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Electric polarization in inhomogeneous crystals
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We derive the charge density up to second order in spatial gradient in inhomogeneous crystals using the
semiclassical coarse graining procedure based on the wave packet method. It can be recast as divergence of
polarization, whose first-order contribution consists of three parts, a perturbative correction to the original Berry
connection expression, a topological part that can be written as an integral of the Chern-Simons 3-form, and a
previously-unknown, quadrupolelike contribution. The topological part can be related to the quantized fractional
charge carried by a vortex in two-dimensional systems. We then generalize our results to the multiband case
and show that the quadrupolelike contribution plays an important role, as it makes the total polarization gauge-
independent. Finally, we verify our theory in several model systems.
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I. INTRODUCTION

The electric polarization P is an essential quantity in the
macroscopic theory of electromagnetism. Its spatial and tem-
poral dependence give rise to the implicit charge density ρ

and current density j carried by the medium via the following
relations,

ρ = −∇ · P, (1a)

j = (∂/∂t )P. (1b)

These relations can be rigorously established through a spa-
tial averaging procedure known as coarse graining, which
is designed to produce spatially slowly varying macroscopic
quantities from their rapidly varying microscopic counterparts
(see, for example, Sec. 6.6 of Ref. [1]). However, despite its
apparent simplicity in appearance, calculating P for a given
microscopic charge density of an extended system has proven
to be problematic. In fact, it has been shown that one cannot
calculate the polarization from the microscopic charge density
alone. Instead, Eq. (1) should be imposed as the fundamental
definition of P and consequently the starting point of any
microscopic theory. In the modern theory of electric polar-
ization [2–4], Eq. (1b) is used to relate P to the integral of
the adiabatic current [5]. The resulting expression of P is
given in terms of the Berry connection of the Bloch functions
[2–4]. This theory has been very successful in understanding
dielectric phenomena and also forms an essential part in our
understanding of topological materials.

The modern theory of electric polarization is developed
for perfect crystals, i.e., crystals with translational symmetry.
The purpose of this paper is to develop a general theory
of electric polarization in inhomogeneous crystals. Here, by
inhomogeneous crystals we mean crystals under the influence
of external perturbations that break translational symmetry
and vary slowly in space. Our motivation is twofold. First, as

inhomogeneity frequently occurs in condensed matter sys-
tems, this problem appears in a wide range of physical
applications. There have already been quite a few studies of
polarization induced by particular types of inhomogeneities,
such as strain [6–14], strain gradient [14–18], electromagnetic
fields [19–26], and spin textures in multiferroics [27–39].
However, despite an early attempt [40], a complete and unified
theory appropriate for any type of spatial inhomogeneity is
still absent. Second, the interpretation of the polarization in
terms of the adiabatic current [Eq. (1b)] has been the dominant
approach in formal theory development. Here we introduce
an alternative approach to calculate P using Eq. (1a) as the
starting point. We note that the polarization from Eq. (1a)
is equivalent to that from Eq. (1b), due to the continuity
equation:

(∂/∂t )ρ + ∇ · j = 0. (2)

The key to our approach is a semiclassical coarse graining
procedure based on the framework of wave packet dynamics
of Bloch electrons [41,42], which allows us to directly cal-
culate the charge density ρ(r) in an order-by-order fashion.
We can then extract the polarization from ρ(r) according to
Eq. (1a). In this alternative approach, the polarization charge
density becomes the central quantity, which avoids many con-
ceptual difficulties.

With the semiclassical coarse graining procedure, we de-
rive the charge density up to second order in spatial gradient,
which requires us to first generalize the semiclassical theory
of electron dynamics to second order. Note that there are
both ionic and electronic contributions to the charge density
and we are only concerned with the latter. We show that
the charge density can be reformulated using the electric
polarization up to first order. At zeroth order, the polariza-
tion from Eq. (1a) indeed coincides with that from Eq. (1b),
confirming the relationship between polarization and charge
density in extended systems. At first order, the polarization
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consists of three parts, a perturbative correction to the original
Berry connection expression, a topological part that can be
written as an integral of the Chern-Simons 3-form, and a
previously-unknown, quadrupolelike contribution. We show
that in two-dimensional systems, the topological part can be
related to the fractional charge carried by a vortex. We also
generalize our results to the multiband case, in which we
find that the quadrupolelike contribution is indispensable as
it makes the total polarization gauge-independent.

To further establish the validity and utility of our theory,
we apply it to several examples. We first consider an exactly
solvable problem, i.e., the change of charge density due to a
constant strain, and show that our theory is consistent with
the exact result up to second order. We then numerically
test our theory in a one-dimensional modified Su-Schrieffer-
Heegar (SSH) model and a two-dimensional π -flux model on
a square lattice. In the 1D model, we verify the nontopological
contribution of first-order polarization and discuss how the
coarse graining procedure should be carried out in the numer-
ical simulation. In the 2D model, we verify the topological
contribution in our theory and relate it to the appearance of
quantized fractional charge carried by a vortex.

Our paper is organized as follows. We present our for-
malism in Sec. II, which contains a detailed application of
the coarse graining method, its applications in Sec. III, and
conclude with a summary in Sec. IV.

II. GENERAL FORMULATION

The theory of electric polarization was previously devel-
oped using the concept of adiabatic current [2,4]. Here we take
a different route and derive it from the charge density using
Eq. (1a). Specifically, we will calculate the charge density
up to second order in spatial gradient, which then allows us
to extract the electric polarization up to first order. For this
purpose, we extend the semiclassical theory of wave packet
dynamics to second order in Sec. II A. We then use it to
derive the charge density via the coarse graining procedure
in Sec. II B. In Sec. II C, we show that this charge density
can be readily recast using the electric polarization, whose
first-order term consists of three contributions: a perturbative,
a topological, and a quadrupolelike contribution. Finally, we
extend our results to the multiband case in Sec. II D.

A. Semiclassical theory up to second order

To set up the notation, we first briefly review the semi-
classical theory of wave packet dynamics. For details we
refer the readers to Refs. [41,42]. Let us consider an insu-
lating crystal with slowly varying inhomogeneities described
by the Hamiltonian Ĥ [r̂, p̂; βi(r̂)], where βi(r̂) are a set
of slowly varying parameters characterizing the inhomo-
geneities. They may represent strain fields, electromagnetic
fields, spin textures, and so on. The exact Hamiltonian is
difficult to diagonalize because the translational symmetry is
broken by βi(r̂). Instead, we can simplify this problem by
taking a wave packet localized around rc as an approximate
solution. We assume that the spread of the wave packet is
small compared to the length scale of the spatial inhomogene-
ity such that its dynamics is governed by a local Hamiltonian

Ĥc(rc) = Ĥ [r̂, p̂; βi(rc)] at the leading order. The local Hamil-
tonian Ĥc is obtained by replacing βi(r̂) with their value at rc

in exact Hamiltonian Ĥ . In this way, the translational symme-
try is restored. Throughout this paper, order in spatial gradient
means order in ∂rciβ j (rc), which is a small quantity by our
assumption. Higher order contributions can be obtained by
including higher order terms in the expansion of the Hamil-
tonian Ĥ [r̂, p̂; βi(r̂)] around rc in βi(r̂).

In the following we shall focus on a single, nondegen-
erate band with band index 0. The wave packet |W (rc, kc)〉
is constructed from the local Bloch function |ψ0k(rc)〉 =
eik·r |u0k(rc)〉,

|W (rc, kc)〉 =
∫

dk C0(k)eik·r |u0k(rc)〉 , (3)

where the expansion coefficient C0(k) is sharply centered
around kc, with its phase fixed through the self-consistency
condition: 〈W | r̂ |W 〉 = rc. In actual calculations, we can ap-
proximate |C0(k)|2 ≈ δ(k − kc).

