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Through the eyes of a descriptor: Constructing complete, invertible
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In this work we apply methods for describing three-dimensional images to the problem of encoding atomic
environments in a way that is invariant to rotations, translations, and permutations of the atoms and, crucially,
can be decoded back into the original environment modulo global orientation without the need for training a
model. From the point of view of decoding, the descriptor is optimally complete and can be extended to arbitrary
order, allowing for a systematic convergence of the fidelity of the description. In experiments on molecules
ranging from 3 to 29 atoms in size, we demonstrate that positions can be decoded with a 97% success rate and
positions plus species with a 70% rate of success, rising to 95% if a second fingerprint is used. In all cases,
consistent recovery is observed for molecules with 17 or fewer atoms. Additionally, we evaluate the descriptor’s
performance in predicting the energies and forces of bulk Ni, Cu, Li, Mo, Si, and Ge by means of a neural
network model trained on DFT data. When comparing to six machine learning interaction potential methods
that use various descriptors and regression schemes, our descriptor is found to be competitive, in several cases
outperforming well established methods. The combined ability to both decode and make property predictions
from a representation that does not need to be learned lays the foundations for a novel way of building generative
models that are tasked with solving the inverse problem of predicting atomic arrangements that are statistically
likely to have certain desired properties.
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I. INTRODUCTION

Predicting the properties of collections of atoms forms
a core pillar of many of the technological advances that
have become a staple of modern life. Whether it be drug
discovery, materials science, chemical synthesis, or chip fab-
rication, the ability to connect properties to the atomic scale
invariably opens the door to accelerated discovery thanks to
greater accuracy and transferability when compared to more
coarse grained descriptions. While property prediction is now
a mature scientific practice, the inverse problem of predicting
atomic arrangements given particular target properties is still
in its infancy (see [1] for a review of some common methods)
and has the potential to have an even greater impact on society
than property prediction alone.

Arguably, the most pervasive computational method for the
discovery of novel materials and molecules is currently high-
throughput screening, which typically involves calculating
properties (and often stable atomic arrangements) for many
candidates in the hopes of finding some that meet the desired
criteria. Naturally this often incurs a high computational cost
while simultaneously being limited to a predefined set of
candidates. Modern machine learning methods, particularly
generative models [2], offer the possibility of overcoming
some of these limitations by learning patterns within large
data sets and proposing novel candidates that are statistically
likely to have the desired properties.

*martin.uhrin.10@ucl.ac.uk

Of key importance when building any machine learning
model is the representation of the atomic system upon which
the learning occurs. This is reflected in the large volume
literature dedicated to the topic (see, e.g., [3–13]). What is
near universally recognized are the benefits of using repre-
sentations that possess the same symmetries as the physical
laws that govern the atomic interactions. Specifically, we
seek descriptions that possess invariance or equivariance to
permutation, translation, and rotation. In addition, for non-
linear machine learning methods such as neural networks, it
is desirable to have compact descriptors that do not produce
redundant information as this greatly improves training ef-
ficiency by keeping the dimensionality of the feature space
as low as possible. Finally, for generative models, which rely
on inverting latent representations to reproduce atomic struc-
tures, it is important that the descriptor be complete such that
any set of atomic coordinates maps uniquely onto a point in
latent space. It is this collective set of properties and, perhaps
more significantly, the inversion procedure itself that are the
focus of this work.

While the topic of symmetry invariant descriptions is now
well established in the atomistic modeling community, its
history goes back significantly further in the fields of im-
age analysis and computer vision. For these communities,
the fundamental objects of interests are pixels, voxels, or
point clouds, however the methods developed map readily
to atomic environments, often by simply placing delta or
Gaussian functions on atomic sites. In this work we borrow
and build on methods from three-dimensional (3D) image
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analysis to create a complete descriptor of atomic environ-
ments that can be inverted and highlight similarities and

connections with existing methods in the atomistic modeling
community.

The visual summary above shows a schematic of our
method for constructing permutation, translation, and rotation
invariant fingerprint vectors that can be systematically in-
verted to recreate the original atomic environment. References
to specific portions of the paper are given to enable the reader
to easily skip to the sections of most interest. Results from
numerical experiments can be found in Sec. IV. In order to
avoid ambiguity we will use the term descriptor to refer to the
method and fingerprint or fingerprint vector (as this evokes
the idea of a uniquely identifying artifact) to refer to the object
that is produced by a descriptor.

II. MOMENT INVARIANTS AS (LOCAL)
ATOMIC DESCRIPTORS

The moments of a function give a quantitative description
of its shape and as such have a long history of use in the
world of two-dimensional (2D) and 3D image analysis and
computer vision. The first (raw) and second (central) moments
of a function are familiar from probability distributions as the
mean and variance respectively, while the nth moment of a
real-valued continuous function f (x) is given by

mn =
∫ ∞

−∞
xn f (x)dx. (1)

In this context n is typically called the moment’s order and
is equal to the degree of the polynomial onto which f is
projected. More generally, moments (in certain contexts called
expansion coefficients) can be defined as the projections of
a square-integrable function onto a set of basis functions
mn = 〈 f |�n〉. Many commonly used descriptors of atomic en-
vironments are, in fact, functions of moments which produce
a fingerprint vector, denoted here as �.

For the purposes of faithfully encoding and, crucially,
reconstructing atomic environments we are particularly inter-
ested in descriptors that have the following properties:

(1) Invariance to global translations and rotations, and per-
mutations of atom labels.

(2) Orthonormality of the basis functions, i.e., 〈�i|� j〉 =
δi j [14]. Such basis functions lead to an optimal reconstruction
of f in the sense that the contribution to the mean square error
decreases with each successive moment order n [15].

(3) Completeness of the basis functions. If, for any func-
tion f ∈ L2, the following condition is satisfied:

lim
nmax→∞

∥∥∥∥∥ f −
nmax∑
n=0

mn�n

∥∥∥∥∥
2

= 0, (2)

we say that the basis �n is complete as f can be approximated
arbitrarily closely.

(4) A smooth, injective, invariants function m �→ �(m)
that maps any two vectors of moments [m = (m1, . . . , mnmax )]
not related by a global rotation onto distinct fingerprint
vectors.

In what follows the ultimate goal is to identify procedures
for generating systematically improvable descriptions that sat-
isfy, as much as possible, the aforementioned criteria and
that can be used to both predict properties and to recreate
atomic environments from a finite set of invariants. We call
such descriptors moment invariants (local) atomic descriptors
(MILAD).

A. Geometric moments

The extension of Eq. (1) to three dimensions is trivial;
using three indices s, t , and u, the moments of a three-
dimensional function f (x1, x2, x3) are given by

mstu =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xs

1xt
2xu

3 f (x1, x2, x3)dx1dx2dx3, (3)

where the order is now s + t + u. These are the, so-called,
geometric moments and are widely used in 3D image analysis
where the function f (x), with x = (x1, x2, x3)T , is typically a
set of discrete voxels of varying intensity [16]. Importantly,
one can prove [17] that for piecewise continuous f (x) with
compact support, all moment orders exist and that f (x) is
uniquely determined by the set of all moments to infinite order
which are themselves uniquely determined by f (x). While
this is formally true only in the limit of infinite order, we will
show later that it is possible to use a related set of orthogonal
moments to recover atomic environments from finitely many
moments and, indeed, rotation invariants thereof.

In order to use moments to represent atomic configurations,
we must make a choice for the form of f (x) and a conve-
nient one is that of a sum (thereby inducing permutational
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invariance) of feature functions centered on each atom, per-
haps the simplest of which is a set of N atom centered delta
functions with weights wi,

f (x) =
N∑
i

wiδ(x − ri ), (4)

where ri is the position of the ith atom and the weights can
either all be equal to one or be used to encode additional
information, for example the atomic species. This choice of
f (x) is particularly appealing as the moments can be trivially
computed as

mstu =
N∑
i

wirs
i,1rt

i,2ru
i,3. (5)

These moments mstu can be grouped by order into tensors
from which rotation invariants can be easily derived. This
forms the basis of much early work in image analysis and
more recently in the atomistic modeling community, most
notably in the work of Shapeev [8] and Zaverkin and Kästner
[18].

