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Improved first-principles equation-of-state table of deuterium for high-energy-density applications
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We present a first-principles equation-of-state (EOS) table of deuterium aimed at improving the previously
established first-principles equation-of-state table (FPEOS) [S. X. Hu et al., Phys. Rev. B 84, 224109 (2011);
S. X. Hu et al., Phys. Plasmas 22, 056304 (2015)]. The EOS table presented here, referred to as iFPEOS,
introduces (1) a universal density functional theory (DFT) treatment of all density and temperature conditions, (2)
a fully consistent treatment of exchange-correlation (XC) thermal effects across the entire range of temperatures
covered, and (3) quantum treatment of ions. Based on ab initio molecular dynamics driven by thermal density
functional theory, iFPEOS includes density points in the range 1×10−3 � ρ � 1.6×103 g/cm3 and temperature
points in the range 800 K � T � 256 MK, thus covering the challenging warm dense matter (WDM) regime.
For an improved description of the electronic structure, iFPEOS employs an advanced free-energy XC density
functional with explicit temperature dependence, which is at the metageneralized gradient approximation level
of DFT. We use the latest orbital-free free-energy density functional for the high-temperature regime where
it shows excellent agreement with standard Mermin-Kohn-Sham DFT. For quantum treatment of ions we use
path-integral molecular dynamics in order to take into account nuclear quantum effects. Results are compared to
other EOS models and most recent experimental measurements of deuterium properties such as the molecular-to-
atomic fluid transition, the principal and reshock Hugoniot, and sound speed. We find that iFPEOS provides an
improved agreement with experimental data compared to other first-principles EOS models in the WDM regime
for pressures up to 200 GPa and temperatures up to 60 000 K. For higher pressures and temperatures, however,
iFPEOS is in agreement with other models in predicting lower compressibility and higher sound speed along the
Hugoniot, compared to experiment.

DOI: 10.1103/PhysRevB.104.144104

I. INTRODUCTION AND MOTIVATION

Accurate knowledge of the deuterium (D) EOS table is
of particular interest to a broad and interdisciplinary group
of researchers. A reliable EOS model of D covering a wide
range of densities and temperatures is required in the design
of inertial confinement fusion (ICF) targets, where EOS infor-
mation is critical in determining important parameters such
as the compressibility of the deuterium-tritium fuel [1], shock
wave timing [2], and Rayleigh-Taylor instability growth rates
[3]. In addition, an accurate EOS table of hydrogen, which
can be directly obtained by that of D through mass scaling,
is also important to the fields of planetary and stellar physics
[4]. Yet, even though D is an isotope of the simplest element
in the periodic table, its properties under extreme conditions
have long been a subject of extensive research and still present
challenges [5–7].

Recently, a comprehensive review and analysis of avail-
able models for the EOS of deuterium was published by
Gaffney et al. [8], where EOS models based on drastically
different methodologies such as the chemical model [9,10],
ab initio molecular dynamics (AIMD) in combination with
path-integral Monte Carlo (PIMC) [11–13], AIMD driven by
orbital-free (OF) DFT (OFMD) [14–16], etc., were discussed.

*dmih@lle.rochester.edu

The main conclusions reached in [8] highlight the lack of sys-
tematic agreement between the different D EOS models across
a wide range of thermodynamic conditions and the inability of
any one single model to match experimental measurements at
all ρ-T regimes. The same is true for other widely used EOS
models such as the SCvH (Saumon, Chabrier, van Horn) [17]
and its subsequent improvement in the high-density, high-
temperature regime by Chabrier et al. [18]. Following the
review by Gaffney et al., new experimental measurements of
shocked D by Fernandez-Pañella et al. [5] at a previously
unexplored pressure regime (250 < P < 550 GPa) further
confirm the lack of a single, standout model for the EOS
table of D. As shown in Fig. 2 of Ref. [5], models which
agree with experimental measurements of the principal and
reshock Hugoniot at low P fail to do so in the high-P regime
and vice versa. Furthermore, secondary shock measurements
which are also reported in Ref. [5] are underestimated by
first-principles EOS models by 5%–10% for pressures above
600 GPa. In comparison with other recently reported exper-
imental work by Fratanduono et al. [6] on the sound speed
in shock-compressed D along the principal Hugoniot, recent
models are in relatively good agreement with experiment in
the low-P regime below 75 GPa, but the disagreement sys-
tematically grows as T and P are increased.

Despite all the uncertainty among the different models,
one clear trend emerges, namely, that the DFT-based pre-
dictions of the principal Hugoniot, such as first-principles
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equation-of-state (FPEOS) [11,19,20], Caillabet et al. [21]
and Karasiev et al. [22] are all in good agreement with latest
experimental data for the low-P, low-T part of the principal
Hugoniot, however, in the high-P, high-T regime there is
a systematic underestimation of the compressibility. One of
the drawbacks of FPEOS is that it is based on two different
methodologies: AIMD with PBE XC for the low-T part and
PIMC for the high-T part. This introduces a thermodynamic
inconsistency across the two T regimes as thermal effects are
fully taken into account by the PIMC method but insufficiently
accounted for by the zero-temperature PBE XC. Therefore,
one of the main motivations for updating FPEOS is to main-
tain thermodynamic consistency by fully accounting for T
effects across the entire table.

Additionally, iFPEOS was further motivated by the need
to investigate the potential improvement in accuracy by an
exchange-correlation (XC) density functional at a level be-
yond the generalized gradient approximation (GGA). Two
of the latest DFT-based Hugoniot calculations are those by
Caillabet et al. [21], where the zero-temperature PBE XC
functional is used, and those by Karasiev, which are based
on the thermal KDT16 functional [23]. PBE and KDT16 are
both at the GGA level of DFT and their only difference is that
KDT16, as a finite-T extension of PBE, is designed to take
into account XC thermal effects (see Sec. II A for a detailed
discussion of finite-T XC functionals). While both predictions
appear at significantly lower compressibility compared to lat-
est measurements, KDT16 is ∼2.5% closer than PBE. This
improvement in accuracy is likely due to XC thermal effects
which are taken into account by KDT16. KDT16 is limited,
however, in its accuracy by the GGA level of refinement which
poses the important question of how a more-advanced thermal
XC functional would perform.

Recently, Hinz et al. [24] performed an accurate calcu-
lation of the insulator-to-metal transition (IMT) boundary
in warm dense H and D and showed that this transition is
caused by molecular dissociation of H2/D2 to atomic H/D
(see Fig. 1). The method employed in Ref. [24] used con-
ceptually and procedurally consistent DFT calculations based
on path-integral molecular dynamics (PIMD) [25] for includ-
ing nuclear quantum effects (NQEs), and SCAN-L+rVV10
[26,27] XC functional for treatment of electrons. A com-
bination of the original, orbital-dependent SCAN functional
[28] with the rVV10 correction has been recently shown to
provide an accurate description of the interaction energies for
the molecular dimers due to the accurate treatment of van der
Waals interactions [29], which further explains the ability of
the SCAN-L+rVV10 method in predicting the IMT boundary.
The improvement in accuracy of van der Waals functionals
is further demonstrated in [30]. Therefore, the success of
this method in solving this long-standing problem, where
other XC functionals such as PBE have failed [31], serves
as our main motivation for applying a similar but, as will
be explained later, improved methodology to obtain iFPEOS.
Additionally, iFPEOS was further motivated by recent devel-
opments of advanced free-energy density functionals which
provide improved accuracy across temperature regimes (see
Sec. II for details).

Figure 1 shows the D2 dissociation boundary as predicted
by iFPEOS compared to that by Hinz et al. and also to a
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FIG. 1. The dissociation boundary from molecular D2 to atomic
D according to latest experimental measurements [7,32,35], iF-
PEOS (green curve), SCAN-L+rVV10 [24] (light blue dashed curve:
PIMD, solid blue curve: BOMD) and PIMD with PBE XC [31]
(gray solid curve). The molecular dissociation boundary according to
iFPEOS has been determined along four isochores: 1.45, 1.59, 1.96,
and 2.45 g/cm3 and the P-T conditions at which dissociation occurs
are shown with green circles with the lowest-ρ isochore dissociation
point appearing at 107 GPa and highest at 344 GPa.

