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Octahedral rotations in Ruddlesden-Popper layered oxides under pressure from first principles
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The combination of reduced dimensionality and tunable structural distortions in layered perovskite oxides
makes these materials ideal platforms for designing novel properties and functionalities. One example is hybrid
improper ferroelectricity in n = 2 Ruddlesden-Popper oxides, where the combination of a layered crystal struc-
ture and rotations of the metal-oxide octahedra break symmetry and induce a polarization. Precisely controlling
the octahedral rotation distortions, for example by the application of hydrostatic pressure, provides a pathway
to tune and optimize the properties of these materials. We combine group theoretic methods, density functional
theory calculations, and Landau theory analysis to investigate how octahedral rotations respond to pressure in the
hybrid improper ferroelectrics Sr3Zr2O7, Ca3Ti2O7, and Sr3Sn2O7. We find that factors that are known to control
the pressure response of ABO3 perovskites—the formal charge of the A- and B-site cations, tolerance factor, and
B-site chemistry—also impact the pressure response of these layered perovskites. We also show that coupling
between the octahedral rotation and strain order parameters plays a key role in determining the overall pressure
response. Despite some similarities, we find that these layered perovskites display a distinct pressure response
compared to their ABO3 perovskite analogs. By identifying trends and underlying mechanisms that control
octahedral rotations in Ruddlesden-Popper oxides under pressure, this work lays the foundation for tailoring the
structure and properties of these materials.
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I. INTRODUCTION

Perovskite and layered perovskite oxides are a scien-
tifically and technologically important class of materials
that display a huge range of properties including ferro-
electricity, superconductivity, and metal-insulator transitions.
The basic structural building blocks of these materials are
corner-connected BO6 octahedra. In the ideal high-symmetry
structure, the B-O-B bond angles are 180◦; however, most
perovskites crystallize in lower symmetry distorted structures.
Octahedral rotation distortions—where the BO6 octahedra ro-
tate about one or more crystallographic axes—are the most
common type of structural distortion in perovskite oxides [1],
and they couple closely to the electronic [2–4] and magnetic
[5,6] properties. Controlling octahedral rotations via chemical
substitution, hydrostatic pressure, and epitaxial strain in thin
films provides an opportunity to design perovskites with tar-
geted properties [4,7,8].

Several studies have explored pressure-induced changes
to octahedral rotations in ABO3 perovskites [9–12]. These
works have revealed that the formal charges of the A- and
B-site cations provide a useful descriptor for predicting the
pressure response. The formal charges can be linked to the
relative compressibility of the AO12 and BO6 polyhedra, with
a lower formal charge being associated with a more com-
pressible polyhedron. Since the BO6 octahedra rotate fairly
rigidly, the octahedral rotations primarily compress bonds in
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the AO12 polyhedron. As a result, if the formal charge of the
A cation is smaller (A2+B4+O3 and A1+B5+O3), the AO12

polyhedron is more compressible, resulting in an increase of
the octahedral rotations with pressure. In contrast, when the
A and B cations have the same formal charge (A3+B3+O3),
the octahedral rotations decrease under pressure. The pressure
response of most ABO3 perovskites can be predicted from
their formal charges; however, there are exceptions such as
CaSiO3 [13] and RBO3 [12,14,15] (R = rare earth; B = Al,
Fe, Cr). For these cases, the d-orbital occupancy on the B site
is an important factor [12].

Similar to perovskites, most layered perovskites crystal-
lize in distorted structures with octahedral rotations. One
example is the An+1BnO3n+1 Ruddlesden-Popper (RP) family,
where the crystal structure is built from blocks containing
n perovskite layers separated by a rocksalt layer. Octahedral
rotations in RPs are of particular interest because they can fa-
cilitate functionalities that do not occur in ABO3 perovskites,
such as hybrid improper ferroelectricity in n = 2 RPs where
the electrical polarization is induced by a coupling to octahe-
dral rotations [16–21]. Whereas there have been some studies
of the effect of chemical substitution [22–27] and epitaxial
strain [28,29] on octahedral rotations in RPs, the impact of
hydrostatic pressure on octahedral rotations in n = 2 RPs has
received minimal attention.

In this work, we combine group theoretic analysis, den-
sity functional theory (DFT) calculations, and Landau theory
to investigate the pressure response of a family of hybrid
improper ferroelectric n = 2 RP materials: Sr3Zr2O7 [18],
Ca3Ti2O7 [21,30], and Sr3Sn2O7 [17,20,31]. By investigating
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FIG. 1. Crystal structure of n = 2 Ruddlesden-Popper A3B2O7 materials. (a) The high-symmetry reference structure I4/mmm, which
consists of two perovskite slabs separated by a rocksalt layer. The condensation of two octahedral rotations establishes the polar A21am
structure: (b) an out-of-phase (a−a−c0) octahedral rotation about [110] which transforms like X −

3 and (c) an in-phase (a0a0c+) octahedral
rotation about [001] which transforms like X +

2 . The A21am ground state structure is shown in (d). The black arrows show the two-against-one
A-site displacements along [110] in each perovskite slab, which are the main contribution to the polarization. In all panels, the axes of the
tetragonal cell are shown.

several structural phases of these materials under pressure,
we observe a distinct response depending on whether one
or more octahedral rotations distort the crystal structure. For
single-rotation structures, the octahedral rotation amplitudes
generally increase with pressure, in agreement with the per-
ovskite formal charge descriptor (the charges on the A and
B cations are 2+ and 4+, respectively, for all materials that
we consider). In some cases, we find that the tolerance factor
and B-site chemistry also play a role. In contrast, we find that
the pressure response of the ground state A21am ferroelectric
phase of these materials—where two octahedral rotations and
a polar distortion are coupled together—is not adequately
described by the formal charge descriptor. To understand this,
we perform and analyze a Landau free energy expansion
including both the structural distortion order parameters and
strain modes. We find that distinct strain states realized in
the single- and multirotation structures are the primary reason
for their different pressure responses. Throughout, we discuss
differences and similarities between the pressure response of
the RPs and their ABO3 perovskite analogs.

II. METHODS

We perform DFT [32] calculations using VASP [33] and
the projector augmented wave (PAW) [34] method. We adopt
the PBEsol version of the Perdew-Burke-Erzernhof (PBE)
exchange-correlation functional [35]. The atomic positions
and lattice vectors are optimized with a convergence criteria
on the total energy of 10−8 eV and 2 meV/Å on the forces. For
all calculations, a kinetic energy cutoff of 600 eV is employed
for truncating the plane wave basis set. The Brillouin zone
is sampled using a 6 × 6 × 2 Monkhorst-Pack [36] k-point
mesh in a 48-atom computational cell. We use the standard
VASP pseudopotentials with the following valence states for
our computations: Ca_pv (3p64s2), Sr_sv (4s24p65s2), Ba_sv
(5s25p66s2), Ti_pv (3p63d34s1), Zr_sv (4s25s14p64d3), Sn_d
(4d105s25p2), and O (2s22p4). We make use of the ISOTROPY

software suite [37] for group theoretic analysis and VESTA [38]
for the visualization of crystal structures.

III. GROUND STATE STRUCTURES

At room temperature, Ca3Ti2O7, Sr3Zr2O7, and Sr3Sn2O7

all crystallize in the orthorhombic polar space group A21am
[18,20,21]. This structure can be decomposed into three
structural distortions which transform like irreducible repre-
sentations (irreps) of the high-symmetry reference structure
I4/mmm, shown in Fig. 1(a). These distortions, shown in
Figs. 1(b)–1(d), are an out-of-phase (a−a−c0 in Glazer nota-
tion [39]) octahedral rotation about [110] which transforms
like the irrep X −

3 , an in-phase (a0a0c+) octahedral rotation
about [001] transforming like X +

2 , and a polar distortion pri-
marily involving A-site displacements which transforms like
�−

5 . The amplitudes of these distortions, obtained from struc-
tural decompositions of DFT-relaxed structures, are shown in
Table I.

