary current only
O(1) as ji(∞) ≡ j∞ is flat.

The latter is a consequence of the generalized continuity
equation in the present setup. We conclude this section by
showing that the stationary current is indeed constant through-
out the system.

In the nonequilibrium steady state (NESS) we have

0 = d

dt
n1

= i〈[Ĥ, ĉ†
1ĉ1〉NESS + tr(ĉ†

1ĉ1Dbnd,l[ρ∞]), (16a)

0 = d

dt
nk = i〈[Ĥ , ĉ†

k ĉk〉NESS, 2 � k � L − 1, (16b)

0 = d

dt
nL

= i〈[Ĥ, ĉ†
LĉL〉NESS + tr(ĉ†

LĉLDbnd,r[ρ∞]). (16c)

All the other terms, not reported, are zero. In fact, the de-
phasing damps the evolution of all the off-diagonal correlation
matrix elements Cm,n (m 	= n), while it does not contribute to
the equation of motion of the particle density.

From the bulk equation, after a simple manipulation, we
find

jk = jk+1, 2 � k � L − 1. (17)

Let us define

jl ≡ �(1 − n1), (18)

jr ≡ �nL, (19)

respectively, the current incoming/outgoing into/from the
system. These contributions are those arising from Dbnd,l/r in
Eqs. (16a) and (16c), respectively. Hence, we find

jl = j2, jr = jL. (20)

Since the stationary current is constant throughout the system,
we define the stationary current by the value j∞ ≡ jk for any
k evaluated at the steady state.

B. Nonequilibrium Green’s functions

A richer information on the structure of the stationary state
of the Lindblad master equation can be extracted from the
nonequilibrium Green’s functions, which describe the exci-
tations on top of the NESS [3,23,24]. We define in particular
the retarded/advanced/Keldysh Green’s functions GR/A/K (t )

GR
m,n(t ) = −iθ (t )〈{ĉm(t ), ĉ†

n}〉NESS, (21a)

GA
m,n(t ) = iθ (−t )〈{ĉm(t ), ĉ†

n}〉NESS, (21b)

GK
m,n(t ) = −i〈[ĉm(t ), ĉ†

n]〉NESS, (21c)

and their Fourier transforms

GR/A/K (ω) =
∫ ∞

−∞
dteiωt GR/A/K (t ). (22)
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Since the stationary state is time-translational invariant, we
have

GR/A(ω) = GA/R†(ω), GK (t ) = −GK†(−t ), (23)

where the matrix notation is understood.
In the definition above the average over the NESS is de-

fined as

〈X 〉NESS ≡ tr(ρ̂∞X ), (24)

while we have introduced the evolution of the operator ĉm(t ),
which is given by the modified adjoint Lindbladian

d

dt
ĉm(t ) = L̃†ĉm(t ), (25)

with L defined as

L̃†(◦) ≡ i[Ĥ, ◦] + Dd[◦] + D̃bnd,l[◦] + D̃bnd,r[◦], (26)

D̃bnd,l[◦] = �
(
ηĉ1 ◦ ĉ†

1 − 1
2 {ĉ1ĉ†

1, ◦}), (27)

D̃bnd,r[◦] = �
(
ηĉ†

L ◦ ĉL − 1
2 {ĉ†

LĉL, ◦}). (28)

In the above equation Ĥ and Dd are as in, respectively, Eqs. (2)
and (4), while the phase η = −1 arises from the fermionic
nature of the degrees of freedom. We refer to Refs. [25,26] for
a first-principle derivation of Eq. (25).

Quite interestingly we can write exact equations of motions
for those Green’s functions. These read

d

dt
GR(t ) = −iδ(t )1 − iHeffG

R(t ). (29)

In frequency domain, the solutions of Eq. (29) for the retarded
function and the advanced Green’s function are given by

GR(ω) = (ω − Heff )−1, (30)

GA(ω) = [GR(ω)]† = (ω − H†
eff )−1. (31)

The tridiagonal and homogeneous nature of the matrix Heff

permits an exact solution for the component of GR(ω) [27,28].
Introducing the auxiliary variable

φ = arccos

[
− 1

2

(
ω + i

γ

2

)]
, Re(φ) ∈ [0, π ], (32)

the matrix elements GR
m,n[φ(ω)] with m � n are

GR
m,n(φ) = sin[(L − m)φ]

�(φ)

(
i�

2
sin(nφ)

+ �2

4J
sin[(n − 1)φ]

)
+ sin[(L − m + 1)φ]

�(φ)

×
(

i�

2
sin[(n − 1)φ] − J sin(nφ)

)
, (33)

�(φ) = sin(φ)

(
J2 sin[(L + 1)φ]

− �2

4
sin[(L − 1)φ] − iJ� sin(Lφ)

)
. (34)

The remaining elements are given by transposition, as the
retarded Green’s function is symmetric: GR

m,n = GR
n,m. A com-

parison between numerical exact diagonalization and the

above analytic expressions is provided in Appendix D, as well
as the scaling limit expression of these functions.