PBE-based prediction and latest experimental measurements.
Here, we do not calculate the dc conductivity in order to
determine the IMT boundary, but as is shown in Ref. [24],
the IMT boundary is directly related to molecular dissocia-
tion. The iFPEOS-predicted molecular dissociation boundary
plotted in Fig. 1 has been determined by the pressure drop
which occurs as molecular D2 dissociates into atomic D with
rising T along the four, most-relevant isochores (green circles
in Fig. 1). Extra calculations at 500, 600, and 700 K were
performed in order to determine the lowest-T point. Although
iFPEOS does not sample the P-T region as finely, results
are in good agreement with those presented in Ref. [24], and
the improvement to the PBE-based prediction (green line in
Fig. 1) is evident. Furthermore, as suggested by the results
in [24], NQEs, taken into account by PIMD, become more
and more important at higher pressures and at P ∼ 250 GPa
NQEs appear to significantly lower the IMT boundary. Other
studies that show the importance of NQEs at a variety of ther-
modynamic conditions, especially for light elements such as
H and its isotopes [31–34], also serve as motivation to employ
PIMD in iFPEOS since in FPEOS ions are treated classically.
In summary, the work presented here was motivated by (1) the
excellent ability of the SCAN-L+rVV10 method to describe
the H/D IMT boundary; (2) recent theoretical developments
in finite-T DFT including advanced thermal SCAN-L meta-
GGA XC functional; and (3) the need to take into account
NQEs.

The remainder of this paper is organized as follows: The
methods used in this work are described in Sec. II where we
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provide detailed outlines of the T -dependent T-SCAN-L XC
functional (Sec. II A) and the LKTFγ TF orbital-free noninter-
acting free-energy functional (Sec. II B) and a brief summary
of the PIMD method in Sec. II C. Section III provides com-
putational details about all Kohn-Sham molecular dynamics
(KSMD) and OFMD simulations, outlines the procedure of
tuning LKTFγ TF, and presents evidence of the excellent
agreement between KSMD and OFMD with tuned LKTFγ TF
at high T across the entire density range. Section IV provides
details about PIMD simulations and presents results about
the importance of NQEs across ρ and T regimes covered in
iFPEOS. In Sec. V we compare iFPEOS and other select EOS
models with some of the latest experimental measurements
of warm, dense D such as Hugoniot and sound speed mea-
surements. Finally, Sec. VI summarizes the work presented
here. The full iFPEOS table is provided in the Supplemental
Material (SM) [36].

II. METHODS

AIMD, where ionic motion is treated classically based on
forces calculated by Mermin-Kohn-Sham (MKS) DFT with
a ground-state XC functional, has been a very successful
method for simulating matter at a wide range of thermody-
namic conditions [37–42]. We apply the same methodology
to iFPEOS, but also introduce two major improvements: (1)
we improve on the DFT ground-state approximation (GSA) by
using a recently developed meta-GGA XC free-energy density
functional T-SCAN-L [43] to take into account XC thermal
effects; and (2) we go beyond the classical treatment of ions
by taking into account NQEs via PIMD. Additionally, in the
high-T regime, where the MKS treatment is too computation-
ally expensive, we use OF DFT with the recently developed
noninteracting free-energy functional LKTFγ TF [44].

A. T-SCAN-L free-energy XC density functional

Mermin’s extension of the Hohenberg-Kohn theorems to
finite T leads to the MKS formalism, which extends the
ground-state DFT approach to systems at finite T in thermo-
dynamic equilibrium [38,45]. The MKS formalism formally
defines a free-energy density functional; however, currently,
the most popular exchange-correlation approximations used
in finite-T DFT simulations are ground-state density func-
tionals, which only implicitly depend on T through the
T -dependent density [46,47]. Demonstrations of GSA defi-
ciencies to accurately predict physical properties for specific
systems at certain thermodynamic conditions were presented
in studies of Ref. [48]. Recently, there has been major
progress in developing thermal functionals, which are true
XC free-energy density functionals with explicit T depen-
dence [23,49,50]. In Ref. [49], Karasiev et al. introduce the
KSDT (Karasiev-Sjostrom-Dufty-Trickey, also see corrKSDT
in SM of Ref. [23]) thermal XC functional at the local density
approximation (LDA) level of DFT. In Ref. [23], Karasiev
et al. introduce the GGA-level thermal functional KDT16
(Karasiev-Dufty-Trickey 2016) which, by construction, re-
duces to the PBE exchange-correlation at the zero-T limit.
The improvement in accuracy at elevated T provided by
(corr)KSDT and KDT16 has been presented in [22,48,51].

In particular, in Ref. [22], KDT16 is shown to predict a sig-
nificantly softer, and in better agreement with experimental
measurement, principal Hugoniot of D in the high-T /high-P
range, where XC thermal effects are important. It is clear
that KDT16 captures XC thermal effects at the GGA level
of theory, however, due to the fact that KDT16 reduces to
PBE as T approaches zero, its accuracy is inherently limited
to that of PBE at low T . As a next step to create a thermal
XC functional at a higher level of accuracy, Karasiev et al.
presented a thermal XC functional at the meta-GGA level: the
T-SCAN-L functional [43]. This is accomplished by adding
the dominating GGA-level XC thermal correction provided
by KDT16 to the ground-state SCAN-L meta-GGA XC func-
tional [26] (the deorbitalized version of the advanced SCAN
[28] functional):

FT-SCAN-L
xc [n, T ] = ESCAN-L

xc [n] + �FGGA
xc [n, T ],

�FGGA
xc [n, T ] = FKDT16

xc [n, T ] − EPBE
xc [n], (1)

where �FGGA
xc [n, T ] is an additive thermal correction that

reduces to zero in the limit T → 0 K. Therefore, at low T ,
T-SCAN-L reduces to the ground-state SCAN-L functional
and at elevated temperatures XC thermal effects are pro-
vided by the GGA-level thermal correction. Consequently,
T-SCAN-L is an improvement to both SCAN-L and KDT16
because it retains the meta-GGA-level accuracy of SCAN-L
at low T and accounts for the dominating XC thermal effects
through the KDT16 additive thermal correction. In Ref. [43],
T-SCAN-L is shown to provide significant improvement to
both SCAN-L and KDT16 in DFT simulations of warm dense
matter. In addition, T-SCAN-L is shown to be in good agree-
ment with reference PIMC data [52] in EOS calculations of
helium in the T range 125 kK < T < 250 kK. Finally, we
combine T-SCAN-L with the rVV10 [27] functional to take
into account long-range van der Waals interactions, resulting
currently in the most-advanced treatment of XC effects ap-
plied to obtain an EOS model.

B. LKTFγTF orbital-free noninteracting
free-energy density functional

It is well known that at high-T conventional Kohn-Sham
(KS) DFT becomes prohibitively expensive due to the grow-
ing number of thermally occupied KS orbitals that need to be
included in the calculation. OF DFT mitigates this problem by
replacing the exact, orbital-dependent noninteracting kinetic
energy with a density functional, e.g., the local Thomas-Fermi
(TF) kinetic energy [53,54] or within semilocal approxima-
tions [55,56]. Generalization of OF DFT to finite T has led
to the development of several noninteracting free-energy den-
sity functionals [14,15,57–60]. In this work we employ one
of the latest developments in OF noninteracting free-energy
density functionals. In particular, we use the LKTF GGA
functional [60] in combination with thermal TF [57]. A con-
vex combination of the LKTF functional and TF results in the
one-parameter tunable OF GGA functional that preserves the
correct high-T limit:

FLKTFγ TF
s [n, T ] = γFLKTF

s [n, T ] + (1 − γ )FTF
s [n, T ], (2)

where γ is a free parameter that varies from 0 to 1 [44]. The
value of γ is determined such that OF calculations at certain
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thermodynamic conditions return results for desired variables
that match results from a reference KS calculation. The γ -
tuned LKTFγ TF is then transferable to other thermodynamic
conditions within a transferability domain. In their original
work introducing the LKTF functional [60], Luo et al. show
that at low T , LKTF underestimates P and TF overestimates
it compared to a reference KS calculation, and as T increases,
agreement with KS calculation improves for both function-
als (see Fig. 7 in Ref. [60] for D at ρ = 1.963 61 g/cm3,
2.7 < T < 8.2 eV). LKTFγ TF, with appropriately tuned γ ,
agrees, by definition, with the reference KS calculation at the
thermodynamic conditions at which the tuning is performed
and, as Karasiev et al. show [44], the γ -tunable functional
shows excellent transferability to higher T along the same
isochore. Here we tune γ to match results from reference
KS calculations for pressure at the highest iFPEOS T points
achievable with KSMD on select ρ points and use this γ for
the higher-T points along the same isochore (see Sec. III for
details and comparison between OFMD with LKTFγ TF and
KSMD at select ρ-T conditions).