Another commonly used feature function (see, e.g.,
[5,19,20]) is that of a three-dimensional Gaussian, in which
case f (x) becomes

f (x) =
N∑
i

wi

σ 3
i

√
(2π )3

exp

[
−1

2

(x − ri

σi

)2
]

, (6)

where both wi and the Gaussian widths σi can be used
to encode information about atom i [21]. The analytic in-
tegrals

∫∫∫
xs

1xt
2xu

3 f (x1, x2, x3)dx1dx2dx3, and therefore the
moments, can be found relatively easily [22] and are fast to
compute.

The range of possible forms for f (x) is infinite and the
choice is somewhat arbitrary, and can therefore be guided by
seeking forms that localize the atomic positions well and that
have integrals that can be efficiently evaluated while providing
enough degrees of freedom to encode the desired properties,
e.g., atomic species, spins, chemical shieldings, or anything
else relevant to the property being predicted.

Thus far, mstu are permutationally invariant due to choosing
f (x) that are sums of feature functions. Translational invari-
ance can be achieved by normalization that is by choosing
a particular reference point to be the origin of our coordinate
system. In the case of local atomic descriptors, this is typically
taken to be the position of each atom in turn, around which
a cutoff sphere is projected and all the atoms that lie in its
interior are included in fi(x). This leads to a set of fingerprints,
one for each atom, which can be used directly as inputs to a
suitable fitting algorithm to predict local properties such as
forces or chemical shifts [23]. Alternatively, the set of local
fingerprints can be used together to predict global properties
such as total energy or band gap, either by combining them to
form a new descriptor or directly (e.g., as is done in Behler-
Parinello neural network potentials [3]). For describing global
environments such as entire molecules, nanoribbons, clusters,
etc., the center of mass or average position can be used as the
reference point or it can be chosen more specifically to fit the
problem at hand.

The remaining invariance to tackle is that of rotation.
The moments mstu are not, themselves, rotationally invariant,

however various methods have been developed all yielding
polynomials of moments that are. Some of the earliest work
on rotation invariants from moments in three dimensions was
carried out by Sadjadi and Hall [24] however it was in the
work of Suk and Flusser [25] that a general solution was first
presented by extending the ideas of Cyganski and Orr [26] on
2D moment tensors to 3D.

Using Einstein notation, we start with the definition of the
moment tensor

Mi1i2...ik =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xi1 xi2 · · · xik f (x1, x2, x3)dx1dx2dx3,

(7)
which has k indices and each i j can be either 1, 2, or 3
corresponding to the x1, x2, or x3 coordinate, respectively.
The total number of repetitions of each corresponds to the
exponents s, t , and u in Eq. (3), giving the relation between
Mi1i2···ik and the geometric moments mstu. For the case of
rotations (as opposed to general affine transformations, which
can also be symmetrized [27] but are more complicated and
less relevant for atomic systems) the moment tensor can be
treated as a Cartesian tensor, in which case the distinction
between covariance and contravariance is lifted and Mi1i2···ik
transforms simply as

M̂α1,α2,...,αk = Qα1i1 Qα2i2 . . . Qαk ik Mi1,i2,...,ik , (8)

for a given orthonormal rotation matrix Qi j . It can be shown
that the total contraction of a Cartesian tensor, e.g., Mkk ,
and total contractions of products of Cartesian tensors, e.g.,
Mkl Mkl , MklMlmMmk , etc., are all rotation invariants [16]. The
first two Suk-Flusser invariants [28] expressed in terms of
geometric moments are

�1 = Mkk = m200 + m020 + m002,

�2 = MklMkl = m2
200 + m2

020 + m2
002

+ 2m2
110 + 2m2

101 + 2m2
011.

This result can be understood intuitively by considering the
case of atom centered delta functions [Eq. (4)]. Using Eq. (5)
we have that

�1 =
N∑

i=1

wi
(
r2

i,1 + r2
i,2 + r2

i,3

) =
N∑

i=1

wiri · ri, (9)

which is nothing more than the sum of the weighted dot
products of each atom’s position vector with itself, a quantity
that is plainly rotationally invariant. We may also recognize
this as the trace of the inertia tensor of a rigid body composed
of point masses Tr(I), a quantity that is well known in en-
gineering applications as the first-principle invariant. For the
case of �2 we have

�2 =
(

N∑
i=1

wir2
i,1

)2

+
(

N∑
i=1

wir2
i,2

)2

+
(

N∑
i=1

wir2
i,3

)2

+ 2

(
N∑

i=1

wiri,1ri,2

)2

+ 2

(
N∑

i=1

wiri,1ri,3

)2

+ 2

(
N∑

i=1

wiri,2ri,3

)2

,

which is the second main invariant Tr(I2).
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This procedure can be continued in a similar fashion to
yield as many invariants as are needed to faithfully describe
the atomic environments under investigation, however, care
must be taken to avoid redundant invariants which can take
several forms as discussed later. The procedure outlined thus
far has much in common with that used to build invariants for
moment tensor potentials (MTPs) [8,29] and Gaussian mo-
ment invariants [18], differing primarily in leaving the choice
of f (x) free.

B. Spherical harmonic based moments

While geometric moments are fast to calculate, their
numerical properties make them less suitable for some appli-
cations, and other choices of basis function can yield better
performance, particularly when it comes to reconstruction.
Another commonly used set of functions are the spherical
harmonics, which yield complex moments defined as

cm
nl =

∫ 2π

0

∫ π

0

∫ ∞

0
Rnl (r)Y m

l (θ, ϕ) f (r, θ, ϕ)r2 sin θdrdθdϕ,

(10)
where Rnl (r) are a set of real-valued radial basis functions and
r2 = x2

1 + x2
2 + x2

3, θ = arccos(x3/r), and ϕ = arctan(x2/x1).
Here we use the definition

Y m
l (θ, ϕ) =

√
(2l + 1)

4π

(l − m)!

(l + 1)!
Pm

l [cos(θ )]eimϕ, (11)

where Pm
l are the associated Legendre functions.

Spherical harmonics are particularly well suited to deriving
rotation invariants and, as such, have been seen using 3D im-
age analysis for some time. Pioneering work was carried out
by Lo and Hon-Son [30] who used group-theoretical methods
to find rotation invariants for 3D object identification and
positioning. A similar approach was followed by Canterakis
[31] and later Novotni and Klein [32] who both used Zernike
polynomials [33] as radial basis functions to arrive at 3D
rotation invariants. More recent work by Suk et al. [34] has
demonstrated a systematic way of arriving at independent
invariants from complex moments which we detail below.

The atomistic modeling, bioinformatics, and computa-
tional chemistry communities have also adopted such rotation
invariants both for predicting properties and, in particular,
learning potential energy surfaces (PESs). Some of the earliest
examples can be found in work on molecules [19,35–42]
while the last decade has seen widespread adoption of spheri-
cal harmonic based descriptors, often coupled with advanced
machine learning techniques, to predict properties of solids as
well. The well known SOAP descriptor [5] was one of the first
and shares much in common with the invariants of Canterakis
[31]. Recent work in the atomistic modeling community has
also turned to the use of polynomials of moments very sim-
ilar to those described here, showing a growing convergence
between the directions taken by the 3D image analysis and
atomistic modeling communities [43–47].

1. Radial basis

Perhaps the simplest radial basis is Rn(r) = rn which gives
rise to a set of moments which are widely used in 2D and 3D

image analysis (see, e.g., [48–51]). Using spherical harmonics
in Cartesian form the, so called, 3D complex moments are
given by

cm
nl =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
rnY m

l (x1, x2, x3) f (x1, x2, x3)dx1dx2dx3.