Using the time-dependent variational principle, one can
work out the equations of motion for rc and kc [41],

ṙci = ∂ε̃0

∂kci
− 	kcirc j ṙc j − 	kcikc j k̇c j, (4a)

k̇ci = − ∂ε̃0

∂rci
+ 	rcirc j ṙc j + 	rcikc j k̇c j, (4b)

where ε̃0 is energy of the wave packet, which is the expecta-
tion value of exact Hamiltonian Ĥ on the wave packet, and we
have set h̄ = 1. The Berry curvature 	ξiξ j is defined by

	ξiξ j = i
〈
∂ξi u0

∣∣ ∂ξ j u0
〉 − i

〈
∂ξ j u0

∣∣ ∂ξi u0
〉
, (5)

where |u0〉 is a shorthand for |u0kc (rc)〉, and ξi = (kc, rc).
Throughout this paper, summation over spatial indices
(i, j, l, t ) is implied by repeated indices, while summation
over band indices (n, n′, m, m′) is explicitly written.

The appearance of the Berry curvature in the equation of
motion Eq. (4) also has a profound effect on the density of
states in the phase space. Specifically, rc and kc are no longer
canonically conjugate. Therefore, one has to introduce a rc-
and kc-dependent phase space measure D(rc, kc) when taking
thermodynamic average in the phase space [43]∫∫

drcdkc

(2π )d
→

∫∫
drcdkc

(2π )d
D(rc, kc), (6)

where d is the dimension of the system. The phase space
measure, also called the modified density of states, is
given by

D(rc, kc) =
√

det(	 − J ), (7)

	 − J =
(

	rcrc 	rckc − I
	kcrc + I 	kckc

)
, (8)

where each block is a d × d matrix, I is the rank-d identity
matrix, and the Berry curvature matrices 	rcrc , 	rckc , 	kcrc ,
	kckc are defined above in Eq. (5).

The above semiclassical theory was originally derived up
to first order in spatial gradient. For our purpose, we need to
generalize it to second order. This has been done in Ref. [21]
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for the special case of constant electromagnetic fields. Fol-
lowing the same procedure outlined in Ref. [21], we find that
for a general perturbation, the form of the equation of motion
Eq. (4) remains unchanged. This implies that the form of the
modified density of states in Eq. (7) is also unchanged. The
modification enters in two places: (i) the energy of the wave
packet needs to be modified to include second-order terms.
This modification is irrelevant to our calculation due to the
fact that energy correction leads to Fermi surface effect which
is zero in insulators and will not be discussed further. (ii)
The Berry curvature should be calculated using the periodic
part of the perturbed Bloch function |ũ0〉 up to first order in
spatial gradient. Since terms involving the Berry curvature in
Eq. (4) already have at least one explicit spatial derivatives,
Bloch functions corrected up to first order are sufficient for a
second-order theory.

The exact form of |ũ0〉 can be determined as follows. Let
|ũ0〉 = |u0〉 + |δu0〉, where |δu0〉 is the correction to the wave
function caused by the first-order correction Ĥ ′ to the local
Hamiltonian, where Ĥ ′ is obtained by the gradient expansion
of Ĥc,

Ĥ ′ = 1

2

[
(r̂ − rc) · ∂Ĥc

∂rc
+ ∂Ĥc

∂rc
· (r̂ − rc)

]
. (9)

Equation (9) follows from the standard Taylor’s expansion,
i.e., Ĥ [r̂, p̂; βi(r̂)] = Ĥ [r̂, p̂; βi(rc)] + Ĥ ′, since β(r) varies
slowly in space.

In order to calculate |δu0〉, the method proposed in
Ref. [21] is adopted. We construct a wave packet up to first
order as

|W̃ 〉 =
∫

dkeik·r[C0(k)|u0k(rc)〉 +
∑
n �=0

Cn(k)|unk(rc)〉], (10)

where Cn can be determined by requiring the wave packet
to satisfy the time-dependent Schrödinger equation Ĥ |W̃ 〉 =
i∂t |W̃ 〉 with Ĥ = Ĥc + Ĥ ′. After some lengthy but straight-
forward calculations (see Appendix A for details), we find

Cn = (Fi )n0
[
i∂ki + (

Aki

)
00 − rci

]
ε0 − εn

C0 + λnC0, (11)

and

λn = − i∂kiε0(Fi )n0

ε0 − εn
+ i〈un|∂ki F̂i|u0〉

2(ε0 − εn)

+
∑
m �=0

(Fi )nm(Aki )m0

ε0 − εn
,

(12)

where F̂ = ∂rc Ĥc is the force, (Fi )mn = 〈umk| F̂i |unk〉 is its
matrix element, εn is the energy of the nth band of local
Hamiltonian Hc, and (Aki )mn = 〈umk| ∂ki unk〉 is the Berry con-
nection. In Eq. (11), the first term represents the mixing
between adjacent k points within the same band, which is
not important in insulators because it only contributes a total
derivative of ki as shown in Eq. (A10), whose integration over
the entire Brillouin zone vanishes. The second term in Eq. (11)
represents mixing between different bands at the same k point
[44]. Therefore, in an insulator,

|δu0〉 =
∑
n �=0

λn |un〉 . (13)

L

l

FIG. 1. Sampling function h(x − r) and wave packet W (rc, kc ).
The width of sampling function L is large compared to wave packet
spread l and is small compared to length scale of macroscopic in-
homogeneity. Therefore, the sampling function can be approximated
by δ function at the macroscopic level and we can safely perform a
Taylor expansion of it within the range of wave packet.

B. Coarse-grained macroscopic charge density
up to second order

In a perfect crystal, the charge density varies drastically on
the microscopic scale between neighboring lattice sites but is
uniform on the macroscopic scale much larger than the lattice
constant. Here we are concerned with the macroscopic charge
density. With the introduction of spatially varying perturba-
tions on the macroscopic scale, we expect the macroscopic
charge density to become inhomogeneous. In this section we
will calculate the macroscopic charge density up to second
order in spatial gradient in inhomogeneous crystals.

First we need to relate the macroscopic charge density
to the microscopic details of the system which are directly
calculable from microscopic wave functions. To this end, we
introduce the semiclassical coarse graining procedure based
on the wave packet method. This procedure has been success-
fully applied to calculate spin density and current density up
to first order [42,45,46]. Here we show how to calculate the
charge density up to second order.

For simplicity, we consider an insulator at T = 0 with
a single band (n = 0) occupied. We will also set |e| = 1
throughout this paper. The charge density can be expressed
as follows

ρ(x) = −
∫∫

drcdkc

(2π )d
D(rc, kc)〈W |h(x − r̂)|W 〉, (14)

where D is the modified density of states in Eq. (7) and
h(x − r) is a sampling function normalized to unity, i.e.,∫

dr h(x − r) = 1. In the above notation, r is the microscopic
coordinate, and x is the coarse-grained coordinate. As shown
in Fig. 1, h(x − r) is centered at r = x with a width somewhere
between the microscopic scale of the wave packet and the
macroscopic scale of the spatial inhomogeneity. The wave
packet |W (rc, kc)〉 hence plays the role of “molecules” in the
classical coarse graining procedure [1].