The distortion amplitudes of Sr3Sn2O7 are smaller than
those of Ca3Ti2O7 and Sr3Zr2O7. This is expected because,
as shown in Table I, the tolerance factor [40] τ = (rA +
rO)/[

√
2(rB + rO)] of the corresponding perovskite (SrSnO3),

which also is predictive of octahedral rotation amplitudes in
RPs [41], is the largest (closest to 1).

IV. PRESSURE RESPONSE OF SINGLE-ROTATION
RP STRUCTURES

We first consider the pressure response of RP structures
that are characterized by a single octahedral rotation distor-
tion. These structures are simpler than A21am, where the
three active structural distortions described above are coupled
together. We focus on the same set of materials (Sr3Zr2O7,
Ca3Ti2O7, and Sr3Sn2O7), and constrain their symmetries to
single-rotation phases. These include a structure with only the
a−a−c0 octahedral rotation (transforming like X −

3 ), which has
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TABLE I. Perovskite tolerance factors [40] calculated using the bond-valence model [42–44], amplitudes of the X +
2 , X −

3 , and �−
5

distortions, and lattice parameters (in Å) of the DFT-relaxed A21am structure. The distortion amplitudes are obtained by decomposing the
A21am structure into symmetry adapted modes of the high-symmetry I4/mmm references structure, and are reported in units of Å for a
48-atom cell.

Material tbv X +
2 X −

3 �−
5 a b c

Sr3Zr2O7 0.942 1.23 1.80 0.75 5.809 5.801 20.797
Ca3Ti2O7 0.946 1.26 1.76 0.89 5.447 5.384 19.266
Sr3Sn2O7 0.957 1.09 1.66 0.64 5.753 5.743 20.623

symmetry Amam, and a structure with only the a0a0c+ octa-
hedral rotation (transforming like X +

2 ), which has symmetry
Acam. We also consider a structure with a single a0a0c− ro-
tation that transforms like X −

1 (symmetry Acaa). We consider
Acaa because phases with a0a0c− rotations have been found at
elevated temperatures and are predicted in epitaxially strained
thin films of n = 2 RPs [17,28].

A second set of single-rotation structures can be gen-
erated by rotating the two-dimensional octahedral rotation
order parameters [45] by 45◦. For the case of the X −

3 octa-
hedral rotation, this structure has symmetry P42/mnm (with
octahedral rotations about the [100] and [010] axes in al-
ternating perovskite slabs). The P42/mnm phase has been
observed experimentally in several n = 2 RP materials with
larger tolerance factors, including Ca2SrTi2O7 [46–48]. We
do not consider the structures arising from rotation of the X +

2
and X −

1 order parameters (symmetry P4/mbm and P4/nbm,
respectively), because they are much higher in energy [45].
The total energies and structural decompositions of our DFT-
relaxed single-rotation structures at zero pressure are reported
in Appendix A.

We then use DFT to relax these single-rotation structures
under hydrostatic pressure and obtain their octahedral rotation
amplitudes, as shown in Fig. 2. The X −

3 rotations in Fig. 2(a)
increase with pressure in Sr3Zr2O7 and Ca3Ti2O7, whereas
they decrease slightly in Sr3Sn2O7. The pressure responses

of the Amam and P42/mnm structures are very similar. For
all three compounds, the X +

2 and X −
1 rotations increase with

pressure [Figs. 2(b) and 2(c)] and their rate of increase is large
compared to that of X −

3 . With the exception of the X −
3 rotation

in Sr3Sn2O7, the pressure response of the single-rotation RP
structures aligns with the prediction of the perovskite formal
charge descriptor for compounds with A2+ and B4+ cations
[11].

To understand why the behavior of the Sr3Sn2O7 X −
3 ro-

tation deviates from the formal charge descriptor, we first
note that previous studies of ABO3 perovskites have found
that both tolerance factor and the B-site chemistry also impact
the pressure response [12]. As noted above, Sr3Sn2O7 has the
largest (closest to 1) tolerance factor of the compounds that we
consider. Also, Sn is a p-block element, whereas Ti and Zr lie
in the d block. Depending on whether the B cation lies in the
p or d block, the B-O bonding has different character (relative
contributions of σ and π bonding), which favors different
B-O-B bond angles [1].

To investigate whether tolerance factor and B-site chem-
istry play a role in determining the pressure response of RPs,
we expand our family of materials by keeping the same B-site
cations (Zr, Ti, Sn), but placing different combinations of
Ca, Sr, and Ba on the A sites. The n = 2 RP structure has
two crystallographically distinct A sites: AP, which lies in
the center of the perovskite layer, and ARS which borders the

FIG. 2. Pressure dependence of n = 2 Ruddlesden-Popper structures with single octahedral rotation distortions. (a) Octahedral rotation
amplitudes (Q) as a function of pressure for structures with symmetry Amam (filled markers) and P42/mnm (empty markers). The octahedral
rotations in both structures transform like X −

3 ; in Amam the rotation pattern is a−a−c0 in all perovskite slabs, whereas in P42/mnm it is
a−b0b0/b0a−b0 in alternating slabs. (b) Pressure dependence of the X +

2 (a0a0c+) octahedral rotation in the Acam structure and (c) pressure
dependence of the X −

1 (a0a0c−) octahedral rotation in the Acaa structure. In all panels, results for Sr3Zr2O7, Ca3Ti2O7, and Sr3Sn2O7 are
denoted by squares, triangles, and circles, respectively. The distortion amplitudes are given for a 48 atom cell and are computed by decomposing
the distorted structures with respect to I4/mmm relaxed at the same pressure.
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FIG. 3. Pressure dependence of the P42/mnm structure with mixed A-site cations. (a) The two crystallographically distinct A sites in the
A3B2O7 structure: a larger 12-fold coordinated site in the center of the perovskite double layer (AP) and a smaller 9-fold coordinated site
bordering the rocksalt layer (ARS). (b) X −

3 octahedral rotation amplitude (QT ) at 0 GPa as a function of tolerance factor and (c) change in
rotation amplitude with respect to pressure (dQT /dP) for a series of AP(ARS )2B2O7 compounds (B = Zr, Ti, Sn). The A-site cations (Ca, Sr,
Ba) are indicated in panel (c) and the dashed lines in (c) are guides to the eye. The derivative dQT /dP shown in panel (c) is given in units of
Å/GPa.

rocksalt layer [Fig. 3(a)]. Here, we consider A-site ordered
RPs AP(ARS )2B2O7, where we place the larger of the two
cations on the AP site which has a larger size. Restricting our
investigation to the P42/nmn structure, we then perform DFT
calculations on our expanded family of materials. Figure 3(b)
shows the zero-pressure X −

3 rotation amplitude as a function
of tolerance factor for our expanded set of compounds. For
the mixed A-site compounds, we compute the tolerance factor
as a weighted average: τ = (1/3)τAPBO3 + (2/3)τARSBO3 [49].
We find that, as expected, the octahedral rotation amplitude
monotonically increases as the tolerance factor decreases.

We next consider the pressure response of this expanded
family of materials. Figure 3(c) shows the rate of change
of the X −

3 octahedral rotation amplitude QT with pressure
(dQT /dP), obtained by fitting the slope of a QT vs pressure
plot for each material (see Appendix A). Figure 3(c) enables
several interesting observations. First, we observe that the
materials naturally group based on their B site, where for
a given tolerance factor dQT /dP is largest for the Zr-based
materials and smallest for the Sn-based materials. For all B
sites, we find that dQT /dP decreases as the tolerance factor
increases, which is consistent with the behavior of perovskites
[12]. All compounds have positive dQT /dP values with the
exception of Sr3Sn2O7 and BaSr2Sn2O7. Based on the trends
in Fig. 3(c), we expect that Zr- and Ti-based materials with
larger tolerance factors also could show a crossover to a nega-
tive dQT /dP. In practice, however, the rotation may disappear
as the tolerance factor gets close to 1 before this crossover
is observed. We thus find that, in analogy with ABO3 per-
ovskites, both B-site chemistry and tolerance factor influence
the pressure response.

