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We present a constrained density-functional perturbation theory scheme for the calculation of structural and
harmonic vibrational properties of insulators in the presence of an excited and thermalized electron-hole plasma.
The method is ideal to tame ultrafast light-induced structural transitions in the regime where the photocarriers
thermalize faster than the lattice, the electron-hole recombination time is longer than the phonon period, and
the photocarrier concentration is large enough to be approximated by an electron-hole plasma. The complete
derivation presented here includes total energy, forces and stress tensor, variable cell structural optimization,
harmonic vibrational properties, and the electron-phonon interaction. We discuss in detail the case of zone-center
optical phonons not conserving the number of electrons and inducing a Fermi shift in the photoelectron and
hole distributions. We validate our implementation by comparing with finite differences in Te and VSe2. By
calculating the evolution of the phonon spectrum of Te, Si, and GaAs as a function of the fluence of the incoming
laser light, we demonstrate that even at low fluences, corresponding to approximately 0.05 photocarriers per
atom, the phonon spectrum is substantially modified with respect to the ground-state one with new Kohn
anomalies appearing and a substantial softening of zone-center optical phonons. Our implementation can be
efficiently used to detect reversible transient phases and irreversible structural transitions induced by ultrafast
light absorption.
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I. INTRODUCTION

The development of density-functional perturbation theory
(DFPT) approaches [1–6] has allowed for efficient calcu-
lations of the ground-state linear response properties of
materials without need of supercells. DFPT is nowadays rou-
tinely employed to calculate ground-state properties such as
force constants and harmonic phonon dispersions [1–3,6],
dielectric tensors and Born effective charges [1,4,6], the
electron-phonon interaction [5,7,8], Hubbard parameters [9],
and nonadiabatic phonon dispersions [10], just to name a few.
DFPT assumes electrons to be in the ground state, occupy-
ing the lowest-energy Kohn-Sham orbitals, and then exploits
analytic expressions of the derivative of the total energy with
respect to parameters external to the electronic system such
as the ionic displacements or applied electric fields present in
the external potential. Its accuracy and capabilities are demon-
strated by its widespread use in modern condensed matter
theory [4].

The developments of ultrafast spectroscopic techniques
and pump-probe experiments have opened new perspectives
in condensed matter physics and chemistry (see Ref. [11]).
In semiconductors, femtosecond laser pulses can promote a
substantial number of electrons from valence to conduction
bands; concentrations in excess of 1022 cm−3 photoexcited
carriers can be readily achieved [12], corresponding to ap-
proximately 0.2 excited electrons per atom in silicon. As
the thermalization of photoexcited carriers typically occurs

within hundreds of femtoseconds, the system experiences an
electron-hole plasma at times that are typically smaller than
the phonon period (a few picoseconds). Until electron-hole
recombination takes place (in large-gap insulators, electron-
hole recombination is slower than the typical lattice timescale,
the precise value depending on the electron-hole plasma den-
sity) the lattice effectively feels a thermalized electron-hole
distribution.

As the first optically active empty bands of semiconductors
are typically composed of antibonding states, their occupation
determines a substantial variation of the crystal potential and
can lead to an ultrafast destabilization of the crystal structure
(on the picosecond scale, i.e., much faster than what can
be achieved with thermal processes). The sample can then
undergo a structural transition towards a reversible transient
phase that is lost after electron-hole recombination (i.e., the
system goes back to its ground state), or it can undergo an
irreversible structural transition. In the first case, the transient
phase can be detected either by ultrafast x-ray diffraction
at x-ray free-electron laser facilities [13] or by pump-probe
experiments to measure reflectivity, optical absorption, the
dielectric function, or Raman spectra after the electronic exci-
tation [14,15]. In the second case, any experimental technique
can be used to characterize the sample as the phase is stable
even after removal of the laser source. Examples of this sec-
ond class of transition are phase change materials [13] and
nonthermal melting of semiconductors above critical fluence
values [16,17]. A plethora of light-induced phenomena have
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been observed, including various kinds of electronic phase
transitions [18–20], order-disorder transitions [21], structural
transformations [22], light-induced charge transfer [23], de-
tection of warm dense matter [24], phonon softenings [25],
and nonlinear phononic effects [26,27].

This broad range of phenomena calls for efficient the-
oretical approaches to compute the structural properties of
insulators and semiconductors in the presence of a ther-
malized electron-hole plasma. In this paper we develop a
constrained DFPT framework to calculate the forces acting
on the ions, the stress tensor (allowing for cell relaxation),
the force constant matrix, the phonon dispersion, and the
electron-phonon interaction in the presence of a thermalized
electron-hole plasma. Our work is based on previous works
by Tangney and Fahy [28,29] and Murray et al. [30], where
the authors developed total energy and lattice response calcu-
lations in the presence of two different chemical potentials,
one for the thermalized holes and one for the thermalized
electrons. Moreover, as the presence of a substantial photocar-
rier concentration (PC) leads to a metallic state, we generalize
the developments of density-functional perturbation theory for
metals carried out in Ref. [3] to the case of two different
chemical potentials for electrons and holes, with particular
care for the case of zone-center phonons and the treatment
of the Fermi shifts induced by the perturbation.

We apply the method to photoexcited tellurium, silicon,
gallium arsenide, and vanadium diselenide. We show that,
even at the lowest considered PC, the phonon spectrum is
substantially affected and cannot be considered to be the same
as the ground state. We systematically compare our method
with the widespread technique of simulating light excitation
with a single Fermi-Dirac distribution with an electronic tem-
perature of the same order as the incoming photon energy (see,
e.g., Refs. [31,32]). We demonstrate that the latter approxi-
mation cannot be applied to photoexcited semiconductors and
insulators as it leads to inconsistent results when comparing
with experiments, notably when cell relaxation is taken into
account. In contrast, our implementation based on two Fermi
distributions, one for the thermalized holes and one for the
thermalized electrons, leads to better agreement with experi-
ments at an affordable computational cost.