From Eq. (14), it is clear that to obtain the charge density,
we need two essential elements, i.e., the modified density of
states D and the wave packet average of the sampling function.
We first calculate D. It is noted from Eq. (8) that 	 − J is
antisymmetric, so D is its Pfaffian. Up to second order we
have

D=1 + 	̃kcirci − 1
2

(
	kcikc j 	rcirc j + 	kcirc j 	kc j rci + 	kcirci	rc j kc j

)
.

(15)
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We emphasize that for the second term, the corrected wave
function |ũ0〉 must be used to generate an accurate second-
order result, while for the last term, the unperturbed wave
function is sufficient because it is already explicitly second
order in the spatial gradient. The second and the last term are
the first and second Chern form, respectively.

The third term (the second Chern form) in Eq. (15) is
ignored in some previous second-order semiclassical theory
[21,44,47–49] because it vanishes in the special case of uni-
form electromagnetic fields. To see this, we note that in the
case of electric fields, the local Hamiltonian is differed from
the unperturbed one by a constant scalar potential and hence
the zeroth-order wave function does not depend on the scalar
potential and rc, leading to vanishing 	rcirc j and 	kcirc j . In the
case of a constant magnetic field B, its effect can be taken
into account via the Peierls substitution. Under the symmet-
ric gauge A = 1

2 B × rc, the zeroth-order wave function reads
|u0(kc + 1

2 B × rc)〉. Therefore, we have

∂rci = 1
2εi jl Bl∂kc j . (16)

Since the second Chern form is antisymmetric with respect
to all four indices, it has to vanish due to the fact that the
Brillouin zone is three dimensional at most. However, this
term can be important in other scenarios. For example, in the
case of strain field, it is shown that this term is responsible for
the existence of a chiral conducting channel along the line of
disclination in metallic systems [50].

After calculating D, next we evaluate the average of the
sampling function. We first perform the following expansion

h(x − r̂) = h[(x − rc) − (r̂ − rc)]

= h(x − rc) − ∂h(ξ)

∂ξi

∣∣∣∣
ξ=x−rc

(r̂i − rci)

+ 1

2

∂2h(ξ)

∂ξi∂ξ j

∣∣∣∣
ξ=x−rc

(r̂i − rci)(r̂ j − rc j ) + · · · .

(17)

This expansion is valid since the sampling function varies
slowly within the range of a wave packet. We then approxi-
mate the sampling function by the delta function, h(x − rc) ≈
δ(x − rc), since its width is much smaller compared to the
length scale of the spatial inhomogeneity.

With the help of Eq. (17), we can evaluate the average of
the sampling function in Eq. (14) order by order. The zeroth-
order term reads

〈W | h(x − rc) |W 〉 = δ(x − rc). (18)

The first-order term vanishes,

〈W |∂h(ξ)

∂ξi

∣∣∣∣
ξ=x−rc

(r̂i − rci )|W 〉

= ∂h(ξ)

∂ξi

∣∣∣∣
ξ=x−rc

〈W |r̂i − rci|W 〉 = 0. (19)

The last equality holds according to the self-consistency con-
dition 〈W | r̂ |W 〉 = rc. Finally, the second-order term reads

(details are left in Appendix B)

1

2
〈W |∂

2h(ξ)

∂ξi∂ξ j

∣∣∣∣
ξ=x−rc

(r̂i − rci )(r̂ j − rc j )|W 〉

= 1

2

∂2δ(ξ)

∂ξi∂ξ j

∣∣∣∣
ξ=x−rc

gi j . (20)

Here gi j is the quantum metric tensor of band 0, which can
be expressed in terms of the interband Berry connection as
follows

gi j = Re
∑
n �=0

(
Akci

)
0n

(
Akc j

)
n0. (21)

Clearly, gi j has the meaning of the electric quadrupole mo-
ment of the wave packet [48,51], representing the charge
density contribution from its internal structure. Since Eq. (20)
is already explicitly second order in spatial derivatives, it is
sufficient to use the unperturbed wave function |u0〉 and |un〉
in gi j .

Plugging Eqs. (15), (18)–(20) into Eq. (14), we obtain the
full expression of the charge density up to second order in
spatial gradient,

ρ(x) = ρ (0)(x) + ρ (1)(x) + ρ (2)(x). (22)

The zeroth-order contribution reads

ρ (0)(x) = − 1

Vcell
, (23)

where Vcell is the volume of the unit cell, and the minus sign is
due to the negative charge carried by electrons. The first-order
contribution is

ρ (1)(x) = −
∫

BZ

dk
(2π )d

	kixi , (24)

where the unperturbed wave function |u0〉 is used in 	kixi . We
note that the integration of rc in Eq. (14) simply replaces rc

of the integrand with x. Therefore we will use x instead of rc

from now on. We will also drop the subscript c for kc.
Our focus is on the second-order contribution, given by

ρ (2)(x) = ∂xi∂x j qi j −
∫

BZ

dk
(2π )d

[
δ	kixi

− 1

2

(
	kik j 	xix j + 	kix j 	k j xi + 	kixi	x j k j

)]
, (25)

where

qi j = −
∫

BZ

dk
(2π )d

gi j

2
, (26)

and δ	kixi = i 〈∂kiδu0| ∂xi u0〉 + i 〈∂ki u0| ∂xiδu0〉 + c.c. is the
perturbative correction to the Berry curvature 	kixi . We note
that only the first term (the quadrupole term) in Eq. (25) is
from the spatial average of the sampling function, while the
rest comes from the modified density of states in Eq. (15).

Equation (25) is the main result of our paper. The charge
density at second order is derived in the most general scenario
and hence can be used in diverse cases. In the following, we
will illustrate its meaning and establish its validity.
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C. Electric polarization up to first order

The charge density at first and second order in Eqs. (24)
and (25) can be recast in terms of the electric polarization P
using Eq. (1a). We can divide the electric polarization into
different orders in spatial gradient,

P = P(0) + P(1), (27)

corresponding to the first-order and second-order charge den-
sity, respectively.

P(0) recovers the familiar result of the electric polarization
in a homogeneous system. To see this, we choose the periodic
gauge |ψnk〉 = |ψnk+G〉, where G is the reciprocal lattice vec-
tor. Then from Eq. (24), we find the following zeroth-order
polarization P(0)

P(0)
i = −

∫
BZ

dk
(2π )d

(
Aki

)
00. (28)

This is the exact result originally obtained by King-Smith and
Vanderbilt by integrating the adiabatic current [2].

We comment that in the modern theory of the electric
polarization from the charge current, it is very important that
only the change in the polarization matters, not the polar-
ization itself. To explicitly show this change, artificial time
dependence for the electric polarization is induced, which
gives the charge current based on Eq. (1b). Following similar
logic, here we introduce a spatial dependence of the electric
polarization, so that the change of the electric polarization can
be reflected. This spatial dependence then translates into the
charge density.

Our focus is on the first-order polarization P(1). It can be
divided into three parts: a perturbative part, a topological part,
and a quadrupolelike part,

P(1)
i = PP

i + PT
i + PQ

i . (29)

The perturbative part reads

PP
i = −

∫
BZ

dk
(2π )d

δAki , (30)

where δAki = i 〈u0| ∂kiδu0〉 + c.c. is the perturbative cor-
rection to the intraband Berry connection (Aki )00. This
contribution has also been identified in Ref. [40], but the
explicit expression is not given there. From Eqs. (12) and (13),
we obtain the expression of δAki

δAki =
∑
n �=0

(Aki )0n

ε0 − εn

[ ∑
m �=0

(Fj )nm(Akj )m0

+ i

2
〈un|∂k j F̂j |u0〉 − ∂k j ε0

i(Fj )n0

ε0 − εn

]
+ c.c. (31)

The topological part PT
i is obtained by evaluating the sec-

ond Chern form under the periodic gauge, i.e.,

PT
i = −

∫
BZ

dk
(2π )d

1

2

(
Axj 	kik j + Aki	k j x j + Akj 	x j ki

)
. (32)

We recognize that the integrand in the above equation is of
Chern-Simons 3-form. The same expression has also been
obtained in Ref. [40].

