
PHYSICAL REVIEW B 104, 144201 (2021)

Effects of disorder in the Fibonacci quasicrystal
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We study the properties of the one-dimensional Fibonacci chain, subjected to the placement of on-site
impurities. The resulting disruption of quasiperiodicity can be classified in terms of the renormalization path
of the site at which the impurity is placed, which greatly reduces the possible amount of disordered behavior
that impurities can induce. Moreover, it is found that, to some extent, the addition of multiple weak impurities
can be treated by superposing the individual contributions together and ignoring nonlinear effects. This means
that a transition regime between quasiperiodic order and disorder exists in which some parts of the system still
exhibit quasiperiodicit, while other parts start to be characterized by different localization behaviors of the wave
functions. This is manifested through a symmetry in the wave-function amplitude map, expressed in terms of
conumbers, and through the inverse participation ratio. For the latter, we find that its average of states can also
be grouped in terms of the renormalization path of the site at which the impurity has been placed.
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I. INTRODUCTION

Since their discovery by Shechtman et al. [1], quasicrystals
have attracted much attention. Their unusual properties, such
as low thermal conductivity, low friction coefficients, high
hardness, corrosion resistance, and superplasticity, have made
them attractive for applications. Their utility ranges from heat-
insulating materials, through coating that increases hardness,
all the way to medical implants, where prosthetics made from
quasicrystalline materials have shown very little cytotoxic-
ity effects [2–5]. Many studies have been conducted on the
nature and properties of quasicrystals. Not being identified
as classical crystals, they are characterized by forbidden dis-
crete symmetries, such as the fivefold rotation group, with the
archetypal example being AlMg [1]. One way to understand
the emergence of this symmetry is by tiling a 2D plane [6].
On the other hand, a more structural way of understanding
all quasiperiodic arrangements is to view them as projections
from higher dimensional lattice spaces, which have a per-
fectly periodic structure [7,8]. Although mainly manufactured
in laboratories, quasicrystals have also been observed to oc-
cur in nature, where the structure was found to exist in a
Siberian meteorite sample [9]. A mechanism for the formation
of quasicrystalline phases, both artificial and in nature, has
recently been proposed. It consists of the superposition of two
1D periodic subsystems with incommensurate periods, where
charge-density waves favor the emergence of a quasiperiodic
tiling of the atomic lattice [10].

The fact that quasicrystals are not periodic in their micro-
scopic structure makes them a more complicated problem to
study than their periodic counterpart. One way to simplify
the problem and still obtain relevant results is to study a 1D
abstraction of the real system. The most popular toy model
in that case is given by the 1D Fibonacci quasicrystal [11].
This is a tight-binding model for a particle subject to a lattice

potential. Either the on-site potential or the hopping param-
eter, depending on the model chosen, is modulated by the
Fibonacci sequence and takes on two discrete values, as will
be explained in more detail later on. This model exhibits very
interesting properties: Its energy spectrum is singular continu-
ous, which makes its semi-infinite version a proper fractal set,
and its wave functions possess multifractal properties [12]. A
renormalization scheme was introduced to explain the features
of the spectrum and its scaling symmetries [11]. This scheme
was subsequently used to understand the gap labeling theorem
[13], applied to the purely hopping Fibonacci chain. Together
with the conumbering scheme [14], it offered an insightful
way to characterize the wave functions in terms of their renor-
malization paths [15]. Nowadays, new insights are still being
provided. These range from the topological character of the
system to superconductivity [15–21].

In this paper, we aim at understanding how impurities
disrupt the quasiperiodic order. We start by investigating the
effect of a single impurity on the wave-function canvas us-
ing the aforementioned renormalization scheme. We find that
for weak impurities, a transition regime exists in which the
quasiperiodic order remains intact in parts of the system.
This is manifested by the preservation of a symmetry in
the wave-function amplitude as a function of conumbered
sites and can be quantified by calculating cluster-averaged
overlap integrals. As the strength of the impurity is raised,
a disordered phase appears, which is characterized by the
localization of the wave functions. This is compatible with
previous results in Ref. [22], where resonant states were iden-
tified in the presence of an impurity. Moreover, we find that
the transition regime can be labeled by the renormalization
path of the site at which the impurity has been placed. This
is also visible in the change of the state-averaged inverse
participation ratio (IPR) as a function of the impurity strength.
The different behaviors of the IPR can be grouped in terms of
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the renormalization path of the site at which the impurity has
been placed. Some impurity realizations lead to the surprising
delocalization-relocalization phenomena for a range of impu-
rity strengths. This observation is very similar to one found
in a recent study, where random disorder was introduced in
the hopping parameters and was shown to lead to a regime
of delocalization before a reentrant localization takes place
[23,24]. To some extent, this also holds when adding multiple
weak impurities, where the individual contributions can just
be superposed to produce the full disruptive pattern. Since the
quasiperiodic order is gradually lost, the transition regime can
be characterized by a classification of the kind of disorder
induced, and we find that disorder develops in an organized
way.

The paper is structured as follows. In Sec. II, we give a
brief description of the Fibonacci chain in a tight-binding
approximation. We then provide an overview of the under-
standing of its spectrum through a renormalization procedure.
In Sec. III, we introduce disorder by adding one impurity to
the system and show that we can classify the kind of disorder
by the renormalization path label of the site at which the
impurity has been placed. Finally, in Sec. IV, we present our
conclusions and outlook.

II. THE MODEL

We start by briefly introducing the Fibonacci chain in the
tight-binding approximation, followed by an analysis of its
properties through a renormalization procedure.

