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Pinning effects in a two-dimensional cluster glass
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We study numerically the nonequilibrium glass formation and depinning transition of a system of two-
dimensional cluster-forming monodisperse particles in the presence of pinning disorder. The pairwise interaction
potential is nonmonotonic and is motivated by the intervortex forces in type-1.5 superconductors but also applies
to a variety of other systems. Such systems can form cluster glasses due to the intervortex interactions following
a thermal quench, without underlying disorder. We study the effects of vortex pinning in these systems. We
find that a small density of pinning centers of moderate depth has a limited effect on vortex glass formation,
i.e., formation of vortex glasses is dominated by intervortex interactions. At higher densities, pinning can
significantly affect glass formation. The cluster glass depinning, under a constant driving force, is found to
be plastic, with features distinct from non-cluster-forming systems such as clusters merging and breaking. We
find that, in general, vortices with cluster-forming interaction forces can exhibit stronger pinning effects than
regular vortices.
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I. INTRODUCTION

In the past few decades, there have been significant on-
going efforts directed to understanding the rich properties
of vortex matter in type-2 superconductors [1]. The glass
formation has been intensively studied for vortex systems
with pinning disorder [1–4]. One major research theme is
investigating the effects of pinning disorder on vortex glass
formation and the corresponding depinning transition and
dynamics upon driving. This is important in superconductor
applications, as dissipationless current-carrying states require
arresting the dynamics of vortices. In the much less studied
multicomponent superconductors, the vortex interactions can
take complex forms as a result of multiple competing (at-
tractive and repulsive) interaction length scales for vortices
that are thermodynamically stable in large ranges of fields
and temperatures [5–9]. This has been proposed not only
in superconductors with several superconducting components
but also in multilayer systems with different coherence (ξi)
and penetration (λi) lengths [10–12]. In the bulk of intrinsic
type-1.5 superconductors, intervortex forces are long-range
attractive and short-range repulsive [5,6,8,9].

The origin of nonmonotonic vortex interactions is the exis-
tence of multiple coherence lengths related to either multiple
broken symmetries [13,14] or multiple bands with weak or
frustrated interband coupling [8]. This arises because the
core-core interaction is attractive over the length scale set by
the coherence length. In the multicomponent case, a vortex
core has a composite matreshka structure with multiple length
scales. The repulsive interaction originates from current-
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current and magnetic interaction and has the scale of magnetic
field penetration length. However, multiple magnetic modes
giving rise to multiple repulsive length scales are also possible
[15,16]. For thin films, an additional repulsive interaction
arises due to the magnetic stray fields [17]. Similarly, in lay-
ered systems multiple repulsive length scales originate from
the disparity of magnetic field penetration lengths in different
layers [11]. The layered systems allow for preparing desired
intervortex interaction potentials by controlling materials and
thickness.

Various multiband materials have been proposed to fall
into the type-1.5 class [18–20]. In double-transition materi-
als, type-1.5 behavior is almost generic due to the diverging
coherence length at the lower transition [13,14]. Many vortex
phases have been predicted for type-1.5 superconducting sys-
tems [11,12,21,22]. However, this type of ordering is much
more general. The cluster and stripe phases are in many ways
similar to ones emerging in a wide range of cluster-forming
monodisperse particle systems such as colloidal suspensions
and ultracold atoms [23–32], soft matter [33], and also elec-
tron liquids in quantum Hall systems [34–38].

In type-2 non-cluster-forming vortex systems, glass phases
are associated with pinning while, in contrast, with cluster-
forming interactions the situation is different and quench
dynamics can produce a glass also without pinning [12]. For
this class of interactions, particle systems undergo a crystal-
to-glass transition [12,25], in which a glassy phase establishes
sharply around a particular value of the degree of frustration
of the material. Glass formation in the absence of disorder is
known to occur for polydisperse systems [33]. The crystal-
to-glass transition differs from the well-known liquid-to-glass
(or glass-forming-liquid) transition in both qualitative and
quantitative ways. In the case of cluster-forming systems,
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quenches from a disordered configuration to a temperature
below the hopping activation of single vortices spontaneously
generate an effective polydispersity in the form of clusters
with different sizes that form cluster glass states [12].

A central assumption that we make here, which is sup-
ported by the simulations [12], is that there is a separation of
time scales such that there is a metastable regime of interest
here for the times observed in the simulations where clusters
formed in a rapid quench are stable, while the time scale
for relaxation towards equilibrium is much longer and is not
further considered here.

For many glass-forming systems, analysis of the nature
of underlying equilibrium states can be highly nontrivial,
typically involving extensive studies of relaxation dynamics.
However, for cluster glasses formed by a rapid quench, the
situation is different [12,25]. In the pure case without pinning,
the underlying equilibrium state is typically an ordered cluster
crystal with uniform cluster size produced by slow cooling
of a liquid state. In this sense, the equilibrium states will not
directly connect to the properties of nonequilibrium cluster
glass states with nonuniform cluster size that are of interest
in this paper. The problem we study and its possible experi-
mental realization also motivates new open questions such as
the connections to the melting and shear flows of disordered
clusters in similar soft matter systems [32,39–41].