(12)

The first few spherical harmonics are

Y 0
0 (x1, x2, x3) = 1

2

√
1

π
,

Y 0
1 (x1, x2, x3) = 1

2

√
3

π

x3

r
,

Y 1
1 (x1, x2, x3) = −1

2

√
3

2π

(x1 + ix2)

r
,

Y 0
2 (x1, x2, x3) = 1

4

√
5

π

(
3x2

3 − r2
)

r2
,

Y 1
2 (x1, x2, x3) = −1

2

√
15

2π

(x1 + ix2)x3

r2
,

Y 2
2 (x1, x2, x3) = 1

4

√
15

2π

(x1 + ix2)2

r2
,

where Y −m
l = (−1)mY m

l . When the basis consists of poly-
nomials in (x1, x2, x3) the moments provide a complete and
independent description of f , we therefore make the restric-
tion that n − l be even and l � n, such as to cancel the factor
of r−l that comes from the spherical harmonics. This basis is,
thus, a set of complex homogenous polynomials of degree n
in (x1, x2, x3).

While 3D complex moments are fast to calculate, they
have some notable disadvantages compared to orthogonal mo-
ments. For one, they posses high dynamic range which can
lead to greater numerical errors, in addition indirect methods
must to be used to perform reconstruction (see, e.g., [52]).

Orthogonal radial functions have a region of orthogonality
which we take to be 0 � r � 1, this requires that atomic
environments be scaled appropriately to fit within the unit
sphere. In general, the corresponding orthogonal moments are
given by

cm
nl = ηnlm

∫ 2π

0

∫ π

0

∫ 1

0
Rnl (r)Y m

l (θ, ϕ)

× f (r, θ, ϕ)r2 sin θdrdθdϕ, (13)

where ηnlm is an normalization constant. Orthogonal basis
functions make it trivial to reconstruct an approximation to
the original function given a finite set of moments. The
reconstruction up to order nmax is given by

f̃ (r, θ, ϕ) =
nmax∑

n

n∑
l=0

l∑
m=−l

cm
nlRnl (r)Y m

l (θ, φ). (14)
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This expansion minimizes the mean-square error to the orig-
inal function and can be systematically converged making it
ideally suited for the task of reconstruction.

2. Rotation invariants

Here we give a brief description of how to arrive at a set
of rotation invariants to arbitrary correlation order, consisting
of polynomials of complex moments which can subsequently
be reduced to an independent set of rotation invariants. The
flexibility to expand to arbitrary order is particularly appealing
given the recent evidence that three- and four-body atom-
centered features are insufficient to unambiguously describe
all possible atomic environments [11]. We follow the proce-
dure of Suk et al. [34] who use ideas from Lo and Hon-Son
[30] and encourage the reader to refer to these sources for a
more complete description.

Spherical harmonics transform as

Y m
l (Q−1x) =

l∑
m′=−l

Dl
m′m(Q)Y m′

l (x), (15)

when rotated by an arbitrary rotation matrix Q where
Dl

m′m are the, so-called, Wigner D functions. It is com-
mon to express the spherical harmonics as a vector Y l (x) =
(Y −l

l (x),Y −l+1
l (x), . . . ,Y l

l (x))T and Dl
m′m as (2l + 1) × (2l +

1) dimensional unitary matrices, called Wigner D matrices,
that form an irreducible representations of the group of three-
dimensional rotations SO(3). The elements of Dl are given by

Dl
mm′ = 〈

Y m
l

∣∣R̂(αβγ )
∣∣Y m′

l

〉
, (16)

where R̂(αβγ ) is the rotation operator parametrized by three
Euler angles.

For a given l , the corresponding spherical harmonics Y l

form a basis of the irreducible representation Dl . Invariants
to rotation can be found by identifying one-dimensional irre-
ducible subspaces that transform according to D0. Y 0

0 is such
an invariant, however spherical harmonics corresponding to
irreducible representations with l 	= 0 are not. To find further
invariants we can, for example, combine basis functions corre-
sponding to representations D j1 and D j2 by taking their tensor
product. Maschke’s theorem tells us that the resulting repre-
sentation can be expressed as the direct sum of irreducible
representations

D j1 ⊗ D j2 =
j1+ j2⊕

l=| j1− j2|
Dl , (17)

where the right-hand side is a block diagonal matrix and
the upper-left submatrix D0 corresponds to a scalar that is a
rotation invariant. In general, the connection between basis
functions ϕi

j1 and ϕi
j2 corresponding to the irreducible rep-

resentations D j1 and D j2 and the basis functions �k
j of a

particular Dl is

�k
l =

min ( j1,k+ j2 )∑
m=max (− j1,k− j2 )

〈 j1, j2, m, k − m|l, k〉 ϕm
j1ϕ

k−m
j2

, (18)

where 〈 j1, j2, m, k − m|l, k〉 are Clebsch-Gordan coefficients.
As the radial basis functions do not couple to m, the tensor
products of moment vectors cnl = (c−l

nl , c−l+1
nl , . . . , cl

nl )
T are

also related by Eq. (18). This led Lo and Hon-Son to define
composite complex moment forms

cn(l1, l2)k
l =

min (l1,k+l2 )∑
m=max (−l1,k−l2 )

〈l1, l2, m, k − m|l, k〉 cm
nl1 ck−m

nl2
,

(19)
which can be used as a mathematical tool to calculate mo-
ments in the basis of representation Dl . Modern equivariant
neural networks [53–57] use similar ideas to ensure that vec-
torial or tensorial inputs are propagated through the network
in a symmetry preserving way.

In the atomistic modeling community it is common to
speak in terms of the correlation order of an invariant, labeled
ν, which is given by the number of terms involved in a tensor
products, while the signal processing community typically
uses the term degree (or order) in reference to the polynomial
degree in moments. The two are equivalent and here will use
the former. Using Eq. (19) a set of rotation invariants can be
defined as follows.

ν = 1 invariants c0
n0 are invariants corresponding to D0,

where n is even.
ν = 2 invariants cn(l, l )0

0 are invariants corresponding
to (Dl ⊗ Dl )0, given by

l∑
m=−l

〈l, l, m,−m|0, 0〉 cm
nlc

−m
nl = 1√

2l+1

l∑
m=−l

(−1)l−mcm
nlc

−m
nl ,

(20)

where n − l must be even. This is often called the power
spectrum and is used by a number of existing descriptors.

ν = 3 invariants Further invariants can be arrived at by
combining the bases of more representations, for example,
((Dl1 ⊗ Dl2 )l ⊗ Dl )0 invariants are given by

cn1 (l1, l2)l cn2 = 1√
2l + 1

l∑
k=−l

(−1)l−kcn1 (l1, l2)k
l c−k

n2l , (21)

where n1 − l1, n1 − l2, and n2 − l are even. Swapping l1 and
l2 produces the same invariant and therefore we take l2 � l1.
This is often called the bispectrum.

ν = 4 invariants Continuing in this fashion ((Dl1 ⊗
Dl2 )l ⊗ (Dl3 ⊗ Dl4 )l )0 gives the invariants

cn1 (l1, l2)l cn2 (l3, l4)l

= 1√
2l + 1

l∑
k=−l

(−1)l−kcn1 (l1, l2)k
l cn2 (l3, l4)−k

l , (22)

where n1 − l1, n1 − l2, n2 − l3, and n2 − l4 are even and to
avoid duplicates we take l1 � n1, l1 − l � l2 � l1, l3 � n2,
and l3 − l � l4 � l3.
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This procedure may be extended to yield as many invari-
ants as are needed however there will invariably be many
that are dependent or identical to others which must then
be reduced to an independent set as outlined below. The
procedure of generating successively higher correlation order
invariants is also at the core of the atomic cluster expan-
sion (ACE) [43,45] scheme which uses linear regression
to expand the energy of a collection of atoms in a basis
of such invariants. Recent results [58,59] show very good
performance both in terms of accuracy and computational
efficiency.