The paper is structured as follows. In Sec. II we illustrate
the fundamental assumptions behind the present framework,
and in Secs. III, IV, and V we illustrate the mathematical
formalism. Section VI contains a description of our methods,
while in Sec. VII we present some relevant applications, fol-
lowed by conclusions in Sec. VIII.

II. INHERENT ASSUMPTIONS IN THE THERMALIZED
ELECTRON-HOLE PLASMA MODEL

The thermalized electron-hole plasma model (also labeled
the two-distribution model in the following) assumes that,
for times that are of the order of the phonon period, the
photoexcited insulator or semiconductor can be described by
a thermalized electron-hole plasma identified by two different
chemical potentials (see Fig. 1). We are thus assuming the
following:

(i) Photoexcited electrons and holes thermalize within hun-
dreds of femtoseconds.

FIG. 1. Schematic representation of the effect of laser irradiation
on electronic occupations. (a) Electronic distribution before laser
irradiation. (b) Electronic distribution after laser irradiation, after in-
traband thermalization but before electron-hole recombination takes
place. C.B., conduction band; V.B., valence band.

(ii) Electron-hole recombination times are much longer
than the phonon period.

These two assumptions are usually satisfied in experiments
on insulators and large-gap semiconductors as the phonon
period is of the order of a few picoseconds, while the electron-
hole recombination is generally much slower [33,34]. While
the carrier recombination time is known to decrease with
increasing density, theoretical arguments and experimental
observations indicate that this behavior saturates at high
density for the main recombination mechanisms (radiative
and Auger recombination) [35–37], thus justifying our treat-
ment. This conclusion is also supported by the experiments
of Hunsche et al. [38] on semiconducting tellurium, which
demonstrate no significant change in the A1 phonon lifetime
as a function of the carrier density, contrary to what one would
have observed had the electron-hole recombination occurred
on a timescale comparable to the phonon period [3]. In metals,
in general, carrier recombination is very fast, and the model is
inappropriate. However, in some cases, the metal can be seen
as a hole-doped insulator and a part of the excitations occurs
across an energy gap; thus carrier recombination could still be
slow enough for the application of the two-distribution model.
Finally, in the case of semimetals such as Bi and Sb, it has
been shown that a two-chemical-potential approach correctly
explains the displacive excitations of coherent phonons [39].
The physical reason is probably related to the fact that in a
semimetal, the vanishing density of states at the Fermi level
acts as a bottleneck for the electron-hole recombination. How-
ever, the validity of the method for metals and semimetals has
to be checked carefully case by case.

We also assume that the excited electron and hole popula-
tion is large enough to be approximated by an electron-hole
plasma. Indeed, while the low-PC regime is characterized by
the occurrence of a resonant peak in correspondence to the
exciton energy (see, for example, Refs. [40–43]), when the
PC reaches a critical value, the system undergoes a transition
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TABLE I. Predicted band gaps for bulk tellurium, silicon, and
GaAs compared with the experimental value at room temperature.

Gap

Material Theor. Expt.

Te 0.18 0.35 [45]
Si 0.45 1.17 [46]
GaAs 1.02 1.52 [46]

towards an electron-hole plasma state [42,43] where excitons
are not bound anymore and are completely screened. The crit-
ical density for the electron-hole plasma formation depends
on the specific system; however, a rough estimation can be
given in terms of the material-dependent exciton Bohr radius
[44], i.e., the radius associated with the exciton. The electron-
hole pairs condense in the plasma state once the average
distance between them becomes smaller than this quantity. In
the electron-hole plasma regime, the laser pumps electrons to
single-particle conduction-band states. This requires that the
single-particle states (i.e., the Kohn-Sham energies) correctly
describe the single-particle excitations across the gap. It is
known that density-functional theory (DFT) with semilocal
functionals typically underestimates band gaps (see Table I),
and consequently the inclusion of a self-energy correction
such as Hedin’s GW approximation (GW) may be necessary
to obtain a correct description of photoexcitation. However,
if the self-energy correction on the conduction eigenstates is
well approximated by a scissor operator, calculations can be
performed within semilocal DFT, and the gap correction can
be accounted for a posteriori with a rigid shift �EGW when-
ever a comparison to the experimental laser energy is required.
Finally, we underline that in all applications considered in this
paper we verified that the bottom of the conduction band is
a bright state. In principle that is not required as the present
formalism can also be applied to the case of a dark first excited
state (i.e., not allowed by dipole selection rules) by properly
initializing the simulation in such a way as to fulfill the optical
transition matrix element (see Ref. [28] for more details).

We now proceed to obtain the expressions for the total
energy, forces, force constant matrices, and electron-phonon
coupling in constrained DFPT (cDFPT).

III. TOTAL ENERGY

The derivation presented here closely follows and extends
the one given by de Gironcoli [3] for the case of metals. We
consider the situation where a fraction of the valence electrons
has been excited from the valence to the conduction band.
Our hypothesis is that thermal equilibrium is reached sepa-
rately in both the valence- and the conduction-band subsets,
so that it is reasonable to describe electronic occupations in
the two subsets with two separate Fermi-Dirac distributions.
The smearing function can be a generic smooth approximation
to the Dirac δ function; in general, different temperatures
for valence and conduction distributions are allowed. Simi-
larly to the case of metals, the basic quantity for a practical
density-functional theory formulation is the local density of
states n(r, ε), which is convoluted with the smearing func-

tion f (ε) = (1/σ )δ̃(ε/σ ). In the present case, valence- and
conduction-band distributions are separately convoluted with
a smearing function. We assume that the first Nv bands are the
valence bands. The resulting expression for the local density
of states is

n(r, ε) =
Nv∑
i=1

1

σ
δ̃
(ε − εi

σ

)
|φi(r)|2

+
∞∑

i=Nv+1

1

σc
δ̃
(ε − εi

σc

)
|φi(r)|2, (1)