The effect of pinning is much less understood for type-1.5
superconductors than in non-cluster-forming vortex systems.
The especially interesting question is the effect of pinning on
vortex cluster glass formation. In addition, the nonequlibrium
depinning transition of monodisperse particles has been in-
tensively studied for particle solids; see Ref. [28] for a recent
review. However, the depinning of pattern-forming systems,
in particular, the cluster phases [42], which are experimentally
relevant, have not been extensively studied. Indeed, even the
nature of depinning and the main features of the flowing phase
have not been explored in detail.

The main purpose of this paper is to present a study of
cluster glass formation following a thermal quench in pres-
ence of pinning disorder and the corresponding depinning
dynamics when a constant external force is applied. We are
interested in, e.g., how pinning disorder density and depth
affect glass formation, and in fact whether cluster glass itself
remains well defined, and for depinning we are interested in
the nature of the depinning transition, i.e., elastic depinning or
plastic depinning, and the main features of the flowing phase.
Here, plastic flow refers to the flowing clusters changing their
neighbors, while in elastic flow they do not.

For traps of a moderate depth, we find that cluster glass
remains reasonably well defined and persists even to the
regime of dense pinning. The depinning transition is found to
be plastic and the flowing phase has a number of interesting
features compared with the non-cluster-forming counterpart.
In addition to the cluster plastic flow, the clusters can un-
dergo structural transformations. Most notably, the clusters
can merge or break up due to thermal effects and, more impor-
tantly, the interplay between the pinning force and the driving
force. The effective polydispersity assists the plastic flow also
in that a smaller cluster tends to have a better mobility and,
consequently, diffuses and escapes from a trap faster. Finally,

we have compared the depinning of a cluster glass and a
particle glass, finding that the cluster glass exhibits stronger
pinning effects. This suggests that cluster vortex glasses might
be suitable for certain technological applications where a high
critical current is desired.

The paper is organized as follows: The model, observables,
and numerical methods are described in Sec. II. Numerical
results are given in Sec. III. Finally, a summary and discussion
of the main findings is presented in Sec. IV.

II. MODEL, OBSERVABLES, AND METHODS

A. Model

We study a system of two-dimensional monodisperse par-
ticles interacting via an effective pairwise potential, and with
pinning centers, and an external driving force modeled by the
following dimensionless Hamiltonian:

H =
∑
i< j

Ui j −
∑

iα

Up exp
[ − r2

iα/(2σ 2)
] − FD

∑
i

xi. (1)

The indices i, j run from 1 to the number of particles N , and
α runs from 1 to the number of pinning centers M. The par-
ticles are placed on an L × L square with coordinates {xi, yi}
under periodic boundary conditions. The three terms are for
particle-particle interactions, randomly located and quenched
Gaussian pinning centers, and a constant driving force along
the x direction, respectively. The density of particles is n =
N/L2 and the density of impurities is m = M/L2 = nM/N .
Up > 0 and σ denote the depth and size of the pinning centers,
respectively. FD denotes the strength of the driving force,
which for vortices in a superconductor the Lorentz force on
a vortex is FD = jφ0, where j is the sheet current density,
φ0 is the flux quantum, and the force is perpendicular to
the applied current. We used σ = 0.7 unless specified other-
wise, which is approximately half of the lattice constant of
the corresponding cluster crystal in the absence of disorder
and driving. A point-particle representation is applicable for
superconducting vortices where the interparticle interaction
forces are chosen to be consistent with those obtained in
superconductivity models.

The potential, relevant to vortex interactions in type-1.5
superconductors, is defined as

U (r) =
{

U0 − C0(r + 0.15)4, if r � 0.15∑3
l=1 ClK0(r/αl ), if r > 0.15,

(2)

where K0 is the modified Bessel function of the second kind
and the parameters are U0 = 2.6796, C0 = 144.3760, C1 =
37.2100, α1 = 0.1405, C2 = −36.1911, α2 = 0.1960, C3 =
7.2900, and α3 = 0.4200. The potential is plotted as the red
curve in Fig. 1. It is similar to the one used in Ref. [12] in
medium and long ranges, but it features an attractive inter-
mediate part and the unphysical divergence from long-range
asymptotic analysis at the origin is regularized with a fourth-
order polynomial to match better with the full numerically
calculated potential [10].

For comparison, we also use the standard repulsive type-
2 vortex interaction potential from a single modified Bessel
function U (r) = CK0(r/α) with parameters C = 1.7511 and
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FIG. 1. Pairwise particle-particle, i.e., vortex-vortex interaction
potentials. The red curve is a cluster-forming potential [Eq. (2)] while
the blue curve forms single-particle crystals. They model vortex
interactions in type-1.5 and type-2 superconductors, respectively.

α = 0.6726, shown as the blue curve in Fig. 1. This potential
generates single-particle crystals with no clustering behavior.