C. Independent invariants

Be they based on geometric or complex moments, a set
of rotation invariants can be arrived at by naively carrying
out one of the procedures outlined above, however this will
invariably lead to a set that is overcomplete. Certain types
of dependency can be eliminated during generation, however,
others have to be checked post facto which can have a high
algorithmic complexity. Suk and Flusser [25] provide a useful
analysis which begins with the following classification of re-
dundancies: 1. zero invariants, 2. identical invariants, 3. direct
products (where an invariant is a product of previously found
invariants), 4. linear combinations, and 5. polynomial depen-
dencies. In general, the first three can be eliminated relatively
easily by brute force using a suitable symbolic mathematics
library. Some practical methods for eliminating linear and
polynomial dependencies are described below.

1. Linear dependencies

In general, linear combinations can be detected by calcu-
lating the column rank of the matrix representing the system
of equations given by the invariants at each correlation order,
where the columns consist of the moment coefficients of each
invariant. If the number of columns exceeds the rank, then
the number of invariants can be reduced by performing a
singular value decomposition and discarding those with zero
singular values. If a resulting matrix can be found that has
full rank, then the invariants are linearly independent. While
this procedure works, in principle, for any set of invariants it
can suffer from problems of numerical instability, specifically
when the polynomial coefficients are not integers.

An alternative approach for eliminating linear dependen-
cies among invariants from geometric moments is to identify
unique generating graphs from the networks corresponding
to the tensor contractions [25]. The approach of using tensor
networks to construct invariants is also used by Zaverkin and
Kästner [18] for their Gaussian moments descriptor.

For invariants from spherical harmonics many linear de-
pendencies can be eliminated by using standard results
from the coupling of angular momenta. For example, as in
Sec. II B 2, by restricting the l indices involved in a tensor
product to be in sorted order, e.g., l1 � l2 � · · · � lmax, a large
number of dependencies are avoided. Furthermore, if any two
or more two irreps involved in a tensor product share the same
value of l , then the n indices may also be similarly sorted to

TABLE I. The number of invariants to translation and rotation
from complex moments with the corresponding number of linearly
and algebraically invariants up to a given lmax (here the condition
that l � n is assumed).

lmax 2 3 4 5 6 7

All 4 16 49 123 280 573
Linearly indep. 3 13 37 100 228 486
Algebraically indep. 3 13 28 49 77 113

avoid further dependencies. This scheme is employed as part
of the construction of NICE Nigam et al. [47] descriptors.
Finally, the work of Bachmayr et al. [44], which underpins
the ACE descriptor, gives a numerically stable algorithm for
generating a fully linearly independent set of invariants to
arbitrary correlation order using a complete analysis of the
permutational symmetries among invariants.

2. Polynomial dependencies

A set of invariants with no polynomial dependencies is
called independent or algebraically complete. General pro-
cedures to generate such a set are prohibitively expensive,
even for relatively low correlation orders [60]. Nevertheless,
a number of algorithms that try to reduce some or all such
dependencies have been proposed [27,61,62], and while they
are not guaranteed to produce a certifiably independent set, in
practice it is sufficient to test their algebraic independence on
a representative set of moments. Not all methods will produce
the same independent invariants due to arbitrary choices that
are made, but in all cases the total number of independent
invariants to a given order should equal the number of mo-
ments minus the number of degrees of freedom that are being
symmetrized.

Despite the algorithmic complexity this step is impor-
tant for nonlinear regression schemes as the reduction in the
number of invariants can be significant, greatly reducing the
dimensionality of the feature space. Table I shows the number
of invariants generated by the procedure in Sec. II B 2 up
to lmax = 7 and the corresponding number of linearly and
algebraically independent invariants.

In this work we use invariants from complex moments
made independent by the method of Kostková et al. [27] which
is based on earlier work [61,62], and can be summarized as
follows. Given a set of nk invariants {I1, . . . , Ink }, if there
are dependencies then we can write any invariant as some
function of the others, e.g.,

I1
(
cm

nl

) = f
(
I2

(
cm

nl

)
, . . . , Ink

(
cm

nl

))
. (23)

Taking the derivative with respect to a moment, we get

∂I1
(
cm

nl

)
∂cm

nl

= df
(
I2

(
cm

nl

)
, . . . , Ink

(
cm

nl

))
dcm

nl

=
nk∑

β=2

∂ f

∂Iβ

∂Iβ
∂cm

nl

, (24)
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which shows that the derivatives of the dependent invariants
are, themselves, linearly dependent. This gives an intuitive
way to understand the Jacobian criterion for algebraic inde-
pendence which states that if the invariants are dependent,
then, by rearranging Eq. (23), there must exist a function F
such that

F
(
I1, . . . , Ink

) = 0. (25)

For convenience we sort the moments cm
nl in lexicographic

order such that we can use a single index α = (n, l, m), which
runs from 1 to np. Using this notation, the derivatives of F are

∂F
(
I1, . . . , Ink

)
∂cα

=
nk∑

β=1

∂F
(
I1, . . . , Ink

)
∂Iβ

∂Iβ
∂cα

= 0, (26)

where we have a known nk × np Jacobian matrix Aαβ = ∂Iβ
∂cα

and an unknown coefficients vector bβ = ∂F (I1,...,Ink )
∂Iβ

of length
nk . If all of the invariants are independent, then the only
solution is bβ = 0, ∀β. Accordingly, if the Jacobian has full
column rank, then the invariants are algebraically indepen-
dent. Conversely, if the rank nr is less than nk , then there are
only nr independent invariants.

As the column rank of Aαβ cannot be determined analyt-
ically this step must be performed numerically for several
generic sets of moments and the maximum rank found is taken
to be nr . If nr is less than nk , then some criterion must be used
to choose which invariants to keep. Kostková et al. follow the
following procedure:

(1) Order the invariants first by correlation order and then
by number of terms (this guarantees that any subset of invari-
ants up to arbitrary lmax is also algebraically complete).

(2) Add one invariant at a time to the set of invariants.
(3) Check the new rank of Aαβ by testing against the

representative set of moments (in their case 5 were used) and
if it increases by one, keep the invariant, otherwise discard it.

While this procedure is relatively computationally expen-
sive, it need only be carried out once. It is important to
either validate the tolerance of the method used to determine
the rank or to use a library that supports exact arithmetic
to ensure that the outcome is not affected by numerical
issues.

The above procedure works for any set of invariants (ir-
respective of the basis functions used), while for spherical
harmonic based invariants the procedure of Nigam et al. [47]
offers an alternative that does not rely on numerical evalua-
tion and therefore avoids the associated issues of choosing a
tolerance and having to use a representative set of moments,
however, their methods will not necessarily identify all poly-
nomial dependencies.

3. Data driven invariants reduction

The invariants reduction analysis thus far focused solely on
eliminating redundancies that do not lead to any information
loss over all possible signals (i.e., sets of moments). There
are, however, data driven methods for reducing the number

of invariants that are based on features found in a particular
data set and allow the descriptor to retain discriminative power
among the entries of that set, potentially sacrificing universal-
ity. It may even be possible to use such techniques to find a
reduced set of invariants that work well for all signals that are
sums of atomic feature functions (with a corresponding loss
of discriminative power for other square-integrable functions).
As this work is focused on universal descriptors we will not
detail any particular approach here but we refer the reader to
[47,63] for two examples of such techniques.

D. This work

Our codebase contains support for delta and Gaussian fea-
ture functions as well as a set of 1185 linearly independent
and 962 algebraically independent invariants from geometric
moments up to 16th order. The code is fully modular and
can be easily extended with new invariants, basis functions
or feature functions.