However, the pressure response of the RPs is not com-
pletely analogous with that of the corresponding perovskite.
To show this, we compute the pressure response of perovskite
SrSnO3 when it is constrained to structural phases with a sin-
gle a−a−c0 rotation (space group Imma) and a single a0a0c+
rotation (space group P4/mbm). As shown in Appendix B,

we find that both octahedral rotation amplitudes increase
with pressure, adhering with the perovskite formal charge
descriptor. This observation then suggests that an aspect of
the n = 2 RP structure itself plays a role in the Sr3Sn2O7

pressure response. We hypothesize that this could be the dif-
ferent bonding preferences of the AP and ARS sites, where the
larger AP site is more underbonded than the ARS site. This
can be quantified by computing the bond valences, which for
Sr3Sn2O7 in the I4/mmm structure are 1.614 and 1.752 for AP

and ARS , respectively. Since the optimization of A-O bonding
is a main factor driving octahedral rotations [1], this difference
in bond valence implies that the AP cation “wants” a larger
octahedral rotation amplitude than the ARS cations to satisfy its
bonding. The resulting octahedral rotation amplitude and its
pressure response would be a compromise between the two.

To summarize this section, we find that the pressure re-
sponse of A2+

3 B4+
2 O7 RPs is mostly captured by the perovskite

formal charge descriptor. The tolerance factor and the chem-
istry of the B cation also plays a role in determining the
magnitude of the response. However, the behavior of the RP
is not always in analogy with that of the corresponding per-
ovskite, an effect that we attribute to the competing bonding
preferences of the two distinct A-cation sites in the RP struc-
ture.

V. PRESSURE RESPONSE OF THE POLAR A21am
STRUCTURE

We next explore the pressure response of the ground state
A21am structure. Figure 4 shows the pressure evolution of the
three active structural distortions (X −

3 rotation, X +
2 rotation,

and �−
5 polar mode). The most noticeable feature compared to

the single-rotation structures (Fig. 2) is that both the distortion
amplitudes Q and their rate of change with pressure dQ/dP
are significantly smaller. This effect is most noticeable for
the X +

2 rotation. Furthermore, contrasting with the single-
rotation case, where all distortions (except for the X −

3 rotation
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FIG. 4. Pressure dependence of structural distortion amplitudes (Q) contributing to the A21am structure: (a) X −
3 rotation, (b) X +

2 rotation,
and (c) �−

5 polar distortion for Sr3Zr2O7 (squares), Ca3Ti2O7 (triangles), and Sr3Sn2O7 (circles). The amplitudes are reported for a 48 atom
computational cell.

in Sr3Sn2O7) increased with pressure, the pressure response
of the A21am structure is more varied. First considering the
X −

3 rotation [Fig. 4(a)], as pressure increases its amplitude
increases for Sr3Zr2O7, whereas it decreases for Sr3Sn2O7

and Ca3Ti2O7 (very slightly, in the latter case). Next consid-
ering the X +

2 rotation [Fig. 4(b)], it increases with pressure for
Sr3Zr2O7 and Ca3Ti2O7, and decreases for Sr3Sn2O7. Finally,
the �−

5 polar distortion [Fig. 4(c)] decreases for all three com-
pounds, albeit very slightly for Sr3Zr2O7. We note that this
decrease in polar distortion amplitude contrasts with recent
reports of polarization enhancement under pressure for some
ABO3 perovskites [50,51]. This difference is likely due to the
fact that the polarization is induced by a trilinear coupling in
the n = 2 RPs that we study, rather than a polar instability.

To start understanding why each of the three A21am RP
compounds displays a distinct pressure response, we first
compare to the corresponding ABO3 perovskite materials
(SrZrO3, CaTiO3, and SrSnO3). The ground state structure of
these perovskites has symmetry Pbnm, which can be thought
of as analogous to the A21am RP structure, in that it contains
an out-of-phase (a−a−c0) octahedral rotation, an in-phase
(a0a0c+) octahedral rotation, and an antipolar (rather than
polar) displacement mode coupled together by a trilinear term.
Computing the pressure dependence of the distortion ampli-
tudes (Appendix B), we find that, similar to the RPs, both the
rotation amplitudes and their rate of change are suppressed
compared to the single-rotation case. However, in contrast
with the RPs, the amplitudes increase with pressure for all
materials (as expected based on the formal charge descriptor).
Therefore, whereas Sr3Zr2O7 and SrZrO3 exhibit a similar
pressure response (all modes increase), both Ca3Ti2O7 and
Sr3Sn2O7 display distinct pressure responses from their per-
ovskite analogs.

As discussed in Sec. IV, the tolerance factor and B-site
chemistry provide a useful way to organize the pressure re-
sponse for the single-rotation structures. To assess whether
this is also the case for the A21am structure, we compute
the derivatives of the X −

3 and X +
2 octahedral rotation am-

plitudes with respect to pressure (dQT /dP and dQR/dP) in
Appendix C for an expanded family of compounds. We find

that dQT /dP displays a similar trend with tolerance factor as
the single-rotation case shown in Fig. 2(c). In contrast, we
see no clear dependence of dQR/dP on the tolerance factor.
In addition, we do not observe a clear grouping of compounds
based on their B-site chemistry, either. This suggests that addi-
tional factors play a key role in the A21am pressure response,
which we explore in the next sections. As we will show below,
the key difference between the single-rotation structures and
A21am is the role that strain modes play in determining the
octahedral rotation amplitudes.

VI. LANDAU FREE ENERGY EXPANSION

We start by writing down a Landau free energy expansion
about the high-symmetry reference I4/mmm for a single-
rotation phase (we take the example of a structure with a
single X −

3 rotation of amplitude QT ):

E (QT ) = αT Q2
T + βT Q4

T . (1)

The octahedral rotation QT also couples to the strain of
the unit cell. Here the strain along lattice parameter a of a
distorted structure is (a − a0)/a0, where a0 is the correspond-
ing lattice parameter of the I4/mmm structure. We choose
to decompose the strain into components that emphasize the
tetragonal and orthorhombic deformations of the unit cell: two
strain modes that cause a tetragonal distortion with symmetry
�+

1 that correspond to stretching in the ab plane and along c
(we denote these by ηxx and ηz, respectively), and one with
symmetry �+

4 which produces the orthorhombic distortion of
the unit cell (ηo). The coupling between QT and strain can
then be written as

EQη(QT , η) = (γ · η)Q2
T , (2)

where γ = (γ1, γ2, γ3) are the Landau coefficients and η =
(ηxx, ηz, ηo) is the strain.

The amplitude of QT that minimizes the energy is

QT =
√

−αT − (γ · η)

2βT
. (3)
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A key difference between the A21am and single-rotation
structures is the presence of coupling terms between the struc-
tural distortion order parameters. In this case, the Landau
expansion becomes

E (QT , QR, QP ) = αRQ2
R + βRQ4

R + αT Q2
T + βT Q4

T

+ αPQ2
P + βPQ4

P + λQRQT QP

+ δRT Q2
RQ2

T + δRPQ2
RQ2

P + δT PQ2
T Q2

P.

(4)

Here, QT , QR, and QP denote the amplitudes of the X −
3 , X +

2 ,
and �−

5 distortions, respectively.
Each structural distortion order parameter also couples to

the strain modes:

EQη = (γT · η)Q2
T + (γR · η)Q2

R + (γP · η)Q2
P, (5)

where γi are the coefficients for distortion i and η is defined as
above. We make use of the Landau expansion introduced here
in the analysis presented in subsequent sections.

VII. INTERPLAY OF STRAIN MODES
AND OCTAHEDRAL ROTATIONS

In this section we explore why the octahedral rotation
amplitudes are smaller in A21am compared to those in the
single-rotation structures. As we will show, this provides the
key to understanding the pressure response of A21am.