The physical origin of the potential Eq. (2) is the following.
In the type-1.5 regime, a superconductor has several coher-
ence lengths, originating from the individual superconducting
components. Some of the coherence lengths are larger and
some are smaller than the magnetic field penetration length.
The resulting intervortex forces asymptotically have the form
of a sum of Bessel functions which give contributions to
attractive interactions at the coherence length scales and re-
pulsive interaction at the magnetic field penetration length
[5–7,9,14]. In the standard type-1.5 regime, the intervortex
interaction is short-range repulsive and long-range attractive.
However, the situations can also occur where the interaction
has a local minimum at an intermediate length scale. This is
expected to be realized in thin films of type-1.5 superconduc-
tors, where at long range the interaction should be repulsive
due to stray fields [12] and in layered systems where there
are different magnetic field penetration lengths in different
layers [11,12,21]. Multiple repulsive length scales can also
arise as an intrinsic feature in certain anisotropic models [16].
It is worth mentioning that our Hamiltonian and the equations
of motion for molecular dynamics (MD) [Eq. (5)] are both
dimensionless. The characteristic length scales αl of attractive
and repulsive parts of interaction are set by the coherence
lengths and the magnetic field penetration lengths, respec-
tively. The prefactors Cl are set by condensate densities. For
a conversion to physical units of Ginzburg-Landau models,
please see, e.g., Refs. [5–9,14].

Since we are interested in not very dense ensembles, the
only retained attractive Bessel function corresponds to the
interactions of larger cores. We consider a bilayer system
with different penetration lengths that is approximated by two
repulsive Bessel functions. Note that the potential with such
an intermediate minimum also arises in a thin film of type-1.5
superconductors where, instead of the Bessel function with
the largest length, one includes a power-law repulsion [12].
We emphasize that this does not affect the existence of cluster

crystals, which appear at moderately low densities. Such a
regime is the main focus of this paper.

We briefly compare our potential to other commonly used
cluster-forming potentials. In addition to Ref. [12], our po-
tential is also similar to ultrasoft potentials such as U (r) =
1/(1 + r6) [43] in the intermediate and long ranges but differs
near the origin. Therefore, the resulting phase diagrams differ
at high densities, but all three potentials lead to cluster crystal
phases at low densities. Our potential has a characteristic
medium attractive range from the attractive Bessel term. This
feature is similar to the potential studied in Ref. [27], which is
a sum of a repulsive Coulomb term and an attractive exponen-
tial term. The two potentials again differ near the origin and
therefore the high-density regimes will be different.

B. Observables and methods

Both static and dynamical properties of the system were
studied for a large range of particle as well as trap densities
using Monte Carlo (MC) and MD simulations. The simula-
tions have three different parts. First, equilibrium sampling
was used to map the phase diagram of the clean system with
no pinning and no driving, i.e., Up = FD = 0. The transition
temperatures as well as the ordered low-temperature phases
were obtained using parallel tempering MC [44–46]. The
calculations were complemented by simulated annealing MC
[47] as a consistency check. While simulated annealing cannot
faithfully maintain thermal equilibrium at low temperatures, it
can nevertheless capture the essential features of the phases,
e.g., produce typical low energy states [29,43]. We used the
Metropolis algorithm with a sequential update order of the
particles.

For glass formation simulations with pinning but no driv-
ing, i.e., Up �= 0 and FD = 0, we have used single temperature
MC simulations and a random update order of the particles
starting from fully disordered configurations.

For the depinning transition, both pinning and driving are
included, i.e., Up �= 0 and FD �= 0. Since it is unclear if MC
can correctly capture transport dynamics, we instead used
MD for this paper. Details of the MD simulation of the over-
damped Langevin dynamics are discussed in Sec. III B.

The MC simulation methods used here are essentially the
same as in Ref. [43]. Each MC sweep for a replica is N at-
tempted updates of the particles in either sequential or random
order. The MC trial moves are attempts to shift the particle po-
sition randomly within a square box of length 2/

√
n centered

on the particle. We only use single-particle update moves. For
glass formation dynamics, this corresponds to the overdamped
regime.

The main observables are the cluster orientational order
parameter φ6, the heat capacity CV = β2var(E), where E is
the total energy of the system, and the pair correlation function
g(r). φ6 quantifies the ordering of the triangular cluster-crystal
phase. CV is used for estimating the equilibrium transition
temperature for the free case, where it has a prominent
peak. g(r) is useful for identifying the presence of particle
clustering.

The calculation of φ6 for a given configuration is based
on the cluster positions and we now discuss in detail how to
compute it. We first use a hierarchical clustering technique
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FIG. 2. Top panels: Typical equilibrium configurations of the or-
dered phases of cluster crystals (CC), stripes (SP), hole crystals (HC)
and simple crystals in order of increasing density. Bottom panel:
The schematic phase diagram of the potential [Eq. (2)] in absence
of pinning disorder estimated from the major peak of the specific
heat. The two cluster crystal phases have clustering onset densities at
about nc = 0.65 and 30.5, respectively.

[48,49] that groups particles into clusters deterministically.
Each particle starts as a single cluster and the two closest
clusters are joined together if their center of mass distance is
smaller than a chosen cutoff. We used a cutoff of 0.7 ≈ a/2,
where a is the lattice constant of the corresponding cluster
crystal in the absence of pinning disorder; see Fig. 2. The
results presented in this paper are not sensitive to the pre-
cise value of the chosen cutoff, e.g., around 0.7 ± 0.1, as
we work in parameter regimes where clusters are reasonably
well-defined. When two clusters are merged, the new center
of mass is updated. The process is repeated until no further
grouping is accepted. Hence the process takes a particle con-
figuration {�ri, i = 1, 2, ..., N} and outputs the centers of mass
{ �Ri, i = 1, 2, ...,C} of the C clusters. The clustering process is

followed by a Voronoi decomposition to identify neighboring
clusters.