From the retarded Green function, we find the solution of
the Keldysh equation of motion in frequency space. We have

GK (ω) = −2iGR(ω)�GA(ω), (35)

� ≡ P(∞) − D, (36)

with � the exact self-energy of the system, and P(∞) and D
defined in Sec. III A. A derivation of this expression is given
in Appendix B.

C. A relation between current and Green’s functions
for the driven-dephasing model

Using the equation of motions technique we can obtain an
exact relation between the stationary current and the Green’s
functions for the driven-dephasing model. This generalizes
recent results for a model without dephasing [29] analog to
the Meir-Wingreen formula [30], obtained within the Keldysh
path integral formulations [31].

We proceed as in Ref. [29] and evaluate the stationary cur-
rent at the boundary. As previously argued, since in our setting
the current is constant throughout the system, it is convenient
to use (either) expression in Eq. (19) to relate the current to
the R/A/K Green’s functions by means of the density.

From the definition Eq. (21), we have

nm(∞) = 〈ĉ†
nĉm〉NESS

= i

2

∫
dω

2π

[
GR

m,m(ω) − GA
m,m(ω) − GK

m,m(ω)
]
. (37)

Using the sum rule, valid in the NESS,

1 = i
∫

dω

2π
[GR(ω) − GA(ω)], (38)

and j∞ = �(1 − n1), we find after simple algebra [see also
Eq. (B4)]

j∞ = �

∫
dω

2π
〈1|GR(ω)P(∞)GA(ω)|1〉. (39)

We conclude this section by remarking that, if the integral over
frequency is formally performed, we recast the current reading
of Eq. (15). In fact, from the eigendecomposition of Heff , and
using

∫
dω

2π

1

(ω − λp)(ω + λq)
= − 1

iλp − iλ∗
q

, (40)

we recast

j∞ = �
∑

k


1,1,k pk, (41)

which is obtained from Eqs. (39) and (19). The advantage of
Eq. (39) over Eq. (15) lies in the direct physical interpretation
of the Green’s functions, which are furthermore relevant also
for experimental setups.
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D. Connection with Keldysh field theory
and stochastic unraveling

The results reported above show that using Lindblad
equations of motion one can compute exactly the single-
particle Green’s functions of the driven-dephasing model,
despite the fact that the Lindbladian is not quadratic in the
fermionic creation/annihilation operators. This implies that
the Keldysh diagrammatics associated to the Lindblad master
equation, while containing a dissipative interaction vertex due
to the dephasing, admits a resummation in terms of a closed
form self-energy for the single-particle Green’s function. The
resummability of the dephasing diagrammatics has been pre-
viously discussed by unraveling the Lindblad master equation
into a stochastic quantum trajectory, first in Refs. [18,32] for
an impurity problem and recently in Ref. [19] for a more
general setting. In this picture in fact the noisy Hamiltonian
would only feature quadratic terms in the fermion operators
and one could compute exactly the Green’s function for this
problem, at least for a given realization of the stochastic
process. Averaging over the (Markovian) noise would lead
to a diagrammatic expansion, containing only noncrossing
diagrams, which can be resummed in closed form [18,19,32].
In this respect our paper, which makes use of the Lindblad
equation of motions rather than of a diagrammatic expansion
in the noise, provides a complementary perspective on this
resummability and extends the well-known results for the
steady state and its static correlators [4,6,10] to the dynamical
(Green’s functions) case. Finally, we note that for a generic
non-Markovian bath (or noise) the diagrammatic expansion
would contain both crossing and noncrossing diagrams. Nev-
ertheless one could still show that the results obtained within
a Lindblad master equation are equivalent to a noncrossing
approximation in the system-bath coupling (or noise) [33].

IV. RESULTS

In this section we discuss our results for the current and the
Green’s functions of the model. For simplicity we fix J = 1
in the following and study the properties of the system as a
function of the dephasing γ and the strength of the drive �.