We first observe that the X −
3 and X +

2 octahedral rota-
tions couple to “competing” strain states. To make this point
clear, we compute the strain of the fully relaxed single-
rotation structures (Acam and Amam) as well as A21am
with respect to the relaxed I4/mmm structure. Taking the
example of Ca3Ti2O7, for Acam we find (ηxx, ηz, ηo) =
(−0.025, 0.025, 0.00), meaning that the cell is compressed in
the ab plane and elongated along c (this is expected because
the X +

2 rotation bends the B-O-B angles in the ab plane).
In contrast, for Amam (ηxx, ηz, ηo) = (0.004,−0.014, 0.011),
so the cell is slightly expanded in the ab plane and com-
pressed along c. The opposite signs of the strain in these
two single-rotation structures indicate that, when both rota-
tions are present (as in A21am), the strain state (unit cell
shape) must be a compromise between the two single-rotation
strain states. The result is that the strain in A21am is an
order of magnitude smaller than in the single-rotation struc-
tures: (ηxx, ηz, ηo) = (0.002,−0.005,−0.007). The strains in
Sr3Zr2O7 and Sr3Sn2O7 are similar, and are reported in
Appendix D.

This observation is significant because the reduction of
the strain amplitudes in A21am also suppresses the octahe-
dral rotation amplitudes. This is because the amplitudes are
partially determined by the strain coupling term, as is clear
from Eq. (3). This also can be seen by performing the fol-
lowing computational experiment: we start by computing (for
example) the X +

2 octahedral rotation amplitude in the fully
relaxed single-rotation Acam structure. We then compare this
to the X +

2 amplitude obtained from a structural relaxation of
Acam, where only the atomic positions are allowed to vary and
the lattice parameters are fixed at their I4/mmm values. The
difference in X +

2 amplitude between these two calculations
reveals the contribution of the strain term. Finally, we find the

TABLE II. Amplitudes of the X −
3 and X +

2 octahedral rotations
for structures that are fully relaxed (lattice parameters and atomic
positions) and those where the lattice parameters are fixed at their
I4/mmm values and the atomic positions are relaxed. The amplitudes
are given in units of Å and are for a 48-atom cell. The rotation
amplitudes of the fully relaxed A21am structure are given in Table I,
and are similar to those presented here because the I4/mmm and
A21am relaxed lattice parameters are almost the same.

Irrep Structure Sr3Zr2O7 Ca3Ti2O7 Sr3Sn2O7

X +
2 Acam (fully relaxed) 1.84 1.71 1.62

Acam (atoms only) 1.49 1.48 1.32
A21am (atoms only) 1.18 1.23 1.08

X −
3 Amam (fully relaxed) 2.01 1.84 1.82

Amam (atoms only) 1.96 1.79 1.77
A21am (atoms only) 1.80 1.67 1.67

X +
2 amplitude in A21am where again the atomic positions are

optimized but the lattice parameters are fixed to their I4/mmm
values. This second comparison reveals the effect of the terms
that couple the structural order parameters in Eq. (4). Table II
presents the results of these calculations.

Taking the example of Sr3Zr2O7 in Table II, we find that
constraining the lattice parameters to their I4/mmm values
(eliminating strain coupling) significantly reduces QR, from
1.84 to 1.49 Å, that is �QR1 = 0.35 Å. Then, the inclusion of
the coupling terms in Eq. (4) (A21am) reduces the amplitude
to 1.18 Å, which results in �QR2 = 0.31 Å. Thus these two
mechanisms suppress QR by about the same amount and the
total suppression is �QR = 0.66 Å. Sr3Sn2O7 and Ca3Ti2O7

exhibit a similar trend (Table II). For the X −
3 rotation, again

both mechanisms contribute to suppressing QT , but the role
of the strain coupling is less important. Again using the exam-
ple of Sr3Zr2O7, Table II shows that constraining the lattice
parameters to their I4/mmm values suppresses QT from 2.01
to 1.96 Å (�QT 1 = 0.05 Å) and including the Eq. (4) coupling
terms suppresses it to 1.80 Å (�QT 2 = 0.16 Å). In this case,
the total suppression is �QT = 0.21 Å, significantly smaller
than the suppression of QR.

Thus the suppression of the octahedral rotation amplitudes
in A21am arises from the combined effect of the suppressed
strain terms as well as the presence of couplings to the other
distortions. Significantly, this mechanism also is present at
finite pressures, thereby reducing the distortion amplitudes
and their rate of change with pressure.

VIII. PRESSURE DEPENDENCE OF LANDAU
COEFFICIENTS

The analysis in the previous section has shown that the
small strains present in A21am suppress the octahedral rota-
tion amplitudes. However, this mechanism is present in all our
materials: so what leads to the differences between materials
seen in Fig. 4? The difference can be found by exploring how
the Landau coefficients in Eq. (4) vary with pressure in the
different materials.

We compute the pressure dependence of the coefficients
by fitting Eq. (4) to energy surfaces computed with DFT at a
series of pressures ranging from 0 to 18 GPa, as described in
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FIG. 5. Pressure dependence of the Landau coefficients given in Eq. (4) for (a)–(d) Sr3Zr2O7, (e)–(h) Ca3Ti2O7, and (i)–(l) Sr3Sn2O7.
The units of the second order (αi), fourth order (βi, δi j), and trilinear (λ) coefficients are (meV/f.u./Å2), (meV/f.u./Å4), and (meV/f.u./Å3),
respectively.

Appendix E. The energy surface calculations are performed
with the lattice parameters fixed to their I4/mmm values,
relaxed at each pressure. Due to the role of strain coupling
in determining the octahedral rotation amplitudes, this choice
has a significant effect, which we discuss more below.

Figure 5 presents the pressure dependence of the coef-
ficients in Eq. (4) computed for Sr3Zr2O7, Ca3Ti2O7, and
Sr3Sn2O7. For all three compounds, the second order coef-
ficients αR and αT are negative, indicating that I4/mmm is
unstable with respect to the X −

3 and X +
2 octahedral rotations

[Figs. 5(a), 5(e), and 5(i)]. These coefficients become more
negative with pressure, although the amount of change with
pressure varies between the materials. For example, going
from 0 to 18 GPa, αR changes by about 4 meV/f.u./Å2 in
Sr3Sn2O7, whereas for Sr3Zr2O7 and Ca3Ti2O7 it changes by
about 45 meV/f.u./Å2. The trilinear coupling coefficient λ is
also large and negative, and its amplitude increases signifi-

cantly (130–150 meV/f.u./Å3 going from 0 to 18 GPa) in all
three materials.

As shown in Figs. 5(b), 5(f), and 5(j), the fourth order
coefficients βR and βT are positive and increase with pressure.
From Eq. (3), it is clear that there is a competition between αT

and βT in determining the pressure response of QT : increasing
|αT | leads to a larger rotation amplitude, whereas increasing
βT suppresses the rotation. Contrasting with the quadratic co-
efficients, the pressure evolution of βR and βT is fairly similar
for all three materials.

In all three materials, I4/mmm is stable with respect to the
polar distortion, so αP and βP are positive [Figs. 5(c), 5(g),
and 5(k)]. The second order coefficient αP increases signif-
icantly with pressure, whereas βP increases more gradually.
Interestingly, we find that αP increases the most in Sr3Sn2O7,
which contrasts with αR and αT which changed the least under
pressure compared to the other materials. Finally, Figs. 5(d),
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FIG. 6. Comparison of A21am distortion amplitudes computed from DFT (solid lines) and from a Landau expansion that neglects all
coupling terms (dashed lines) for (a) Sr3Zr2O7, (b) Ca3Ti2O7, and (c) Sr3Sn2O7. The X −

3 and X +
2 amplitudes from the Landau theory are

obtained by minimizing Eq. (1). The �−
5 Landau theory amplitude is obtained by minimizing Eq. (4) with respect to QP, with QT and QR fixed

to the values obtained by minimizing Eq. (1).

5(h), and 5(l) show the pressure evolution of the biquadratic
coupling coefficients δRT , δRP, and δT P. These coefficients
are all positive and increase with pressure. For all three
compounds, δRT is the largest and has the most significant
change with pressure (about 40 meV/f.u./Å4 going from 0
to 18 GPa), whereas δRP and δT P only increase slightly under
pressure.