For invariants based on spherical harmonics we use
Zernike functions as the radial basis, however other choices
have been proposed including Bessel [64] and Chebyshev [44]
functions which may have different numerical characteristics.
(See Goscinski et al. [63] for an excellent review of the per-
formance of various radial basis functions.) The 3D Zernike
polynomials are defined as

Zm
nl (r, θ, ϕ) = Rnl (r)Y m

l (θ, ϕ), (27)

however, they are perhaps easiest to work with in Cartesian
form,

Zm
nl (x) =

k∑
ν=0

qν
kl |x|2νem

l (x), (28)

where em
l are harmonic polynomials, 2k = n − l , and the co-

efficients qν
kl are fixed by the orthonormality relation

3

4π

∫
|x|�1

Zm
nl (x)Zm′

n′l ′ (x)r2 sin θdx = δnn′δll ′δ
mm′

, (29)

the full derivation of which can be found in [31]. We calculate
the Zernike moments �m

nl := 3
4π

〈 f |Zm
nl〉 by means of a change

of basis transformation from geometric moments according
to the procedure outlined by Novotni and Klein [32]. Briefly,
the Zernike moments are expressed as a linear combination of
geometric moments mstu [Eq. (3)],

�m
nl = 3

4π

∑
s+t+u�n

χ stu
nlmmstu, (30)

where χ stu
nlm are given by

χ stu
nlm =cm

l 2−m
l∑

ν=0

qν
kl

ν∑
α=0

(
ν

α

) ν−α∑
β=0

(
ν − α

β

) m∑
u=0

(−1)m−u

×
(

m

u

)
iu


 l−m
2 �∑

μ=0

(−1)μ2−2μ

(
l

μ

)(
l − μ

m + μ

) μ∑
ν=0

(
μ

ν

)
.

(31)
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A similar change of basis transformations for going from
MTP geometric tensors to ACE spherical tensors can be found
in Appendix A of [45]. The main advantage of starting with
geometric moments is computational speed, particularly as
χ stu

nlm need only be calculated once and can then be cached or
even stored offline for reuse.

From the Zernike moments we use an independent set of
117 rotation invariants up n = 7 generated by the procedure
in Sec. II C 2. These invariants are brought together in a single
fingerprint vector �. Derivatives are available for both posi-
tions and weights as these are important for reconstruction.

E. On completeness

The topic of completeness of atomic descriptors has re-
ceived a lot of attention (see, e.g., [5,6,11,13,64] and it is,
undoubtedly, important from the point of view that all regres-
sion schemes predicting properties of atomic systems make
the assumption, explicitly or implicitly, that two atomic con-
figurations that cannot be made to coincide by a combination
of rigid body translations, rotations, and for certain properties
reflections, will be mapped to different points in fingerprint
space. Naturally, when inverting rotationally invariant finger-
prints this assumption is equally important as, typically, we
rely on the fact that up to global rotation there is a single atom
density that explains a given fingerprint.

For the types of descriptors that are the focus of this work
(those based on expanding an atom density in a chosen basis
followed by computing rotation invariants from the resulting
tensors) we can break our analysis of completeness down by
considering each of the steps individually. If the output of one
step is not unique with respect to the inputs, then, necessarily,
the descriptor is not complete.

Provided no two atoms have identical coordinates, then the
mapping of atoms onto localized feature functions is unique.
This is true even for coincident atoms so long as fixed weights
are used, however, with variable weights degeneracies can
occur which would require additional fingerprints to resolve.

In Sec. I we deliberately restricted our focused to orthonor-
mal basis functions as these are both complete and convenient
for performing synthesis. However, a set of functions need
not be orthogonal to be complete in the sense of being able
to approximate any function in L2 arbitrary closely. More
formally, a basis can be said to be complete [65] over the
interval (a, b) if there exists a series

f̃ (x) = α1�1(x) + α2�2(x) + · · · + αnmax�nmax (x) (32)

such that for every ε > 0

∫ b

a
| f (x) − f̃ (x)|2dx < ε. (33)

Where the basis consists of polynomials, completeness is
given by the Weierstrass approximation theorem which ap-
plies to both the geometric and Zernike moments used in this

FIG. 1. Difference in fingerprint vector components between
atomic arrangements (labeled B and B′) that cannot be distinguished
when using ν = 2 and ν = 3 invariants. All of the nonzero values
correspond to ν = 4 invariants.

work. Furthermore, any linear transformation of a complete
basis is, itself, complete whether or not the basis is orthogonal
[66].

Lastly, let us consider the completeness of the invariants
themselves. A necessary condition for a set of invariants
to uniquely map moments onto a point in fingerprint space
is that there be at least as many algebraically independent
invariants as the number of moments minus the number of
symmetrized degrees of freedom. Working with a spherical
harmonic expansion where 0 � n � nmax, 0 � l � lmax, and
−l � m � l there are nmaxlmax(lmax + 2) moments. Bandeira
et al. [67] have shown that with three or more radial function
(i.e., nmax � 3) it is sufficient to go up to ν = 3 invariants to
reach independence. While in this work we use the reduced
basis

nmax∑
n=0

n∑
l=0

l∑
m=−l

cm
nl Rnl (r)Y m

l (θ, ψ ), (34)

where (n − l ) must be even. This requires going up to ν = 4
to arrive at enough invariants.

While having an algebraically complete set of invariants
(or superset thereof) is necessary to distinguish all image
functions, it is not sufficient as shown recently by Pozdnyakov
et al. [11]. In this work they provide a pair of environments
that cannot be distinguished by the bispectrum (i.e., ν = 3)
descriptor. In Fig. 1 we plot the difference in fingerprint
vectors generated by the MILAD descriptor for these envi-
ronments. The nonzero contributions come exclusively from
21 out of the 29 ν = 4 invariants. The fact that MILAD can
distinguish these environments is, however, no guarantee that
two environments could not be found that require a higher
correlation order to be distinguished.

It remains an open question as to whether there is some
maximum bound on ν such that all atomic configuration could
be distinguished or conversely if, in the general case, it is
unbounded. As such, currently no formal statement about
the injectivity of the map of moments to fingerprint used in
this work can be made, however, results from Pozdnyakov
et al. suggest that such examples are rare in practice. The
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recent work of Pozdnyakov et al. [68] gives a further in-depth
analysis of some of the causes, and consequences, of incom-
pleteness in rotationally invariant atomic descriptors.

Finally, assuming a certain minimum interatomic distance,
the number of invariants needed to uniquely describe an
atomic environment will naturally increase with the number
of atoms N . By considering that there are 3N − 3 degrees of
freedom in a rotation symmetrized environment, we would
expect to need at least this many invariants. In reality, the
number needed is likely to be greater owing to the fact the the
types of invariants discussed in this work are capable of de-
scribing functions that fall outside of the limited class of atom
densities considered. One numerical way to probe this ques-
tion more generally would be with the use of an autoencoder.
By successively decreasing the number of artificial neurons in
the bottleneck, one could look for a signature, discontinuous,
increase in the decoding RMSD over a large set of examples
environments. This will be explored as part of future work,
however we briefly revisit this issue when discussing results
from reconstruction experiments further below.

III. RECONSTRUCTION

The goal of reconstruction is to start with a set of moment
invariants and general information about the set of feature
functions used (function type, range of weights, etc.) and
reproduce the original set of atomic positions, and optionally
their atomic species. It is possible to start with semirandom
configurations of atoms and perform a global optimisation of
the residuals with respect to the known invariants (similar to
random structure searching [69]), however this scales poorly
as the number of atoms grows due to the large number of local
minima encountered. On the other hand, performing a local
minimization of the atomic coordinates with respect to known
moments is significantly more reliable.

The problem of retrieving a set of moments starting from
rotation invariants has commonalities with the more well
known phase retrieval problem that lies at the heart of solving
for crystal structures from their x-ray diffraction pattern. In
this case, the symmetrization is over the translation group
which manifests in only the intensities of the diffraction peaks
being observed, preventing the structure from being solved
directly by simply performing the inverse Fourier transform
due to the missing phases. One of the most well known
methods for phase retrieval is the Gerchberg-Saxton algo-
rithm [70] which also has a similar, iterative optimization
structure to that used here. The algorithm starts with random
initial phases and proceeds by iteratively performing forward
and backwards Fourier transforms, modifying the phases in-
between to better match the observed diffraction pattern until
the difference falls below a given threshold. The structure of
the orientation retrieval problem being addressed here differs
primarily by having to simultaneously solve for a hierarchy of
many-point correlations (up to the maximum correlation order
used), whereas phase retrieval typically deals with two point
correlations (from the square of the Fourier transform).