where εi and φi(r) are the Kohn-Sham eigenvalues and
eigenfunctions, respectively, σ and σc represent the smearing
parameters for the valence and conduction carriers, respec-
tively, and the summation over k points and spin is implicit.
We work under the hypothesis that the valence and conduc-
tion bands are separated by an energy gap Eg much larger
than the smearing values, Eg � max(σ, σc). In the case of
Fermi-Dirac occupations, σ and σc represent the two tem-
peratures of the valence and conduction carriers. The electron
density is

n(r)=
∫ εF

−∞
n(r, ε)dε +

∫ ε′
F

Ec

n(r, ε)dε =
∑

i

�F,F ′
i |φi(r)|2,

(2)

where Ec is the minimum of the conduction band, εF and ε′
F

denote the valence and conduction quasi-Fermi-levels, and the
function �̃F,F ′

i is case defined as the integral of the δ̃ in one of
the two band sets:

�̃F,F ′
i =

{
θ̃
(

εi−εF
σ

)
, i = 1, Nv

θ̃ ′( εi−ε′
F

σc

)
, i = Nv + 1,∞,

(3)

where θ̃ (x) = ∫ x
−∞ δ̃(y)dy and θ̃ ′(x) = ∫ x

Ec
δ̃(y)dy. The quasi-

Fermi-levels are determined imposing conservation of the
number of particles in valence and conduction bands, Nv,c

el ,
separately:

Nel = Nv
el + Nc

el , Nv
el =

∫ εF

−∞
n(ε)dε =

Nv∑
i=1

θ̃
(εF − εi

σ

)
,

Nc
el =

∫ ε′
F

Ec

n(ε)dε =
∞∑

i=Nv+1

θ̃ ′
(

ε′
F − εi

σc

)
, (4)

where n(ε) is the density of states. In analogy with the case
of a metal, the kinetic Kohn-Sham functional Ts[n] is defined
through the Legendre transform of the single-particle energy
integral and is written

Ts[n] =
∫ εF

−∞
εn(ε)dε +

∫ ε′
F

Ec

εn(ε)dε −
∫

VSCF(r)n(r)dr

=
∑

i

[
− h̄2

2m
�F,F ′

i 〈φi|∇2|φi〉 + �̃1,F,F ′
i

]
, (5)

where the self-consistent potential VSCF(r) is defined in terms
of the external potential V (r) and the exchange and correlation
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functional Exc as [4]

VSCF(r) = V (r) + e2
∫

n(r′)
|r − r′| dr′ + vxc(r)

vxc = δExc

δn(r)
, (6)

and we introduced the function �̃1,F,F ′
i , which is case defined

as

�̃1,F,F ′
i =

{
σ θ̃1

(
εi−εF

σ

)
, i = 1, Nv

σcθ̃1
′( εi−ε′

F
σc

)
, i = Nv + 1,∞,

(7)

where θ̃1(x) = ∫ x
−∞ yδ̃(y)dy and θ̃ ′

1(x) = ∫ x
Ec

yδ̃(y)dy.
The total energy can be written in terms of the kinetic

functional

E [n] = Ts[n] + e2

2

∫
n(r)n(r′)
|r − r′| drdr′ + Exc[n], (8)

and with this choice for the kinetic functional the Kohn-Sham
equations follow from the minimization of the total energy
with respect to the density, imposing the conservation for the
number of valence and conduction electrons. As in the case of
the metallic system, the drawback of the smearing approach
is that total energy depends on the smearing parameter. In
the case of two Fermi levels the error in the total energy is
the sum of the errors due to valence and conduction smearing
convolution; all the other considerations made for the metallic
case [3] can be extended to this case.

IV. FORCES AND STRESS TENSOR

With the definition above, forces are computed from the
Hellmann-Feynman theorem:

∂E

∂us
=

∫
n(r)

∂V (r)

∂us
dr + ∂Eion

∂us
, (9)

where us represents the position of atom s and Eion is the
electrostatic energy due to the interaction between the ions.
The stress tensor αi, j is defined as minus the derivative of
the total energy with respect to the strain ηi, j divided by the
volume:

αi, j = − 1

�

∂Etot

∂ηi, j
, (10)

where the strain is defined as the space scaling operation
ri → (δi, j + ηi, j )r j . With the given definition for the kinetic
functional, strain calculation is analogous to the metallic case
(see Refs. [47,48] for the complete expression of the stress
tensor); pressure is defined as minus the trace of the strain
tensor, P = −∑

i αi,i.

V. VIBRATIONAL PROPERTIES

We now come to the description of lattice dynamics in the
two-temperature model. The force constant matrix is obtained
as the derivative of the Hellmann-Feynman force:

�s,s′ =
∫

∂n(r)

∂us

∂V (r)

∂us′
dr +

∫
n(r)

∂2V (r)

∂us∂us′
dr + ∂2Eion

∂us∂us′
.

(11)

We then proceed with the calculation of the density vari-
ation following an infinitesimal lattice perturbation. We start
by considering the generic density response to a perturbation,
by direct variation of Eq. (2):

�n(r) =
∑

i

�F,F ′
i [φ∗

i (r)�φi(r) + c.c.]

+
∑

i

|φi(r)|2�̃F,F ′
i (�εF,F ′ − �εi ), (12)

where

�̃F,F ′
i =

{
(1/σ )δ̃

(
εi−εF

σ

)
, i = 1, Nv

(1/σc)δ̃
( εi−ε′

F
σc

)
, i = Nv + 1,∞

(13)

and

�εF,F ′ =
{
�εF , i = 1, Nv

�ε′
F , i = Nv + 1,∞.