Armed with this analysis, we revisit the origin of the
different pressure responses shown in Fig. 4. As discussed
above, the coefficients change under pressure by about the
same amount in all three compounds, with the exception of
the quadratic coefficients αR, αT , and αP. We can understand
that the origin of the decreasing octahedral rotation ampli-
tude under pressure in Sr3Sn2O7 simply comes from the very
weak pressure dependence of αR, while βR still strongly in-
creases with pressure. We can rationalize the differences in
the evolution of QT under pressure in the same way. From
Fig. 5, it is clear that the change in αT is the largest for
Sr3Zr2O7, somewhat smaller for Ca3Ti2O7, and the smallest
for Sr3Sn2O7. This results in QT increasing with pressure for
Sr3Zr2O7, almost not changing for Ca3Ti2O7, and decreasing
for Sr3Sn2O7.

The polar distortion amplitude QP arises from the interplay
of the trilinear coupling coefficient λ and the quadratic coeffi-
cient αP. The coefficient λ becomes much more negative with
pressure which on its own would increase QP; however, the
substantial increase in αP counteracts this and leads to the
slight decrease in QP with pressure as shown in Fig. 4(c).
The amplitude QP decreases most strongly with pressure in
Sr3Sn2O7, because for this material αP increases the most
under pressure. At the microscopic level, the differences be-
tween αR, αT , and αP in the different materials are likely due
to a combination of tolerance factor, B-site chemistry, and
bonding preferences. We present a complementary analysis
in Appendix F, where we analyze the pressure dependence of
the individual energy terms in Eq. (4), which also leads to the
same picture.

Finally, in order to assess the quality of our Landau ex-
pansion, Fig. 6 shows a comparison of the A21am distortion
amplitudes computed from DFT (reproduced from Fig. 4),
and the amplitudes that minimize the Landau energy. The X −

3

and X +
2 rotation amplitudes (QT and QR, respectively) shown

in Fig. 6 are obtained by minimizing Eq. (1), whereas the
�−

5 amplitude (QP) is obtained by minimizing Eq. (4) with
respect to QP [with QT and QR fixed to the values obtained
by the minimization of Eq. (1)]. Interestingly, we find that
the Landau results reproduce the DFT results, despite the fact
that we have neglected the coupling terms for the X −

3 and
X +

2 rotations. This is because the Landau coefficients were
calculated with fixed I4/mmm lattice parameters (strain set
to zero). The difference in amplitude of the X +

2 rotation is
due to the neglect of the coupling terms, although the rate
of change with pressure is well captured. For the case of the
X −

3 rotations, the DFT and Landau amplitudes match almost
exactly (this is somewhat an artifact, which we discuss further
in Appendix E), as does the slope. An important conclusion
of this analysis is that the pressure dependence of the octa-
hedral rotation amplitudes in the polar A21am structure are
well reproduced by just considering the single rotation phases
(and preventing the strain relaxation by constraining the lattice
parameters to their I4/mmm values).

IX. DISCUSSION

To summarize, in this work we explore how octahedral ro-
tations in hybrid improper ferroelectric Sr3Zr2O7, Ca3Ti2O7,
and Sr3Sn2O7 (and related A-site substituted compounds) re-
spond to pressure. When constrained to structures that are
distorted by a single octahedral rotation, the pressure response
of these materials is largely in line with expectations from
the A/B-site formal charge descriptor developed for ABO3

perovskites (that is, the rotation amplitudes increase with pres-
sure). We find some exceptions, for example, Sr3Sn2O7 when
constrained to space groups Amam and P42/nmn (a−a−c0 ro-
tations), which we attribute to a combination of the tolerance
factor, B-site chemistry, and competing bonding preferences
in the RP structure. We find a more complex pressure response
for the polar A21am structures: Sr3Zr2O7 is in line with the
formal charge descriptor, whereas Sr3Sn2O7 and Ca3Ti2O7

behave differently.
We find that the origin of the diverse pressure behavior

of the A21am structures is the suppression of the octahedral
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rotation amplitudes compared to their values in single-rotation
structures. This occurs due to the combined effect of reduced
strain and couplings between structural order parameters.
The strain is suppressed in A21am because the X −

3 and
X +

2 rotations are stabilized by strains of opposite sign (e.g.,
contraction/expansion along c). The result is that subtle dif-
ferences between the materials (tied to tolerance factor, B-site
chemistry, and bonding) can then lead to qualitatively differ-
ent octahedral rotation responses to pressure (increasing vs
decreasing). These differences also are evident from the pres-
sure dependence of the coefficients of a Landau free energy
expansion. We note that unravelling differences in chemical
bonding between the materials as well as the precise role of
bonding in determining octahedral rotation amplitudes may
require a level of theory beyond the PBEsol functional. This
would be an interesting topic for a future study.

We also find that the pressure evolution of the A21am
structure can be predicted from the pressure response of
single-rotation structures, with the lattice parameters held
to their I4/mmm values (which nearly zeroes the strain
coupling terms). This provides a simple rule for predict-
ing pressure evolution, which may generalize to other
RP compounds.

Furthermore, we expect the findings presented here to be
relevant for understanding how other “knobs” for manip-
ulating crystal structure such as chemical substitution and
epitaxial strain influence octahedral rotations in RPs. Al-
though the structural response to pressure may not directly
correspond to the structural changes induced by these other
knobs, the factors that influence the response will generally
be similar. This could facilitate the identification of strategies
to manipulate polarization for use in thin film based memory
and storage technologies.

Finally, we note that in this work we have focused our
analysis on the pressure evolution of octahedral rotation
amplitudes within crystal structures of given symmetries. Al-
ternatively, the application of pressure can lead to a phase
transition to a different symmetry structure. In a recent paper
[52] with our experimental collaborators, we have shown that
Sr3Sn2O7 undergoes a pressure-driven sequence of structural
phase transitions at room temperature A21am → Pnab →
Acaa → I4/mmm. These transitions occur at 2, 15, and
18 GPa, respectively. Here the Pnab structure has an a−a−c−
octahedral rotation pattern and Acaa has a0a0c− rotations.
To explore the possibility of structural phase transitions in
Ca3Ti2O7 and Sr3Zr2O7, Appendix H shows DFT calcula-
tions of the enthalpy differences �H = �E + P�V between
possible high pressure phases and the A21am ground state.
Our T = 0 calculations for pressures up to 18 GPa show that
A21am remains the lowest enthalpy phase. However, at room
temperature other phases may become accessible at lower
pressures.

The pressure response revealed in the n = 2 RPs in this
work highlights both their structural complexity and their tun-
ability. Looking forward, expanding this study to include n =
2 RPs with partially filled d orbitals (e.g., Ca3Mn2O7) and
with different formal charge states (e.g., CaTb2Fe2O7) would
enable further understanding of the pressure response. Fur-
thermore, investigating RPs with different values of n could
provide additional insight into the role of dimensionality and

competing bonding preferences in these materials. The n = 1
RPs would be of particular interest in this context, because the
layering of single perovskite and rocksalt layers would create
a different balance of A-site bonding preferences. Finally, the
pressure dependence of octahedral rotations in other layered
perovskite families, such as the Aurivillius and Dion-Jacobson
phases, is another open area for future exploration. Taken
together, the results presented in this work advance our under-
standing of the behavior of n = 2 RPs under compression, and
provide a framework for future studies of related materials.
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APPENDIX A: SINGLE ROTATION RP
STRUCTURAL PHASES

In this Appendix we present the details of the single-
rotation RP phases that we explore in Sec. IV of the main text.
Table III presents the lattice parameters, octahedral rotation
amplitudes, and energies (with respect to the A21am ground
state) of the single-rotation phases computed at 0 GPa.