The orientational order parameter φ6 is finally defined as

φ6 =
∣∣∣∣∣ 1

C

C∑
j=1

(
1

Nj

Nj∑
�=1

ei6θ j�

)∣∣∣∣∣, (3)

where θ j� is the angle between the vector �R� − �Rj and an
arbitrary direction, often the x̂ axis, and Nj is the number
of neighbors of the jth cluster. Note that only neighboring
pairs are summed over. For a perfect triangular lattice, φ6 = 1,
and with no long-range order and random positions, φ6 = 0.
Hence φ6 is an order parameter.

The pair correlation function is defined as

g(r) = 1

N

δn(r)

2πrδr
, (4)

where δn(r) is the number of particles in the shell 2πrδr,
with reference to an arbitrary particle. Note that the function
is normalized as

∫ ∞
0 g(r)2πrdr = 1. The lattice constant of a

cluster configuration can be extracted from the peaks of g(r).

III. NUMERICAL RESULTS

A. Cluster glass formation

To study cluster glass formation, it is important to study
the underlying pure system without pinning disorder for input,
particularly, the relevant particle density for clustering and
the corresponding transition temperature. The phase diagram
of the pure system along with all the ordered phases are
depicted in Fig. 2. Here, the transition temperature is esti-
mated from the prominent CV peak using N = 1000, which
is sufficiently large for a reasonably accurate estimation. The
linear system size is L = √

N/n and at N = 1000 it equals,
e.g., 22.3607, 9.5346, 7.9057, 7.0711 at n = 2, 11, 16, 20, re-
spectively. The crystalline phases are identified by examining
typical low-temperature equilibrium configurations and they
are also verified from ground states found by simulated an-
nealing. It should be noted that our phase diagram here is only
a sketch, and the more subtle features such as the number and
the order of these phase transitions are not considered. For the
potential in Eq. (2), we find ordered phases of cluster crystals,
stripes, and hole crystals as the particle density is increased up
to about n = 18. This series of ordered phases appears to be
rather common in cluster-forming potentials with a repulsive
core [12,27]. Note that our potential restores the cluster crystal
phase at even higher densities after the hole crystal phase.
This behavior is different from the potentials with divergent
cores near r = 0; cf. Refs. [12,27]. It should be noted that
this second cluster phase at high density differs from the
first cluster phase at low density with, e.g., a very distinct
lattice constant. While pattern formations and the nature of
these phase transitions are interesting in their own right, we
here focus on the glass formation of the physically relevant
low-density cluster phase.

We now present more details of the first triangular cluster
phase. The onset density of clustering is at about nc = 0.65,
below which there is only one particle per unit cell. When
clustering occurs, the lattice constant settles to a ≈ 1.34,
which is estimated from the pair correlation function and is
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independent of the density. Interestingly, both the onset den-
sity and the lattice constant are very similar to that of the
ultrasoft potential U (r) = 1/(1 + r6) [43]. This is presum-
ably because the two potentials have, in some sense, similar
features in the medium and long ranges. In the following,
we work with a typical cluster phase at density n = 2, where
each cluster typically has three or four particles. The transition
temperature at this density is βc ≈ 16.3. We now turn to the
cluster glass formation of this system.

In the absence of pinning disorder, clustering particles form
cluster glasses when quenched from a high temperature, e.g.,
T = ∞ to a sufficiently low temperature in a single step [12].
The system relaxes following the quench, and it was found
that the system can reasonably restore the equilibrium order
parameter except when the final quenching temperature Tf

is too low. The glass transition temperature is then loosely
defined when the resulting order parameter φ6 departs from
that of the equilibrium cluster crystal phase. It was argued in
Ref. [12] that cluster-forming particles are better glass formers
compared with non-cluster-forming particles because of the
effective polydispersity of the cluster sizes. On the other hand,
it is well known that pinning by itself can lead to glass forma-
tion in conventional vortex matter [1]. We next investigate the
situation where both mechanisms are present.

For the simulation of thermal quench dynamics in the
presence of pinning disorder, we consider different density
and strength of pinning centers, and compare results with the
case of no pinning. For each set of parameters we run quench
dynamics to various final temperatures Tf from random con-
figurations corresponding to β = 0, using single-temperature
MC dynamics. For all the temperatures we studied, 105

sweeps were enough for a good relaxation, and then the order
parameter φ6 of the final configuration was measured. Only
one measurement per temperature was made from one dis-
order realization to prevent correlations, and statistics were
collected using averages over disorder realizations. Here,
100 realizations are simulated for each pinning density and
strength. We work with particle density n = 2 below in this
paper unless otherwise specified.

Results for dynamical glass formation are summarized in
Fig. 3. In all panels, the red (topmost) curve corresponds to
thermal quench of the clean system. This result is similar
to that of the MD for other cluster-forming potentials [12].
There are two relevant temperature scales, one is the transition
temperature of the pure system where the system forms global
order as temperature is lowered below TC . This matches well
with the transition temperature we find from the heat capac-
ity. The other temperature is the crystal-to-glass transition
temperature TG [12], which can be estimated as where φ6

bends downward and starts to drop, here, TG ≈ 0.05. This is
a characteristic temperature below which dynamics becomes
glassy and the system falls out of equilibrium.