C. Path-integral molecular dynamics

The ring-polymer PIMD method, where the quantum ion
is modeled by a fictitious system of P number of beads
connected circularly via harmonic springs forming a closed
flexible polymer, has emerged as a powerful tool for going
beyond the Born-Oppenheimer approximation and taking into
account NQEs [25,61–67]. Here we provide the relevant equa-
tions for energy and pressure derived from the path-integral
representation of the partition function with a Hamiltonian
for free and interacting ions and electrons (for a detailed
derivation, see Refs. [25,34]). For a system of N identical
interacting ring polymers with mass M at temperature T , the
kinetic and potential energies are expressed as

Ekin = 3

2
NPkBT −

P∑
s=1

N∑
i=1

1

2
Mω2

P
(
R(s)

i − R(s+1)
i

)2
, (3)

Epot = 1

P

P∑
s=1

E [{φ j}(s), {Ri}(s)], (4)

where kB is the Boltzmann constant, ωP = kBT
√
P/h̄, R(s)

i
are the ionic positions at imaginary time slice s, and
E [{φ j}(s), {Ri}(s)] is the KS energy functional of the KS or-
bitals φ j and ionic positions, the evaluation of which includes
the sum over ionic indices i and electronic indices j. For
the XC part of the KS energy functional we use T-SCAN-
L+rVV10. For a system with volume V , the pressure P is
estimated with the following relation:

P = NPkBT

V
− 1

3V

P∑
s=1

N∑
i=1

[
Mω2

P
(
R(s)

i − R(s+1)
i

)2

+ 1

P R(s)
i · ∂E [{φ j}(s), {Ri}(s)]

∂R(s)
i

]
, (5)

where all other symbols retain the same meaning as in Eqs. (3)
and (4). In the limit of P = 1 the classical Born-Oppenheimer
molecular dynamics (BOMD) method is recovered [68,69]

FIG. 2. Density-temperature points (circles) covered by iFPEOS,
color-coded based on type of calculation: KSMD, blue; OFMD,
purple; interpolation, orange. For reference, we plot some relevant
plasma parameters: green line corresponds to dimensionless coupling
parameter � = 1 and red line corresponds to degeneracy parameter
	 = 1 for a partially ionized plasma, where the ionization fraction
has been determined via Saha’s equation by taking into account con-
tinuum lowering using the Stewart-Pyatt model [79]. Below the red
and the green lines, which is mostly covered by KSMD, the system
is strongly coupled and degenerate. Gray line shows the path of the
imploding shell during ICF. The collection of KSMD points in the
region around ρ ∼ 1.5–2.5 g/cm3, T ∼ 1000–2500 K corresponds
to the region of molecular dissociation, where we use extra-fine
sampling in T space (�T = 100 K) for an accurate description of
the dissociation boundary.

and in the limit of P → ∞, the classical ring-polymer system
becomes isomorphic to the true quantum-ion one. Details
about our calculations and convergence tests for the value
of P necessary to approach the quantum limit within certain
accuracy are discussed in Sec. III.

III. BOMD COMPUTATIONAL DETAILS

iFPEOS includes 53 ρ points in the range of 0.001 � ρ �
1596.49 g/cm3 and 39 T points in the range 800 K � T �
256 MK. Figure 2 shows all density-temperature points and
the type of calculation corresponding to each one. AIMD
calculations were performed in the NVT ensemble (number
of particles, volume and temperature are kept constant) reg-
ulated by the Nosé-Hoover thermostat [70]. For KSMD we
use the Vienna ab initio simulations package (VASP) [71,72]
which is a plane-wave code that implements the projector-
augmented wave (PAW) method [73,74]. The PAW method
greatly simplifies the treatment of the electron-ion interac-
tion by replacing the rapidly changing all-electron (AE) KS
orbitals in the region near the nucleus with smooth node-
less pseudoorbitals (PS) (thereby drastically decreasing the
required plane-wave energy cutoff) and then restoring the
all-electron behavior and nodal structure by a linear transfor-
mation from the PS to the AE orbitals. This approximation
breaks down, however, at high T and/or high ρ as nuclei come
closer and closer together and augmentation spheres start to
overlap. We have performed convergence tests with respect to
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the augmentation sphere radius and, consequently, plane-wave
energy cutoff, at different T and ρ conditions, ensuring that
no accuracy greater than ∼1% in both P and internal energy
is sacrificed. We use two different PAW pseudopotentials (PP)
with different augmentation sphere radii: Rcut = 1.1Å (soft)
and Rcut = 0.8Å (hard), as well as a bare Coulomb potential.
The soft PAW PP is accurate enough for the low-T , low-ρ
regime, and as T and ρ increase, we find that the hard PAW
PP and the bare Coulomb potential become necessary. The
plane-wave energy cutoffs are 500, 1400, and 2100 eV for the
soft, hard PAW PP and bare Coulomb potentials, respectively.
All calculations were performed at the Baldereschi mean
value point [75]. Convergence tests for simulation cell size,
which in turn determines the number of particles in the box,
and number of thermally occupied bands included in each
simulation were also performed. All bands with occupation
�10−6 were included in each simulation. Initial geometries
for the low-density, low-T regime, where the system is ex-
pected to be fully or partly molecular, were constructed by
random placement of D2 molecules and only the part of the
MD simulation after the system has come to equilibrium
was kept for analysis. In the regime where the system is
fully atomic, simulations start from a random placement of
D atoms. The time step for each ρ, T point was determined
by performing a convergence test at certain conditions, T ′ =
100 K, ρ ′ = 1.0 g/cm3, and scaling to other conditions via
t = (T ′/T )(1/2)(ρ ′/ρ)(1/3). We find that this scaling relation
ensures that the average ion displacement remains uniform
at all ρ and T conditions. T-SCAN-L was implemented into
locally modified versions of the VASP and QUANTUM ESPRESSO

codes by combining the previously implemented and exten-
sively tested SCAN-L, KDT16 [22,24,26,50] [see Sec. II,
Eq. (2)] and ground-state PBE (part of standard release).
PIMD simulations were performed with the I-PI code [76],
which is a Python interface for the quantum ion dynamics
based on forces calculated by an external electronic structure
code, in our case VASP. OFMD simulations are performed with
the PROFESS@QUANTUM ESPRESSO package [14] and local
pseudopotential [77].

KS calculations cover densities from 0.1 � ρ �
1596.49 g/cm3 and temperatures from 800 K up to
250 kK for the density range 0.1 � ρ � 15.71 g/cm3,
and for higher densities we were able to perform KSMD
for temperatures above 250 kK (see Fig. 2). For higher-T
points KSMD becomes too computationally demanding,
therefore, for those temperatures we use OFMD (see Fig. 2
and detailed explanation below). In addition to the high-T
regime, the low-T , low-density (ρ < 0.1 g/cm3) regime is
also computationally challenging. Therefore, in the range
0.002 � ρ � 0.084 g/cm3, we perform OFMD calculations
for T � 182 kK only. At these conditions we expect OFMD
and KSMD results for pressure and energy to agree within
1%. This is further justified by performing KSMD and
OFMD calculations along the lowest-density, ρ = 0.001
g/cm3 isochore. Below T = 182 kK, however, OFMD
becomes unreliable and KSMD becomes too computationally
expensive. Therefore, in the range 0.002 � ρ � 0.084 g/cm3,
800 K � T � 182 kK, we interpolate [78] using our results
for the ρ = 0.001, 0.1, 0.2, and 0.3 g/cm3 isochores from
T = 800 K to T = 500 kK, and the T = 182, 250, 400,

FIG. 3. A Padé [2,2] analytical fit (red curve) to the values of the
γ parameter tuned to match KSMD results at select density points
(black circles). The analytical fit provides the values of γ for OFMD
calculations across entire iFPEOS density range.

500 kK isotherms from ρ = 0.001 g/cm3 to ρ = 0.3 g/cm3

(orange circles in lower left quadrant of Fig. 2). We advise
cautious use of iFPEOS in this relatively large region of
interpolation within which important processes such as
molecular dissociation and ionization are encountered.
Comparison between this region of interpolation and the
well-established H-REOS.3 [13], which specifically targets
this low-energy-density regime, as well as details of the
KSMD calculations of the ρ = 0.001 g/cm3 isochore are
presented in the SM [36].

OFMD calculations were carried out with recently
introduced noninteracting free-energy density functional
LKTFγ TF (see Sec. II B) and T-SCAN-L free-energy density
functional for the XC part of the electron-electron interaction
(see Sec. II A). At such high T , the rVV10 correction is essen-
tially zero, so the XC part in OFMD calculations is T-SCAN-L
only. LKTFγ TF is parametrized with respect to a reference
KS calculation at certain ρ and T and transferred to higher T
within the transferability domain. The standard procedure is
as follows: (1) perform a KS calculation at certain ρ and T ,
which serves as reference; (2) perform OF calculations with
LKTFγ TF, varying γ to find the value that gives results for
P that match the KS reference value; and (3) use this γ for
all higher-T points along the isochore. Here, we tune the γ

parameter to match KSMD results for P at the highest-T point
for which we have a KS calculation. We find that tuning γ

only at select density points and applying an analytical fit for
γ ’s dependence on ρ is enough to parametrize γ across the
entire table. The results for γ at the density points at which
we perform explicit matching with KS results, along with the
analytical fit (Padé approximant), are shown in Fig. 3.