A. Transport: Current and density profile

We start by reviewing the transport properties of the sys-
tem, which have been extensively discussed in the literature
[2,7,9]. In the presence of a finite pump-loss boundary drive,
a homogeneous stationary state with a finite current arises. We
define the resistance R∞ = 1/ j∞. In our setting, the stationary
current is given by [7]

j∞ = 4�

�2 + 4 + (L − 1)�γ
� D

4

L
, D = 1/γ ,

R∞ = 1

2

(
�

2
+ 2

�
+ (L − 1)

γ

2

)
� γ

4
L. (42)

Diffusive behavior is signaled by R(L) ∝ L, as clearly shown
in Fig. 2 (top panel). The existence of diffusion in the model
without boundary drive can be established analytically by
analyzing the spectral properties of the Lindbladian [4,5]. We
note that the resistance shows a crossover from a ballistic to

FIG. 2. Top: Resistance of the system vs system size L for differ-
ent values of γ and � = 0.1. At small values of γ , the system clearly
displays a crossover between a ballistic and a diffusive regime. The
dashed orange lines correspond to Eq. (42). Bottom: Density profile
ni(∞) for various system sizes L for γ = 0.5 and � = 0.1. The slope
around i = L/2 is ∝1/L. The dashed orange lines correspond to
Eq. (43).

a diffusive scaling [6], as a function of the dephasing rate γ

as we show in Fig. 2. A diffusive current should correspond
to the onset of a stationary state density profile at site i of the
form [7]

�ni

�i
= γ�

�2 + 1 + (L − 1)γ�
→L1

1

L
. (43)

In the previous equation we have considered the scaling
limit, where Fick’s law is recovered. We see that the density
drops near the boundary, while in the bulk the system in the
thermodynamic limit approaches a constant density profile
with n → 1/2, consistent with an infinite temperature ther-
malization as we will discuss in more detail below.

We now discuss the dependence of the stationary current
j∞ from the strength of the drive � and the dephasing rate γ .
As we show in the top panel of Fig. 3, the current is linear at
small �, reaches a maximum at �∗, and then starts to decrease,
eventually going to zero as 1/� for �  1. This indicates
that when the drive is much larger than the single-particle
bandwidth resonance responsible for coherent transport is
not efficiently established and the current decreases. A finite
dephasing rate does not change the linear regime while it
strongly reduces the maximum current which can be sus-
tained by the system. From Eq. (42) we obtain that j∗∞,
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FIG. 3. Stationary current j∞ as a function of the drive strength
� (top panel) and dephasing rate γ (bottom panel) for a fixed system
size L = 256. We see that the linear regime j∞ ∼ � is independent of
the dephasing rate while the maximum current is strongly suppressed
by increasing γ , which plays a role similar to inelastic many-body
interactions.

corresponding to the current at the optimal coupling �∗, scales
as j∗∞ ∼ 1/γ L. In the bottom panel we show the current as a
function of the dephasing rate from which again we can see
how the linear regime is almost unaffected by the scattering
while at stronger drive the current decreases with γ and even-
tually vanishes as 1/γ in accordance with Eq. (42). Overall
these results confirm the physical picture that a finite dephas-
ing rate is detrimental to coherent transport, playing a similar
role as inelastic scattering due to many-body interactions or
heating due to finite temperature.

B. Local density of states and distribution function

We now discuss the Green’s functions of the model. We
start with the retarded Green’s function at site n, the imaginary
part of which

An(ω) = − 1

π
ImGR

n,n(ω) (44)

FIG. 4. Local density of states. Top: An(ω) at the center of the
chain n = L/2 as a function of frequency, compared with the trans-
lational invariant result Eq. (46) (dashed orange lines), for different
values of the dephasing. Bottom: Local DOS An(ω) at the boundary
of the chain n = 1 as a function of frequency and different values of
the dephasing rate.

describes the local DOS of the system. This can be obtained
directly from the results of Sec. III B [see Eq. (33)].

Before discussing the case γ > 0, we briefly comment
on the γ = 0 case. In this situation, Eq. (33) reduces to the
ballistic formula, and the results in Ref. [29] are recovered.