The quadrupolelike part PQ
i comes from the quadrupole

moment of the wave packet gi j ,

PQ
i = −∂x j qi j . (33)

This is a new term which has not been identified in Ref. [40].
We will show that this term is significant for the gauge invari-
ance of the first-order electric polarization.

Finally, we mention that when the inhomogeneity is in-
troduced by uniform electromagnetic fields, our result is
consistent with previous results [20,21]. In particular, the
quadrupolelike contribution vanishes in these cases. In the
electric field case, the zeroth-order local wave function |u0〉 is
unchanged, rendering qi j independent of real space coordinate
and hence leading to a vanishing PQ

i . In the case of a constant
magnetic field B, using Eq. (16) we find that PQ

i reduces to a
total derivative with respect to k, whose integration over the
entire Brillouin zone has to vanish.

D. Multiband formulas of the electric polarization

We now generalize our result to the multiband case. For
the total polarization, this can be done by summing over all
occupied bands. However, in the above we have separated P(1)

into three contributions. For this separation to hold physical
meanings, each contribution should be invariant under a U (N )
gauge transformation in the Hilbert space of occupied bands.
Since the Chern-Simons 3-form and the quantum metric have
well known multiband expressions, we can write down the
corresponding polarization in the multiband case,

PT
i = − 1

2

∫
BZ

dk
(2π )d

Tr
{
Ax j �kik j + Aki�k j x j

+ Ak j �x j ki + i
(
Ax j Aki Ak j − Ax j Ak j Aki

)}
, (34)

PQ
i = 1

2
∂x j

∫
BZ

dk
(2π )d

Re
m∈unocc∑

n∈occ

(
Aki

)
nm

(
Akj

)
mn, (35)

where Aξi is the matrix form of (Aξi )nn′ , and �ξiξ j = ∂ξi Aξ j −
∂ξ j Aξi − i[Aξi , Aξ j ] is the non-Abelian Berry curvature. For
the perturbative contribution, the resulting multiband formula
is too complicated (see Appendix C for details). We find that
it is more convenient to combine PQ and PP together into
a nontopological contribution PN = PQ + PP, which can be
written as

PN
i =

∫
BZ

dk
(2π )d

	

×
m,m′∈uno∑

n∈occ

(Vi )nm(Vj )mm′ (Fj )m′n − (Vi)nm(Fj )mm′ (Vj )m′n

(εn − εm)2(εn − εm′ )

+
m∈uno∑

n,n′∈occ

(Vi)nm(Fj )mn′ (Vj )n′n − (Vi)nm(Vj )mn′ (Fj )n′n

(εn − εm)2(εn′ − εm)
,

(36)

where V̂i = ∂ki Ĥc is the velocity operator, and (Vi)mn =
〈um|V̂i|un〉 is its matrix element. One can readily show that
Eq. (36) is explicitly gauge invariant.

We mention that although the total polarization in
the multiband case is the summation of the single-band
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polarization over all the occupied bands, each contribution is
not. Take the quadrupolelike contribution as an example. By
summing over all the occupied bands, it becomes

1

2
∂x j

∫
BZ

dk
(2π )d

Re

[
m∈unocc∑

n∈occ

(
Aki

)
nm

(
Akj

)
mn

+
n �=n′∑

n,n′∈occ

(
Aki

)
nn′

(
Akj

)
n′n

]
. (37)

The resulting formula has an additional term which is not
gauge invariant compared to Eq. (35). Other contributions
have similar issues, but the additional terms of all three contri-
butions cancel with each other. Therefore, we can see that the
quadrupolelike term from the coarse-graining process plays
an important role here, without which one cannot make the
total polarization gauge invariant.

III. APPLICATIONS

To validate our theory as well as to demonstrate its utility,
in this section we apply it to several specific model systems.

A. Strain induced charge density

We first consider an exactly solvable problem: the charge
density in the presence of a constant strain. The effect of a
constant strain is merely a change of the lattice constant from
a to a(1 + t ), and the charge density of the deformed crystal
is given by

ρe = − 1

ad (1 + t )d

= − 1

Vcell

[
1 − dt + d (d + 1)

2
t2 + O(t3)

]
, (38)

where d is the dimension of the system and Vcell = ad is the
unit cell volume. We emphasize that only the electron charge
density is considered here; the total charge density is always
zero due to the charge neutrality condition.

We now derive the charge density using our second-order
theory. A deformed crystal with atomic displacement {u�}
may be described by the Hamiltonian [41]

Ĥ = p̂2

2m
+ V [r̂ − u(r̂)] + si j (r̂)Vi j[r̂ − u(r̂)], (39)

where V (r) is the periodic potential, u(r) is the continuous
displacement field satisfying u(R� + u�) = u� with R� being
the equilibrium position of the �th atom, and si j is the un-
symmetrized strain tensor si j = ∂ui/∂r j . Detailed derivation
of the approximate potential and the definition of Vi j can be
found in Appendix D.

To apply our theory, the first step is to identify the local
Hamiltonian and its first-order correction. In this case, the
local Hamiltonian is obtained by replacing u(r̂) with its value
at rc in the full Hamiltonian Eq. (39) and keeping only the
zeroth-order term,

Ĥc = p̂2

2m
+ V [r̂ − u(rc)]. (40)

We see that the effect of a constant displacement field u(rc) is
simply a shift of the position coordinate. Therefore, the peri-
odic part of the local Bloch function is given by unk[r − u(rc)].
We caution readers that the continuous displacement field (u
or ui) should not be confused with the periodic part of the
Bloch state, |un〉.

As for the first-order correction, we note that the full
Hamiltonian (39) already contains a term that is explicitly
first order in the spatial gradient. Therefore the first order
correction to the local Hamiltonian contains two terms,

Ĥ (1) = Ĥ ′ + δĤ , (41)

where Ĥ ′, defined in Eq. (9), is the gradient expansion of Ĥc,
and

δĤ = si j (rc)Vi j[r̂ − u(rc)]. (42)

Next we calculate the Berry connections and Berry cur-
vatures using the unperturbed local Bloch functions. For
simplicity, we assume that only one band is occupied. The
Berry connections in the deformed crystal are given by

Arci = i 〈u0

∣∣∂rci u0
〉 = f j (k)s ji(rc), (43)

Aki = i 〈u0

∣∣∂ki u0
〉
, (44)

where fi = m∂kiε0 − ki, and we have used the identity p̂i =
−i∂ri = m∂ki Ĥc − ki. The corresponding Berry curvatures are

	rcirc j = 0, 	kirc j = sl j∂ki fl . (45)

With the above preparations, the first-order charge density ρ (1)

can be obtained by plugging Eq. (45) into Eq. (24),

ρ (1) =
∫

BZ

dk
(2π )d

s ji∂ki f j = sii

Vcell
. (46)

The second-order charge density ρ (2) consists of three
parts, ρ (2) = ρQ + ρP + ρT . For the topological part, it is suf-
ficient to use the unperturbed local Bloch functions. Plugging
Eq. (45) into Eq. (25), we have