(14)

The term due to the Fermi shift, �εF,F ′
, will be addressed

in Sec. V A. The first-order correction to the eigenfunction is
orthogonal to the eigenfunction itself and can be expressed in
terms of a sum over the spectrum of the perturbed Hamilto-
nian:

�φi(r) =
∑
j 
=i

φi(r)
〈φ j |�VSCF|φi〉

εi − ε j
, (15)

where �VSCF is the variation of the self-consistent potential
[Eq. (6)]

�VSCF(r) = �V (r) + e2
∫

�n(r′)
|r − r′|dr′ + dvxc(n)

dn
�n(r).

(16)
We substitute the expression for the wave-function varia-

tion given in Eq. (15) into Eq. (12) and specialize to the case
of an infinitesimal lattice perturbation:

∂n(r)

∂us
=

∑
i, j

�̃F,F ′
i − �̃F,F ′

j

εi − ε j
φi(r)∗φ j (r)

〈
φ j

∣∣∣∣∂VSCF

∂us

∣∣∣∣φi

〉
.

(17)

Using the relation θ̃ (x) + θ̃ (−x) = 1 and the symmetry in
exchanging i and j, we rewrite

∂n(r)

∂us
= 2

∑
i, j

�̃F,F ′
i − �̃F,F ′

j

εi − ε j
θ j,i

× φi(r)∗φ j (r)

〈
φ j

∣∣∣∣∂VSCF

∂us

∣∣∣∣φi

〉
. (18)

Here, θ̃i, j = θ̃ [(εi − ε j )/σ ], the first index runs only over
the partially occupied states, and the second one runs only
over those partially unoccupied. We further simplify the ex-
pression by avoiding the sum over the unoccupied states,
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writing

∂n(r)

∂us
= 2

∑
i

φi(r)∗�φi(r), (19)

where �φi satisfies

[HSCF + Q − εi]�φi = −[
�̃F,F ′

i − Pi
]∂VSCF

∂us
|φi〉 ,

Q =
∑

k

αk |φk〉 〈φk| ,

Pi =
∑

j

βi, j |φ j〉 〈φ j | ,

βi, j = �̃F,F ′
i θ̃i, j + �̃F,F ′

j θ̃ j,i

+ α j
�̃F,i − �̃F, j

εi − ε j
θ̃ j,i, (20)

where HSCF is the unperturbed Kohn-Sham Hamiltonian [4].
Here, αk’s are chosen in such a way that the Q operator makes
the linear system given in Eq. (20) nonsingular for all non-
vanishing �φk . A possible simple choice is αk = max(ε′

F +
� − εk, 0). Another choice is to set αk equal to the occupied
bandwidth plus a certain quantity, e.g., 3σ , for all (partially)
occupied states and equal to zero for totally unoccupied
states.

A. Zone-center phonons inducing Fermi shifts

In this section we discuss the peculiarities related to the
calculation of the linear response for optical zone-center
phonons. In DFPT (and cDFPT) codes the phonon calcula-
tions with q 
= 0 and q = 0 are treated with two different
approaches. At q 
= 0, the calculation is performed within the
grand canonical ensemble, with a constant electron chemical
potential (in our case, with two constant chemical potentials—
electron and hole). At q = 0, the calculation is performed
in the canonical ensemble with a constant number of elec-
trons. When the phonon displacement induces a change in the
number of the electrons, a Fermi shift has to be included to
enforce charge conservation. In our framework this amounts
to introducing two Fermi shifts for the two quasi-Fermi-levels
in the density response:

∂n(r)

∂us
= 2

∑
i

φi(r)∗�φi(r)

+
∑

i

|φi(r)|2�̃F,F ′
i (�εF,F ′ − �εi ). (21)

This term can only arise for a periodic perturbation at q = 0,
in compounds where the atomic positions are not all fixed by
symmetry.

The Fourier transform of the self-consistent potential vari-
ation, �VSCF(q), reads

�VSCF(q) = 4πe2

q2
�next (q) + 4πe2

q2
�n(q) + dvxc

dn
�n(q),

(22)

which we separate into the contributions due to the valence
and conduction electrons �V v,c

SCF(q):

�VSCF(q) = �V v
SCF(q) + �V c

SCF(q),

�V v
SCF(q) = 4πe2

q2
�nv

ext (q) + 4πe2

q2
�nv (q) + dvxc

dn
�nv (q),

�V c
SCF(q) = 4πe2

q2
�nc

ext (q) + 4πe2

q2
�nc(q) + dvxc

dn
�nc(q),

(23)

where �nv,c
ext (q) represent the valence and conduction density

variation due to the macroscopic electrostatic component of
the perturbing potential. Similarly, we decompose the density
variation induced by a generic perturbation, �n(q), into the
valence and conduction terms �nv,c(q):

�n(q) = �nv (q) + �nc(q),

�nv (q) = −n(εF )�V v
SCF(q) + �nl f

v (q),

�nc(q) = −n(ε′
F )�V c

SCF(q) + �nl f
c (q), (24)

where �nl f
v,c are the valence and conduction parts of the

density response to the nonmacroscopic component of the
self-consistent potential. The self-consistent potential varia-
tion due to the valence and conduction electrons can then be
expressed as

�V v
SCF(q) = −�nv (q) − �nl f

v (q)

n(εF )
,

�V c
SCF(q) = −�nc(q) − �nl f

c (q)

n(ε′
F )

. (25)

For q ≈ 0, we have �nv,c
ext (q) = �nv,c(q) + O(q2). We en-

force charge neutrality applying quasi-Fermi-level shifts equal
and opposite to the variation of the macroscopic component
of the self-consistent potential felt by valence and conduction
electrons:

�εF = �nv
ext (q = 0) − �nl f

v (q = 0)

n(εF )
,

�ε′
F = �nc

ext (q = 0) − �nl f
c (q = 0)

n(ε′
F )

. (26)

For a neutral external perturbation such as an infinitesimal
lattice perturbation, atoms are displaced, but the total charge
does not change, i.e., �nv,c

ext = 0. We thus obtain the final
expression for the quasi-Fermi-level shifts

�εF = −�nl f
v (q = 0)

n(εF )
=

∫
n(εF , r) ∂VSCF (r)