A. Fibonacci tight-binding model

1. Fibonacci sequence

Inflation method. The Fibonacci sequence, represented by
a binary alphabet {L, S}, can be generated iteratively through
the inflation rule,

S → L,

L → LS,

starting with the zeroth letter S. The Nth iteration, WN , will be
referred to as the Nth approximant of the Fibonacci word, the
size of which will be denoted by |WN | = FN . This sequence
has the property

lim
N→∞

FN+1

FN
= 1 + √

5

2
≡ φ, (1)

where φ is called the golden ratio. The Fibonacci sequence
is often represented in terms of word size and takes the form
{FN }∞N=0 = {1, 1, 2, 3, 5, 8, 13, . . . }. Another property is that
each term can be generated recursively through

FN+2 = FN+1 + FN , (2)

with F0 = F1 = 1. In terms of Fibonacci words, the recursion
relation can be written as

WN+2 = WN+1WN .

Cut and project methods and conumbers. The Fibonacci
sequence is known to be quasiperiodic, i.e., it can be obtained
as a projection of a higher-dimensional periodic sequence.

This is the so-called cut-and-project method of generating
quasiperiodic lattices. In this case, points on Z2 are projected
onto a line of slope 1/φ [see Fig. 1(a), where the line rep-
resented in black is called the physical space]. To construct
the Nth periodic (rational) approximant of the infinite chain,
we define the vector a1 = (FN−1, FN−2), which points along
the line of slope 1/φN = FN−2/FN−1 (with φN→∞ = φ). We
then consider a unit square, the lower left vertex of which
lies at the origin of the chain [see the red square in Fig. 1
(a)], which is then translated in the direction of a1. All the
points within the strip of width

√
2 traced by the square are

then projected onto the physical line. The result is a chain in
which nearest neighbors have relative distances L (long) and
S (short), arranged in a Fibonacci sequence. This construction
is enough to obtain the Fibonacci chain itself. However, we
will also consider the projection in the orthogonal space,
spanned by the vector a2 = (−FN−2, FN−1). When the same
selection of points within the strip is projected along the line
spanned by a2, a very interesting arrangement of the sites is
obtained. Indeed, in Fig. 1(a) we see that the projection along
a2 amounts to an ordering of the sites in terms of their distance
from the physical line. The shortest distance corresponds to
the cyan point, followed by the orange point, the magenta
point, and so on. We observe that they all lie on the line
called generator space (the origin of the name will become
clear later). The Fibonacci chain allows for two types of sites:
The ones surrounded by two L bonds, which we shall call
atomic and represent by a yellow dot, and those separated
by an S bond, henceforth called molecular and represented
by a blue dot [see Figs. 1(a) and 1(b)]. In Fig. 1(b), we
see that on top of rearranging the points according to their
distance from the physical line, the orthogonal projection
also rearranges them in terms of their type: the atomic sites
being placed in the middle, while the molecular ones are at
the sides of the newly arranged chain. This scheme is called
conumbering, as the rearrangement of the sites is achieved by
attaching a conumber to each site of the original Fibonacci
chain. The scheme is constructed as follows: we define a
generator, h =→ P0P1, where P0 and P1 are the origin and the
point with the smallest distance to the physical line. As stated
previously, all subsequent points of shortest distances will lie
on the line generated by h. However, these points will not all
lie within the first unit cell [denoted U1 in Fig. 1(a)], and the
main function of the conumbering scheme is to identify the
points that lie outside of the first unit cell with the points that
lie in it. This is achieved by performing a modulo operation on
those points. The generator h will always generate the nearest
previous rational approximant line that lies within the strip
traced by the unit square. This construction can be visualized
in Fig. 1(a). Thus, conumbered points before projection are
given by

x j = jhmod[a1]

= j(amod(FN−1), bmod(FN−2)),

where a and b are two Fibonacci numbers that identify the
nearest point and j ∈ {0, . . . , FN − 1} is the conumber. There
is a periodicity in the difference between consecutive rational
approximants of φ:

sign(φN+1 − φN ) = (−1)N+1, N = {0, 1, 2, ...}.
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FIG. 1. (a) Z2 space, with a Fibonacci quasicrystal approximant cell containing 13 sites (φ6 = 8/5). The vectors a1 and a2 are also shown
for reference. The strip containing the sites to be projected is defined by translating the red square along the physical space. The repeating unit
cells are denoted by Ui. The purple line is the generator space span{h}, with h = (3, 2). The points on the generator are marked with different
colors. Notice that points in unit cell U2 below the generator line are just repetitions of the points already marked in the first unit cell U1 (in this
case, the cyan and orange points). (b) Both projections are shown here, with a zoom-in on the orthogonal space to show how the conumbered
sites are organized. The real space chain has also been adorned with the different hoppings corresponding to the two distances (L and S).

This means that the slope that determines the generator is
either the previous approximant or the one before it, depend-
ing on whether this slope is higher or lower than the actual
approximant. After projection, this yields the usual formula
used in recent literature [14,15],

j = x jFN−1mod(FN ), (3)

where x j ∈ {0, . . . , FN − 1} denotes the sites in increasing
order on the real lattice. The conumbered sites are very con-
venient because they organize the real lattice sites in terms
of their local environment. The other advantage is that one
can observe the symmetry between the energy levels and the
amplitude localization (see Sec. III).