It is natural that the clean curve provides an upper bound
for restoring the global order, since adding random pinning
and increasing the pinning strength generally enhance glass
formation. However, it is interesting to note that the effect
of pinning is far from linear. Pinning actually has little ef-
fect on the order parameter if the disorder is weak or dilute.
For example, at Up = 1 there is no prominent change of the
order parameter up to about m = 0.32. Further increasing the

FIG. 3. Effects of density and pinning strength on glass forma-
tion after a thermal quench as a function of the final temperature Tf

at density n = 2 with N = 1000 particles. The topmost red curve in
each panel is the pure case without disorder, which provides an upper
bound. Left panels: Changing the pinning density m at fixed trapping
strengths (a) Up = 1 and (b) Up = 4. Right panels: Changing the
pinning strength at fixed pinning densities for (c) m = 0.04 and
(d) m = 0.08.

number of pins or the pinning strength eventually makes the
order depart prominently from the clean limit. In the strong
pinning limit, the global order is essentially entirely elimi-
nated. Another interesting observation that can be drawn from
Fig. 3 is that addition of pinning gives the strongest suppres-
sion of the φ6 order parameter at intermediate temperatures,
while at least for relatively dilute pinning the curves merge
with the clean curve at lower temperatures. This suggests that
at least for dilute pinning the system falls into a state similar to
that of an interaction-dominated effective polydispersity class
pinned by rare pinning centers.

It is important to confirm that the quenched glasses are
genuine cluster glasses in the presence of substrate disorder.
To this end, we have checked the final configurations. Sev-
eral typical cases are illustrated in the top panels of Fig. 4.
The blue circles are Gaussian traps. It is clear from obser-
vation that clusters are still reasonably well-defined despite
the attractive traps distorting the cluster order as well as the
distribution of cluster sizes. For example, it is more likely
to find larger clusters in or near the (overlapping) traps.
Interestingly, these clusters do not necessarily all sit at the
trap centers. In the dense case m = 1.28, there are a num-
ber of large clusters of sizes 5, 6, and even 7, leaving at
the same time some small clusters in the trap interstitial
voids.

Cluster glass manifests itself when the corresponding
cluster crystal lattice constant peak is relevant in the pair
correlation function. This is shown in the bottom panel of
Fig. 4 for various m values. It is seen that the second largest
peak, which is the cluster crystal lattice constant peak, is
present for all cases studied. The peak near r = 0 is from the
neighboring particles within clusters. Note that a small shoul-
der peak is developed for the dense cases m = 0.64 and 1.28,
as some clusters are larger compared with the typical size of
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FIG. 4. Top panels: Typical cluster glass configurations corre-
sponding to those of Fig. 3 at approximately T = 0.03, the particle
density is n = 2. The blue dashed circles are attractive Gaussian cen-
ters. Note that a fraction of some large clusters is formed in or near
the (overlapping) traps. These configurations suggest that clusters
are reasonably well-defined in our parameter regimes. Bottom panel:
The clustering feature is further confirmed in the pair correlation
function g(r). Particularly, the second largest peak is the intercluster
peak, or the lattice constant peak of the corresponding cluster crystal.

the free case. By contrast, the lattice constant of the particle
triangular crystal 3−1/4 = 0.7598 at the same density is not
relevant.

It is important to note that we should not take the weak and
strong traps here too literally, as in our cases cluster glasses
are all reasonably well-defined. It is clearly possible to further
increase the trap depth, and new phases, e.g., particle glasses
may appear. It is expected that fully formed particle glasses
should emerge in certain trap settings, depending on the trap
size, depth, and density. The main conclusion of this section is
that interaction-driven cluster glasses are stable with respect
to inclusion of quenched disorder in the parameter regime
studied here.

B. Cluster glass depinning dynamics

In this section, we use MD to study the depinning dynamics
of the cluster glasses we obtained. We use the overdamped
Langevin dynamics given by

γ �̇ri = −∇Ui +
√

2T γ �ηi(t ) + FDx̂, (5)

where, without loss of generality, we set the friction coeffi-
cient γ = 1. The Gaussian stochastic force η has zero mean
and is uncorrelated in time, 〈ηiα (t )ηiγ (t ′)〉 = δ(t − t ′)δαγ ,
where α, γ = x, y denote components in different spatial di-
rections. Ui is the potential energy of particle i interacting
with other particles and the traps, and FD is applied along
the x̂ axis. For the thermal noise in each direction, it is
straightforward to show from the correlation function that∫ t+dt

t

√
2T ηiα (t ′)dt ′ = √

2T dtζ , where ζ follows the stan-
dard Gaussian distribution n(0, 1). In the large driving limit,
we expect a drift velocity v = 〈vx〉 = FD as in the case of
single particles [28]. The force on a particle for the symmetric
potential is given by F (r) = −r̂dV/dr, where −dK0(r)/dr =
K1(r) is the modified Bessel function of the second kind.
K1 is similar in shape to K0 but it is further shifted away
from r = 0. The integration is done using the fourth-order
Runge-Kutta method. We investigate the cluster glass depin-
ning for a typical case of Up = 1 at T = TC/2, where various
features of the cluster flow can be studied. In certain cases,
we also performed simulations at T = 0 to suppress thermal
fluctuations to get a clear visualization of the dynamics.