∂us
dr

n(εF )
,

�ε′
F = −�nl f

c (q = 0)

n(ε′
F )

=
∫

n(ε′
F , r) ∂VSCF (r)

∂us
dr

n(ε′
F )

. (27)

We rewrite Eq. (12) as

�′φi(r) = �φi(r) + �shφi(r), (28)

where we defined the wave-function shift as

�shφi(r) = (1/2)�εF,F ′
φi(r). (29)
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The compact expression for the electron density perturba-
tion is then

∂n(r)

∂us
= 2

∑
i

φi(r)∗�′φi(r). (30)

B. Electron-phonon interaction

The last part of our derivation is concerned with the exten-
sion of the electron-phonon matrix elements calculation to the
case of the two-distribution model. The deformation potential
corresponding to a lattice perturbation of momentum q and
irreducible representation ν is written

dm,n
k,q,ν

= 〈φk,m| ∂VSCF

∂uq,ν

|φk+q,n〉 , (31)

where uq,ν represents the displacement pattern of momentum
q and irreducible representation ν and |φk,m〉 represents a
Kohn-Sham eigenvector characterized by momentum k and
band index m. In the case of two separate carrier distributions,
the procedure remains essentially the same, with exceptions
made for the case q = 0 and the presence of a nonvanish-
ing Fermi shift for either valence or conduction bands (or
both). In this case, the q = 0 component of the calculated
potential variation has to be shifted according to Eq. (25)
in order to maintain charge neutrality separately in valence
and conduction bands. Once this quantity is calculated, the
electron-phonon matrix elements gm,n

k,q,ν
follow as in standard

DFPT [4]:

gm,n
k,q,ν

=
(

h̄

2ωq,ν

)1/2

dm,n
k,q,ν

. (32)

VI. METHODS

First-principles calculations have been performed within
density-functional theory. We have used scalar-relativistic op-
timized norm-conserving Vanderbilt pseudopotentials [49] to
describe the electron-ion interaction in the case of tellurium
and vanadium diselenide and Hartwigsen-Goedecker-Hutter
pseudopotentials [50] in the case of gallium arsenide and
silicon, while employing a kinetic energy cutoff of 60 Ry (80
Ry for VSe2) in the plane-wave expansion of the Kohn-Sham
wave functions to converge the stress tensor in the variable-
cell calculations, as implemented in the QUANTUM ESPRESSO

(QE) package [51,52]. The presence of the two quasi-Fermi-
surfaces (which we label quasi-FSs) was dealt with using
the smearing approach. Two Fermi-Dirac distributions with
smearing parameters σ = σc = 0.05 eV were considered for
Te as in Ref. [28], while the Marzari-Vanderbilt approach
[53] was employed for Si, GaAs, and VSe2, with valence
and conduction smearing parameters σ = σc = 0.136 eV in
order to ensure a converged sampling of the quasi-FSs. For
the exchange-correlation potential we have adopted the gen-
eralized gradient approximation (GGA) in the Perdew, Burke,
and Ernzerhof (PBE) [54] formulation in tellurium and vana-
dium diselenide, while the local density approximation (LDA)
[55] was adopted in silicon and gallium arsenide. In order to
ensure a proper relaxation procedure, forces have been relaxed
under 1 × 10−5 Ry/bohr. A 16 × 16 × 16 Monkhorst-Pack
wave-vector grid [56] has been adopted for the integration of

TABLE II. Structural parameters as a function of PC for tel-
lurium, silicon, and gallium arsenide in the cDFPT approach.

ne (e/atom) 0 0.015 0.03 0.045 0.06

a (Te) (Å) 4.502 4.506 4.52 4.533 4.546
c/a (Te) 1.325 1.31 1.29 1.27 1.25
x (Te, crystal) 0.271 0.275 0.281 0.287 0.293
ne (e/atom) 0 0.05 0.1 0.15 0.2
a (Si) (Å) 5.381 5.372 5.365 5.361 5.359
a (GaAs) (Å) 5.527 5.541 5.561 5.583 5.623

the Brillouin zone (BZ) in silicon and GaAs, a 13 × 13 × 10
grid was employed for tellurium, and a 16 × 16 × 9 grid
was used for VSe2. Phonon frequencies and electron-phonon
coupling matrix elements were determined within cDFPT.
Phonon frequencies were calculated on a dense 12 × 12 × 12
wave-vector grid for photoexcited Si and GaAs, due to the
delicate convergence of the phonon modes as a function of
the employed wave-vector grid, attributed to the presence of
the two quasi-FSs. Notably, expensive simulations employing
a 3456-atom supercell would have been necessary in order
to perform the same calculation within the finite-difference
approach. The cDFPT formalism described here has been
implemented as a modification of the official QE 6.6 release
[57].

VII. APPLICATIONS

A. Tellurium

We apply the presented formalism to the case of bulk
tellurium. At ambient conditions the stable phase is α-Te,
consisting of helical chains parallel to the c axis of the trigonal
P3121-D4

3 structure [28]. Bulk tellurium has been previously
studied in the framework of a two-carrier-distribution model
in Ref. [28]. This study attributed the experimentally observed
reflectivity oscillations under photoexcitation to the so-called
displacive excitation of coherent phonons (DECP) mecha-
nism, caused by the A1 phonon mode. The motion along the
A1 phonon eigenvector corresponds to a modulation of the
free internal coordinate x, representing the helical chain ra-
dius. Since the A1 mode involves the motion of a free internal
coordinate, a Fermi shift must occur [10]. As such, α-Te gives
us the chance to verify the consistency of our implementation,
comparing phonon eigenvalues obtained in finite-difference
calculations with those obtained in cDFPT.