Another closely related problem is that of multireference
alignment, commonly used to solve the structure of single

molecules in cryogenic electron microscopy (cryo-EM). Here
an image is taken of many copies of the same molecule with
different orientations from which the three-dimensional struc-
ture is determined. One of the more relevant algorithms from
this community can be found in the work of Bandeira et al.
[67]. The authors give a closed-form procedure to recover the
spherical harmonic expansions coefficient from a set of ν = 2
and ν = 3 invariants. The algorithm is included in our code-
base and has been tested on a number of atomic systems. The
major shortcoming is that the procedure only works for, so
called, generic signals and fails in the presence of symmetry.
This is because symmetry causes some of the invariants to be
trivial leading to a situation where a linear system that must
be solved as part of the algorithm becomes underdetermined.
By contrast, the numerical algorithm presented here relies on
finding a least-squares solution which is biased by the prior
knowledge we have about the class of signals making it more
robust to such situations.

A. Moments from invariants

The invariants �i form a latent space from which the cor-
responding moments can be recovered by solving the system
of polynomials which couples the two. The system of equa-
tions is underdetermined by three equations corresponding to
the missing orientation information; a degeneracy that will
be resolved during reconstruction, however the new orienta-
tion will be uncorrelated with the original. The zeroth-order
moment is itself a rotation invariant and encodes the total
mass of the environment, in the case of geometric moments
m000 = ∑NA

i wi while for Zernike moments �0
00 = 3

4π
m000.

The invariant of first order moments

�1 = 1√
3

(
2c−1

11 c1
11 − c0

11
2)

encodes the distance of the center of mass from the origin,
valid solutions for which can be found trivially. From here
it is possible to solve the system of equations iteratively,
where at each iteration we include all invariants containing
moments up to a maximum angular frequency l ′ effectively
building up a more and more detailed reconstruction of the
original environment. At the end of each iteration, l ′ is in-
cremented by one until we reach lmax. This procedure can
encounter local minima and we therefore make several at-
tempts (typically up to two at each l ′) to find a solution
until the root-mean-square deviation from the known invari-
ants drops to below a given threshold, typically taken to
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FIG. 2. Reconstructions from Zernike moments with increasing maximum expansion order N . The contour data is taken as a slice through
a 3D grid corresponding to the plane of the molecule, a reduced opacity version of which is shown over N = 15. Atomic species have been
mapped to the following weights of delta functions: wH = 1.125, wC = 2.375, wN = 3.625, wO = 4.875. The fractional color scale has been
chosen to correspond to the standard CPK colors for each element.

be 10−5. The orientation recovered is random, being de-
termined by arbitrary choices made in picking a particular
solution for the first and second order moments (or when
solving for higher order moments if the original environment
is highly symmetric). We use the Levenberg-Marquardt [71]
least-squares solver implemented in SciPy [72] to perform
this procedure, starting with an initial set of moments created
from an environment of atoms placed randomly within the
cutoff sphere and with species chosen randomly from the

full set supported by the descriptor. However, we find that
the solution is not particularly sensitive to the starting point
and even random moments will often converge successfully.
Algorithm 1 gives the pseudocode for the entire procedure and
the python code is also available [73]. Once all of the moments
are found, an approximation of the original function f (r) can
be reconstructed [Eq. (14)]. Figure 2 shows a urea molecule
reconstructed using various values of maximum expansion
order.
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B. Atoms from moments

Next, we are tasked with recovering the atomic posi-
tions and species from the moments. Once again this can be
achieved by means of local minimization, this time between
the atomic degrees of freedom and the moments themselves
(for the sake of this procedure the features can be largely
ignored as there is an analytic expression between them and
the atomic coordinates).

If all of the weights are the same (i.e., all atoms are of
the same specie), then the number of atoms can be deter-
mined directly from c0

00, otherwise this moment simply acts
as a constraint on the total weight of the delta (or Gaussian)
functions in the environment, an alternative is to use two
vectors of invariants, one encoding only positions and the
other species, similar to the scheme proposed by Artrith et al.
[74]. If no detailed information about the number of atoms
of each specie is known, there are several ways to proceed:
(1) attempt multiple optimizations with different numbers of

atoms (that are consistent with c0
00 and the allowed range

of feature function weights) and keep the best fit or (2) use
more atoms than necessary and merge overlapping atoms by
summing their weights as part of post-processing.

The initial atomic positions for the optimisation are chosen
using peak finding where we iteratively locate the highest
density point in a 3D grid whose values are calculated accord-
ing to Eq. (14). A cubic grid is used that contains the cutoff
sphere, typically sampled using 313 points. Once an atom is
found we

(1) subtract a single-atom signal from the density grid and
(2) zero out all grid values in the vicinity of the located

atom to ensure the algorithm does not place any two atoms
too close.

The procedure is summarized in algorithm 2 and an exam-
ple is shown in Fig. 3.
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Finally, to ensure that the optimisation avoids solutions that
place atoms closer than is physically reasonable we add the
following energy term to the cost function that biases it away

from these configurations:

E (ri j ) =
{

4ε
[(

σ
ri j

)n + k1ri j + k2
]

if ri j < rmin,

0 otherwise,
(36)

FIG. 3. Peak finding from an approximation of the original environment f̃ based on Zernike moments. Atoms are located one by one
whereupon they are replaced by an orange marker and the signal is subtracted for the next iteration. The final panel shows the original
locations of the atoms as green markers.
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FIG. 4. Iterative scheme that finds atomic positions, and optionally species, by alternating between an optimization of the moments and an
optimization of the atomic positions, both with respect to the known fingerprints.

where ri j is the interatomic separation, k1 and k2 are constants
set such that E (ri j ), and dE

dri j
both approach zero smoothly

at the cutoff. We find that ε = 0.1, σ = 1, n = 2, and rmin =
0.55 Å work well and use these values throughout. The total
loss function is thus

L
(
cm

nl , c′m
nl ,

{
r1, . . . , rNA

})
= RMSD

(
c′m

nl , cm
nl

) +
NA∑

i j,i 	= j

E (‖r j − ri‖), (37)

where c′m
nl are the moments calculated from the atomic config-

uration at each step during the optimization.

C. Putting it all together

Even for the case of noise-free fingerprints the above pro-
cedures are not guaranteed to find the original atomic environ-
ment. The primary reason for this is that both optimizations
(moments from invariants and atoms from moments) are per-
formed over nonconvex functions and, as such, they can end
up in the wrong minimum. This situation is easily detected as
the gradients vanish while the RMSD remains high.

To overcome this we implement an algorithm according
to the scheme shown in Fig. 4 which alternates between an
optimization of the moments followed by a optimization of
the corresponding atomic degrees of freedom. This is repeated
a number of times until the RMSD drops below a preset
threshold.

The algorithm presented here is designed to reconstruct a
single atomic environment and makes the assumption that all
atoms lie within the corresponding cutoff sphere. Outside this
domain, the basis is no longer orthogonal, and therefore it is
not strictly possible to reconstruct the atom density according
to Eq. (14). Instead, the reconstruction of an atomic structure
consisting of multiple overlapping cutoff spheres could be
performed by simultaneously minimizing the loss over all
environments in each step. However, this greatly complicates
the problem as now the orientations and positions (if not
fixed) of overlapping environments are coupled, potentially
introducing additional minima to the optimization landscape.
Furthermore, if the environments are not all identical, the
problem is no longer permutationally invariant with respect to
the assignment of fingerprints to each environment. For these
reasons, we leave the reconstruction of multicenter configura-
tions for future work.