The disagreement between the analytical fit and explicit
calculations is mostly a result of statistical uncertainty in the
MD runs; therefore, since the analytical fit serves as a de facto
statistical averaging, we use γ provided by the analytical fit
for all densities, even for those for which γ has been tuned
explicitly. For ρ � 0.1 g/cm3, we use γ = 0.233 and, for
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FIG. 4. Comparison between KSMD (blue squares) and OFMD
(red circles) pressures along selected isochores that span iFPEOS.
For each of the densities, γ was tuned with respect to the KS calcu-
lation at the highest-T point shown.

ρ � 300 g/cm3, we use γ = 0.0. OFMD calculations were
performed with PROFESS@QUANTUM ESPRESSO [14].

As explained in Ref. [44], the higher the T at which γ

tuning is performed, the better the agreement between KS and
OF calculations; therefore, here we tune γ at the highest-T
points for which KS calculations were performed. To verify
transferability to different T conditions, we performed addi-
tional OF calculations at the next few lower-T points along
several isochores that span the range 0.1 � ρ � 1000 g/cm3

(see Fig. 4 for the excellent agreement between OFMD with
LKTFγ TF and KSMD for results for P).

Since we perform KS calculations with VASP, using a
PAW data set, and OF calculations with PROFESS@QUANTUM

ESPRESSO using local pseudopotentials, results for total inter-
nal energies are not compatible. This inconsistency is purely
due to difference in computational procedures and can be
remedied by either construction of pseudopotentials compat-
ible with both codes or applying an energy shift. While the
latter seems like a much simpler solution, the energy shift
that needs to be applied, due to the approximate character
of the noninteracting free-energy functional, depends on ther-
modynamic conditions and needs to be determined for every
OFMD calculation. We find that this energy shift has a weak T
dependence in the region where KSMD calculations switch to
OFMD. Therefore, the magnitude of the energy shift is deter-
mined by the difference between the KSMD and the γ -tuned
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FIG. 5. Comparison between KSMD (blue squares) and OFMD
total internal energies (red circles) along selected isochores that span
iFPEOS. OFMD calculations have been performed with γ tuned at
the highest-T KS calculation presented. OFMD energies at highest-T
KSMD calculations have been shifted to match the KSMD energies,
and the same shift has been applied to the lower-T points.

OFMD results for total energies at the highest-T point along
each isochore. This density-dependent energy shift is assumed
constant for higher temperatures. The excellent agreement
between KSMD and OFMD energies for six isochores that
span iFPEOS is illustrated in Fig. 5.

IV. NUCLEAR QUANTUM EFFECTS ON IFPEOS

PIMD calculations with quantum ions simulated by an
N-bead ring polymer are N times more expensive than
BOMD, which renders using PIMD for the entire iFPEOS
prohibitively expensive. Here we find that for N = 8, pres-
sure and energy have converged to within 1%. Therefore,
we performed PIMD calculations at select density points in
the region 0.3 � ρ � 1596.49 g/cm3 starting from the lowest
T = 800 K point and going up in T along each isochore until
NQEs vanish. In principle, BOMD performed with VASP and
one-bead PIMD calculations with I-PI interfaced with VASP

should give identical results; however, the two calculations
give slightly different results mainly due to the difference
in thermostats. The I-PI code utilizes the PILE-G stochastic
thermostat [80]. Therefore, to eliminate this inconsistency,
for each ρ-T point, we performed additional one-bead PIMD
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FIG. 6. Relative corrections to pressure as a function of T and
ρ, �PNQE(ρ, T ) plotted in the ρ-T region of iFPEOS for which
explicit PIMD calculations were performed. Note that, for clarity,
below 0.0, the color gradient does not change linearly with change in
�PNQE(ρ, T ).

(effectively, BOMD) as well as the eight-bead calculations,
and the resulting differences in P and E between the two
calculations are applied to the BOMD calculations as NQEs
corrections. Figure 6 shows the relative correction to pres-
sures due to NQEs, �PNQE(ρ, T ), defined as

�PNQE(ρ, T ) = �PNQE(ρ, T )

PBOMD(ρ, T )
× 100,

�PNQE(ρ, T ) = PPIMD(ρ, T ) − PBOMD(ρ, T ). (6)

At high T , above ∼10 kK, NQEs corrections vanish. At low
T we identify two distinct regions where NQEs corrections
are significant (�1%). Below ∼1 g/cm3 PIMD calculations
predict lower P than BOMD and above ∼2 g/cm3 PIMD pres-
sures are higher. This sign change in �PNQE occurs around
the molecular dissociation boundary. For ρ � 2 g/cm3,
T ∼ 1 kK (blue region in Fig. 6) where the system is atomic
fluid, �PNQE is positive, which is expected and was recently
demonstrated by Kang et al. [34]. In the region of molecular
D2 (ρ � 1 g/cm3), however, NQEs lower the pressure. This
can be explained by the fact that NQEs tend to facilitate disso-
ciation [21,81] and at this low-ρ regime, where the transition
boundary is not well defined, PIMD could be predicting a
higher fraction of atomic D and, therefore, lower pressures.
This reasoning is further supported by results obtained by
Caillabet et al. [21].

In the lower left corner of Fig. 6 (ρ � 0.5 g/cm3, T �
2500 K) �PNQE reaches values of ∼ − 30%. This large rel-
ative difference between PIMD and BOMD is due to a sudden
drop in total pressure [denominator on the right-hand side
in Eq. (6)], as at these ρ-T conditions the degeneracy pres-
sure diminishes. For densities lower than ρ = 0.3 g/cm3,
PIMD calculations become computationally expensive, and
it is reasonable to assume that �PNQE(ρ)T =800 K remains ap-
proximately constant. The rationale behind this assumption is
based on the fact that, since the degeneracy pressure no longer
plays a major role, both �PNQE(ρ, T ) and PBOMD(ρ, T ) con-
tinue decreasing at approximately the same rate. The NQEs
corrections found at the higher-T points along the ρ = 0.3
g/cm3 isochore were applied to corresponding T points at
lower densities. �PNQE(ρ, T ) peaks in the region 4 � ρ � 10

FIG. 7. Contour plot of the difference between PIMD and
BOMD total internal energies.

g/cm3, T = 800 K and decreases for higher densities as a
result of the much-faster-increasing total pressures compared
to �PNQE(ρ, T ).

NQEs corrections to total internal energies
�ENQE(ρ, T ) = EPIMD(ρ, T ) − EBOMD(ρ, T ) are shown in
Fig. 7. For densities below ∼150 g/cm3, NQEs corrections
decrease monotonically as T rises. For ρ � 150 g/cm3,
however, NQEs energy corrections increase with increasing
T and a peak is observed at temperatures around 2 to 20 kK.
A similar effect, although less pronounced, is observed in the
NQEs corrections to total P. This nonmonotonic behavior of
�ENQE and �PNQE is due to two competing effects: (1) NQEs
decrease as T increases, and (2) NQEs increase as atoms get
closer and closer together. The latter is amplified at high ρ

and for ρ � 150 g/cm3, it dominates the low-T regime.

V. COMPARISON WITH EXPERIMENT
AND OTHER MODELS

In the following section we aim to benchmark iFPEOS
against some of the latest experimental measurements and
compare to other EOS models based on different methodolo-
gies. One material property that can be directly measured in
experiment and calculated from an EOS table is the Eulerian
sound speed, which is defined as the square root of the rate
of change of the pressure with respect to density at constant
entropy:

c =
√(

∂ p

∂ρ

)
S

. (7)

Recent measurements by Fratanduono et al. [6] and Holmes
[82] along with predictions by iFPEOS and other select mod-
els are shown in Fig. 8. iFPEOS (green curve in Fig. 8) is
in excellent agreement with the experimental data by Holmes
[82] in the low-P (10 < P < 30 GPa), low-ρ (0.6 < ρ < 0.8
g/cm3) regime which coincides with the conditions for molec-
ular dissociation. This agreement with experiment further
verifies iFPEOS’s accurate modeling of the molecular-to-
atomic transition, even at low densities, where the transition
is smooth (lower than those presented in Fig. 1, Sec. I).
At higher pressures (50 < P < 150 GPa), we again see a
good agreement between iFPEOS and experiment which is
an improvement compared to other models, especially the
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FIG. 8. Eulerian sound speed as a function of pressure in D
along the principal Hugoniot. iFPEOS (green curve) is in good
agreement with experimental measurements by Holmes [82] (orange
triangles) and Fratanduono et al. [6] (red diamonds) for pressures up
to ∼175 GPa.

PBE-based FPEOS and Caillabet which tend to overestimate
c in this regime. This improvement can be explained by XC
thermal effects which are expected to be important in this T
regime (10 � T � 80 kK) [48] and are captured by T-SCAN-
L, as well as the improved accuracy provided by SCAN-L
over PBE. For P > 180 GPa, iFPEOS predicts ∼10% higher
sound speed compared to experiment. This disagreement with
experimental measurements at high P is characteristic not
only to iFPEOS, but also to other models based on different
methodologies such as PIMC and chemical models.