2. Tight-binding Hamiltonians

The Fibonacci chain is constructed by considering the
nearest-neighbor tight-binding Hamiltonian:

H =
∞∑

i=1

[Vi |i〉 〈i| + ti |i〉 〈i + 1| + H.c.]. (4)

We can either modulate the on-site potential Vi or the hopping
parameter ti. We shall refer to the two cases as the on-site
model and the hopping model, respectively. The modulation
is applied as follows:

Vi =
{

Vw, if ith letter is L
Vs, if ith letter is S

(5)

for the on-site model and

ti =
{

tw, if ith letter is L
ts, if th letter is S

(6)

for the hopping model. The subscripts w and s have been
chosen to reflect that L, standing for long, would correspond
to a weak bond (hopping strength) and S (short) for a stronger

bond. The two models have been studied extensively in
Refs. [11,17,25], where the renormalization scheme [11] was
used to reveal the multifractal properties of the model [15,25].
The on-site model was also studied in Ref. [17] through the
perspective of local symmetries, where a systematic way to
control the edge modes of a finite chain was devised.

In the remainder of this paper, we focus on the hopping
model, to which we apply periodic boundary conditions to
properly renormalize it. The resulting spectrum has many in-
teresting properties, which are characteristic of quasiperiodic
systems. The semi-infinite chain is singular continuous and is
also a fractal [15,26]. An example of the spectrum of a N = 16
chain is shown in Fig. 2. There, we observe a trifurcarting
structure that is self-similar. A renormalization procedure was
devised by Niu and Nori [11] to explain these features. There
is also a direct mapping between the on-site and hopping
models under the perturbative renormalization scheme (see
Ref. [11]).

B. Renormalization of the chains

The spectrum of the Fibonacci chain can be understood by
performing a perturbative renormalization procedure to the
hopping model, which is exact in the limit ρ ≡ tw/ts → 0.
Note that this can also be applied to the on-site Fibonacci
chain, which after one renormalization step becomes a hop-
ping Fibonacci chain. We start from the original Hamiltonian
and, without loss of generality, set the on-site energy to be a
constant, Vi ≡ V = 0. Then, we split it into an unperturbed
part H0 and a perturbation H1, with

H0 =
∑

j

ts | j〉 〈 j + 1| + H.c, if j mod(φ) < φ−1,

H1 =
∑

j

tw | j〉 〈 j + 1| + H.c, if j mod(φ) � φ−1. (7)
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FIG. 2. Energy spectrum of the N = 16 approximant Fibonacci
chain, with 1597 sites, in the hopping model. The trifurcating struc-
ture can be seen at different energy scales. The self-similarity of
this structure is also visible. The modulation strength has been set
to ρ ≡ tw/ts = 0.2.

The conditions imposed rely on the quasiperiodicity of
sign[( j + 1)mod(φ) − jmod(φ)], which corresponds to the
Fibonacci sequence in terms of {−1, 1}.

The unperturbed Hamiltonian has three levels with a very
large degeneracy, namely, E = 0,±ts. This sets the starting
point of the renormalization procedure, which is applied to
each of the three unperturbed levels independently. Following
the nomenclature proposed by Macé et al. [15], we have one
atomic deflation, corresponding to the atomic level (E = 0)
and two molecular deflations corresponding to the bond-
ing and antibonding molecular levels (E = ±ts). The atomic
deflation takes the original chain of size FN to a smaller
Fibonacci chain of size FN−3, while the molecular deflations
map the original chain to one of size FN−2. The renormalized
hopping strengths, in each case, are given by{

t2
w

2ts
,

tw
2

}
= ρ

2
{tw, ts}, (bonding)

{t ′
w, t ′

s} =
{

t3
w

t2
s

,− t2
w

ts

}
= ρ2{tw,−ts}, (atomic)

{
t2
w

2ts
,− tw

2

}
= ρ

2
{tw,−ts}, (antibonding).

We can thus write the original Nth approximant Hamiltonian,
HN , as a direct sum of three sub-Hamiltonians up to and
including O(ρ3) [25]:

HN =
(ρ

2
HN−2 + ts

)
⊕ ρ2HN−3 ⊕

(ρ

2
HN−2 − ts

)
. (8)

Since each of the chains are themselves Fibonacci approxi-
mants, we can apply this procedure iteratively until one cannot
decimate any generation further. The procedure for each type

FIG. 3. Decimation of the atomic-leveled chain. We have also
colored the sites consistently with our previous definition for atomic
and molecular sites. This figure gives a simple example of a renor-
malization path of a site in the N th approximant chain. In this case,
a chain of length F5 = 8 is renormalized to a chain of length F2 = 2.
The renormalization path is just am. This figure was inspired by those
made in Refs. [11,15].

of cluster is depicted in Figs. 3 and 4. To be more precise, the
atomic decimation takes every atomic site of the chain (FN−3

of them) and connects every pair with a renormalized hopping
strength that is strong when they are close to each other and
weak when they are separated by longer distances (see Fig. 3).
The molecular decimation, on the other hand, takes every
superposition of two molecular sites (eigenstate of energy ±ts,
each of which has a FN−2 degeneracy), connected by ts in the
original Fibonacci chain, and creates a new chain made up by
these superpositions. The hoppings are connected in a similar
way as in the atomic deflation, i.e., a strong hopping whenever
these two renormalized sites are separated by a short distance
in the original chain and a weak hopping when the distance is
larger (see Fig. 4).