ρT = 1

2

∫
BZ

dk
(2π )d

(
sl j∂ki fl st i∂k j ft − sl j∂k j fl st i∂ki ft

)
= si js ji − siis j j

2Vcell
. (47)

For the quadrupolelike part, it is straightforward to show that
gi j is independent of the spatial coordinate, therefore

ρQ = 0. (48)

The perturbative part has two contributions, arising from
corrections to the wave function due to H ′ and δH in Eq. (41).
Since δH respects the translational symmetry, its correction
to the wave function can be readily obtained by perturbation
theory. For H ′, its contribution to the charge density can be
evaluated using Eqs. (30) and (31). The operator F̂ in Eq. (31)
takes the following form in a deformed crystal,

F̂i = −im[V̂j, Ĥc]s ji. (49)
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Putting everything together, we arrive at

ρP =
∫

BZ

dk
(2π )d

∑
n �=0

(Aki )0n

ε0 − εn

[
(Vl j )n0 − m∂k j ε0(Vl )n0

+
∑
n′ �=0

im(εn − εn′ )(Vl )nn′ (Akj )n′0

]
∂sl j

∂xi
+ c.c., (50)

where the term containing (Vl j )n0 = 〈un|Vl j |u0〉 is due to δĤ .
If a small constant strain is imposed, then u� = tR�. The

resulting displacement field and the strain tensor read

u(x) = t

t + 1
x, si j = t

t + 1
δi j . (51)

The first-order charge density in Eq. (46) becomes

ρ (1) = 1

Vcell

t

1 + t
d. (52)

For the second-order charge density, the perturbative con-
tribution ρP vanishes since ∂xi sl j = 0, and the topological
contribution is given by

ρT = − 1

Vcell

d (d − 1)

2

(
t

t + 1

)2

. (53)

We note that ρT = 0 for d = 1, because topological part needs
at least two dimensions to be nonzero [40]. Adding ρ (0), ρ (1),
and ρ (2) together, the charge density up to second order reads

ρ = − 1

Vcell

[
1 − d

t

t + 1
+ d (d − 1)

2

(
t

t + 1

)2]

= − 1

Vcell

[
1 − dt + d (d + 1)

2
t2 + O(t3)

]
. (54)

This is consistent with the exact result of the charge density in
Eq. (38), confirming the validity of our theory.

B. Modified SSH model

In this section, we consider a one-dimensional modified
Su-Schrieffer-Heegar (SSH) model. The focus is on the non-
topological contribution of first-order polarization, since the
topological contribution vanishes in one-dimensional systems
[40]. We will also discuss how the coarse graining procedure
should be carried out in the numerical simulation.

Our model has two sublattices as depicted in Fig. 2(a) with
different hopping strengths t1 and t2. In addition, we add a sec-
ond nearest neighbor hopping with strength t0, which makes it
different from the original SSH model. The Hamiltonian reads

H1 = (t1â†
R,1âR,2 + t2â†

R,1âR−1,2 + H.c.)

+ t0(â†
R,1âR+1,1 + â†

R,2âR+1,2 + H.c.), (55)

where â†
R,i(âR,i ) is the electron creation (annihilation) operator

on the lattice as shown in Fig. 2(a). The lattice constant is set
to be 1.

We introduce the Fourier transformation,

âk,i = 1√
N

∑
R

âR,ie
−ik(R+τi ),

âR,i = 1√
N

∑
k

âk,ie
ik(R+τi ), (56)

t0

t1 t2
1 t02 (a)

(b)

ND+CG

ND+CG

FIG. 2. (a) Model configuration of H1. t1 and t2 are intracell and
intercell nearest neighbor hopping, and t0 is second nearest neighbor
hopping which breaks particle-hole symmetry. d is the distance be-
tween the two sites within the unit cell. (b) Charge density calculated
by coarse graining (CG) after numerical diagonalization (ND) and
our theory for d = 0, 1/2. The parameters used in the simulation
are: t0 = 0.2, t1(x) = 2 + 0.3 tanh(x/L), t2 = 1, L = 25, ε = 2. The
inset of (b) is the charge qi

n at the lattice point calculated by numerical
diagonalization of the tight-binding Hamiltonian.

where τi (i = 1, 2) is the atomic position within the unit cell.
Let τ1 = 0 and τ2 = d . Then the Bloch Hamiltonian is

H1 = 2t0 cos k σ0 + [t1 cos kd + t2 cos k(1 − d )]σx

− [t1 sin kd − t2 sin k(1 − d )]σy, (57)

where σx and σy are Pauli matrices in the sublattice space, and
σ0 is the identity matrix. It is clear that the second nearest
neighbor hopping t0 breaks the particle-hole symmetry.

We now introduce a spatial dependence into t1, with a
profile

t1(x) = 2 + t tanh(x/L). (58)

This inhomogeneity in t1 can induce a polarization. We stress
here that the spatial variation of parameters rather than their
magnitude must be small for our theory to hold, which means
t can be large as long as we keep t/L small.

At zeroth order, the electric polarization depends on the
relative strength between t1 and t2 [3]. With our choice of t1 in
Eq. (58), we always have t1 > t2 across the entire sample, so
P(0) vanishes. Therefore, the leading order contribution to the
polarization comes from the first-order contribution.

We now use Eqs. (34) and (36) to calculate the first-order
polarization and the corresponding charge density. In one
dimension, the topological part of the first-order polarization
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vanishes [40], so the only nonzero contribution is from the
nontopological part PN

i in Eq. (36). For PN
i to be nonzero,

the second nearest neighbor hopping is essential because it
breaks the particle-hole symmetry. A detailed discussion can
be found in Appendix E. The induced polarization reads

PN =
∫ 2π

0

dk

2π

[
t0t2

2 sin2 k(t2 + t1 cos k)

2
(
t2
1 + t2

2 + 2t1t2 cos k
)5/2

− d
t0t2 sin2 k

2
(
t2
1 + t2

2 + 2t1t2 cos k
)3/2

]
∂xt1. (59)

The charge density can be obtained by taking the divergence
of PN . We see that the charge density depends on d , the
distance between the two sites within the unit cell.

To verify our result, we numerically diagonalize the tight-
binding Hamiltonian in Eq. (55) on a finite sample, obtaining
the charge at sublattice i of the nth unit cell qi

n. Two problems
are present here: (i) charge qi

n oscillates between sublattices as
shown in the inset of Fig. 2(b), which is unlikely to produce
a smooth charge density; (ii) as there is no dependence on
intracell site distance d in Eq. (55), it is clear that qi

n is
independent of d , which seems contradictory to our theory as
shown in Eq. (59). To reconcile these problems, it is important
to keep in mind that our theory gives the macroscopic charge
density. Therefore, we have to obtain the numerical macro-
scopic charge density from the microscopic quantity qi

n. For
this purpose, we carry out the coarse graining procedure on
the numerical data as follows

ρ(x) =
∑

n

[
q1

nδ(x − n) + q2
nδ(x − n − d )

]
,

ρc(x) =
∫

dx′h(x − x′)ρ(x′). (60)

Here ρ(x) is the microscopic charge density, which consists
of a series of spikes, and ρc(x) is the macroscopic charge
density after coarse graining with h(x) being the sampling
function as discussed in Sec. II B. In our calculation, we have
chosen h(x) = 1√

πε
exp(−x2/ε2). The coarse-grained charge

density ρc(x) shows little dependence of ε as long as ε is
larger than the lattice constant but smaller than the length
scale of the spatial variation of t1(x). We can see that in this
way the numerical charge density becomes smooth and the
d dependence is introduced by δ(x − n − d ). The resulting
charge density is plotted in Fig. 2(b) for d = 0 and d = 1

2 .
It is clear that our theory gives excellent agreement in both
scenarios.