Turning on the dephasing in the system has important con-
sequences. The auxiliary variable φ = arccos[− 1

2 (ω + i γ

2 )]
acquires an imaginary part which suppresses the matrix ele-
ments GR

m,n. Quantitatively, starting from Eq. (33) we obtain
the scaling limit L  1:

GR
m,n(φ) = −eimφ 2i sin(nφ) + � sin[(n − 1)φ]

sin(φ)(2i + eiφ�)
. (45)

The above expression is exact for the thermodynamic limit of
any component of the retarded function, provided γ > 0. For
a site in the bulk n ∼ L/2  1 the above expression simplifies
to

GR
n,n(φ) = −i√

4 − (ω + iγ /2)2
(46)

which as expected is independent both from the site index and
from the boundary drive �. Importantly, Eq. (46) matches the
translational invariant result (Appendix C; see Appendix D for
a comparison).

In Fig. 4 we plot the local DOS in the middle of the chain
and at the boundary (respectively, top and bottom panels) for
different values of γ . In the bulk we see for small dephasing
two sharp edges around ω = ±2 which are further smeared
out by increasing the dephasing rate. We can understand this
result by noticing that in the absence of any boundary drive the
system is translationally invariant (see Appendix C) and the
local DOS displays the characteristic square-root singularities
at the edge of the single-particle bandwidth smeared by a
Lorentzian weight which is due to the dephasing and that
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results in additional tails at large frequencies. As expected
therefore the behavior in the bulk is essentially independent
of the value of the boundary drive, at least for large enough
system sizes. Close to the boundary on the other hand we
expect a much stronger dependence from the drive strength,
as we show in Appendix D. In the bottom panel of Fig. 4
we plot the boundary local DOS for different values of the
dephasing rate, showing that while the single-particle band
edges are still visible for small γ there are no signatures of
the sharp singularities seen in the bulk. For large values of
γ instead the bulk and the boundary DOS are essentially the
same, corresponding to very broad linewidth.

We see that despite the interacting nature of the dephas-
ing rate, which enters the Lindblad master equation with a
quadratic jump operator, the scale γ plays essentially the role
of a dissipative width and does not induce any frequency
dependent self-energy corrections for the momentum resolved
Green’s function, while the local DOS has a sizable spectral
redistribution from low to high frequency due to the dephas-
ing.

A complementary perspective on the competition between
dephasing and boundary terms is provided by the local
Keldysh Green’s function GK

n (ω), defined in Eq. (21c), which
describes the occupation of the single-particle excitations on
top of the stationary state. It is convenient to parametrize it
through the distribution function, which is defined in analogy
with the thermal equilibrium case. In fact, if the system was in
true thermal equilibrium, the quantum fluctuation-dissipation
theorem (FDT) would constrain the Keldysh and the retarded
components to obey the relation [31]

GK
n,n(ω)

−2π iAn,n(ω)
≡ F eq(ω) = tanh

(
ω

2T

)
(47)

where T is the system temperature. At low frequency or
high temperatures ω � T , one has F eq(ω) ∼ ω/T . In a
nonequilibrium system, in contrast, there is no well-defined
temperature and the FDT does not hold in general. Nonethe-
less, it is useful to use the left-hand side of the FDT in Eq. (47)
to define an effective distribution function:

F neq
n (ω) = iGK

n,n(ω)

2πAn,n(ω)
. (48)

We plot the nonequilibrium distribution F neq
n (ω) in Fig. 5

for different lattice sites (corresponding to different lines in
each panel) and we compare it to the retarded and Keldysh
Green’s functions (see central and bottom panels). We see
that the distribution function close to the boundaries (top
and bottom lines) is strongly frequency dependent and highly
athermal. In particular F neq

n (ω) is an even function of fre-
quency, unlike the thermal result in Eq. (47), and odd under
spatial inversion around the center of the lattice. This fea-
ture arises directly from the Keldysh Green’s function (see
bottom panel of Fig. 5) while the retarded Green’s function
is symmetric under inversion (central panel), and reflects the
symmetry between injection and depletion at the boundaries.
In fact we can see from Eq. (37) that the frequency integral
over the Keldysh Green’s function quantifies the deviation of
the local occupation from the bulk value n = 1/2. Therefore
near the boundary where injection (depletion) occurs we ex-

FIG. 5. For all panels we fix L = 256, γ = 0.1, and � = 0.1.
Top: Distribution function at different sites in the chain. Center:
Imaginary part of the retarded function. Bottom: Imaginary part of
the Keldysh Green’s function.