Figure 7 presents the pressure evolution of the X −
3 oc-

tahedral rotation amplitude (QT ) in the P42/mnm structure
for a series of AP(ARS )2B2O7 compounds (B = Zr, Ti, Sn).
With the exception of Sr3Sn2O7 and BaSr2Sn2O7, the X −

3
amplitude increases with pressure for all other compounds.
The slopes dQT /dP reported in Fig. 3 of the main text are
obtained by fitting the data in Fig. 7.

APPENDIX B: PRESSURE DEPENDENCE OF
OCTAHEDRAL ROTATIONS IN ABO3

PEROVSKITE OXIDES

This Appendix presents the evolution of the octahedral
rotation amplitudes with pressure for the perovskites SrZrO3,
CaTiO3, and SrSnO3 to facilitate comparison with the anal-
ogous RP phases presented in the main text. Figure 8 shows
the pressure dependence of the single-rotation phases Imma
(a−a−c0 octahedral rotations, transforming like the R−

5 ir-
rep of the high-symmetry reference structure Pm3̄m) and
P4/mbm (a0a0c+ octahedral rotations, transforming like M+

2 ).
In both structural phases, and for all three compounds, we find
that the octahedral rotation amplitudes increase with pressure.

Figure 9 shows the pressure evolution of the same set of
perovskites in their ground state Pbnm phase. The octahedral
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TABLE III. Lattice parameters, octahedral rotation amplitudes
(in Å), and energies (in meV/f.u.) of the high-symmetry reference
structure I4/mmm and the single-rotation structural phases that we
consider in the main text computed at 0 GPa. The amplitudes are
obtained by decomposing the distorted structure with respect to
I4/mmm, and are reported for a 48 atom cell. The energies are
given with respect to the A21am ground state energy, which is set
to 0 meV/f.u.

Sr3Zr2O7 Ca3Ti2O7 Sr3Sn2O7

Acaa a 5.727 5.324 5.676
b 5.727 5.323 5.675
c 21.322 19.868 21.080

X −
1 1.880 1.780 1.680

�E 119.469 170.810 90.140
Acam a 5.730 5.325 5.679

b 5.730 5.325 5.679
c 21.326 19.876 21.073

X +
2 1.840 1.750 1.620

�E 155.960 203.050 125.380
Amam a 5.876 5.479 5.817

b 5.784 5.394 5.719
c 20.622 19.106 20.450

X −
3 2.000 1.890 1.820

�E 62.840 126.490 40.490
P42/mnm a 5.848 5.451 5.784

b 5.848 5.451 5.784
c 20.504 19.009 20.340

X −
3 2.020 1.910 1.800

�E 42.220 105.730 39.920
I4/mmm a 4.124 3.835 4.067

b 4.124 3.835 4.067
c 20.846 19.382 20.598

�E 394.750 499.036 277.850

rotation pattern in Pbnm is a−a−c+. There is trilinear cou-
pling between the R−

5 and M+
2 octahedral rotation order

parameters and a distortion primarily consisting of antipolar
displacements of the A-site cations, which transforms like

FIG. 7. Amplitude of the X−
3 octahedral rotation (Q) for a series

of AP(ARS )2B2O7 compounds (B = Zr, Ti, Sn) in the P42/mnm
structure as a function of pressure. For compounds with mixed A
sites, the larger cation is placed in the AP position, as described in
the main text. The amplitudes are reported for a 48 atom cell

X −
5 . The octahedral rotation amplitudes in all three com-

pounds increase with pressure, and the X −
5 amplitude slightly

increases in SrZrO3 and CaTiO3 and slightly decreases
in SrSnO3.

APPENDIX C: PRESSURE RESPONSE OF ADDITIONAL
A21am COMPOUNDS

Figure 10 shows the derivatives of the X −
3 octahedral ro-

tation amplitude (dQT /dP) and the X +
2 octahedral rotation

amplitude (dQR/dP) with respect to pressure, computed for
a set of AP(ARS )2B2O7 compounds with symmetry A21am.
These derivatives were computed by fitting distortion ampli-
tude (Q) versus pressure curves, using the same methodology
as described in Appendix A. Whereas dQT /dP generally
becomes more positive as the tolerance factor decreases, we
observe no clear trend in dQR/dP with tolerance factor.

APPENDIX D: STRAIN MODES

Table IV shows the amplitudes of the three active strain
modes in the RP phases that we consider in the main text.

APPENDIX E: LANDAU FREE ENERGY EXPANSION

This Appendix describes our method for finding the
pressure-dependent coefficients of the Landau expansion pre-
sented in Eq. (4) in the main text. Figure 11 presents an
example of the energy surfaces we use in this analysis. For
each pressure at which we compute the Landau coefficients,
we start by performing DFT structural relaxations of the high-
symmetry I4/mmm structure at that pressure. Then, keeping
the lattice parameters fixed at the I4/mmm-relaxed values for
a given pressure, we freeze in several distortion amplitudes
and then use DFT to compute the total energy of each “frozen”
structure to generate an energy surface. By fitting this energy
surface we obtain the coefficients at a given pressure.

We obtain the second- and fourth-order coefficients αi and
βi by freezing in a single distortion and fitting the resulting
energy surface as shown in Figs. 11(a) and 11(b). To obtain
the biquadratic coupling coefficients δRT , δRP, and δT P, we
condense a fixed amplitude of one distortion, and then freeze
in the second distortion. For example, to find δRT we fix the
X +

2 rotation amplitude to QR0 = 0.2 Å, and then freeze in
increasing amplitudes of QT , as shown in Fig. 11(d). We then
extract δRT by fitting to the function

f (QR0, QT ) = αT Q2
T + βT Q4

T + δRT Q2
R0Q2

T , (E1)

where the coefficients αT and βT are fixed to the values ob-
tained from Fig. 11(a), as described above. The coefficients
δRP and δT P are found in an analogous manner [Figs. 11(e)
and 11(f)]. We obtain the trilinear coupling coefficient λ by
setting the octahedral rotation amplitudes to fixed values QR0

and QT 0, and freezing in increasing amplitudes of QP. We
extract λ by fitting to the function

f (QR0, QT 0, QP ) = λQR0QT 0QP + αPQ2
P + βPQ4

P

+ δRPQ2
R0Q2

P + δT PQ2
T 0Q2

P, (E2)

where the αi and δi j coefficients are fixed to the values ob-
tained as described above. All coefficients computed at a
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FIG. 8. Pressure dependence of octahedral rotation amplitudes (Q) for (a) SrZrO3, (b) CaTiO3, and (c) SrSnO3 in single octahedral rotation
structural phases: Imma (a−a−c0 rotations transforming like R−

5 ) and P4/mbm (a0a0c+ rotations transforming like M+
2 ). The octahedral rotation

amplitudes are reported in Å for a 20 atom unit cell.

series of pressures ranging from 0 to 18 GPa for Sr3Zr2O7,
Ca3Ti2O7, and Sr3Sn2O7 are reported in Table V.

A subtlety that arises in the computation of the energy
surfaces is the choice of the relative amplitudes of the different
atomic displacements that contribute to a given distortion.
Although the X +

2 distortion consists solely of planar oxy-
gen displacements, the X −

3 and �−
5 distortions are built from

a combination of A-site, B-site, apical oxygen, and pla-
nar oxygen displacements. The relative amplitudes of these
displacements can vary, while still maintaining the same sym-
metry. Thus, when freezing in these displacements, a choice
about their relative amplitudes must be made. Here, for each
pressure we obtain the relative amplitudes by decomposing
the fully DFT-relaxed (lattice parameters and atomic posi-
tions) A21am structure with respect to I4/mmm.

To make this statement more precise, we let RI4/mmm and
RA21am be vectors containing the atomic positions of the

I4/mmm and A21am structures, respectively. We can then
write

RA21am = RI4/mmm + u, (E3)

where u is a vector that contains the atomic displacements
away from their high-symmetry positions. The vector u can
then be decomposed into distortions that transform like irreps
of I4/mmm:

u =
4∑

j=1

Aj�+
1

u j�+
1

+
6∑

j=1

AjX −
3

u jX −
3

+
2∑

j=1

AjX +
2

u jX +
2

+
7∑

j=1

Aj�−
5

u j�−
5
, (E4)

where u jσ is the normalized symmetry adapted mode that
transforms like irrep σ (σ = �+

1 , X −
3 , X +

2 , �−
5 ) of I4/mmm.