C. Two-dimensional square lattice model

We now consider a two-dimensional tight-binding model,
which has been studied previously in the context of charge
fractionalization [52,53] and higher-order topological insula-
tors [54,55]. We will focus on the topological contribution
of first-order polarization and relate it to the emergence of
quantized fractional charge.

As depicted in Fig. 3(a), the model has four atoms in each
unit cell forming a square with edge length of 1/2, while the
lattice constants are set to be 1. The onsite potential of atoms
1,2 (atoms 3,4) is � (−�). The intracell (intercell) hoppings

FIG. 3. (a) Model configuration of H2. The onsite potential of
atoms 1,2 (atoms 3,4) is � (−�), while dashed lines represent neg-
ative signs of hopping resulting from π flux threaded through each
plaquette. (b) Comparison of total charge calculated by numerical
diagonalization (circle) and our theory (solid line). (c) Charge density
when � = 0.8 calculated by numerical diagonalization. (d) Charge
density along y = 0 in (c) calculated by numerical diagonalization
(circle) and our theory (solid line). Parameters used in the simulation
are m(r) = 0.9 tanh(r/L), L = 10. The size of the lattice is 40×40.

are 1 + mx (1 − mx) and 1 + my (1 − my) along the x and y
direction, respectively. The dashed line represents a negative
sign of the hopping resulting from the π flux threading each
plaquette.

The corresponding Bloch Hamiltonian reads

H2 = − 2 cos
kx

2
σxτz + 2mx sin

kx

2
σyτ0

+ 2 cos
ky

2
σxτx + 2my sin

ky

2
σxτy

+ �σzτ0, (61)

where σ, τ are Pauli matrices for the degrees of freedom
within a unit cell, and τ0 is the identity matrix. It has two
doubly degenerate bands, with band energies ±ε,

ε =
√√√√4

∑
i=x,y

(
cos2

ki

2
+ m2

i sin2 ki

2

)
+ �2. (62)

The Hamiltonian is gapped across the whole Brillouin zone
unless mx = my = 0 and � = 0. We consider the system at
half filling, which means the lower doubly degenerate bands
are occupied. Suppose there is a vortex in the spatial depen-
dence of (mx, my), i.e.,

mx + imy = m(r)ei(θ+π/4), (63)

where r, θ are polar coordinates of real space position. We will
study the polarization charge carried by the vortex.

At zeroth order, polarization of this model vanishes as long
as it is gapped, so the leading order of polarization comes in at
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the first order. The nontopological first-order polarization PN
i

vanishes due to the particle-hole symmetry and degeneracy as
shown in Appendix E. For the topological contribution, it is
easier to directly calculate the corresponding charge density
in Eq. (25),

ρT =
∫

BZ

dk
(2π )2

6�

ε5
sin2 kx

2
sin2 ky

2

m(r)m′(r)

r
, (64)

which shows that when |�| is small, the charge is concentrated
around the vortex core where m(r = 0) = 0, εmin = |�|. On
the other hand, the parameters (mx, my) vary rapidly near the
vortex core, e.g.,

∂xmx = cos θ∂rmx(r, θ ) − sin θ

r
∂θmx(r, θ ), (65)

where the second term is divergent at r = 0. For this reason,
our theory can only give the correct charge density away from
the vortex core as shown in Fig. 3(d). Fortunately, the total
charge can be determined by the polarization at the boundary
far from the vortex core, where our theory is valid. The total
charge calculated by integration of Eq. (64) over real space
(solid line) and diagonalization of tight-binding Hamiltonian
(circle) are plotted in Fig. 3(b), from which we can see that
they agree with each other quite well. We note that when
� = 0, the charge carried by the vortex is quantized to 1/2.
Although this quantized fractional charge is already studied
in Refs. [52,53] using a continuum theory, our theory can
provide an alternative perspective.

The total charge resulting from the topological part of
first-order polarization in two-dimensional systems can also
be formulated as

Q = −
∫

dx∇ · PT

= −
∫ 2π

0
dθ

(
rPT

r

)∣∣
r=+∞. (66)

PT
r is the radial component of the topological part of first-

order polarization,

PT
r = PT

x cos θ + PT
y sin θ, (67)

where PT
i (i = x, y) is the Cartesian component of PT in

Eq. (32). With the transformation relation between polar and
Cartesian coordinate,

∂x = cos θ∂r − 1

r
sin θ∂θ ,

∂y = sin θ∂r + 1

r
cos θ∂θ , (68)

we can obtain the radial component PT
r ,

PT
r = − 1

2r

∫
BZ

dk
(2π )2

(
Akx 	kyθ + Aky	θkx + Aθ	kxky

)
. (69)

Therefore, the total charge is given by

Q = 1

8π2

∫ 2π

0
dθ

∫
BZ

dk
(
Akx 	kyθ + Aky	θkx + Aθ	kxky

)
,

(70)

where the integrand is Chern-Simons 3-form in the parameter
space (kx, ky, θ ). If we treat θ as the lattice momentum of the

third dimension, Eq. (70) also gives the quantized magneto-
electric polarizability [19] of the effective three-dimensional
Hamiltonian H (kx, ky, kz = θ ) without factor e2/h, which is
quantized under symmetry reversing the space-time orienta-
tion. Therefore, Q is quantized if the corresponding effective
Hamiltonian H (kx, ky, kz = θ ) respects symmetry reversing
the space-time orientation. Similar connections are also pro-
posed in Refs. [56,57].

To understand the quantized fractional charge in our model,
we only need to identify the required symmetry. We first
define a C4 rotation operator r̂4,

r̂4 =
(

0 τx

−τz 0

)
, (71)

where r̂4 obeys r̂4
4 = −1 (the minus sign is due to the π flux

per unit cell). Then it can be verified that when � = 0,

r̂4H2(k, θ )r̂−1
4 = H2(R4k,−θ ), (72)

where R4 is the rotation of crystal momentum by π/2, i.e.,
R4(kx, ky) = (ky,−kx ). Alternatively, the corresponding ef-
fective three-dimensional Hamiltonian H2(kx, ky, kz = θ ) has
the artificial C4zMz symmetry [57], i.e., r̂4H2(kx, ky, kz )r̂−1

4 =
H2(ky,−kx,−kz ), where Mz is the mirror symmetry with re-
spect to the xy plane. Since C4zMz symmetry reverses the
space-time orientation, the total charge is quantized as shown
above.

IV. SUMMARY

In this paper, we derive the macroscopic charge density up
to second order in spatial gradient in inhomogeneous crys-
tals using semiclassical coarse graining procedure based on
the wave packet method. It can be further reformulated by
electric polarization, whose first-order contribution consists
of a perturbative, a topological, and a quadrupolelike part.
The topological part can be related to the quantized fractional
charge carried by a vortex in two-dimensional systems. Then
we generalize our results to gauge-invariant multiband formu-
las. Finally, we verify our theory in several model systems.
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APPENDIX A: DERIVATION OF WAVE FUNCTION
CORRECTION UP TO FIRST ORDER

In this section, we will derive the wave function correction
up to first order in spatial gradient following the method
used in Ref. [21]. For our purpose, we need to construct
a wave packet |W̃ 〉 corrected up to first order as shown in
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Eq. (10). As an approximate solution, it should satisfy the
time-dependent Schrödinger equation Ĥ |W̃ 〉 = i∂t |W̃ 〉 with
Ĥ = Ĥc + Ĥ ′, where Ĥ ′ is the gradient expansion of Hc de-
fined in Eq. (9). We can then use this Schrödinger equation to
relate expansion coefficient Cn to C0.