IV. EXPERIMENTS

A. Reconstruction

To assess the quality of various reconstructions from mo-
ment invariants, we use a subset of the QM9 database [75,76],
a database of small organic molecules. Three molecules
of each size (in number of atoms) were chosen randomly,
ranging from NA = 3 to 29, with the exception of 3 atom
molecules of which there are only two and 28 atom molecules
of which there are none. This corresponds to a total test
set of 77 molecules. The full set of QM9 IDs used can be
found in the Supplemental Material [77]. We use weighted
delta functions as features. If only position information is
being used, then the weights are all fixed to 1, otherwise the
atomic numbers of HCONF are mapped onto the continu-
ous range 1 → 2 (i.e., wH = 1.1,wC = 1.3,wO = 1.5,wN =
1.7,wF = 1.9). In the latter case the weights are free to vary
during optimization, and are mapped back onto the correct
integers as part of post-processing. For example, a value
falling in the interval [1, 1.2) would be mapped to hydrogen.
The cutoff sphere is set at 5 Å such as to accommodate the
largest molecule in the data set. Each molecule is positioned
by finding the smallest bounding sphere containing all atoms
using the miniball library [78] and translating the center of the
sphere to the origin.

In the first instance, the quality of the reconstruction is
judged by the root-mean square of the difference between
the calculated fingerprint and that of the recovered atomic
environment

√∑
i(�i − �′

i )
2/N�. The validity of this as a

measure of structural similarity is demonstrated in the Sup-
plemental Material [77]. We note that MILAD fingerprints are
unable to distinguish between chiral versions of a molecule
and therefore a low RMSD can indicate that the original or
a chiral counterpart have been recovered. A summary of the
parameters used is tabulated below.

Total molecules 77
Species HCONF
Feature function delta
Weights 1 → 2
Cutoff 5Å
Invariants Zernike (to nmax = 7), 117 total
Reconstruction attempts 3
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FIG. 5. Results showing the RMSD of the original fingerprints versus those calculated from the reconstructed molecules. The leftmost
panel shows results aggregated by number of atoms. The right panels shows results for each molecule individually where the marker is placed
at the lowest RMSD. Error bars indicate the min/max for that data point over several reconstruction attempts. A value of ≈10−6 (dashed line)
represents a faithful reconstruction, the legend shows the proportion of markers falling below this threshold.

In each case the fingerprint is calculated and used to per-
form a reconstruction according to the procedure outlined in
Sec. III C.

Figure 5 shows results from the reconstruction of atomic
positions (orange) and atomic positions plus species (purple).
For each molecule three reconstruction attempts were made,
in each case starting from a random configuration with the
correct number of atoms. A manual inspection of the recov-
ered molecules indicates that an RMSD of <10−6 represents
a visually indistinguishable reconstruction versus the original
and we use this as the threshold of successful reconstruction.
The recovery of atomic positions is generally highly reliable,
achieving successful reconstruction for 97% of molecules and
all molecules with a radius of less than ≈3.4 Å. Any larger
than this and the effective resolution of the basis (see Fig. 2)
is insufficient for consistent reconstruction on every attempt.
The largest molecules that can be decoded have 29 atoms
translating to 85 degrees of freedom after symmetrization,
with consistent recovery up to 19 atoms or 54 degrees of free-
dom. These numbers provide some indication of the efficiency

with which the fingerprint encodes the symmetrized atom
density given that it consists of 117 invariants. Reconstruction
of positions and species is less reliable, achieving an overall
70% success rate with consistent recovery up to ≈2.4 Å.
In this case there is one more degree of freedom per atom
meaning that the largest molecule decoded, with 27 atoms,
has 105 degrees of freedom while the largest molecules that
can be consistently decoded have 17 atoms and 65 degrees of
freedom.

Next, to improve upon the recovery of species information
we take the reconstructed atomic positions from the last exper-
iment and perform a reconstruction of the weights with respect
to fingerprints with species information. This represents a
scenario where two fingerprint vectors are supplied, one con-
taining position information only and the other augmented
with species information, similar to using an additional color
channel in an image.

Figure 6 shows the species recovery results with the origi-
nal position recovery data replotted for easy comparison. This
shows a notable improvement with 95% of structures now

FIG. 6. A plot showing recovery of atomic species using a second fingerprint vector including species information. Results from decoding
atomic positions only (“no species”) are replotted from Fig. 5 for ease of comparison.
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(a) (b)

(c)

FIG. 7. Breakdown by point group showing the proportion of molecules correctly inverted. Numbers above bars indicate the absolute
number correctly inverted out of the total. (a) No species, (b) With species (single fingerprint), and (c) With species (two fingerprints).

being recovered correctly. With few exceptions, the structures
whose positions were correctly recovered in the previous ex-
periment now have their species correctly decoded.

Finally, Fig. 7 shows the reconstruction results broken
down by the point group of the molecules. This analysis is im-
portant to verify that the inversion algorithm works correctly
in the presence of symmetry which can lead to many invariants
being zero. As can be seen, there is no discernible trend that
would suggest that the algorithm cannot deal with symmetric
molecules.

B. Neural network potential

To give an indication of the performance of MILAD for the
prediction of properties we use a Behler-Parinello [79] like
ANN from the AMP library [80] for the prediction of total
energies and forces. As shown in Fig. 8 each atom-centered
environment is mapped onto a fingerprint vector �i that is the
input to an ANN consisting of a number of all-to-all connected
linear layers. The local atomic contributions to the energy are
then summed to give the total energy. We find the hyperbolic

tangent activation function to offer a good combination of
training speed and accuracy. The linear layers may be con-
figured with or without a bias. Our testing suggests that it
is preferable to have no bias but rather to rescale the model
inputs and outputs to lie in the fixed range (−1, 1) based
on the range of values found in the training set. This also
makes it easy to detect when extrapolation is taking place,
as in such a case the input or output will fall outside of
this range.

Forces are calculated via the chain rule using derivatives
of the energy with respect to neural network weights and of
the invariants with respect to atomic positions. To achieve
smoothness of the fingerprint vector with respect to atoms
entering and leaving the cutoff sphere, the following cosine
cutoff function proposed by Behler [3] is used:

f (ri j ) =
{[

cos
(πri j

rcut

) + 1
]
/2 ri j � rcut,

0 ri j > rcut.
(38)

The value of this function is used as a prefactor to scale atomic
feature weights.

FIG. 8. The Behler-Parinello like ANN scheme used to fit total energies and local forces. A rotation invariant MILAD vector �i is created
for each atomic environment by including neighbors up to the cutoff radius. Each �i is passed to a feed-forward neural network which outputs
the corresponding contribution to the total energy εi. Finally, the total energy E is given by the sum of local contributions.
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TABLE II. Model parameters for each of the systems studied. The number of neural network layers for the NNP models from [82] are also
tabulated for comparison.

Training point Test points rcut (Å) α Eq. (39) Network layers NNP network layers

Ni 263 31 3.8 0.04 32-32 24-24
Cu 262 31 3.9 0.04 24-24 8-8
Li 241 29 4.8 0.04 32-32 24-24
Mo 194 23 5.0 0.04 32-32 16-16
Si 214 25 4.7 0.04 32-32 24-24
Ge 228 25 5.1 0.05 32-32 24-24

1. Training

The following loss function is used to train the neural
network:

L = 1

2

M∑
k=1

1

Nk

[
(Ek − E ′

k )2 + α

3

Nk∑
i=1

3∑
j=1

(
F i, j − F ′

i, j
)2

]
,

(39)

where k labels each of the M systems in the training set, Nk is
the number of atoms in the kth system, and primed quantities
represent the known training values. During each training
step predictions are made from which the loss function is
calculated. Gradients with respect to the loss, obtained using
back-propagation, are then used by the optimizer to update the
network weights in an attempt to reduce the value of L. We use
the BFGS optimizer throughout.