We proceed in the following way. First, we calculate the
ground-state structure by performing a variable-cell relaxation
(see Table II for the structural parameters). We then explore
two possible cases: In a first scenario we keep the volume of
the unit cell fixed under photoexcitation, as was previously
done in Ref. [28]; in a second scenario, we also include
the volume change induced by pumping. The reason is the
following: The lattice relaxation due to electron photoexci-
tation can be thought of as an instantaneous change of the
Born-Oppenheimer potential felt by the nuclei; consequently,
the lattice readjustment is a purely electronic effect. As such,
we expect the crystal to readjust to the new lattice param-
eters in a short timescale, much shorter than the thermal
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FIG. 2. Phonon frequencies for bulk tellurium at the � point
as a function of PC, without the effect of volume relaxation. Red
lines indicate the results obtained within cDFPT, while blue lines are
calculated with the finite-difference method.

one, as demonstrated by multiple experimental observations
[16,17,58]. While the precise timescale for nonthermal lattice
readjustment depends on the size and composition of the
sample, from the experimental observations we infer that the
typical timescale for a 100-nm-sized silicon sample is less
than 1 ps [58]; thus it is physically meaningful to perform
variable-cell relaxation at the considered PC value and per-
form the phonon calculation on the volume-relaxed cell.

First of all, we use the case of tellurium as a benchmark
for our implementation, comparing the phonon frequencies
obtained within cDFPT with the ones obtained with a finite-
difference calculation [59]. The comparison is reported in
Fig. 2 demonstrating an excellent agreement between the re-
sults in the two approaches, confirming the consistency of our
implementation.

Without including volume effects, we obtain a phonon
frequency shift of −0.91 THz at ne = 0.06 e/atom, where
ne represents the photocarrier concentration, corresponding
to 1% excitation of the valence population. Using the model
in Ref. [28] and assuming linearity between the reflectivity
changes and phonon frequency shift, we infer that the deriva-
tive of the reflectivity peak frequency with respect to pump
fluence is equal to −0.08 THz per mJ/cm2, against the exper-
imental value of −0.07 THz per mJ/cm2 reported in Ref. [28],
obtained by fitting the low-excitation part of the experimental
data presented in Ref. [38]. Thus, neglecting cell relaxation,
the value is underestimated by ≈14%.

We then proceed to include the effect of the volume change
in the frequency calculation. We relax the tellurium structural
parameters at each PC. The structural parameters as a function
of PC are reported in Table II, while the behavior of phonon
frequencies at � is shown in Fig. 3. We fit the A1 mode in
the low-photoexcitation regime, in the range ne = 0–0.045
e/atom, corresponding to 0–0.75% photoexcited electrons
from the valence band, obtaining a phonon frequency shift of
−0.79 THz per 1% excitation of the valence population. In the
same assumptions as before, we obtain that the derivative of

FIG. 3. Phonon frequencies for bulk tellurium at the � point as
a function of PC, including the effect of volume relaxation. The red
line indicates the A1-symmetry phonon responsible for DECP, and
the black line represents the corresponding linear fit.

the reflectivity peak frequency with respect to pump fluence
is −0.0693 THz per mJ/cm2, in excellent agreement with the
experimental value of 0.07 THz per mJ/cm2 (an overestima-
tion of 1%). This result implies that cell relaxation effects
must be included in order to obtain a quantitative agreement
with the experimental observations.

B. Silicon

We switch to the study of the vibrational response of silicon
under photoexcitation in the cDFPT approach. According to
the discussion made for tellurium, calculations are performed
on the volume-relaxed cell at the investigated PC value. We
start by discussing the behavior of the phonon frequencies
as a function of the PC, shown in Figs. 4(a) and 4(b). The
behavior of the topmost phonon frequency at the � point as a
function of PC is reported in Fig. 4(a). We observe an ≈16.1%
softening of optical phonon frequencies already at ne = 0.05
e/atom, demonstrating that at values of PC large enough to
screen excitonic effects but substantially lower than the largest
PCs that are achieved in experiments, the vibrational response
of the system is substantially affected and the phonon spec-
trum cannot be considered as frozen (i.e., unchanged with
respect to the unexcited case). In Fig. 4(b), we report the full
phonon spectrum for silicon along high-symmetry directions.
We point out that no acoustic sum rule was enforced in the cal-
culation of phonon eigenvalues. Softenings can be observed
near the � point with increasing PC, signaling the progressive
formation of a structural instability. We recall that close to
the structural instability, anharmonic effects could become
relevant.

We conclude by pointing out that while conventional
melting occurs heterogeneously at high atomic mobility (ther-
modynamic melting), experimental evidence shows that a
homogeneous mechanical melting under irradiation can be
observed and that a competition between thermodynamic and
mechanical melting exists [61,62]. The development of imag-
inary phonon frequencies is related to a second-order phase
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FIG. 4. (a) Optical phonon frequency for silicon at � as a function of PC. (b) Phonon frequencies for silicon at selected PC values.
(c) Section of the valence quasi-FS at ne = 0.2 e/atom, in the plane perpendicular to the [110] reciprocal direction. The black arrow indicates
the nesting vector responsible for the phonon instability. (d) Section of the valence quasi-FS at various PC values, in the plane perpendicular
to the [211] reciprocal direction. Arrows indicate nesting vectors responsible for the softenings observed in the optical branch along the �-X
direction. FS plots have been realized using the open-source software FERMISURFER [60].

transition and thus to the onset of either a reduced spatial
periodicity or mechanical melting; however, it is in general
possible that a latent first-order transition occurs before the
phonon softening.