Another robust verification of the accuracy of a theoretical
EOS model can be done by comparing the model’s prediction
of the principal Hugoniot with that measured in experiment.
When a liquid is shock compressed, the internal energy per
unit mass E , the pressure P, and the density ρ behind the
shock front are related to those in front of it (E0, P0, ρ0)
through the following equation:

E − E0 = 1

2
(P + P0)

(
1

ρ0
− 1

ρ

)
, (8)

known as the Rankine-Hugoniot (RH) equation [83] and in
single-shock compression from ambient conditions the ther-
modynamic states satisfying Eq. (8) form the principal Hugo-
niot. The D principal Hugoniot has been extensively studied
experimentally [5,84–88] and theoretically [9,10,21,22,89].
The principal Hugoniot in P-compression space (Fig. 9) and
in T -compression space (Fig. 10) is compared below to pop-
ular first-principles and chemical-model-based EOS table and
latest experimental measurements obtained with various tech-
niques.

In order to obtain a more-systematic comparison with
experiment, we determine P0 and E0 in Eq. (8) with an
additional calculation at the initial conditions: ρ0 = 0.173
g/cm3 and T0 = 19 K, which are the initial conditions re-
ported by Fernandez-Pañella et al. [5]. These initial conditions
were chosen so that iFPEOS can be compared to the lat-
est experimental measurements which also probe the high-P,
high-T regime. Computations at such low T0 and ρ0 are

FIG. 9. Pressure as a function of density compression along the
principal Hugoniot of D according to iFPEOS (green curve) com-
pared to latest experimental measurements, various EOS models, and
other Hugoniot calculations. Early gas gun measurements by Nellis
et al. [88] at P < 20 GPa are blue stars. Shock compression by
converging explosives by Boriskov et al. [86] (green crosses) is in
good agreement with the chemical models SESAME [10] (light pur-
ple dashed line) and Kerley03 [9] (dark purple dotted line). Orange
empty squares are magnetically driven flyer plate measurements [90]
and black empty squares are laser-driven shock compression mea-
surements [84]. High-precision Z-pinch measurements [85] (blue
inverted triangles) are in good agreement with recent laser-driven
shock compression (red diamonds [5] and gray filled circles [91])
in the low-ρ regime. Light blue dots and dashes are PBE-based EOS
model by Caillabet et al. [21], black dotted line is FPEOS [11,19],
orange dashes are Hugoniot calculations based on DFT with KDT16
thermal XC functional [22], and pink triangles are recent variational
Monte Carlo (filled) and reptation Monte Carlo (empty) calculations
[89]. iFPEOS is green, solid line.

challenging because the uncertainty in P0 calculated with the
largest unit cell achievable with our methods is larger by
approximately two orders of magnitude than the extremely
low value for P0 (∼10−4 GPa), therefore, we take P0 =
0.0 GPa. We tested the effect of P0 on the Hugoniot and
for 0 < P0 < 10−2 GPa, we see a maximum variation in the
predicted compression of less than 0.01%. For initial en-
ergy we obtain E0 = −15.7755 ± 0.0004 eV/atom. To verify
the accuracy of our value for E0, we perform an additional
calculation on an isolated D2 molecule and compare to high-
precision wave-function-based calculations [96]. Our result
ED2 = −15.8192 ± 0.0002 eV/atom is only 0.4% higher than
the reported value; ED2 = −15.886 eV/atom. To obtain the
principal Hugoniot with higher accuracy, we increase the
density point sampling around the anticipated region of max-
imum compression and high-pressure Hugoniot, which occur

144104-8



IMPROVED FIRST-PRINCIPLES EQUATION-OF-STATE … PHYSICAL REVIEW B 104, 144104 (2021)

FIG. 10. Temperature as a function of pressure along the prin-
cipal Hugoniot. Experimental results are shown as yellow triangles
(gas gun) [92], black empty diamonds (laser) [93], magenta di-
amonds (laser) [94], and brown filled circles (Z machine) [95].
Theoretical models are labeled as in Figs. 8 and 9.

in the range 0.6 � ρ � 0.8 g/cm3. The smooth Hugoniot
curve shown in Fig. 9 has been obtained by solving the
RH equations on a dense ρ-T grid (�ρ = 0.0005 g/cm3,
�T = 250 K) obtained through spline interpolation [78] ap-
plied to the ρ-T points corresponding to explicit calculations
shown in Fig. 2. Here we note that the maximum compres-
sion peak in the iFPEOS principal Hugoniot at ρ/ρ0 = 4.64
corresponds to T = 8000 K, which is close to the 7500-K
isotherm for which we have performed explicit KSMD cal-
culations and, therefore, any potential error in the maximum
compression peak due to interpolation has been eliminated.
According to iFPEOS, maximum compression is 2.5% higher
than the highest-compression experimental datum by Knud-
son et al. [85] and the maximum compression predicted by
the KDT16 thermal functional [22] and 3.5% higher than
the PBE prediction. In addition, the iFPEOS maximum com-
pression is halfway between recent high-precision variational
Monte Carlo (VMC) (1.9% lower than iFPEOS) and reptation
Monte Carlo (RMC) (1.8% higher than iFPEOS) calculations
in this regime. In the region immediately above maximum
compression, P ∼ 100 GPa, iFPEOS is in excellent agreement
with recent experimental measurements by Fernandez-Pañella
et al. [5]. For P > 200 GPa, however, iFPEOS predicts a
significantly stiffer (∼1.5%) Hugoniot compared to experi-
ment, consistent with PIMC and KDT16-based predictions
in this regime. Comparison between iFPEOS with other
popular models and experimental measurement of T and P
along the principal Hugoniot (Fig. 10) shows that there is
an excellent agreement between the first-principles models
up to P = 150 GPa, however, the growing disagreement be-

FIG. 11. Shock Hugoniot for different precompressed D2 sam-
ples at T = 297 K. Red: ρ0 = 0.13 g/cm3, P0 = 0.16 GPa; orange:
ρ0 = 0.1758 g/cm3, P0 = 0.3 GPa; blue: ρ0 = 0.3288 g/cm3, P0 =
1.6 GPa. Triangles: experimental measurements [94]; dashed curves:
AIMD calculations with PBE XC [21]; solid curves: iFPEOS.

tween theoretical models and experiments as pressure grows
is evident.

We also compare iFPEOS with experimental measure-
ments of shock Hugoniot data from laser-driven shock
compression of D2 targets, precompressed to different initial
pressures, as reported by Loubeyre et al. [94], where dia-
mond anvil cell is used to precisely control the initial density
of the sample. Measurements of Hugoniot data are reported
for five shots at initial pressure P0 = 0.16 ± 0.03 GPa (ρ0 =
0.13 ± 0.012 g/cm3), six shots at P0 = 0.3 ± 0.03 GPa, and
four shots at P0 = 1.61 ± 0.03 GPa. To compare iFPEOS with
those measurements, we performed extra calculations at the
reported initial conditions: T = 297 K, ρ0 = 0.13, 0.1758,
and 0.3288 g/cm3. The iFPEOS Hugoniot curve for each ρ0

are compared to experimental measurements and a PBE-based
model [21] in Fig. 11. For the lowest initial density ρ =
0.13 g/cm3, iFPEOS predicts a softer Hugoniot compared to
PBE, consistent with results for principal Hugoniot, and ∼6%
higher maximum compression which is in much better agree-
ment with highest-compression experimental datum. At these
conditions, improved accuracy is attributed to the advanced,
meta-GGA level of XC treatment. The ρ0 = 0.1758 g/cm3

precompressed Hugoniot is similar to the principal Hugoniot
shown in Fig. 9 for which ρ0 = 0.173 g/cm3. At these initial
conditions the iFPEOS Hugoniot curve moves closer to the
PBE one, however both are at significantly higher compres-
sion than the majority of experimental data points. Finally,
for the case of ρ0 = 0.3288 g/cm3 we find that iFPEOS and
PBE Hugoniot curves are in agreement up to P ∼ 100 GPa.
At higher pressures T � 10 000 K, which is the temperature
regime in which XC thermal effects become important and are
the reason for the Hugoniot hardening towards the experimen-
tal data points at ρ/ρ0 ∼ 3.3.