pect an increase (decrease) of density and correspondingly a
Keldysh Green’s function which is of positive (negative) sign.
Alternatively, we can parametrize the distribution function in
terms of an effective Fermi function F neq

n (ω) = 1 − 2 fn(ω)
from which we conclude that positive (negative) values of the
distribution function correspond to an increased (decreased)
occupancy of the Fermi function. Upon approaching the bulk
of the system, on the other hand, we see that the distribution
function becomes flatter in frequency and its value approaches
zero, a signature of the onset of bulk thermalization to infi-
nite temperature. To further discuss this point we introduce a
frequency-dependent inverse effective temperature [34–39]:

βn(ω) = 1

2ω
arctanh

[
F neq

n (ω)
]
. (49)

We plot the inverse effective temperature in Fig. 6 at the bulk
and at the boundaries for different system sizes L. We see that
in the bulk of the system (n = L/2, top panel) βn(ω) shows
small oscillations for frequencies within the single-particle
bandwidth, which are rapidly damped out upon increasing L
leaving a constant value which approaches zero in the thermo-
dynamic limit, with a uniform scaling 1/L that comes from
the Keldysh Green’s function. At the boundary instead the
effective temperature depends on frequency, as we show in
the bottom panel of Fig. 6. In particular we note that for fre-
quencies within the single-particle bandwidth βn(ω) is smaller
in absolute value, corresponding to an increased heating and
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FIG. 6. Inverse effective temperature ωβn(ω), defined as in
Eq. (49) of the main text, at � = 1/4 and γ = 1/4 in the bulk (top)
and in the boundaries (bottom), for different system sizes.

thermalization due to resonant single-particle processes as
compared to the high frequency regions.

V. CONCLUSION

In this paper we have studied transport and thermaliza-
tion in a simple model of noninteracting one-dimensional
spinless fermions subject to local dephasing and boundary
drive. Within the framework of the Lindblad master equation
of open quantum systems we have shown that the problem
can be exactly solved both for what concerns single-particle
static correlation functions, giving access to the current in
the nonequilibrium steady state, as well as for the single-
particle Green’s functions describing excitations on top of the
stationary state. In particular we have obtained a closed form
expression for the local retarded Green’s function, from which
the Keldysh component can be readily obtained, and a relation
between the stationary current and the single-particle Green’s
functions of the system, similar to the famous Meir-Wingreen
formula, which generalizes to the dephasing case a recent
result obtained within Keldysh techniques.

Using this framework we have revisited the transport
properties of the system, featuring a well-studied crossover
between ballistic and diffusive behavior in the scaling of the
current versus system size. We have discussed how a finite de-
phasing rate introduces a resistivity growing with system size
and a density profile decreasing linearly in the bulk. Going
beyond the linear transport regime we have further shown that
the dephasing strongly reduces the maximum current which
can flow through the system at a given system size.

Furthermore we discussed the spectral properties of the
model as encoded in the local density of states and in the
single-particle distribution function. We have shown that the
former in the bulk can be understood by considering the
homogeneous translationally invariant case, where dephasing
plays essentially the role of an additional linewidth broaden-
ing the edge singularities of the single-particle DOS, while the
boundary DOS features a much broader linewidth due to the
additional driving term. Finally we have shown that the dis-
tribution function at the boundary is highly nonequilibrated,
reflecting the local injection and depletion of particles, while
approaching the bulk site it becomes flatter in frequency con-
sistent with the onset of infinite temperature thermalization.

We conclude by noticing that the above analysis has been
performed for a translationally invariant system (boundary
terms aside), however the Lindblad equation of motion tech-
nique used here can be naturally extended to disordered
systems where one expects anomalous transport behavior. Re-
sults along these lines will be reported elsewhere [40].
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APPENDIX A: SPECTRUM OF THE NON-HERMITIAN
HAMILTONIAN

In this section we briefly review the diagonalization of
the non-Hermitian Hamiltonian Heff by means of the co-
ordinate Bethe ansatz. A comprehensive analysis on the
existence of the solutions and on their derivation was given in
Refs. [27,28]. For simplicity we discuss the case of the right
eigenvector, and fix J = 1. Using the Bethe ansatz ϕl (k) =
Akeiθk l + Bke−iθk l , the eigensystem

Heff |ϕ(k)〉 = λk|ϕ(k)〉 (A1)

reduces to

Ak = −2i + �e−iθk

2i + �eiθk
Bk, (A2)

λk = −i
γ

2
+ 2 cos θk, (A3)

0 = sin[(L + 1)θk] − �2

4
sin[(L − 1)θk] − i� sin(Lθ ).