In the pure case with no pinning, the clusters slide together
along the direction of the driving force, and the drift velocity
is given by the linear relation v = FD for any FD; see the (top-
most) red line of Fig. 5. At finite temperatures, the particles
will fluctuate while sliding but the underlying cluster glass
order is unchanged. When the temperature is quenched to
T = 0, the internal dynamics of the clusters will be rapidly
frozen and the cluster glass essentially slides rigidly after-
ward. In either case, the cluster glass remains intact. These
observations are expected since, without pinning, the particle
motion is given by a superposition of the internal dynamics
when driving is absent and a constant translation motion, i.e.,
in the absence of pinning, the state can be simply identified as
a sliding cluster glass. A typical movie of such dynamics for
FD = 0.2 at both finite and zero temperatures is presented in
Ref. [50].

In the presence of pinning, a dynamical depinning tran-
sition should occur as the driving force is increased.
We performed large-scale MD simulations to measure the
disorder-averaged drift velocity at various driving forces. For
each run, we integrate up to a sufficiently long time t = 1000,
and the drift velocity is measured using the latter half of the
simulation, i.e., the initial transient dynamics is ignored and
we measure the asymptotic steady state drift velocity. The
results are shown in Fig. 5. For moderate and dense pinning,
there is a prominent pinned phase. The critical depinning
force is naturally very small but nonzero when the pinning is
dilute. Detailed examination near FD = 0 reveals that there are
pinned phases as well for dilute pinning. Fisher showed that a
pinned to sliding transition can have features similar to critical
phenomena with a power-law dependence of the nonlinear
velocity-force characteristic of the form v ∼ (FD − FC )β for
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FIG. 5. Top: Drift velocity as a function of the external driving
force at T = TC/2 for, from left to right, the pure system, m =
0.02, 0.08, 0.32, 0.64, and 1.28, respectively. The particle density is
again at n = 2. The inset panel is a zoom of the main panel near the
origin. For the pure case, there is a linear force-velocity relation. For
dense pinning, there is a prominent depinning transition and the drift
velocity converges slowly to the free case. For dilute pinning, the
critical force is much smaller and the drift velocity converges rapidly
to the pure case. The concave down form of the depinning curves
near the transition suggests plastic depinning, which is confirmed
in the flowing dynamics. Bottom: A schematic dynamical phase
diagram in the m-FD parameter space; see the text for the plastic flow
features and the corresponding dynamical reordering at large forces.

FD � FC in the vicinity of the critical depinning force FC

[51]. As the curves in Fig. 5 are concave down near the
transition, it suggests that β > 1, i.e., the depinning is likely
plastic [28]. In plastic flows, particles or clusters change their
neighbors during the flow, contrary to the elastic flow where
neighboring particles and clusters are preserved. A close ex-
amination of the dynamics shows that the cluster flows are
indeed plastic, with a number of features distinct from the
non-cluster-forming particle systems, e.g., clusters undergo
merging and breaking dynamics.

We discuss the dense pinning first, where the flowing phase
is clearly plastic. The flowing dynamics is quite complex, and

FIG. 6. Typical clusters merging (top panels) and splitting (bot-
tom panels) dynamics induced by the trap centers (T = 0), the
pertinent clusters are in blue and pink while other clusters are in
red, and the green circles are pinning centers. In this dense pin-
ning regime, such processes are frequent, rendering the flow highly
plastic.

here we focus on the main features and typical dynamical
processes. Considering the complexity of the flow, a movie
showing both the pinned and flowing phases is shown in
Ref. [52], where the driving forces are FD = 0.0508 and 0.2,
respectively, for a disorder realization of m = 1.28. There are
a number of interesting observations for the flowing phase.
First, chaotic cluster flow occurs instead of the chaotic parti-
cle flow in non-cluster-forming ensembles. Here, the clusters
have a strong tendency to flow through or near the traps, form-
ing rivers and changing neighbors. Interestingly, the pinning
centers are like stepping stones for the clusters. In addition,
the clusters are no longer as robust as in the free case. There
are frequent clusters merging and breaking dynamics. For
example, unusually large clusters may form as a result of
merging and there are also a number of single-particle clusters
as a result of particle emission from clusters. As a result,
the clusters are much more heterogeneous than the pure case
due to the interplay of pinning and driving. It is important to
emphasize that this increased heterogeneity is not a result of
thermal noise as we are working in the low-temperature glass
phase, despite that it also contributes. This is clearly demon-
strated as the above processes also occur at T = 0 as shown
in the movie in Ref. [53]. A typical cluster merging process
and also a cluster splitting process are depicted in Fig. 6. It
is interesting that trap centers play a catalytic role for the
dynamics. Indeed, the plastic processes are much suppressed
in the dilute pinning regime.

In the opposite dilute pinning regime, the flow is much
more ordered. After close inspections of m = 0.02, we find
that the flow is still plastic, but the plastic processes are
relatively rare. Upon depinning, the glass mostly slides over
the pinning centers. The plastic flow and cluster merging
and breaking processes are much suppressed. Nevertheless,
the effective polydispersity of the clusters can still enable
trap-induced neighbor-changing dynamics because of their
different mobilities. Similar to a cluster liquid [43], small
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FIG. 7. Example of a plastic neighbor-changing process for a
dilute pinning case with m = 0.02. The clusters can change their
neighbors due to their polydispersity and, consequently, their mo-
bilities. Here, the smaller black cluster depins faster and has a better
mobility. As a result, when the blue cluster depins, the black cluster is
no longer a neighbor of the blue cluster, inducing weak plastic flows.

clusters tend to have better mobilities and, moreover, larger
clusters are better pinned by impurity traps.