Next, we compare iFPEOS with experimental measure-
ments of reshock Hugoniot data. The pressure in the
reshocked deuterium is determined by impedance matching
with the standard, in the case of latest measurements by
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FIG. 12. Single and reflected shock states in D. Figures in the
lower left corner correspond to principal Hugoniot figures in Fig. 9.
Model labels match those from Figs. 8, 9, and 10. All experimental
reflected shocks are from an α-quartz standard. Black filled triangles
are initial states in the shocked D prior to reflection and black empty
triangles are the corresponding reshock states. Green open circles
correspond to iFPEOS prediction of reshock states launched from the
initial states reported in [5]. Green solid curve corresponds to the iF-
PEOS reshock launched from the iFPEOS principal Hugoniot using
impedance matching with the α-quartz. Experimental secondary-
shock data using magnetically driven flyer plates are orange open
squares [90] and blue inverted triangles [85], and using laser-driven
shock compression are gray filled circles [91].

Fernandez-Pañella [5], α-quartz, in a manner consistent with
that described in the SM in Ref. [5]. In brief, one solves the
RH jump relation, which is Eq. (8) in combination with the
following:

ρ = ρ0
(
Us − Up0

)
Us − Up

, (9)

P = P0 + ρ0
(
Us − Up0

)(
Up − Up0

)
(10)

for given measured shock velocity Us and initial particle ve-
locity Up0

. The reshock Hugoniot in pressure-particle velocity
(P-Up) space is launched off of the same initial state as that
reported in experiment and its intersection with the α-quartz
principal Hugoniot determines the final P in the reshocked D.
These final pressures determine the states on each reshock
Hugoniot in pressure-compression space launched from the
initial states reported in experiment (black, filled triangles
in Fig. 12) and are reported as green circles in Fig. 12. We
also show the reshock Hugoniot using the iFPEOS principal
Hugoniot as initial conditions (green curve in Fig. 12) and
not the experimentally determined initial states, which is a
more self-consistent prediction and allows for a more direct
comparison with other experimental measurements. As in the
case of principal Hugoniot, iFPEOS reshock states are in good
agreement with experiment and other first-principles models
in the low-P regime around 200 GPa, but significantly under-
estimate the compression (6%–11%) for the three data points

above 600 GPa, thereby confirming a systematic disagreement
between theory and experiment in this high-P regime.

VI. SUMMARY

We have presented iFPEOS, an EOS table of deuterium
which includes major developments in the AIMD methodol-
ogy, such as a more accurate XC functional, proper treatment
XC thermal effects, and quantum treatment of ions. iFPEOS
employs the newly developed T-SCAN-L XC functional,
which is at the more-accurate meta-GGA level of DFT and
accounts for XC thermal effects. Long-range van der Waals
interactions are taken into account by combining T-SCAN-L
with the rVV10 functional. Finally, iFPEOS takes into ac-
count NQEs via PIMD calculations.

iFPEOS reports pressures and internal energies for den-
sities 0.001 � ρ � 1596.46 g/cm3 and temperatures 800 K
� T � 256 MK. Conditions in which the system is strongly
coupled and degenerate are almost entirely covered by
KSMD. DFT calculations in the high-T regime (T >

250 000 K) have been made possible with the newly devel-
oped LKTFγ TF OF DFT functional, which greatly reduces
the computational cost without introducing thermodynamic
inconsistencies.

Results are compared with latest experimental measure-
ments and other popular models’ predictions of the properties
of D at a wide range of pressures and temperatures. We
conclude that iFPEOS is expected to provide an improved
description of D for T � 60 000 K, P � 200 GPa based on
our results of sound speed and the molecular dissociation
boundary, where we see a clear improvement with the latest
experimental data. This improvement can clearly be attributed
to the advanced (meta-GGA level of DFT), thermal XC func-
tional T-SCAN-L+rVV10, as it occurs precisely in conditions
in which XC thermal effects (not included in PBE) and ac-
curate prediction of D-D interaction energies are important.
At higher pressures, however, iFPEOS predicts significantly
higher sound speed, in agreement with other first-principles-
based models. In the high-pressure regime of the principal
Hugoniot iFPEOS predicts a significantly lower compres-
sion (∼1.5%) than experimental measurements. However, we
find that iFPEOS does provide ∼1%–1.5% better agreement
with experiment compared to PBE-based results and is in
excellent agreement with PIMC-based results in that regime.
A similar trend is seen in comparing iFPEOS with latest
reshock measurements. At P ∼ 200 GPa, iFPEOS, as well
as other models, show excellent agreement with experiment.
At P > 600 GPa, however, disagreement in predicted (by
all models) and measured compression in the reshock state
grows to 6%–11%. In summary, we have presented iFPEOS,
an updated D EOS table which provides three important im-
provements to previous first-principles-based models: (1) an
advanced, meta-GGA-level treatment of the XC interaction,
(2) fully consistent treatment of XC thermal effects across all
temperature conditions, and (3) quantum treatment of ions.
Comparison with other models and latest experimental mea-
surements show that iFPEOS does provide an improvement in
accuracy where XC thermal effects are important and in the
region of molecular dissociation. Finally, we conclude that
the improved DFT methodology provided in iFPEOS does
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not seem to resolve the long-standing disagreement between
theory and experiment in the pressure regime above 200 GPa.
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Clérouin et al., A review of equation-of-state models for inertial
confinement fusion materials, High Energy Density Phys. 28, 7
(2018).

[9] G. I. Kerley, Equations of state for hydrogen and deu-
terium, Sandia National Laboratories Technical Report,
doi:10.2172/917468.

[10] D. Saumon, The SESAME 5267 equation of state of deuterium,
Technical Report LA-UR-13-20032, Los Alamos National Lab-
oratory, 2013.

[11] S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky,
First-principles equation-of-state table of deuterium for iner-
tial confinement fusion applications, Phys. Rev. B 84, 224109
(2011).

[12] A. A. Correa, L. X. Benedict, M. A. Morales, P. A. Sterne, J. I.
Castor, and E. Schwegler, A first-principles global multiphase
equation of state for hydrogen, arXiv:1806.01346.

[13] A. Becker, W. Lorenzen, J. J. Fortney, N. Nettelmann, M.
Schöttler, and R. Redmer, Ab initio equations of state for
hydrogen (H-REOS.3) and helium (He-REOS. 3) and their im-
plications for the interior of brown dwarfs, Astrophys. J. Suppl.
Ser. 215, 21 (2014).

[14] V. V. Karasiev, T. Sjostrom, and S. B. Trickey, Finite-
temperature orbital-free DFT molecular dynamics: Coupling
PROFESS and QUANTUM ESPRESSO, Comput. Phys. Commun.
185, 3240 (2014).

[15] V. V. Karasiev, D. Chakraborty, O. A. Shukruto, and S. B.
Trickey, Nonempirical generalized gradient approximation
free-energy functional for orbital-free simulations, Phys. Rev.
B 88, 161108(R) (2013).

[16] J.-F. Danel, L. Kazandjian, and R. Piron, Equation of state of
warm dense deuterium and its isotopes from density-functional
theory molecular dynamics, Phys. Rev. E 93, 043210 (2016).

[17] D. Saumon, G. Chabrier, and H. M. van Horn, An equation of
state for low-mass stars and giant planets, Astrophys. J. Suppl.
Ser. 99, 713 (1995).

[18] G. Chabrier, S. Mazevet, and F. Soubiran, A new equation of
state for dense hydrogen-helium mixtures, Astrophys. J. 872,
51 (2019).

[19] S. X. Hu, V. N. Goncharov, T. Boehly, R. McCrory, S.
Skupsky, L. A. Collins, J. D. Kress, and B. Militzer, Impact
of first-principles properties of deuterium–tritium on inertial
confinement fusion target designs, Phys. Plasmas 22, 056304
(2015).

[20] B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F.
Soubiran, First-principles equation of state database for warm
dense matter computation, Phys. Rev. E 103, 013203 (2021).

[21] L. Caillabet, S. Mazevet, and P. Loubeyre, Multiphase equation
of state of hydrogen from ab initio calculations in the range 0.2
to 5 g/cc up to 10 eV, Phys. Rev. B 83, 094101 (2011).

[22] V. V. Karasiev, S. X. Hu, M. Zaghoo, and T. R. Boehly,
Exchange-correlation thermal effects in shocked deuterium:
Softening the principal Hugoniot and thermophysical proper-
ties, Phys. Rev. B 99, 214110 (2019).

[23] V. V. Karasiev, J. W. Dufty, and S. B. Trickey, Nonempirical
Semilocal Free-Energy Density Functional for Matter Under
Extreme Conditions, Phys. Rev. Lett. 120, 076401 (2018).