We first consider both sides of the Schrödinger equation
respectively. Since |u0〉 and |un〉 all depend on t implic-
itly through wave packet center rc, the dynamic part of the
Schrödinger equation reads

i∂t |W̃ 〉 =
∫

dkeik·r
(

ε̃0C0|u0〉 +
∑
n �=0

ε̃0Cn|un〉
)

+ i
∫

dkeik·rC0ṙc · ∂rc |u0〉

+ i
∑
n �=0

∫
dkeik·rCnṙc · ∂rc |un〉, (A1)

where ε̃0 is the energy of the wave packet. We have used the
identities iĊ0 = ε̃0, iĊn = ε̃0 in the above derivation. The first
two terms in Eq. (A1) are the effect of dynamic phase, while
the remaining terms result from the change of Bloch states in
the parameter space spanned by rc. The energetic part of the
Schrödinger equation is

Ĥ |W̃ 〉 =
∫

dkeik·r
(

ε0C0|u0〉 +
∑
n �=0

εnCn|un〉
)

+
∫

dkeik·r
(

C0Ĥ ′|u0〉 +
∑
n �=0

CnĤ ′|un〉
)

, (A2)

where ε0 and εn are the eigenenergies of local Hamiltonian
Ĥc.

Next we change the integration variables in Eqs. (A1) and
(A2) from k to k′ and take the inner product 〈un|e−ik·r to both
sides of the Schrödinger equation. In the following derivation,
we keep terms up to first order because we only focus on the
leading contribution of Cn. The dynamic part is

〈un|e−ik·ri∂tW 〉
= ε̃0Cn + C0ṙc · 〈un|i∂rc u0〉

+
∑
m �=0

Cmṙc · 〈un|i∂rc um〉

≈ ε0Cn + C0v0 · 〈un|i∂rc u0〉, (A3)

where v0 = ∂kε0. In the last step, the term containing Cm is
discarded since Cn is of first order in spatial gradient, making
this term of second order in total. Wave packet velocity ṙc is
approximated by band group velocity v0 which is its leading
order contribution according to Eq. (4a). We also replace
the wave packet energy ε̃0 with its lowest order contribution
ε0.

For the energetic part,

〈un|e−ik·rĤ |W 〉 ≈ εnCn +
∫

dk′C0(k′)〈unk(rc)|

× ei(k′−k)·rĤ ′|u0k′ (rc)〉. (A4)

The term with both Cn and Ĥ ′ is discarded because Ĥ ′ is also
of first order. We denote the second term of Eq. (A4) as �.

Using the identity [41]

〈ψmk|r̂i|ψnk′ 〉 =
[(

Aki

)
mn + iδmn

∂

∂ki

]
δ(k − k′), (A5)

where (Aki )mn = 〈um|i∂ki un〉 is the Berry connection, and sub-
stituting Eq. (9) into Eq. (A4), we get

� = 1

2

∑
m

[
(Fi )nm

(
Aki

)
m0 + (

Aki

)
nm(Fi )m0

]
C0

+ i

2

[
∂ki (Fi )n0

]
C0 + (Fi )n0

(
i∂ki − rci

)
C0, (A6)

where operator F̂i = ∂rci Ĥc, (Fi )nm = 〈un|F̂i|um〉. In the above
derivation, we first insert identity I = ∑

m

∫
dk |ψmk〉 〈ψmk|

between operator F̂ and r̂, then use integration by parts.
Expanding ∂ki Fn0, the above equation becomes

� =
[∑

m

(Fi )nm
(
Aki

)
m0 + i

2
〈un|∂ki F̂i|u0〉

]
C0

+ (Fi )n0
(
i∂ki − rci

)
C0. (A7)

With all the preparations, we now compare Eq. (A3) and
Eq. (A4), which gives

Cn = (Fi )n0
[
i∂ki + (

Aki

)
00 − rci

]
ε0 − εn

C0 + λnC0, (A8)

where

λn = − v0i〈un|i∂rci u0〉
ε0 − εn

+ i〈un|∂ki Fi|u0〉
2(ε0 − εn)

+ 1

ε0 − εn

∑
m �=0

(Fi )nm(Aki )m0. (A9)

Then we can calculate the center of the wave packet rc up to
first order in spatial gradient,

rc = 〈�|r̂i|�〉
= ∂kiγ + (Aki )00 +

∑
n �=0

[
λn

(
Aki

)
0n

+ c.c.
]

−
∑
n �=0

i

2
∂k j

[
(Fj )n0(Aki )0n

ε0 − εn
+ c.c.

]
, (A10)

where γ is the phase of C0. The last term which is total
derivative of k j in the above formula is unimportant in the
case of insulator, since its integration over the whole Brillouin
zone vanishes. Finally, we come to the conclusion that the
first-order correction to the Berry connection of band 0 is

δAki =
∑
n �=0

λn
(
Aki

)
0n + c.c., (A11)

and the correction to the wave function is

|δu0〉 =
∑
n �=0

λn |un〉 . (A12)
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APPENDIX B: QUADRUPOLE MOMENT
OF WAVE PACKET

In this section we will calculate the quadrupole moment of
the wave packet

gi j = 〈W | (r̂i − rci)(r̂ j − rc j ) |W 〉 . (B1)

We first consider the expectation value of operator r̂i r̂ j on the
wave packet |W 〉

〈W | r̂i r̂ j |W 〉

=
∫∫

dk′dkC∗
0 (k′)C0(k) 〈u0k′ | ∂k′

i
e−ik′r∂k j e

ikr |u0k〉 .

(B2)

With integration by parts, it becomes

〈W | r̂i r̂ j |W 〉

=
∫

dk∂kiC
∗
0 (k′)∂k jC0(k)

+
∫

dk∂kiC
∗
0 (k)C0(k) 〈u0k

∣∣∂k j u0k
〉

+
∫

dkC∗
0 (k)∂k jC0(k)

〈
∂ki u0k

∣∣ u0k〉

+
∫

dkC∗
0 (k)C0(k)

〈
∂ki u0k

∣∣ ∂k j u0k
〉
. (B3)

We know that C0 = |C0|e−iγ (k) and |C0|2 = δ(k − kc), so it
further reduces to

〈W | r̂i r̂ j |W 〉 = Re
∑
n �=0

(
Aki

)
0n

(
Akj

)
n0 + rcirc j, (B4)

where wave packet center rci = (Aki )00 + ∂kiγ at the leading
order as shown in Eq. (A10). Therefore the quadrupole mo-
ment of the wave packet is

gi j = Re
∑
n �=0

(
Aki

)
0n

(
Akj

)
n0. (B5)

APPENDIX C: MULTIBAND FORMULAS
OF ELECTRIC POLARIZATION

In this section, we will derive the multiband formulas of the
electric polarization by summing up contributions from all the
occupied bands. For simplicity, we will omit the integral over
lattice momentum

∫
BZ

dk
(2π )d .

We first consider two contributions of the total first-order
polarization: quadrupolelike part PQ

i and perturbative part PP
i .