The notion of a renormalization path will play an impor-
tant role later when we study the effect of impurities in a
Fibonacci chain. The renormalization path is defined in two
ways. The first one is a string of letters a and m, which stand
for the nature of the site at each renormalization step. Starting
from an N th approximant chain, two types of paths appear:
amma... for an atomic site at the top of the renormalization
process, or mmam... for a molecular one. The other definition
pertains to energy eigenstates and the cluster to which they
belong. Since there are three distinct clusters, we define the
eigenstate renormalization path by a string of letters t, c,
and b, describing the top cluster (bonding molecular), the
central cluster (atomic), and the bottom cluster (antibonding
molecular), respectively. A particular level can then be en-
coded by the symbolic string sequence tctbt...c, for example.
There exists a particular symmetry between the two renor-
malization paths in the perturbative limit (ρ � 1), which has

FIG. 4. Decimation of the molecular-leveled chain. The same
coloring scheme has been used to label the sites. Here, we have
another simple example of renormalization paths, namely, ma on the
left and mm in the middle. The chain of length F5 = 8 is changed to
a chain of length of F3 = 3. This figure was inspired by those made
in Refs. [11,15].
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FIG. 5. Atomic disorder classes listed in Table I. On the left side, we have two color codes: First, the local wave-function modulus is
plotted in shades of red; on the lower part, we have represented the lattice sites by their nature. Each site is either molecular (green), atomic
(blue), or has an impurity (yellow). The parameters chosen for the numerical calculation are ρ = 0.2 and VI = 0.1tw . Note that because the
impurity is weak, it mainly affects the atomic cluster and leaves the molecular cluster almost intact. (a) No impurity; (b)–(d) impurity on an
AAA, AMA, and AAM site, respectively; (e), (f) impurity on an AMM site.

been made evident by the graphical representation given in
Ref. [15]. This symmetry manifests itself when we rearrange
the chain sites in terms of the conumber defined in Sec. II
CN ( j) = jFN−1mod(FN ) [see Fig. 1(b)]. The fractal nature of
the eigenstates becomes manifest in this representation, which
is used in Sec. III to show how impurities disrupt this order.

III. INTRODUCING DISORDER

There are multiple ways of introducing disorder by adding
impurities. It was already shown [22] that even the introduc-
tion of one impurity in a relatively long chain has a drastic
effect on the spectrum. In particular, it reduces the fractal
dimension of the global density of states, while increasing that
of the local wave functions. Moreover, since the spectrum of
the Fibonacci chain is singular continuous [26], i.e., it has an
infinite number of gaps, every state is affected by the presence
of this impurity. The extent to which they are affected will,
however, depend on the strength of the impurity. We will
see that, in fact, for weak impurity strengths, departure from
criticality can be characterized using the renormalization path
formulation described before. To this end, we first show that
we can organize the impurity-induced disorder by using the
conumbering scheme. We then quantify this more thoroughly
by studying the localization properties of the states through
their IPRs. For the rest of the paper, we consider impurities by

adding an extra term to the Hamiltonian,

H = HF +
∑

m

VI |m〉 〈m| , (9)

where HF is the pure Fibonacci Hamiltonian and the impu-
rities lie on a set of sites {m}, with VI denoting the impurity
strength. We mainly focus on the single impurity case but
extend the discussion later on to multiple impurities of the
same strength.

A. Organizing disorder: Renormalization path

Before one departs completely from criticality, it is possi-
ble to observe a structure in the way disorder sets in. We found
that it can be organized according to the renormalization path
that the site, at which the impurity has been placed, follows.
This is best exemplified through the concrete application of
a weak impurity (at 10% hopping strength) in a generation
9 chain, with 55 sites. In that case, a total of nine renormal-
ization paths exist. Each one of these is responsible for the
generation of one disordered graph, as shown in Figs. 5 and 6.
From now on, we will position the impurities at random sites
in the Fibonacci chain. Then, we will identify the correspond-
ing impurity positions in terms of conumbers. This allows us
to identify which positions affect the eigenstate map the least.
In Fig. 5(a), we present the unperturbed fractal pattern, as
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FIG. 6. Molecular disorder classes listed in Table I. The color coding and parameters are the same as above. In this case, we find disorder
mostly in the molecular cluster while the atomic one is left almost intact. (a)–(f) Impurities on sites belonging to classes MAA, MMA, MMMA,
MMMM, and MAM (I and II), respectively.

obtained in Ref. [15]. Its central part results mainly from the
atomic sites, while the four surrounding structures result from
molecular sites. Then, we successively position an impurity at
various atomic sites in Figs. 5(b)–5(f). The resulting patterns
are in an almost one-to-one correspondence with the renor-
malization paths of the sites at which the impurities are placed.
Every site belonging to one path gives rise to the same disrup-
tion pattern [with the exception of the last two in Figs. 5(e)
and 5(f)]. The same is true in the case of impurities placed on

TABLE I. List of renormalization paths and the amount of dis-
tinct graphs it generates. For reference, we included the number of
sites belonging to a particular renormalization path. Note the almost
one-to-one correspondence between the number of graphs and the
renormalization paths.

Renormalization path Number of sites Number of distinct graphs

MMMM 16 1
MMMA 8 1
MMA 8 1
MAM 8 2
MAA 2 1
AMM 8 2
AMA 2 1
AAM 2 1
AAA 1 1

molecular sites, as shown in Figs. 6(a)–6(f). There is again a
one-to-one correspondence between the pattern and the renor-
malization path, except for the last two cases, Figs. 6(e) and
6(f). Starting from an atomic impurity at the carefully selected
AAA site, as shown in Fig. 5(b), we see that it mostly affects
one eigenstate. Noting that the eigenstates are ordered in terms
of increasing energy, we see that the slight increase from the
impurity potential shifts this state’s energy (which is the clos-
est to the unperturbed atomic energy E = 0) upward. Since all
of the renormalized chains correspond to atomic subclusters,
the molecular clusters are left completely intact. In fact, even
the molecular subclusters of the original atomic cluster are
relatively well preserved. In Fig. 5(c), the impurity is placed
at an AMA site. We now have two states that are mostly
affected by the presence of the impurity. These are the atomic
states of the two F4 chains resulting from the decimation
procedure (one atomic site per chain, with atomic energies
E = ±t ′

s = ±(ρ/2)ts, respectively). The previous two exam-
ples were the ones that disturbed the spatial distribution of
the wave functions the least. The next three (AAM, AMM I,
and AMM II) show a higher level of disorder in the structure.
However, we still see that in the weak impurity regime, this
disorder is mainly confined to the atomic cluster.