(A4)

The quantization condition Eq. (A4) fixes the values of θk ∈
[0, π [, and hence the eigenvalues λk . However, for generic
values of �, we lack a closed form expression of the complex
angles θk , which need to be computed analytically. Inserting
the obtained expressions for θ in the definition of |ϕ(k)〉
and using Eq. (A2), we obtain the right eigenvector. Simi-
larly the left eigenvector can be obtained through symmetry
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argument on Heff . The norm (free coefficient Bk) is fixed by
the biorthonormal condition.

APPENDIX B: DERIVATION OF THE KELDYSH
GREEN’S FUNCTION

The equation of motion of the Keldysh Green’s function is

GK (t ) =
{

etT GK (0), t > 0,

GK (0)e−tT †
, t < 0.

(B1)

In frequency domain we have

GK (ω) =
∫ ∞

−∞
dteiωt GK (t )

=
∫ ∞

0
dteiωt+tT GK (0) +

∫ 0

−∞
dtGK (0)eiωt−tT †

= −1

i(ω − iT )
GK (0) + GK (0)

1

i(ω + iT †)

= i

ω − iT
GK (0) − GK (0)

i

ω + iT †
. (B2)

From the definition Eq. (21c), we read GK (0) = i − 2iC(∞).
Hence

GK (ω) = −GR(ω) + GA(ω)

+ 2GR(ω)[iC(∞)T † + iTC(∞)]GA(ω) (B3)

= −GR(ω) + GA(ω) − 2iGR(ω)P(∞)GA(ω). (B4)

The final expression Eq. (36) is recovered once the difference
between retarded and advanced Green functions is performed:

−GR(ω) + GA(ω) = 2iGR(ω)DGA(ω). (B5)

En passant, we note expression Eq. (B4) is useful in deriving
the Landauer formula Eq. (39).

APPENDIX C: TRANSLATIONAL INVARIANCE PURE
DEPHASING MODEL

If we disregard the boundary drive, and close the chain
to enforce periodic boundary conditions, the system becomes
translationally invariant. In this situation, the correlation func-
tions depend only on the distance, and the equations of motion
for the Green’s functions can be solved in Fourier space. We
define the momentum resolved Green’s functions

GR/A/K (q, ω) =
∑

n

e−inqGR/A/K
n (ω) (C1)

where we have introduced the translationally invariant
Green’s functions GR/A/K

m,n (ω) = GR/A/K
m−n (ω). The retarded

component takes the simple form

GR(q, ω) = 1

ω − ε(q) − iγ /2
(C2)

which gives a spectral function in the form of a Lorentzian
centered around the bare dispersion ε(q) = −2J cos(2πq/N ).
The local density of states becomes site independent and equal
to

A(ω) = − 1

π

∑
q

2γ

4[ω − ε(q)]2 + γ 2
. (C3)

FIG. 7. Comparison between Eq. (33) and the exact diagonaliza-
tion results from Eq. (38). The dashed orange lines are Eq. (33),
whereas the dotted black line is the translational invariant limit
Eq. (C5).

We introduce the density of states of the one-dimensional tight
binding chain:

D(ε) =
∑

q

δ[ε − ε(q)] =
∫ π

−π

dqδ[ε + 2J cos(q)]

= θ (4J − ε2)
1√

4J − ε2
, (C4)

which is centered around ε = 0 with a bandwidth of 4J and
sharp edges. The smear by dephasing results in states in the
tails outside of the kinetic bandwidth. With the above defini-
tion the final result for the local density of state is

A(ω) = − 1

π

∫
dεD(ε)

2γ

4(ω − ε)2 + γ 2

= −2γ

π

∫ 2J

−2J
dε

1√
4J − ε2

1

4(ω − ε)2 + γ 2
. (C5)

The Keldysh Green’s function on the other hand can be
obtained from Eq. (36). Because of translational symmetry,
� = γ (1 − 2n)/2 is proportional to the identity. Hence, the
Keldysh Green’s function in Fourier space reads

GK (q, ω) = −iγ (1 − 2n)GR(q, ω)GA(q, ω), (C6)

and it is therefore identically zero, since n = 1/2, which is
again consistent with infinite temperature thermalization.

APPENDIX D: NUMERICAL BENCHMARKS

We benchmark the exact retarded Green’s function Eq. (33)
with the results from exact diagonalization and the values
of the translationally invariant system. As in Sec. IV, we
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fix J = 1. The comparison is given in Fig. 7. We note that
the formula matches exactly the results for different sites,

different parameters γ and �, and the translationally invariant
limit in the bulk.
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