At any finite PC values, we observe the formation of multi-
ple softenings in the phonon branches, which we address here
in more detail. The full band-resolved valence and conduction
quasi-FSs at a PC value of 0.2 e/atom are reported in Fig. 5.
We show that the valence quasi-FS is mainly responsible for
phonon softenings. This is clearly illustrated in Fig. 4(c),
where we show a cut of the valence quasi-FS perpendicular
to the [110] reciprocal direction. We relate the vector nesting
the smaller section of the valence quasi-FS along the �-K
direction to the main phonon softening observed in the phonon
spectrum at ne = 0.2 e/atom [see Figs. 4(b) and 4(c), black
arrow]. We further relate optical branch softenings to a spe-
cific nesting vector for the valence quasi-FS sheets depicted in
Figs. 5(b) and 5(c). We perform cuts of the valence quasi-FS
perpendicular to the [211] reciprocal direction as a function
of PC, finding that the optical branch softening in the �-X
direction happens at the wave vector where the two external
sheets of the valence quasi-FS touch [see Figs. 4(b) and 4(d),
colored arrows].

Previous theoretical studies [31,32] reported that silicon
under intense photoexcitation is subject to lattice instabilities
and structural changes, in agreement with the experimen-

tally observed melting of silicon [63]. However, the transition
mechanism is not completely clear. In the ab initio molecular
dynamical study by Silvestrelli et al. [32] it was shown that
a high electronic temperature of 2.15 eV causes the melting
of the crystal. It was claimed that no soft phonon frequen-
cies were observed. In the DFPT study by Recoules et al.

FIG. 5. (a)–(c) The three sheets of the valence quasi-FS for sil-
icon at a PC value of 0.2 e/atom (d) and (e) The two sheets of the
conduction quasi-FS at a PC value of 0.2 e/atom FS plots have been
realized using the open-source software FERMISURFER [60].
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FIG. 6. Phonon frequencies for silicon at 0.2 e/atom obtained
with the two-carrier-distribution approach and with the single
Fermi-Dirac distribution. In the case of the two-carrier-distribution
approach, we observe the appearance of softenings, while no soft-
enings can be seen in the case of a single-Fermi-Dirac-distribution
approach.

[31], considering the same electronic temperature of 2.15 eV,
soft phonon modes were observed along most of the high-
symmetry direction of the zinc-blende crystal, in contradiction
with Ref. [32]. In both studies, the volume was kept fixed to
its equilibrium value. However, there is no real reason for this
assumption as, after the pumping and after the consequent
thermalization of the electronic system, when the lattice de-
grees of freedom set in, the cell deformation does occur [58].

In order to better clarify this issue, in Fig. 6 we compare
the calculated phonon spectrum for silicon at 0.2 e/atom
in cDFPT (blue lines) with the one obtained within a high-
temperature Fermi-Dirac approach (red lines), employing an
electronic temperature of 1 eV, corresponding to ne = 0.2
e/atom In both cases, the lattice parameter is determined with
a variable-cell relaxation procedure. As expected, the single-
Fermi-Dirac-distribution approach leads to smooth phonon
dispersion curves with all the quasi-FS softenings washed
out by the large Fermi temperature. Furthermore, no unstable
phonons occur. In contrast, in the two-Fermi-distribution ap-
proach, as the holes’ and electrons’ temperatures are low, the
phonon dispersion still displays quasi-FS-related softenings
and the occurrence of a structural instability. Moreover, the
softening of the optical mode at the zone center is substan-
tially larger in the case of Si. Conversely, we observe an ≈1%
volume reduction in the cDFPT approach at 0.2 e/atom, qual-
itatively explaining the observations of Refs. [58,64], while
a 3% volume increase is predicted by the high-temperature
Fermi-Dirac approach. For ne � 0.1 e/atom we observe a
linear dependence between PC and lattice compression, com-
patibly with the linear compression as a function of the fluence
reported experimentally [64]. The differences in volume ex-
pansion with the two approaches are even more severe at
higher fluences. Indeed, at the fluences of 2.15 eV consid-
ered in Refs. [31,32] the use of an electronic temperature of
2.15 eV leads to a lattice expansion exceeding 10% of the

original lattice parameter (5.98 Å against the low-temperature
LDA value of 5.38 Å). In contrast, the two-distribution model
leads to a 2% lattice expansion (5.48 Å).

On a general basis, we can thus conclude that the use of a
single Fermi-Dirac distribution with temperatures of the order
of the incoming laser frequency leads to unrealistic values of
the volume expansion. In this framework, the approximation
of considering the cell fixed in Si, besides being unjustified (at
least before the thermal melting occurs), artificially enhances
the tendency towards phonon instabilities with respect to the
case in which, in the same framework, the structural optimiza-
tion is carried out.

Finally, the complete structural optimization using two
distributions, each one with cold carriers, leads to stronger
phonon softenings and preserves the Kohn anomalies due to
FS nesting of conduction of valence quasi-FSs. Moreover,
it generally gives a better agreement with experiments with
respect to the case of a single Fermi-Dirac distribution with
hot electrons.

C. Gallium arsenide

We now consider the vibrational response of GaAs un-
der photoexcitations in cDFPT. Experimental observations
demonstrate that crystalline GaAs under irradiation undergoes
an insulator-metal transition for high fluence values, while
also showing a structural amorphization of nonthermal ori-
gin [65]. We calculate the phonon spectrum at varying PC,
exploring the range 0–0.2 e/atom, corresponding to 0–10%
valence electron excitation. The results are depicted in Fig. 7.
In Fig. 7(a) the behavior of � acoustic phonon frequency is
reported [no longitudinal-optical–transverse-optical (LO-TO)
splitting is included here], demonstrating a sizable effect also
at low PC. As was observed for Si, even at the lowest PC
of ne = 0.05 e/atom, the phonon spectrum is substantially
affected and cannot be considered unchanged with respect to
the undoped case.

In the phonon dispersion reported in Fig. 7(b), we also
include LO-TO splitting at � in the absence of photocarriers,
while we do not include it at finite PC values, assuming that
the screening effect of photoexcited carriers will suppress it at
any finite PC value. Similarly to what observed for silicon,
phonon softenings emerge close to the � point of the BZ
for increasing PC values, pointing towards the formation of
lattice instabilities. Other softenings are observed in the W -L
reciprocal direction and the L-X reciprocal direction. As in
silicon, anharmonic effects may change the critical fluence
for the formation of a phonon instability. Interestingly, we
observe that the volume increases as the PC is increased in
the range 0–0.2 e/atom, at variance with what we observe in
silicon. We point out that no acoustic sum rule was enforced
in the calculation of phonon eigenvalues.