When placing an impurity on molecular sites, all resulting
possibilities are shown in Figs. 6(a)–6(f). In Fig. 6(a), we see
the least amount of disorder, which can easily be explained,
just as in the atomic case, by the disruption of two particular
states. These are the atomic sites of two F4 chains (one per
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FIG. 7. Disorder induced by a strong impurity of order VI = 10tw . (a) Atomic impurity. (b) Molecular impurity. In both cases, all clusters
are affected by its presence.

chain, of energy E = ±ts, respectively), resulting from an
MAA decimation procedure. This is qualitatively very similar
to the AMA case, except that the atomic subclusters are
different, and are centered around the unperturbed molecular
energy states. The next five graphs show the same kind of
behavior, in the weak impurity regime, as in the atomic case.
That is, we mostly see a disruption of the symmetric patterns
within the molecular clusters, while the atomic cluster is
mostly left intact.

We have listed in Table I all the renormalization paths
and number of graphs that they generate. The observation is
that there is an almost one-to-one correspondence between
the amount of renormalization paths and the possible type of
disorder the system is subjected to. It is not exact, as there are
two renormalization paths that each give rise to two distinct
graphs, namely, AMM in the atomic case and MAM in the
molecular case [see Figs. 5, 6(e), and 6(f)]. Therefore, we can
predict how many types of disordered graphs can be obtained
if we can calculate the amount of distinct renormalization
paths.

Based on our numerical implementations, a breakdown of
this behavior is observed for strong impurity strengths. This is
illustrated in Figs. 7(a) and 7(b), where we plot two graphs
with a strong on-site impurity placed on an atomic and a
molecular site, respectively. These observations can be quanti-
tatively substantiated by calculating overlap integrals. For this
reason, we will show that in the presence of a weak atomic
(molecular) impurity, it is mostly the atomic (molecular) clus-
ter that is affected while the molecular (atomic) cluster is left
intact. To see that, we need to calculate cluster-averaged over-
lap integrals, that is, the average of overlap integrals between
the clean Fibonacci chain and the one with an impurity. These
are given by

〈O〉A = 1

FN−3

FN−3∑
i=1

(
FN∑
j=1

∣∣〈ψ0
i,A(x j )

∣∣ ∣∣ψ I
i,A(x j )

〉∣∣), (10)

〈O〉M = 1

2FN−2

2FN−2∑
i=1

(
FN∑
j=1

∣∣〈ψ0
i,M (x j )

∣∣ ∣∣ψ I
i,M (x j )

〉∣∣), (11)

with |ψ0
i,X (x j )〉 and |ψ I

i,X (x j )〉 the clean and perturbed eigen-
states, respectively, of the atomic/molecular cluster (for X =
A, M). The results are shown in Figs. 8(a)–8(d), where we see
that for the weak impurity strengths considered, the overlaps
stay very close to 1 when the type of site does not belong to the
cluster considered, while it decreases more steeply when the
impurity site does belong to the cluster. We have also verified
whether these observations are size-dependent features, but
it turns out not to be the case, as we show in Appendix A.
Another interesting property is the additivity of the disrupted
patterns, when one adds several weak impurities. It seems that
one can just superpose the eigenstate maps of the individual
impurity disruptions to obtain the total disordered pattern.
This is illustrated by the simple examples in Fig. 9: there
are two atomic impurities in Fig. 9(a), characterized by the
renormalization paths AAA+AMA, and in Fig. 9(b), we add a
molecular impurity to the previous two, such that the total dis-
ruption is characterized by the paths AAA+AMA+MMMA.
It clearly looks like the graphs have been superimposed on
top of one another, as seen from the graphs in Figs. 5(b), 5(c)
and 6(c). Naturally, there is a limitation to these observations,
as the amount of paths grows substantially with the size of
the chain. Moreover, as the impurities grow stronger, the
additivity of the graphs breaks down and the impurities start
to influence each other, an effect that is easily visible in the
eigenstate map in Fig. 10. There we added an impurity with
ten times the previous strength on a AAA site and another one
on an MMMA site. We can clearly see that the two individual
graphs are not superimposed. Additionally, this superposition
is not exact even for weak impurities. Indeed, since the eigen-
state map represents probability densities, we know that in
the case of multiple weak impurities, we can write down the
amplitudes to first order in perturbation theory as

ψα (xi ) = α(xi ) + VI

∑
β �=α

β(xi )

E (α)
0 − E (β )

0

∑
m

α(xm)β∗(xm),

(12)
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FIG. 8. Cluster averaged overlap integrals in the presence of (a), (b) an atomic impurity and (c), (d) a molecular impurity, for all possible
impurities that result in different realizations, and which are labeled by the renormalization path of the site at which they are placed. It is clear
that the atomic (molecular) cluster is left mostly intact by the presence of a molecular (atomic) impurity for the strengths considered. The
parameters considered are still the same as for the previous figures, with ρ = 0.2 and the number of sites N = 55.

where α and β denote eigenstates of the pure Fibonacci chain
(without impurities). Since we are depicting a conumbered
version of |ψα (xi )|2, we also have nonlinearities entering the
picture. In the case of very weak impurities, they are over-
shadowed by the linear term, which is why we observe this

additive feature. The nonlinearities are more pronounced in
Fig. 11, where we plot the impurity-averaged IPR (introduced
in Sec. III B) of the single impurity realizations and compare it
to the IPR of the system containing all the impurities. We see
that they have the same behavior in terms of how they depend

FIG. 9. Example of multiple weak impurities (VI = 0.1tw ) placed on the Fibonacci chain. (a) AAA-AMA pattern. (b) AAA-AMA-MMMA
pattern. It is remarkable that one can just add the individual contributions from each of the classes to generate the (weak) multi-impurity classes.
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FIG. 10. Two relatively strong impurities placed on an MAM site
and a AMM site. Their strength is set at VI = 10tw . The result is not
a superposition of the individual MAM and AMM graphs (see Fig. 7
for comparison).

on the impurity strength but they are not equal. Moreover,
the similarities seem to quickly disappear with increasing
impurity strength, rendering the classification of multiple im-
purities more complicated than for the single impurity case.
The nonlinearities are also more strongly pronounced in this
case, which is expected because we are looking at the fourth
moment of probability density.