Given that artificial neural networks (ANNs) are universal
approximators, care must be taken to avoid overfitting. Indeed,
even random inputs can be successfully [81] learned, thus ren-
dering any conclusions based on a training procedure where
all of the data is used meaningless. To avoid this we keep
back some of the data as an unseen test set and apply early
stopping. This involves calculating the loss for both training
and test sets and terminating training when the loss of the
test set starts to increase. In general, we find this situation is
much less likely to occur when training with both forces and
energies.

2. The experiment

We use data from two recent studies [59,82] compar-
ing various descriptors and regression schemes. The studies
compared GAP [83,84], MTP [8], a neural network using
Behler-Parinello symmetry functions as the descriptor (la-
beled NNP) [3,79], ACE [43], SNAP [85], and qSNAP [86].
The latter two both use hyperspherical harmonics as the basis
where the radial component is mapped onto the surface of a
four-dimensional sphere. SNAP and qSNAP both use bispec-
trum (ν = 3) invariants, the former expressing the energy as a
linear expansion while the latter includes quadratic terms.

The data set consists of elemental Ni, Cu, Li, Mo, Si,
and Ge in a variety of configurations including the ground
state crystal structures, strained structures, slabs, and ab initio
molecular dynamics snapshots. The reference energies and
forces were calculated using the VASP density functional
theory package and the Perdew-Burke-Ernzerhof functional
[87]. For each elemental system there are between 217 and
294 total configurations organized into a 9:1 split of training
and test points.

Table II shows the settings used to configure the MILAD
descriptor and the neural network for each system. Limited
hyperparameter tuning was performed to determine the num-
ber of neural-network layers to use for each system starting
with the same values as reported for the NNP model. In all
cases we found that increasing the number of layers resulted
in better accuracy, likely due to the fact that the MILAD
fingerprint has more components then the number symmetry
functions used by the NNP.

TABLE III. Root-mean-square errors in predicted energies and forces. Data for the three-body ACE descriptor are taken from Zeni et al.
[59] while the rest come from Zuo et al. [82].

Energy RMSD (meV/atom) Force RMSD (eV/Å)

Ni Cu Li Mo Si Ge Ni Cu Li Mo Si Ge

GAP 0.62 0.56 0.63 3.55 4.18 4.47 0.04 0.02 0.01 0.16 0.12 0.08
MTP 0.74 0.52 0.66 3.89 3.02 3.68 0.03 0.01 0.01 0.15 0.09 0.07
NNP 2.25 1.68 0.98 5.67 9.95 10.95 0.07 0.06 0.06 0.20 0.17 0.12
SNAP 1.17 0.87 1.13 9.06 8.06 10.96 0.08 0.08 0.04 0.37 0.34 0.29
qSNAP 1.04 1.16 0.85 3.96 6.28 10.55 0.07 0.05 0.04 0.33 0.29 0.20
Three-body ACE [59] 1.74 1.19 1.23 4.00 5.16 11.62 0.03 0.02 0.01 0.16 0.13 0.09
MILAD 1.39 0.96 0.64 5.79 5.65 5.47 0.08 0.07 0.02 0.36 0.19 0.14

Empirical potentials
EAM 8.51 7.46 368.64 67.98 – – 0.11 0.12 0.14 0.52 – –
MEAM 23.04 10.49 – 36.42 111.67 – 0.33 0.24 – 0.22 0.40 –
Tersoff – – – – 202.37 550.72 – – – – 0.74 1.36
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Table III shows the results retabulated from [59,82] along
with those obtained using MILAD. In most cases, the energy
RMSDs achieved with MILAD on the test set lie in the range
of ACE, NNP, SNAP, and qSNAP but, in most cases, higher
than GAP and MTP. It is unclear at this stage whether this
is due to the difference in regression scheme (GAP uses
kernel regression while MTP uses linear regression) or the
descriptors themselves. For example, Eq. (30) allows one
to transform from the geometric moments used by MTP to
Zernike moments used by MILAD suggesting that, at the
same correlation order, they should share similar information
content. However, there remain nontrivial differences in the
way the radial basis is constructed. Specifically, MTP typi-
cally uses a data-driven approach with the basis being tailored
to a particular data set rather than being universal. On the other
hand, the training set size is relatively small for neural network
regression which tends to be better suited to problems with
large amounts of training data. Comparing to NNP, MILAD
achieves lower RMSDs for most of the systems at the cost
of requiring layers with more artificial neurons owing to the
greater number of fingerprint components.

Looking to the forces the results are similar with MILAD
RMSDs generally falling within in range achieved by NNP,
SNAP, and qSNAP and higher than those achieved by MTP,
GAP, and ACE. Our testing shows that this trend persists even
when increasing the value of α to try and bias the optimizer
to converge the forces preferentially over the energies. It is
possible that by performing a grid search over the hyperpa-
rameters, as done by Zuo et al. [82], that the forces could
be converged further still. An in depth investigation into this
and other factors that affect the performance of MILAD for
predicting properties will form part of future work.

V. CONCLUSION

In this work we have adapted a method for constructing
complete, rotationally invariant, descriptions of finite energy
functions from the image analysis community and applied it to
the problem of describing atomic environments. The resulting
invariants are algebraically complete, consisting of exactly
three fewer equations than the number of moments due to
the missing orientation degrees of freedom. This compactness
makes MILAD fingerprints particularly well suited for use as
inputs to neural networks where there is a significant training
benefit to having a low-dimensional feature space.

The ability to invert MILAD fingerprints to recover atomic
environments is particularly appealing and raises the possi-
bility of building generative models that are not based on
discontinuous description such as pixels or voxels [88], or
linear representations such as SMILES strings [89]. Fur-
thermore, many generative models depend on the use of an
autoencoder that must be trained to find a latent space repre-
sentation, and this would typically need to be retrained to be
used for each new system. With our descriptor it is possible
to encode a variable number of atoms and atomic species in
a fixed length feature vector which is smooth with respect to
its inputs. This enables alchemical models to be built that can
be trivially extended to support greater numbers of species,

the primary limitation being the effective resolution of the
description which can be tuned by increasing the maximum
order nmax. As the latent space formed by MILAD fingerprints
can encode any f ∈ L2, it remains overcomplete with respect
to those f that correspond to sums of atomic feature functions.
As a next step towards building a generative model, work
is currently underway to further compress this latent space
to find lower dimensional manifolds that correspond to valid
atomic configurations. To be sure, this is an ambitious goal
that raises many unsolved issues, it is nevertheless an avenue
worth pursuing as it would eliminate the need for data aug-
mentation and ensure that rotational symmetry is respected
exactly.

The current set of invariants are limited to a maximum
order of nmax = 7 (and therefore lmax = 7), which effectively
limits their discriminative power. This is known to be partic-
ularly problematic for highly symmetric environments which
require a high angular frequency to be described correctly (in
such environments, low order moments are often zero) [90].
The limitation of nmax = 7 comes from numerical issues in
correctly identifying independent invariants, as standard sin-
gular value decomposition methods operate on floating point
numbers where a threshold for comparing numbers must be
carefully chosen. This inevitably leads to errors as the number
of invariants to be reduced increases. To overcome this, the
method is currently being extended to higher order by using
an exact arithmetic library and applying algorithms from the
works of Bachmayr et al. [44] and Nigam et al. [47].

In summary, we have shown that MILAD fingerprints can
be used for both high-fidelity reconstruction of atomic en-
vironments without the need for training and for accurately
predicting the properties of atomic systems. This hints at a
novel route to building generative models using existing ma-
chine learning tools with a view to enabling general-purpose
inverse design of materials and molecules.

The codebase for calculating MILAD fingerprints, decod-
ing them back into structures, training neural networks, and
other related operations can be found at [91]. The notebooks
that can be used to reproduce the experiments and most of
the images found in this work are located at [92]. The QM9
data set used for reconstruction experiments can be found at
Ramakrishnan et al. [76]. The data set for neural network
potential fitting can be found at [93]. An additional neural net-
work fitting experiment found in the Supplemental Material
[77] uses data from Dragoni et al. [94–101].
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