[24] J. Hinz, V. V. Karasiev, S. X. Hu, M. Zaghoo, D. Mejía-
Rodríguez, S. B. Trickey, and L. Calderín, Fully consistent

144104-11

https://doi.org/10.1103/PhysRevLett.104.235003
https://doi.org/10.1063/1.2162803
https://doi.org/10.1016/j.hedp.2009.12.005
https://doi.org/10.1103/RevModPhys.84.1607
https://doi.org/10.1103/PhysRevLett.122.255702
https://doi.org/10.1063/1.5053994
https://doi.org/10.1126/science.aat0970
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.2172/917468
https://doi.org/10.1103/PhysRevB.84.224109
http://arxiv.org/abs/arXiv:1806.01346
https://doi.org/10.1088/0067-0049/215/2/21
https://doi.org/10.1016/j.cpc.2014.08.023
https://doi.org/10.1103/PhysRevB.88.161108
https://doi.org/10.1103/PhysRevE.93.043210
https://doi.org/10.1086/192204
https://doi.org/10.3847/1538-4357/aaf99f
https://doi.org/10.1063/1.4917477
https://doi.org/10.1103/PhysRevE.103.013203
https://doi.org/10.1103/PhysRevB.83.094101
https://doi.org/10.1103/PhysRevB.99.214110
https://doi.org/10.1103/PhysRevLett.120.076401


D. I. MIHAYLOV et al. PHYSICAL REVIEW B 104, 144104 (2021)

density functional theory determination of the insulator-metal
transition boundary in warm dense hydrogen, Phys. Rev. Res.
2, 032065(R) (2020).

[25] D. Marx and M. Parrinello, Ab initio path integral molec-
ular dynamics: Basic ideas, J. Chem. Phys. 104, 4077
(1996).

[26] D. Mejia-Rodriguez and S. B. Trickey, Deorbitalization strate-
gies for meta-generalized-gradient-approximation exchange-
correlation functionals, Phys. Rev. A 96, 052512 (2017).

[27] O. A. Vydrov and T. Van Voorhis, Nonlocal Van Der Waals
Density Functional Made Simple, Phys. Rev. Lett. 103, 063004
(2009).

[28] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Constrained
and Appropriately Normed Semilocal Density Functional,
Phys. Rev. Lett. 115, 036402 (2015).

[29] H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Versatile Van
Der Waals Density Functional Based on a Meta-Generalized
Gradient Approximation, Phys. Rev. X 6, 041005 (2016).

[30] R. C. Clay, III, M. Holzmann, D. M. Ceperley, and M. A.
Morales, Benchmarking density functionals for hydrogen-
helium mixtures with quantum Monte Carlo: Energetics,
pressures, and forces, Phys. Rev. B 93, 035121 (2016).

[31] M. A. Morales, J. M. McMahon, C. Pierleoni, and D. M.
Ceperley, Nuclear Quantum Effects and Nonlocal Exchange-
Correlation Functionals Applied to Liquid Hydrogen at High
Pressure, Phys. Rev. Lett. 110, 065702 (2013).

[32] M. Zaghoo, R. J. Husband, and I. F. Silvera, Striking isotope
effect on the metallization phase lines of liquid hydrogen and
deuterium, Phys. Rev. B 98, 104102 (2018).

[33] J. Chen, X.-Z. Li, Q. Zhang, M. I. J. Probert, C. J. Pickard,
R. J. Needs, A. Michaelides, and E. Wang, Quantum simulation
of low-temperature metallic liquid hydrogen, Nat. Commun. 4,
2064 (2013).

[34] D. Kang, K. Luo, K. Runge, and S. B. Trickey, Two-temperature
warm dense hydrogen as a test of quantum protons driven
by orbital-free density functional theory electronic forces,
Matter Radiat. Extremes 5, 064403 (2020).

[35] M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke,
K. Cochrane, M. E. Savage, D. E. Bliss, T. Mattsson, and
R. Redmer, Direct observation of an abrupt insulator-to-
metal transition in dense liquid deuterium, Science 348, 1455
(2015).

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.104.144104 for the full iFPEOS table as
well as details about calculations in the challenging low-density
regime. See also for the full iFPEOS table as well as details
about calculations in the challenging low-density regime.

[37] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[38] N. D. Mermin, Thermal properties of the inhomogeneous elec-
tron gas, Phys. Rev. 137, A1441 (1965).

[39] M. V. Stoitsov and I. Z. Petkov, Density functional theory at
finite temperatures, Ann. Phys. 184, 121 (1988).

[40] R. Car and M. Parrinello, Unified Approach for Molecular
Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55,
2471 (1985).

[41] R. N. Barnett and U. Landman, Born-oppenheimer molecular-
dynamics simulations of finite systems: Structure and dynamics
of (h 2 o) 2, Phys. Rev. B 48, 2081 (1993).

[42] D. Marx and J. Hutter, in Modern Methods and Algorithms
of Quantum Chemistry, edited by J. Grotendorst (John von
Neumann Inst. for Computing, Jülich, 2000), Vol. 301.

[43] V. V. Karasiev, D. I. Mihaylov, and S. X. Hu, Meta-GGA
exchange-correlation free-energy density functional to achieve
unprecedented accuracy for warm-dense-matter simulations
(unpublished).

[44] V. V. Karasiev, J. Hinz, and D. I. Mihaylov, Tunable non-
interacting free-energy functionals (unpublished).

[45] A. Pribram-Jones, S. Pittalis, E. Gross, and K. Burke, Ther-
mal density functional theory in context, in Frontiers and
Challenges in Warm Dense Matter (Springer, Berlin, 2014),
pp. 25–60.

[46] K. Burke, J. C. Smith, P. E. Grabowski, and A. Pribram-Jones,
Exact conditions on the temperature dependence of density
functionals, Phys. Rev. B 93, 195132 (2016).

[47] J. C. Smith, A. Pribram-Jones, and K. Burke, Exact ther-
mal density functional theory for a model system: Correlation
components and accuracy of the zero-temperature exchange-
correlation approximation, Phys. Rev. B 93, 245131 (2016).

[48] V. V. Karasiev, L. Calderín, and S. B. Trickey, Importance of
finite-temperature exchange correlation for warm dense matter
calculations, Phys. Rev. E 93, 063207 (2016).

[49] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Ac-
curate Homogeneous Electron Gas Exchange-Correlation Free
Energy for Local Spin-Density Calculations, Phys. Rev. Lett.
112, 076403 (2014).

[50] D. I. Mihaylov, V. V. Karasiev, and S. X. Hu, Thermal hy-
brid exchange-correlation density functional for improving the
description of warm dense matter, Phys. Rev. B 101, 245141
(2020).

[51] V. V. Karasiev, S. B. Trickey, and J. W. Dufty, Status of
free-energy representations for the homogeneous electron gas,
Phys. Rev. B 99, 195134 (2019).

[52] B. Militzer, Path integral monte carlo and density func-
tional molecular dynamics simulations of hot, dense helium,
Phys. Rev. B 79, 155105 (2009).

[53] L. H. Thomas, The calculation of atomic fields, in Mathe-
matical Proceedings of the Cambridge Philosophical Society,
(Cambridge University Press, Cambridge, 1927), Vol. 23, pp.
542–548.

[54] E. Fermi, Application of statistical gas methods to electronic
systems, Atti R. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat.
Nat. 6, 602 (1927).

[55] E. V. Ludeña and V. V. Karasiev, Kinetic energy functionals:
history, challenges and prospects, in Reviews of Modern Quan-
tum Chemistry: A Celebration of the Contributions of Robert
Parr, edited by K. D. Sen (World Scientific, Singapore, 2002),
pp. 612–665.

[56] K. Luo, V. V. Karasiev, and S. B. Trickey, A simple generalized
gradient approximation for the noninteracting kinetic energy
density functional, Phys. Rev. B 98, 041111(R) (2018).

[57] R. P. Feynman, N. Metropolis, and E. Teller, Equations of state
of elements based on the generalized Fermi-Thomas theory,
Phys. Rev. 75, 1561 (1949).

[58] F. Perrot, Gradient correction to the statistical electronic free en-
ergy at nonzero temperatures: Application to equation-of-state
calculations, Phys. Rev. A 20, 586 (1979).

[59] V. V. Karasiev, T. Sjostrom, and S. B. Trickey, Generalized-
gradient-approximation noninteracting free-energy functionals

144104-12

https://doi.org/10.1103/PhysRevResearch.2.032065
https://doi.org/10.1063/1.471221
https://doi.org/10.1103/PhysRevA.96.052512
https://doi.org/10.1103/PhysRevLett.103.063004
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevX.6.041005
https://doi.org/10.1103/PhysRevB.93.035121
https://doi.org/10.1103/PhysRevLett.110.065702
https://doi.org/10.1103/PhysRevB.98.104102
https://doi.org/10.1038/ncomms3064
https://doi.org/10.1063/5.0025164
https://doi.org/10.1126/science.aaa7471
http://link.aps.org/supplemental/10.1103/PhysRevB.104.144104
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1016/0003-4916(88)90271-0
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1103/PhysRevB.48.2081
https://doi.org/10.1103/PhysRevB.93.195132
https://doi.org/10.1103/PhysRevB.93.245131
https://doi.org/10.1103/PhysRevE.93.063207
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevB.101.245141
https://doi.org/10.1103/PhysRevB.99.195134
https://doi.org/10.1103/PhysRevB.79.155105
https://doi.org/10.1103/PhysRevB.98.041111
https://doi.org/10.1103/PhysRev.75.1561
https://doi.org/10.1103/PhysRevA.20.586


IMPROVED FIRST-PRINCIPLES EQUATION-OF-STATE … PHYSICAL REVIEW B 104, 144104 (2021)

for orbital-free density functional calculations, Phys. Rev. B 86,
115101 (2012).