At this point, we note that the existence of resonant states
[22], especially in the case of weak impurities (of order 0.1tw),
allows for what can be called a transition regime, in which
some level of quasiperiodic order is still present in parts of
the system. We shall see in the next section that this can also
be characterized by studying the localization properties of the
system.

B. Localization properties

We begin by making the general observation that introduc-
ing a strong impurity generally leads to the localization of
one or several states. This is promptly visualized when one
inspects the numerically obtained eigenstate map in Fig. 12,

FIG. 12. Impurity placed on a generation 9 chain (55 sites) at
site No. 11. The localized state is clearly visible with its white stripe
extending over a wide range of sites, as indicated by the black arrow
on the right. For the sake of clarity, we used a strong impurity of
order 10tw , with the ratio ρ=0.2.

where the localization can be visualised for one of the eigen-
states (white stripe, extending over several sites, below the
center of the figure). This kind of behavior marks a departure
from criticality, i.e., the wave functions of quasiperiodic sys-
tems are neither extended nor localized. In Fig. 12, we see that
the localization is around the site at which the impurity was
placed (site No. 11 on the figure, where the darkest square
marks the strongest amplitude). To properly determine the
localization behavior of the system, we will calculate the IPR.
For a particular eigenstate |α〉 = ∑

i ψ
m
α (xi ) |i〉, where proper

normalization is imposed (
∑

i |ψm
α (xi )|2 = 1), it is defined as

Iα =
(

FN∑
j=1

|ψα (x j )|4
)−1

. (13)

FIG. 11. Comparisons between the impurity averaged IPRs of single-impurity realizations and the IPR of the multi-impurity system.
(a) Two impurities, (b) three impurities, and (c) five impurities. We see that they approximately follow a similar evolution until an arbitrarily
set threshold (red dashed line), after which the variations seem to not be correlated.
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FIG. 13. (a) Average IPR for the various different realizations of atomic impurity placements. (b) Average IPR for the various realizations
of molecular impurity placements. (c), (d) show the same quantity as approximated using nondegenerate perturbation theory. It is clear that
for weak impurity strengths up to at least VI ≈ 0.1tw , the behaviors are grouped in terms of the nature of the site at which the impurities have
been placed. Naturally, we label them by the renormalization paths that they belong to. The system size is again N = 55 and the modulation
strength ρ = 0.2. We also note that the discrepancies between the approximated and the exact IPRs can be resolved by adding higher order
terms in the perturbation theory.

This quantity gives a good measure of localization: In the fully
localized limit, where we have |ψ (xm)|2 = 1 for some site
xm and zero otherwise, Iα = 1. In the fully delocalized limit,
where the probability density is uniform (|ψ (xi )|2 = 1/N for
all sites xi), Iα = N . By introducing an impurity, the symmetry
between the renormalization paths of energy levels and that of
the sites is lost. However, we still want to be able to character-
ize the localization properties using the renormalization path
of the sites. Therefore, instead of looking at each state’s IPR,
we look at the average IPR over all states. Thus, we define the
state-averaged IPR as

〈I〉 = 1

FN

FN∑
α=1

Iα = 1

FN

FN∑
α=1

(
FN∑
j=1

|ψα (x j )|4
)−1

. (14)

We have plotted various results of 〈I〉 in Fig. 13. We observe
that, as hinted from the previous section, the behavior of the
IPR can be grouped in terms of the renormalization path that a
site belongs to. For the atomic case, all distinct representatives
of the four renormalization paths of the N = 55 chain are
plotted (there are seven distinct curves). There is one curve
for AAA, AAM, and AMA, while there are four curves for
AMM. Up to VI = 0.1tw, one observes that curves belonging
to the same renormalization path follow the same evolution as
a function of impurity strength. In the molecular case, we have

again plotted all distinct representatives (19 curves). There are
eight curves for MMMM, four for MMMA, four for MMA,
two for MAM, and one for MAA. They are also relatively well
grouped up in terms of renormalization path, up to a strength
VI = 0.1tw. We can in fact understand why this grouping
happens by using first-order nondegenerate perturbation the-
ory. The IPR in this case is given by (see Appendix B)

Im
α =

∑
i

∣∣ψm
α (xi )

∣∣2

∑
i

∣∣ψm
α (xi )

∣∣4 , (15)

where the non-normalized amplitudes, to first order in pertur-
bation theory, are given by

ψm
α (xi ) = α(xi ) + VI

∑
β �=α

α(xm)β∗(xm)β(xi )

E (α)
0 − E (β )

0

. (16)