The quadrupolelike polarization PQ
i can be reformulated as

PQ
i = 1

4

∑
n �=0

{
∂x j

[(
Aki

)
0n

(
Akj

)
n0

] − ∂ki

[(
Akj

)
0n

(
Axj

)
n0

]
+ ∂k j

[(
Axj

)
0n

(
Aki

)
n0

]} + c.c.

= −
∑
n �=0

(Vi )0n(Fj )n0

2(ε0 − εn)3
[(Vj )00 − (Vj )nn]

−
∑
n �=0

(Vi )0n(Vj )n0[(Fj )00 − (Fj )nn]

2(ε0 − εn)3

+
m �=0,n∑

n �=0

(Vi )0n(Fj )nm(Vj )m0 + (Vi )0n(Vj )nm(Fj )m0

2(ε0 − εn)2(ε0 − εm)

+
∑
n �=0

(Vi)0n〈un|∂k j Fj |u0〉
2(ε0 − εn)2

+ c.c., (C1)

where the integration of the second and third term in the
second line over the whole Brillouin zone vanishes since they
are total derivatives of ki. In addition, the perturbative part PP

i
[Eq. (30)] can be transformed into a similar form,

PP
i =

∑
n �=0

(Vi)0n[(Fj )n0(Vj )00 − (Vj )n0(Fj )nn]

(ε0 − εn)3

−
m �=0,n∑

n �=0

(Vi )0n(Fj )nm(Vj )m0

(ε0 − εn)2(ε0 − εm)

−
∑
n �=0

(Vi)0n〈un|∂k j Fj |u0〉
2(ε0 − εn)2

+ c.c. (C2)

By combining Eqs. (C1) and (C2) and generalizing it to
multiband case by summing over all the occupied bands, we
have

PQ
i + PP

i =
l ′ �=n,l∑

n∈occ;l �=n

(Vi)nl (Vj )ll ′ (Fj )l ′n − (Vi )nl (Fj )ll ′ (Vj )l ′n

2(εn − εl )2(εn − εl ′ )

+
l �=n∑

n∈occ

(Vi)nl (Fj )ln[(Vj )nn + (Vj )ll ]

2(εn − εl )3

−
l �=n∑

n∈occ

(Vi)nl (Vj )ln[(Fj )nn + (Fj )ll ]

2(εn − εl )3
+ c.c. (C3)

Next, we break the sum over l, l ′ into contributions from
occupied and unoccupied bands. After some manipulations,
it can be divided into two parts,

m,m′∈uno∑
n∈occ

(Vi)nm(Vj )mm′ (Fj )m′n − (Vi )nm(Fj )mm′ (Vj )m′n

2(εn − εm)2(εn − εm′ )

+
m∈uno∑

n,n′∈occ

(Vi)nm(Fj )mn′ (Vj )n′n − (Vi)nm(Vj )mn′ (Fj )n′n

2(εn − εm)2(εn′ − εm)

+ c.c., (C4)

and

− 1

2
Tr

{
Ax j �kik j + Aki�k j x j + Ak j �x j ki

+ i
(
Ax j Aki Ak j − Ax j Ak j Aki

)}
+ 1

2

∑
n∈occ

[(
Axj

)
nn

(
	kik j

)
nn + (

Aki

)
nn

(
	k j x j

)
nn

+ (
Akj

)
nn

(
	x j ki

)
nn

]
, (C5)

where Aξi (ξi ∈ {xi, ki}) is the matrix form of (Aξi )nn′ ,
and �ξiξ j = ∂ξi Aξ j − ∂ξ j Aξi − i[Aξi , Aξ j ] is the non-Abelian
Berry curvature matrix. Note that (	ξiξ j )nn′ = ∂ξi (Aξ j )nn′ −
∂ξi (Aξ j )nn′ is not the matrix element of �ξiξ j in the above
formula.
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Then we can see that the first part of Eq. (C5) is the
standard non-Abelian Chern-Simons 3-form and serves as the
natural counterpart of the topological part in the multiband
case, while the second part cancels with the multiband sum-
mation of topological part Eq. (32). It can be shown that the
remaining part Eq. (C4), denoted PN

i , is also explicitly gauge
invariant.

APPENDIX D: THE APPROXIMATE POTENTIAL
OF STRAINED CRYSTALS

In this section, we provide a simple derivation of the ap-
proximate potential of the strained crystals. A similar but
more general derivation can found in Ref. [41].

For simplicity, we assume that the potential of unperturbed
crystals is

V (r) =
∑
R�

V0(r − R�), (D1)

where R� is the lattice vector, V0(r − R�) is the local potential
around the atom at position R�, which is assumed to decrease
sufficiently fast with increasing |r − R�|. Then the exact po-
tential of strained crystals with atomic displacement u� is

Ṽ (r) =
∑
R�

V0(r − R� − u�). (D2)

To proceed, we can approximate u� with continuous dis-
placement field u(r),

V0[r − R� − u(r) + u(r) − u�]

≈ V0[r − R� − u(r)]

+ [u(r) − u�] · ∂V0(x)

∂x

∣∣∣∣
x=r−R�−u(r)

. (D3)

We require r = R� + u� to be the zero point of r − R� −
u(r) = 0 in order to justify the above approximation, so
equivalently the atomic displacement u� and continuous dis-
placement field u(r) are related by

u(R� + u�) = u�. (D4)

Furthermore, u� can be approximated by

(u�)i = ui(r + R� + u� − r)

≈ ui(r) + [(R�) j + (u�) j − r j]si j (r)

≈ ui(r) + [(R�) j + u j (r) − r j]si j (r), (D5)

where unsymmetrized strain si j = ∂ui/∂x j . To sum up, the
approximate strained potential is

Ṽ (r) ≈ V [r − u(r)] + si j (r)Vi j[r − u(r)], (D6)

where

Vi j =
∑
R�

[r j − (R�) j − u j (r)]
∂V0(x)

∂xi

∣∣∣∣
x=r−R�−u(r)

. (D7)

APPENDIX E: A SPECIAL SCENARIO WHEN
NONTOPOLOGICAL PART POLARIZATION PN

i VANISHES

The special scenario when the nontopological part of first-
order polarization in Eq. (36) vanishes is easily revealed if we
formulate it in an alternative form,

PN
i =

m,m′∈uno∑
n∈occ

i(εm − εm′ )

2(εn − εm)2(εn − εm′ )
[(Fj )m′n(Vi )nm(Akj )mm′

− (Axj )mm′ (Vj )m′n(Vi)nm]

+
m∈uno∑

n,n′∈occ

i(εn′ − εn)

2(εn − εm)2(εn′ − εm)
[(Fj )mn′ (Akj )n′n(Vi)nm

− (Axj )n′n(Vi )nm(Vj )mn′ ]

−
∑

n∈occ

∑
m∈uno

(Vj )mn(Vi)nm

2(εn − εm)3
∂x j (εn + εm)

+
∑

n∈occ

∑
m∈uno

(Fj )mn(Vi)nm

2(εn − εm)3
∂k j (εn + εm) + c.c. (E1)

We note that if all the unoccupied (occupied) bands are de-
generate, the first (second) term vanishes, and if the sum of
occupied band energy and unoccupied band energy is con-
stant, the third and fourth term vanish.

To sum up, PN vanishes identically if the following condi-
tions are satisfied: (i) all the occupied bands are degenerate
with energy E v

k at any given momentum k; (ii) all the un-
occupied bands are degenerate with energy Ec

k at any given
momentum k; (iii) E v

k + Ec
k = constant. A similar discussion

is mentioned in Ref. [20] in the case of magnetic field.
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