[60] K. Luo, V. V. Karasiev, and S. B. Trickey, Towards accurate
orbital-free simulations: A generalized gradient approximation
for the noninteracting free energy density functional, Phys. Rev.
B 101, 075116 (2020).

[61] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum Mechan-
ics and Path Integrals (Dover, New York, 2010).

[62] D. Chandler and P. G. Wolynes, Exploiting the isomorphism
between quantum theory and classical statistical mechanics of
polyatomic fluids, J. Chem. Phys. 74, 4078 (1981).

[63] M. Suzuki, Fractal decomposition of exponential operators with
applications to many-body theories and monte carlo simula-
tions, Phys. Lett. A 146, 319 (1990).

[64] M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello,
Efficient and general algorithms for path integral Car–Parrinello
molecular dynamics, J. Chem. Phys. 104, 5579 (1996).

[65] I. R. Craig and D. E. Manolopoulos, Quantum statistics and
classical mechanics: Real time correlation functions from ring
polymer molecular dynamics, J. Chem. Phys. 121, 3368 (2004).

[66] A. Pérez, M. E. Tuckerman, and M. H. Müser, A comparative
study of the centroid and ring-polymer molecular dynamics
methods for approximating quantum time correlation functions
from path integrals, J. Chem. Phys. 130, 184105 (2009).

[67] M. Rossi, M. Ceriotti, and D. E. Manolopoulos, How to remove
the spurious resonances from ring polymer molecular dynam-
ics, J. Chem. Phys. 140, 234116 (2014).

[68] J. S. Tse, Ab initio molecular dynamics with density functional
theory, Annu. Rev. Phys. Chem. 53, 249 (2002).

[69] D. Marx and J. Hutter, Ab initio Molecular Dynamics: Basic
Theory and Advanced Methods (Cambridge University Press,
Cambridge, 2009).

[70] W. G. Hoover, Canonical dynamics: Equilibrium phase-space
distributions, Phys. Rev. A 31, 1695 (1985).

[71] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[72] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[73] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[74] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[75] A. Baldereschi, Mean-value point in the Brillouin zone,
Phys. Rev. B 7, 5212 (1973).

[76] V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T.
Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M. Wilkins
et al., i-PI 2.0: A universal force engine for advanced molecular
simulations, Comput. Phys. Commun. 236, 214 (2019).

[77] V. V. Karasiev and S. B. Trickey, Issues and challenges
in orbital-free density functional calculations, Comput. Phys.
Commun. 183, 2519 (2012).

[78] H. Akima, A method of bivariate interpolation and smooth sur-
face fitting for irregularly distributed data points, ACM Trans.
Math. Software 4, 148 (1978).

[79] B. J. B. Crowley, Continuum lowering–a new perspective,
High Energy Density Phys. 13, 84 (2014).

[80] M. Ceriotti, M. Parrinello, T. E. Markland, and D. E.
Manolopoulos, Efficient stochastic thermostatting of path inte-
gral molecular dynamics, J. Chem. Phys. 133, 124104 (2010).

[81] S. Azadi, R. Singh, and T. D. Kühne, Nuclear quantum ef-
fects induce metallization of dense solid molecular hydrogen,
J. Comput. Chem. 39, 262 (2018).

[82] N. Holmes (unpublished).
[83] W. M. Rankine, On the thermodynamic theory of waves of finite

longitudinal disturbance, in Classic Papers in Shock Compres-
sion Science (Springer, Berlin, 1998), pp. 133–148.

[84] D. G. Hicks, T. R. Boehly, P. M. Celliers, J. H. Eggert, S. J.
Moon, D. D. Meyerhofer, and G. W. Collins, Laser-driven sin-
gle shock compression of fluid deuterium from 45 to 220 GPa,
Phys. Rev. B 79, 014112 (2009).

[85] M. D. Knudson and M. P. Desjarlais, High-Precision Shock
Wave Measurements of Deuterium: Evaluation of Exchange-
Correlation Functionals at the Molecular-To-Atomic Transition,
Phys. Rev. Lett. 118, 035501 (2017).

[86] G. V. Boriskov, A. I. Bykov, R. IlKaev, V. D. Selemir, G. V.
Simakov, R. F. Trunin, V. D. Urlin, A. N. Shuikin, and W. J.
Nellis, Shock compression of liquid deuterium up to 109 GPa,
Phys. Rev. B 71, 092104 (2005).

[87] R. D. Dick and G. I. Kerley, Shock compression data for liquids.
II. condensed hydrogen and deuterium, J. Chem. Phys. 73, 5264
(1980).

[88] W. J. Nellis, A. C. Mitchell, M. Van Thiel, G. J. Devine, R. J.
Trainor, and N. Brown, Equation-of-state data for molecular hy-
drogen and deuterium at shock pressures in the range 2–76 GPa
(20–760 kbar), J. Chem. Phys. 79, 1480 (1983).

[89] M. Ruggeri, M. Holzmann, D. M. Ceperley, and C. Pierleoni,
Quantum monte carlo determination of the principal Hugoniot
of deuterium, Phys. Rev. B 102, 144108 (2020).

[90] M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall,
J. r. Asay, and C. Deeney, Principal Hugoniot, reverberating
wave, and mechanical reshock measurements of liquid deu-
terium to 400 GPa using plate impact techniques, Phys. Rev.
B 69, 144209 (2004).

[91] Z. He, Q. Zhang, H. Liu, G. Jia, X. Huang, Z. Fang, Z. Xie,
J. Ye, H. Shu, J. Dong et al., High-precision equation of state
benchmark for cryogenic liquid deuterium at ultrahigh pressure,
Phys. Rev. B 103, 134107 (2021).

[92] N. C. Holmes, M. Ross, and W. J. Nellis, Temperature measure-
ments and dissociation of shock-compressed liquid deuterium
and hydrogen, Phys. Rev. B 52, 15835 (1995).

[93] G. Collins, P. Celliers, L. Da Silva, R. Cauble, D. Gold, M.
Foord, N. Holmes, B. Hammel, R. Wallace, and A. Ng, Temper-
ature Measurements of Shock Compressed Liquid Deuterium
up to 230 GPa, Phys. Rev. Lett. 87, 165504 (2001).

[94] P. Loubeyre, S. Brygoo, J. Eggert, P. M. Celliers, D. K.
Spaulding, J. R. Rygg, T. R. Boehly, G. W. Collins, and R.
Jeanloz, Extended data set for the equation of state of warm
dense hydrogen isotopes, Phys. Rev. B 86, 144115 (2012).

[95] J. E. Bailey, M. D. Knudson, A. L. Carlson, G. S. Dunham,
M. p. Desjarlais, D. L. Hanson, and J. R. Asay, Time-resolved
optical spectroscopy measurements of shocked liquid deu-
terium, Phys. Rev. B 78, 144107 (2008).

[96] W. Kołos and L. Wolniewicz, Accurate computation of vibronic
energies and of some expectation values for H2, D2, and T2,
J. Chem. Phys. 41, 3674 (1964).

144104-13

https://doi.org/10.1103/PhysRevB.86.115101
https://doi.org/10.1103/PhysRevB.101.075116
https://doi.org/10.1063/1.441588
https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1063/1.471771
https://doi.org/10.1063/1.1777575
https://doi.org/10.1063/1.3126950
https://doi.org/10.1063/1.4883861
https://doi.org/10.1146/annurev.physchem.53.090401.105737
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.7.5212
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1145/355780.355786
https://doi.org/10.1016/j.hedp.2014.04.003
https://doi.org/10.1063/1.3489925
https://doi.org/10.1002/jcc.25104
https://doi.org/10.1103/PhysRevB.79.014112
https://doi.org/10.1103/PhysRevLett.118.035501
https://doi.org/10.1103/PhysRevB.71.092104
https://doi.org/10.1063/1.439955
https://doi.org/10.1063/1.445938
https://doi.org/10.1103/PhysRevB.102.144108
https://doi.org/10.1103/PhysRevB.69.144209
https://doi.org/10.1103/PhysRevB.103.134107
https://doi.org/10.1103/PhysRevB.52.15835
https://doi.org/10.1103/PhysRevLett.87.165504
https://doi.org/10.1103/PhysRevB.86.144115
https://doi.org/10.1103/PhysRevB.78.144107
https://doi.org/10.1063/1.1725797