Here |α〉 = ∑
i α(xi ) |i〉 (same for β) denote the pure, non-

degenerate, Fibonacci energy eigenstates, with E (α)
0 their

energies. From this expression, we are able to see why the
grouping in terms of renormalization paths takes place: The
amplitudes α(xm) and β(xm) will be very similar when the site
xm belongs to the same renormalization path. This is under-
stood from the perturbative treatment of the clean Fibonacci
chain, where it is known that to zeroth order, the amplitudes
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are strictly localized on sites belonging to the same renor-
malization path [11,15]. The next orders correct for this strict
localization, but the highest weight still remains on the sites
belonging to the same renormalization path. This also explains
the origin of the symmetric fractal picture that we observed
in Sec. II. For comparison, we plotted the IPR calculated
perturbatively in Figs. 13(c) and 13(d). We see that, globally,
it provides a very good approximation of the behavior and
the grouping is more pronounced. Another feature that we
can observe from the IPRs is that there are some impurity
configurations that lead to an average delocalization of the
states for a range of impurity strengths, as can be seen, for
example, in Fig. 13(b), where the blue curve shows an increase
in IPR before it decreases. This comes as a surprise, as one
expects that the introduction of disorder leads to more local-
ization. Similar results were recently obtained in Ref. [23]
for a system in which random disorder was introduced in the
hopping parameters.

IV. CONCLUSION

To conclude, in this paper we studied the effect of disorder
by introducing impurities in the Fibonacci chain. We first
introduced the 1D model in the tight-binding approximation
and briefly explained how to understand the spectrum through
a deflation procedure. This was then followed by the introduc-
tion of an impurity in the quasiperiodic lattice, which leads to
the appearance of at least one localized state. We have then
shown that in the weak impurity regime, disorder is introduced
in a very structured manner, following a labeling provided by
the renormalization path of the sites at which the impurities
have been placed. The disorder is restricted to subclusters of
the system. This indicates that there exists a transition regime
between a more insulating state where disorder is dominant,
and the typical critical states present in a quasiperiodic lattice.
We emphasize that the viewpoint offered in this paper stems
from the very important notion of conumbers. They turn out
to be essential in revealing the structure with which disorder
sets in and makes our observations very intuitive. They were
further substantiated by studying the behavior of overlap inte-
grals and localization properties through the IPR.

Although the renormalization scheme is only exact in the
limit ρ � 1, even ρ = 0.5 is sufficiently small for the results
to hold, and any ρ � 0.2 leads to well-separated energy clus-
ters [11]. In this sense, the results of our analysis are not exact,
but provide a qualitative understanding of the role played by
impurities in a Fibonacci hopping model. Furthermore, the
weak impurity regime was studied perturbatively and yielded
qualitatively good results. It seems that this works well as
long as VI < ρ, which forces the impurity to mainly disrupt
a particular cluster.

As an outlook, it would be interesting to study the effect
that disorder has in disrupting the local symmetry structure
of the system. This is partly because we originally believed
that it could play a role in inhibiting the effect of impu-
rities, as was observed in the case of the AAA graph in
Fig. 5(b). Indeed, this site is the center of a very large region
of palindromic symmetry. However, this naive interpretation
was quickly ruled out as the MMA graph in Fig. 6(a) of-
fered very little disruption, even though it had no locally

symmetric region surrounding it. In recent work, the on-site
model of the Fibonacci chain has been studied using a lo-
cal resonator mode framework [17]. It would be interesting
to find an analog version of this framework in the hopping
model, which offers an intuitive understanding of the effect
of impurities on local symmetries. This could be helpful to
further understand the topological features of the Fibonacci
chain. Indeed, it is possible to study the robustness of the topo-
logical phase by subjecting the system to impurities. Since
the gap labeling theorem has been reinterpreted in terms of
renormalization paths [15], the presence of stable gap states
can be analyzed by the amount of disorder in the graphs. This
in turn should be related to how the impurity breaks the (local)
palindromic symmetry or preserves it. Hence, one would be
able to evaluate whether the topological phase is protected by
this symmetry or if it is of a different nature.
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APPENDIX A: FINITE-SIZE SCALING OF IPR AND SIZE
DEPENDENCE OF OVERLAP INTEGRALS

In this section, we provide a finite-size scaling analysis plot
in Fig. 14 to show that the presence of an impurity induces
localization. Since the IPR grows with size as Iα ∝ Lν , with
ν → 0 meaning complete localization and ν → 1 full delocal-
ization, as N → ∞, the finite-size scaling analysis is done by
numerically calculating the ratio 〈I (V )〉/〈I (0)〉 ∝ Lγ . If the
log-log plot has a positive slope (γ > 0), it means the state
became more delocalized, and if the slope is negative (γ < 0),
it became more localized in the presence of an impurity. We
clearly observe a negative slope in both Figs. 14(a) and 14(b),
which means that the impurity induces a localization of states,
on average.

Furthermore, we show that the general features of the
cluster-averaged overlap integrals are not size dependent. In
other words, we show that if an impurity has been placed on
an atomic site, then the molecular cluster is less affected by
its presence than the atomic cluster (vice versa for a molecu-
lar impurity). To this end, we computed the cluster-averaged
overlap integral for different Fibonacci approximant chain
sizes, choosing just one impurity to represent the general
features. The results are plotted in Fig. 15. We see that for
both cases of atomic and molecular impurities, the behavior
described in the bulk of the text is still observed. That is,
when an impurity is placed in an atomic (molecular) site,
the cluster-averaged overlap integral is larger for the molec-
ular (atomic) cluster, even though in both cases the overlap
globally decreases for increasing sizes. These features get
washed off as the impurity strength decreases and the size
increases. Therefore, there must exist a crossover size M(V )
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FIG. 14. Finite-size scaling of the averaged IPR in the presence of (a) an atomic impurity and (b) a molecular impurity. In both cases, we
have a negative slope in the log-log line, meaning we are witnessing more localization when an impurity is introduced in the system.

that increases with decreasing impurity strength. This size
yields a threshold to the relevance of the results presented in
this paper.