Figure 7 illustrates a neighbor-changing plastic flow pro-
cess in the dilute pinning case. Here, the two relevant clusters
are highlighted in blue and black. The blue cluster has four
particles while the black cluster has three particles. The black
cluster depins at around t = 450 and afterward the blue cluster
arrives at the pinning center and is temporarily pinned. This
pinning is stronger than that of the black one as there are more
particles, and also, importantly, a smaller cluster has a higher
mobility and is easier to diffuse around. As a result, although
the blue cluster eventually also depins at around t = 1000, the
black cluster has already diffused away and is thus no longer
a neighbor of the blue cluster. This process makes the flow
weakly plastic. However, such events do not occur frequently
for dilute pinning compared to the time scale of the data
in Fig. 6.

While the vortex-glass depinning may appear to be similar
to the vortex-glass melting [1,32,40,41], we should note a
major difference in the present clustering case: upon heating,
a cluster glass relaxes to a well-ordered cluster crystal instead
of melting to a disordered state. The mechanism is described
in Ref. [25] and is based on the thermal activation of the hop-
ping of individual vortices over the whole clusters structure.
This removes the polydispersity and, consequently, the uneven
bond connectivity of the clusters with increasing temperature
within the solid phase.

To summarize this section, all the depinning flows that
we studied are plastic cluster flows. Clusters tend to flow
along pinning channels when pinning is dense. The effective
polydispersity assists plastic flows in two aspects. First, it
generates new forms of plastic flow processes such as clusters
merging and breaking. In addition, their different mobilities
can also induce neighbor-changing plastic flows when flowing
through the pinning centers. These are quite distinct features
from the depinning of ordinary non-cluster-forming glasses.

FIG. 8. Cluster glass plastic flow exhibits dynamical reordering
when the driving force is increased. Here the fraction P6 of clusters
with six neighboring clusters is shown as a function of the driving
force for m = 0.32. The fraction decreases significantly at the onset
of the plastic flow around FD = 0.02, but it then gradually restores
when FD is increased as the pinning effects are increasingly washed
out. Note that this dynamical reordering appears to be a crossover
rather than a genuine phase transition. Here, the pinning strength is
Up = 1 and the particle density is n = 2.

A schematic dynamical phase diagram is summarized in the
bottom of Fig. 5, and we now turn to the dynamical reordering
as the force increases.

C. Dynamical reordering, critical exponent, and comparison
with particle glass

In this section, we first demonstrate that cluster glasses
upon depinning can undergo dynamical reordering when the
driving force is increased. Next, we measure the critical expo-
nent β of the depinning transition. Finally, the cluster glass
pinning strength is compared with that of ordinary particle
glass, finding that cluster glass can have much stronger pin-
ning effects than particle glass. This is potentially useful in
superconductor applications.

It is well known that the particle glass and the stripe
pattern-forming systems can exhibit dynamical reordering as
the driving force is increased [26,28]. For example, stripes
may break into pieces in presence of pinning disorder but,
upon depinning, stripes may reform when the driving force
gets larger. Here, we investigate this phenomenon for the
cluster glass. To study the dynamical reordering, we look at
an order statistic P6. This is the fraction of clusters having six
cluster neighbors in the asymptotic steady state as a function
of the driving force. The result of m = 0.32 is shown in Fig. 8.
It is interesting that P6 drops very sharply at the onset of
the plastic flow, the critical force here is in good agreement
with the depinning transition of Fig. 5. This indicates that
the system in the flowing phase is most chaotic when it just
depins, and pinning and driving compete most strongly near
the depinning transition. As the driving force increases, it is
remarkable that P6 is gradually restored and the effects of
pinning are increasingly washed out; note that the force scale
is larger than that of Fig. 5. When FD � 0.8, P6 is almost the

144206-8



PINNING EFFECTS IN A TWO-DIMENSIONAL CLUSTER … PHYSICAL REVIEW B 104, 144206 (2021)

FIG. 9. Power-law scaling of the velocity v versus FD − FC near
the transition for m = 0.64, 0.80, 1.00, and 1.28. While the power-
law behavior appears to be reasonably good in all cases, the exponent
or the slope becomes slightly larger with the increasing number
of pinning centers, yielding β = 1.049(5), 1.121(5), 1.233(8), and
1.351(13), respectively. See the text for more discussions. Here, the
pinning strength is Up = 1 and the particle density is n = 2.

same as that of the pinned phase. However, it seems that the
reordering is by no means perfect; it does not achieve a perfect
order for the largest force we studied, which is approximately
50 times larger than the depinning force. In addition, the
reordering occurs gradually and appears to be a crossover
rather than a genuine phase transition.

We next study the force-velocity relation at the depinning
transition. We define a critical exponent as v ∼ (FD − FC )β

for FD � FC in the vicinity of the depinning threshold force
FC . When the pinning is dilute, the range of FD where a
power-law behavior applies is limited; see Fig. 5. By con-
trast, the depinning in the dense pinning regime has a much
wider range of forces pertinent to power-law scaling, and we
therefore compute β using the cases m = 0.64 and 1.28. We
use a cubic function fit in the flowing phase but keep away
from the transition to first locate the critical force FC and then
make a power-law fit. In both cases, we find good power-law
behaviors and the scaling plots are shown in Fig. 9. The
two exponents are close but slightly different, β = 1.049(5)
and 1.351(13), respectively. Adding two intermediate cases
m = 0.80 and 1.00, we find that there appears to be a slow
drift of the exponent β.