Differently from what we have done for silicon, here we
disentangle the role of the two quasi-FSs by comparing the
calculated cDFPT phonon spectrum with the ones obtained
by a negative (positive) doping of 0.2 e/atom (−0.2 e/atom)
performed on the same crystal structure. The results are shown
in Fig. 8. We observe that similar softenings around the �

point, although less pronounced, appear for a positive doping
of −0.2 e/atom; thus we conclude that the observed soften-
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FIG. 7. (a) Optical phonon frequency for GaAs at � as a function of PC. Phonon softenings form near � for PC values up to 0.15 e/atom,
while new softenings along the L-X and W -L high-symmetry directions emerge at 0.2 e/atom

ings are caused by the valence quasi-FS also in GaAs. The
close correspondence to the results shown for silicon is not
surprising as the electronic structure of GaAs (not shown)
closely resembles that of silicon; in particular, its valence
quasi-FS contains the same quasi-FS shown in Fig. 5(a),
which is responsible for the phonon instability.

D. Vanadium diselenide

Finally, we demonstrate the reliability of electron-phonon
coupling matrix element calculations by considering the case
of the bulk VSe2 in its stable polytype (1T). VSe2 has metallic
character; nevertheless, the cDFPT formalism can still be ap-
plied, provided that the photocarrier population in conduction
is separated from the lower states by an energy gap and thus
carrier-carrier recombination is necessary to deexcite conduc-
tion electrons: This aspect is highlighted in the band structure
reported in Fig. 9(a). We choose VSe2 since it possesses a free
internal coordinate in the out-of-plane selenium position, and

FIG. 8. Phonon frequencies for GaAs with the two-carrier distri-
bution at 0.2 e/atom (blue lines), compared with phonon frequencies
obtained with a doping of +0.2 e/atom (green lines) and −0.2
e/atom (red lines).

thus a nonzero Fermi shift (or better, two nonzero Fermi shifts
in the case of photoexcitations). Furthermore, this material
has sizable electron-phonon matrix elements. We exploit the
following relation existing between the deformation potential
dn,m

k,q and Kohn-Sham eigenvalues:

dn,n
k,q=0,ν

= dεk,n

duq=0,ν

, (33)

where n is the band index, while duq=0,ν represents the
infinitesimal motion of atoms along a generic pattern in
the primitive cell. We calculate the deformation potential
elements in cDFPT and the eigenvalue derivative in the finite-
difference approach. Our results are reported in Figs. 9(b) and
9(c), for 0.083 e/atom excitation, without and with the Fermi
shift correction, respectively. The error committed without
including the Fermi shift is especially evident for the con-
duction electron-phonon matrix elements. We verified that the
error committed in Fig. 9(b) corresponds exactly to the shift
of the valence or conduction quasi-Fermi-levels induced by
the perturbation. The excellent agreement between the finite-
difference method and the cDFPT calculation demonstrated in
Fig. 9(c) confirms the consistency of our formulation.

VIII. CONCLUSIONS

In this paper, building on top of Refs. [28,29], we develop
a complete constrained density-functional perturbation theory
scheme for structural optimization, calculation of the har-
monic vibrational properties, and electron-phonon interaction
in insulators in the presence of an excited and thermalized
electron-hole plasma such as that typically obtained after
ultrafast optical pumping. The method assumes that the pho-
tocarriers thermalize faster than the lattice, the electron-hole
recombination rate is longer than the phonon period, and the
photocarrier concentration is large enough to screen excitons.
We demonstrate its applicability by calculating the evolution
of the vibrational spectra as a function of fluence of Te, Si, and
GaAs. In the case of Te, considering displacive excitations of
coherent phonons, we show that allowing for cell relaxation
dramatically improves the agreement with experiments for the
derivative of the reflectivity peak frequency with respect to
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FIG. 9. (a) Band structure for bulk VSe2. The semitransparent blue rectangle highlights the conduction states considered in the cDFT and
cDFPT simulations. (b) and (c) Diagonal deformation potential matrix elements dn,n

k,q=0 along the out-of-plane coordinate of one selenium
atom, with 0.083 e/atom moved to the conduction states, without (b) and with (c) Fermi shift. The green dashed lines separate valence and
conduction regions of the cDFT and cDFPT simulation. El-ph, electron-phonon.

fluence (from 14% disagreement in the absence of structural
relaxation to 1% with geometrical optimization). In the case
of Si and GaAs, we show that even at a fluence corresponding
to a PC of ne = 0.05 e/atom, which is substantially lower
than the largest ones achievable in experiments, the phonon
spectrum is severely affected with large softenings of optical
zone-center phonons and the emergence of large Kohn anoma-
lies. In order to correctly describe these anomalies in Si and
GaAs, phonon momenta grids as large as 12 × 12 × 12 are
needed. In a finite-difference approach this would mean cal-
culating on supercells composed of 3456 atoms, highlighting
the power of our cDFPT approach (and of DFPT approaches
in general).

At larger fluences, the Si and GaAs lattices are destabi-
lized, and imaginary harmonic phonon frequencies emerge,
probably a signature of nonthermal melting. However, care
is needed as in this regime anharmonic effects could become
relevant. As our cDFPT scheme allows fast access to forces

and structural optimization, in the future it could be coupled
to the stochastic self-consistent harmonic approximation [66]
in order to tackle light-induced anharmonicity.

Finally, as our cDFPT method allows for the study of
slowly convergent electronic and vibrational instabilities in
photoexcited materials at an affordable computational cost,
similarly to what is done by DFPT in ground-state studies,
it could then be used to screen for hidden broken-symmetry
states and irreversible phase transitions (including nonthermal
melting) in materials.
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