Given an arbitrary threshold of similarity 〈O〉X = 0.9 for
a cluster of type X , we observe the following: In Fig. 15(a),
for an atomic impurity, the crossover size for the molecular
cluster is reached at N = 4181, starting at impurity strength
VI = 0.15tw. In Fig. 15(d), for a molecular impurity, we do not
reach the crossover size for the atomic cluster for any of the
strengths considered and 〈O〉A > 0.95 for all sizes considered.
In Figs. 15(b) and 15(c), when the cluster type is the same as
the impurity type, the threshold is reached very quickly, as
expected.

APPENDIX B: PERTURBATIVE CALCULATION
OF THE IPR

Let us consider a system described by the Hamiltonian
H = H0 + V , where H0 is the usual Fibonacci Hamiltonian
and V is the perturbation containing the impurity of strength
VI , placed at some site m. An eigenstate |ψ〉 of the Hamilto-
nian H can be written, to first order in perturbation theory, as

|ψ〉 = |α〉 +
∑
β �=α

〈β|V |α〉
E (α)

0 − E (β )
0

|β〉 , (B1)

where |α〉 and |β〉 are eigenstates of the Fibonacci Hamilto-
nian H0 and the E0’s are eigenvalues. We expand these states
in the position basis, |α〉 = ∑

i α(xi ) |i〉, and obtain (omitting
normalization for now)

|ψ〉 =
N∑

i=1

α(xi ) |i〉 +
∑
β �=α

∑
i, j,k

β∗(xi )α(x j )β(xk ) 〈i|V | j〉
E (α)

0 − E (β )
0

|k〉

=
N∑

i=1

α(xi ) |i〉 + VI

∑
β �=α

N∑
k=1

β∗(xm)α(xm)β(xk )

E (α)
0 − E (β )

0

|k〉

=
N∑

i=1

(
α(xi ) + VI

∑
β �=α

β∗(xm)α(xm)β(xi )

E (α)
0 − E (β )

0

)
|i〉

≡
N∑

i=1

ψm
α (xi ) |i〉 .

The second line results from the matrix elements of the per-
turbation V only having one element VI on the diagonal,
corresponding to site m. In the last line, we defined our quan-
tity of interest ψm

α (xi ), the amplitude of the states at sites xi.
The subscript α is a reminder that its zeroth order state is
|α〉 and the superscript m indicates that the impurity has been
placed at site xm. We also need to know the norm of the state
to properly normalize it. At this order of perturbation theory,

FIG. 15. Cluster-averaged overlap integral versus system size for eight different system sizes, corresponding to Fibonacci chain approxi-
mants ranging from generation 8 to 17. (a), (b) Overlap integrals in the presence of an atomic impurity. (c), (d) Overlap integrals in the presence
of a molecular impurity. In both of them, the cluster that is least disturbed is the one belonging to sites of a different nature than the one on
which the impurity has been placed.
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it is given by

〈ψ | |ψ〉 = 1 +
∑
β �= α

β ′ �= α

〈α|V |β〉 〈β ′|V |α〉(
Eα

0 − Eβ

0

)(
Eα

0 − Eβ ′
0

) 〈β| |β ′〉

= 1 +
∑
β �=α

| 〈α|V |β〉 |2(
E (α)

0 − E (β )
0

)2

= 1 + VI

∑
β �=α

∣∣α∗(xm)β(xm)
∣∣2

(
E (α)

0 − E (β )
0

)2 .

With the state and its norm, we can write an approximate expression for the IPR,

Iα =
∑N

i=1

∣∣ψm
α (xi )

∣∣2

∑N
i=1

∣∣ψm
α (xi )

∣∣4 , (B2)

where we assume proper normalization of the state |ψ〉. We start by working out the expression for |ψm
α (xi )|4 to 2nd order in VI ,

∣∣ψm
α (xi )

∣∣4 =
[(

α(xi ) + VI

∑
β �=α

β∗(xm)α(xm)β(xi )

E (α)
0 − E (β )

0

)(
α∗(xi ) + VI

∑
β �=α

β(xm)α∗(xm)β∗(xi )

E (α)
0 − E (β )

0

)]2

= |α(xi )|4 + 4|α(xi )|2Re
[

f m
α (xi )

]
VI + [

4
∣∣ f m

α (xi )
∣∣2 + 2Re

[(
f m
α (xi )

)2]]
V 2

I + O
(
V 3

I

)
, (B3)

where we defined the function

f m
α (xi ) ≡ α∗(xi )

∑
β �=α

α(xm)β∗(xm)β(xi )

E (α)
0 − E (β )

0

. (B4)

This function is the quantity that explains why the grouping in terms of the renormalization path of the sites happens. As
mentioned previously in the paper, the amplitudes α(xm) and β(xm) have most of their support on the sites belonging to the same
renormalization path. With this, we have an analytic expression for the IPR of state |ψα〉,

Iα =
1 + ∑

i

(
Re

[
f m
α (xi )

]
VI + | f m

α (xi )| f m
α (xi )|2

|α(xi )|2 V 2
I

)
I−1

α + ζ m
α VI + γ m

α V 2
I

, (B5)

where we defined three other expressions for the coefficients in front of the impurity strengths for the |ψm
α (xi )|4 expression:

I−1
α ≡

∑
i

|α(xi )|4,

ζ m
α ≡

∑
i

4|α(xi )|2Re
[

f m
α (xi )

]
,

γ m
α ≡

∑
i

[
4
∣∣ f m

α (xi )
∣∣2 + 2Re

[(
f m
α (xi )

)2]]
.
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