This exponent is, unfortunately, in general very poorly
understood, and it is yet unclear whether there is a univer-
sality class for plastic depinning. Our case appears to be
even more complicated as our starting configurations are by
design quenched glasses rather than slowly annealed states.
Hence, it is not clear whether different pinning densities, cor-
responding to different degrees of glassiness, necessarily have
the same critical exponent. More pinning centers introduce
more defects into the quenched cluster glass, and therefore
the depinning could be more plastic for a denser pinning,
yielding a slightly larger critical exponent. On the other hand,
our computed exponents also fall within the broad range
of exponents found for plastic depinning in many different
systems [28]. Therefore, this could be a finite-size effect or

FIG. 10. Velocity-force curve for particle glass (left) and cluster
glass (right) for m = 0.64 and UP = 1. The trap size is σ = 0.3799,
which is half the lattice constant of the particle crystal. Both glass
formation and molecular dynamics are performed at their respective
TC/2. Note that the depinning force of the cluster glass is much larger
than that of the particle glass, suggesting vortex clusters can have
much better pinning properties than ordinary single vortices.

finite-temperature effect and there is a universality class or, al-
ternatively, quenched glasses may be different from annealed
glasses. This intriguing question requires further systematic
studies and will not be discussed more here.

Finally, we compare the depinning forces of cluster glasses
and particle glasses. To this end, we have simulated N = 1000
particles at density n = 2, interacting with a single Bessel
function potential as shown in Fig. 1. The numerical setup
is essentially the same for particle glasses, except that the
temperature scales differ. Here, the transition temperature of
the pure system is much smaller, TC ≈ 0.01077. Similarly, we
prepare glasses and do MD in the presence of pinning at its
own TC/2.

We consider the pinning density m = 0.64 and N = 1000
particles. We have similarly checked that the quenched states
are particle glasses with φ6 � 0.1. There are two natural
choices of the trap size σ for a fair comparison, i.e., we
can use either half the lattice constant of the cluster crystal
or the particle crystal. For the same trap depth Up = 1, they
yield wider or narrower traps, or weaker or stronger pinning,
respectively. Fortunately, they yield qualitatively the same
conclusion. When wider traps are used, the particle glass has
a very small depinning force that is not easily measurable,
i.e., the traps are too wide to pin the particle glass effectively.
Hence we use smaller traps for both systems and the results
are shown in Fig. 10. It is found that the cluster glass again
pins much better than the particle glass; the critical forces are
approximately FC = 0.01 for particle glass and 0.3 for cluster
glass. There are many parameters including the interaction
potentials that one can tune to explore this more systemati-
cally. However, considering that the depinning force scales are
very different in the cases studied here, it is quite suggestive
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that cluster-forming type-1.5 superconductors can have much
better pinning properties than systems of ordinary vortices.

IV. CONCLUSIONS

We studied an ensemble of two-dimensional monodisperse
particles interacting via a cluster-forming potential, relevant
to vortices in type-1.5 superconductors in the presence of
demagnetizing fields and layered type-1.5 systems. Vortices
in such systems were previously demonstrated to form glasses
in the absence of pinning, purely due to peculiarities of inter-
vortex forces. Similar potentials also arise in quantum Hall
physics [34,35] and soft matter.

We examined cluster glass formation following a ther-
mal quench in the presence of pinning centers of mod-
erate depth and the corresponding depinning transition.
We find that weak and dilute pinning have little effects
on the interaction-dominated glass formation: the disor-
dered configuration adapts to the presence of dilute pinning
sites, preserving the intervortex-interaction-driven effective
polydispersity.

However, moderate, strong, and dense pinning can sub-
stantially assist glass formation, especially at intermediate
temperatures, and indeed can entirely remove order. For the
pinning strength we have studied, the depinning transition is
plastic and the cluster plastic flow exhibits features distinct
from particle plastic flow. This includes cluster chaotic flow,
clusters merging and breaking, and their different mobilities.
Therefore, the effective polydispersity of clusters assists both
glass formation and plastic flows. The cluster plastic flow is
also found to exhibit dynamical reordering when the driving
force is large.

Finally, a conclusion of practical importance is that cluster
glasses can have significantly better pinning properties than
systems of non-cluster-forming particles. Since vortex pin-
ning is important for transport properties of superconductors,

it suggests that these properties of type-1.5 superconductors
can be useful in applications. Cluster-forming potentials can
be engineered, for example, by layering systems [21] or by
using superconductors where there is an additional phase tran-
sition associated with the time-reversal symmetry breakdown
[13,14].

Future work should characterize the cluster plastic flow
at a quantitative level. This is a challenging task compared
with particle plastic flow because the clusters are constantly
merging and breaking like in a cluster liquid [43], at least
when the plastic flow is (reasonably) strong. Effective criteria
and statistics should be defined, e.g., to extract the cluster
size and lifetime distributions for a given flowing dynamics.
In addition, it is worthwhile to optimize the cluster-forming
potential to further improve the pinning properties. Research
work along these lines is currently in progress and will be
reported in future publications.
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