FIG. 9. Pressure dependence of the octahedral rotation amplitudes (Q) that contribute to the ground state Pbnm structure of (a) SrZrO3,
(b) CaTiO3, and (c) SrSnO3. For each material, the amplitudes of the R−

5 , M+
2 , and X −

5 distortions are shown. The distortion amplitudes are
reported in Å for a 20 atom unit cell.
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FIG. 10. Derivative of (a) the X −
3 rotation amplitude (QT ) and

(b) the X +
2 rotation amplitude (QR) with respect to pressure for

a family of AP(ARS )2B2O7 compounds, plotted versus tolerance
factor. For B = Zr, the compounds considered (in order of decreas-
ing tolerance factor) are BaSr2Zr2O7, Sr3Zr2O7, and SrCa2Zr2O7.
For B = Sn, the compounds shown are BaSr2Sn2O7, BaCa2Sn2O7,
Sr3Sn2O7, SrCa2Sn2O7, and Ca3Sn2O7 in order of decreasing
tolerance factor.

TABLE IV. Strain mode amplitudes obtained by decomposing
the DFT-relaxed distorted phases in the left column with respect
to the I4/mmm reference structure. The strains ηxx , ηz, and ηo are
uniform expansion in the ab plane, expansion along c, and the or-
thorhombic distortion, respectively.

Symmetry Strain Sr3Zr2O7 Ca3Ti2O7 Sr3Sn2O7

Acam ηxx −0.025 −0.025 −0.018
ηz 0.023 0.025 0.023
ηo 0.0 0.0 0.0

Amam ηxx 0.000 0.004 0.004
ηz −0.012 −0.014 −0.007
ηo 0.011 0.011 0.012

A21am ηxx −0.007 −0.002 −0.001
ηz −0.002 −0.005 0.001
ηo −0.001 −0.007 0.002

The �+
1 distortions do not alter the symmetry, and we do

not discuss them further. The coefficient Ajσ = u · u jσ gives
the amplitude that mode u jσ contributes to the total distor-
tion amplitude |u| and is obtained from a decomposition of
the DFT-relaxed A21am structure. The total distortion am-
plitudes presented throughout this work are computed as

Aσ =
√∑

j A2
jσ .

We then calculate energy surfaces by building a sequence
of structures [taking the example of the X −

3 energy surface in
Fig. 11(a)]

RAmam,k = RI4/mmm + XkuX −
3
, (E5)

where Xk takes values 0, 0.1, 0.2, and so on, and

uX −
3

= 1

NX −
3

6∑
j=1

AjX −
3

u jX −
3
. (E6)

The normalization factor (NX −
3

) is given by

NX −
3

=
√√√√ 6∑

j=1

A2
jX −

3
. (E7)

APPENDIX F: PRESSURE DEPENDENCE OF INDIVIDUAL
LANDAU ENERGY TERMS

Building on the analysis of the pressure-dependent Landau
coefficients presented in the main text, in this Appendix we
explore the pressure dependence of individual energy terms in
Eq. (4). Figure 12 shows the energy of each term in Eq. (4)
for several pressures. These energies are calculated using
the pressure-dependent Landau coefficients from Fig. 5 and
the DFT-relaxed amplitudes QT , QR, and QP. For all three
compounds and at all pressures, the largest energy lowering
contributions are from the αiQ2

i and trilinear terms, and the
largest energy raising contribution is from the biquadratic
δT RQ2

T Q2
R term. The biquadratic terms involving QP are negli-

gible in all cases. The data presented in Fig. 12 also is reported
in Table VI.

To more clearly see how the energy terms change with
pressure, we plot the difference in energy at pressure P from
its value at 0 pressure in Fig. 13. For simplicity, here we group
together the quadratic and quartic terms for each distortion,
that is, E (Qi ) = αiQ2

i + βiQ4
i . The biquadratic terms involv-

ing QP are not shown.
For Sr3Zr2O7, E (QR), E (QT ), and λQRQT QP all become

more negative with increasing pressure, whereas δT RQ2
T Q2

R
and E (QP ) become more positive. The trilinear and bi-
quadratic coupling terms show the most dramatic energy
change with pressure. The behavior of Ca3Ti2O7 is very simi-
lar to that of Sr3Zr2O7 [Fig. 13(b)]. The E (QT ), trilinear, and
biquadratic terms change slightly less with pressure, underly-
ing the observation that QT is almost unchanged with pressure
in the main text.

The evolution of the energy terms with pressure for
Sr3Sn2O7 is quite distinct [Fig. 13(c)]. Due to its larger tol-
erance factor, the absolute energy contributions as well their
changes with pressure are much smaller. Most notably, E (QR)
actually becomes less negative with increasing pressure. The
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1.40
1.79

FIG. 11. Energy surfaces used for computing the Landau expansion coefficients for Sr3Zr2O7 at 0 GPa. (a) Energy as a function of X −
3

rotation amplitude (QT ) and X +
2 amplitude (QR). The coefficients αR, βR, αT , and βT in Eq. (4) are extracted from fits to these energy surfaces.

(b) Energy as a function of the �−
5 polar amplitude, which is used to extract αP and βP. (c) Energy as a function of the polar amplitude QP

when the octahedral rotations are fixed to QR = 1.4 Å and QT = 1.79 Å, which is used to extract the trilinear coupling coefficient λ. (d) Energy
as a function of octahedral rotation amplitude QT , when QR = 0.2 Å, which is used to determine δRT . (e),(f) Energy as a function of QP with
either QR or QT fixed to 0.2 Å, which are used to extract δRP and δT P. In all plots, the data points are the DFT results and the lines are the fitted
functions.

E (QT ) and trilinear terms both become more negative with
pressure and change by about the same amount, which also
contrasts with the other two compounds where the trilinear

term decreases much more rapidly under pressure. Finally,
E (QP ) and the biquadratic term both become more posi-
tive under pressure, but now their rate of change is flipped

TABLE V. Coefficients of the Landau expansion for various pressures for Sr3Zr2O7, Sr3Sn2O7, and Ca3Ti2O7. The units of second order,
fourth order, and trilinear coupling coefficients are (meV/f.u./Å2), (meV/f.u./Å4), and (meV/f.u./Å3), respectively.

P (GPa) αR αT λ βR βT αP βP δRT δRP δT P

Sr3Zr2O7 0 −140.46 −167.18 −145.81 35.71 26.15 59.62 71.90 52.24 21.93 19.34
4 −148.23 −184.47 −177.34 36.18 28.07 92.82 79.52 60.32 22.73 22.13
8 −160.73 −200.88 −205.91 38.87 29.94 126.47 86.58 68.28 24.01 25.01

14 −177.32 −224.68 −250.67 42.80 32.71 180.86 95.88 81.24 26.30 29.89
18 −186.82 −239.74 −281.60 45.32 34.57 220.09 100.83 88.74 27.54 30.67

Sr3Sn2O7 0 −106.09 −144.17 −200.25 33.79 26.21 152.97 87.06 62.56 29.66 17.49
4 −107.62 −151.58 −225.18 36.23 28.56 205.37 95.35 69.96 31.15 21.99
8 −108.78 −159.11 −249.45 38.60 30.90 258.92 101.83 77.76 32.90 23.62

14 −109.72 −169.83 −285.21 41.96 34.22 339.37 108.18 87.69 34.59 26.42
18 −109.59 −176.87 −311.73 44.11 36.38 392.37 110.87 94.45 35.46 28.30

Ca3Ti2O7 0 −180.44 −202.78 −245.10 46.87 33.68 92.04 84.35 80.64 31.57 24.57
4 −192.34 −217.61 −275.43 49.99 35.82 125.18 91.90 89.52 33.11 27.47
8 −202.77 −231.72 −305.86 52.99 37.88 160.11 98.62 98.34 34.50 29.44

14 −217.64 −252.17 −354.40 57.40 40.87 213.36 108.61 111.57 38.49 34.89
18 −226.59 −265.33 −386.01 60.25 42.82 249.98 113.91 120.60 40.49 37.25
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FIG. 12. Energies of the individual terms in the Landau expansion in Eq. (4) for several pressures for (a) Sr3Zr2O7, (b) Ca3Ti2O7, and
(c) Sr3Sn2O7. The quadratic and quartic terms involving QR, QT , and QP are shown in red, green, and blue, respectively. The trilinear coupling
term is shown in black and the biquadratic terms are shown in violet. To calculate these energy terms at each pressure, we use the pressure-
dependent Landau coefficients from Table V together with the DFT-relaxed distortion amplitudes at that pressure.

compared to the other two compounds: E (QP ) increases
more than the biquadratic term. This analysis supports the
conclusions reached in the main text: that differences in the
single-distortion terms E (Qi ) are primarily responsible to the
distinct pressure response of Sn3Sn2O7 compared to the other
compounds considered in this work.

APPENDIX G: PRESSURE DEPENDENCE OF COUPLING
TERMS: A SIMPLIFIED ANALYSIS

In this Appendix we perform a simplified analysis to show
the impact of each coupling term in Eq. (4) on the octahedral
rotation amplitudes. We start with a single-rotation structure

TABLE VI. Individual Landau energy terms (in meV/f.u.) from Eq. (4) as a function of pressure for Sr3Zr2O7, Sr3Sn2O7, and Ca3Ti2O7.
This data also is presented in Fig. 12.

P (GPa) αRQ2
R αT Q2

T λQT QRQP βRQ4
R βT Q4

T αPQ2
P βPQ2

P δRT Q2
T Q2

R δRPQ2
RQ2

P δT PQ2
T Q2

P

Sr3Zr2O7 0 −276.28 −534.24 −289.75 138.19 267.01 37.46 28.36 328.37 27.10 38.84
4 −303.76 −606.10 −371.65 151.91 303.05 60.55 33.83 406.16 30.38 47.43
8 −332.15 −673.95 −440.30 166.00 336.95 83.31 37.57 473.40 32.69 55.27

14 −367.46 −771.20 −543.26 183.78 385.40 119.43 41.81 577.84 35.99 67.75
18 −384.98 −831.79 −615.43 192.43 416.09 147.13 45.06 634.48 37.93 71.15

Sr3Sn2O7 0 −166.42 −396.61 −293.90 83.15 198.33 76.36 21.70 269.95 23.22 24.01
4 −159.76 −402.52 −298.00 79.86 201.38 91.23 18.81 275.80 20.54 25.94
8 −153.37 −408.12 −300.05 76.73 203.28 103.58 16.30 281.23 18.56 24.24

14 −143.44 −421.58 −304.92 71.72 210.89 119.52 13.42 284.61 15.93 23.10
18 −136.09 −428.54 −309.59 68.03 213.53 128.61 11.91 286.19 14.43 22.47

Ca3Ti2O7 0 −347.37 −610.15 −524.24 173.72 304.94 72.68 52.61 467.09 48.00 58.37
4 −369.75 −660.81 −583.41 184.75 330.33 96.21 54.28 522.61 48.92 64.11
8 −388.12 −708.52 −642.76 194.16 354.17 120.82 56.15 575.55 49.82 67.94

14 −412.37 −778.12 −735.80 206.08 389.16 157.31 59.04 652.29 53.77 79.38
18 −426.21 −822.48 −794.74 213.16 411.43 181.74 60.21 703.18 55.37 83.95
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FIG. 13. Energy difference �E of individual Landau energy
terms at pressure P compared to their value at 0 GPa, for
(a) Sr3Zr2O7, (b) Ca3Ti2O7, and (c) Sr3Sn2O7. Here E (Qi ) = αiQ2

i +
βQ4

i for Qi = QT , QR, QP.

(we choose X +
2 here as an example) and then add in one

coupling term at a time. In this example, we use the pressure-
dependent Landau coefficients for Sr3Zr2O7 obtained from
Fig. 5.

With only the X +
2 rotation included, Eq. (4) reduces to

E (QR) = αRQ2
R + βRQ4

R, (G1)

and the rotation amplitude that minimizes the energy is QR =√−αR/(2βR). Figure 14 (red circles) shows this term as a
function of pressure: QR initially increases, then becomes flat,
and then decreases slightly.

We next add in the biquadratic QT -QR coupling. Setting
QT = QT 0 to a constant value for simplicity (which is rea-
sonable, given its weak pressure dependence), the free energy
then becomes

E (QR) = (
αR + δRT Q2

T 0

)
Q2

R + βRQ4
R

= α′
RQ2

R + βRQ4
R, (G2)

where α′
R = αR + δRT Q2

T 0. The rotation amplitude that min-
imizes the energy is now QR = √−α′

R/(2βR). Thus the
biquadratic coupling simply renormalizes the second order
coefficient to a smaller value, thus reducing QR. This effect
is shown in Fig. 14 (blue triangles), where now the pressure
response is qualitatively different and QR decreases with in-

FIG. 14. Amplitude of the X +
2 rotation (QR) in Sr3Zr2O7 as a

function of pressure computed using Eqs. (G1)–(G4).

creasing pressure (in this example we set QT 0 = 1.0 Å). Note
that for simplicity we set δRP = δT P = 0 because they are
much smaller than δRT .

Next, we consider the trilinear coupling (and neglect the
biquadratic coupling by setting δRT = 0). Setting QT = QT 0

and QP = QP0 to fixed values, the free energy now becomes

E (QR) = αRQ2
R + βRQ4

R + λQRQT 0QP0. (G3)

Taking the derivative and setting it to zero, we then find

Q3
R + αR

2βR
QR + λQT 0QP0

4βR
= 0. (G4)

Setting QT 0 = QP0 = 1.0 Å and solving Eq. (G4) reveals that
the inclusion of λ causes QR to increase strongly with pres-
sure, as shown in Fig. 14 (black squares).

Finally, we calculate QR when both coupling terms are
included at the same time (λ �= 0, δRT �= 0). This is imple-
mented by replacing αR with α′

R in Eq. (G4). Solving yields
the result shown in Fig. 14 (green diamonds), where now QR

only weakly increases with pressure, and looks similar to the
case with no coupling terms.

Thus we see that the near cancellation of the trilinear and
biquadratic coupling terms contributes to the small changes
in octahedral rotation amplitudes with pressure. In particular,
a slightly different balance between the different energetic
terms in the different materials leads to the realization of slight
increases/decreases in octahedral rotation amplitudes under
pressure.

APPENDIX H: ENTHALPY DIFFERENCES BETWEEN
STRUCTURAL PHASES

Figure 15 shows the enthalpy difference H (s) −
H (A21am) between candidate high-pressure structural
phases (s) and A21am for Ca3Ti2O7 and Sr3Zr2O7. The DFT
calculations are performed at T = 0, so here the enthalpy H is
equal to the Gibbs free energy G, that is, G = H = E + PV .

Figure 15(a) shows that the enthalpy difference be-
tween all candidate structural phases and A21am remains
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FIG. 15. Enthalpy difference between possible high-pressure structural phases (s) and A21am for (a) Ca3Ti2O7 and (b) Sr3Zr2O7, calculated
with DFT.

positive for Ca3Ti2O7 up to 18 GPa. In addition, the enthalpy
difference gets more positive with increasing pressure for
the lowest enthalpy phases, Pnam and Pnab. The enthalpy
difference H (Acaa) − H (A21am) decreases with increasing
pressure, suggesting there could be a possible transition at
a significantly higher pressure. We consider the subset of

lowest enthalpy phases for Sr3Zr2O7 in Fig. 15(b) and observe
similar behavior. These results suggest that Ca3Ti2O7 and
Sr3Zr2O7 stay in the A21am phase throughout the pressure
range considered in this work, although structural phase tran-
sitions may be accessible to room temperature experiments at
lower pressures.
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