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Suppression of spinodal instability by disorder in an athermal system
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We observed asymmetric critical slowing down and asymmetric dynamical scaling exponent in the super-
heating and supercooling kinetic processes during the thermally-induced metal-insulator transition of MnNiSn
based Heusler alloy. During the transition to the insulator phase, the critical-like features get enhanced compared
to the transition back to the metal phase. These experimental findings suggest that the metastable phase in the
cooling branch of hysteresis has approached close to the spinodal instability. On the other hand, the extended
disorder, generated over and above the intrinsic crystal defects during heating, triggers the excess heterogeneous
nucleation before reaching the spinodal point. Zero-temperature random field Ising model (ZTRFIM) simulation,
inscribed for the athermal martensitic transitions, supports the argument that the disorder smears the spinodal
instabilities as the correlation length is bounded by the average distance between the disorder points.
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I. INTRODUCTION

Hysteretic transition is an exciting subclass of abrupt
thermodynamic phase transition (ATPT) where equilibrium
thermodynamics breaks down on account of the system has
accessed the metastable phase [1–3]. Thermal hysteresis im-
plies that there is a discontinuous jump from one metastable
minimum to another free-energy minimum and often ac-
companied by rate-dependent effect [4,5], exchange bias [6],
and kinetic arrest [7]. Such nonergodic behavior is generally
believed to arise from an interplay of disorder, thermal fluctu-
ations, and activation barriers separating the two phases [3].
When thermal fluctuation is insignificant in the kinetics of
phase transformation (athermal), the metastable phase of a
system can persist right up to spinodals (mean-field concept)
where the activation barrier against nucleation vanishes [8].
One would expect divergence of correlation length along with
divergence of the relaxation timescale of order parameter due
to the diffusive nature of dynamics [8]. This kind of athermal
transition arises due to the suppression of fluctuation by the
long-range force during the magnetic and structural phase
transition of many complex functional materials, including
manganites, transition metal oxides, etc. [9–13]. Near spin-
odal, the ramified nucleating droplet diverges in all directions
unlike classical nucleation where a single droplet of stable
phase grows in a compact form [14]. When the system ap-
proaches spinodal, the nucleation rate becomes very slow
indicating spinodal slowing down [15]. The nucleation rate
decreases further as the range of interaction increases and
finally goes to zero when the range of interaction becomes
infinity [14], then the transition becomes mean-field like
[8,16]. The recent experiment on dynamic hysteresis scaling
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supported by numerical analysis suggested the mean-field like
spinodal instability exists in the correlated system [12,17].

However, the disorder is known to yield heterogeneous
nucleation of athermal martensitic transformation [18] char-
acterized by jerky propagation related to avalanches [9,19].
The disorder may reduce the free-energy barrier of nucle-
ation before arriving at the spinodal [2,20]. The influence
of disorder on the spinodal has not yet been fully explored
except some model system [5,21–24]. Disorder associated
athermal transition is found in many complex functional ma-
terials undergoing hysteretic transition [3], glassy materials
[25], earthquake [26], QCD patterns formation [27], social
and economic systems [28].

This paper focuses on one such system where a kinetic
asymmetry in the supersaturated transition arises from the
extended disorder generated during the superheating process.
We experimentally observed that, even at finite temperature,
the transition is independent of thermal fluctuation, i.e., ather-
mal. One would expect to see the footprints of diverging
susceptibility in its temporal features as the fluctuation-less
metastable phase can survive up to the unstable singularity
(spinodal) under phase kinetics [9,10,12,13]. However, ex-
tended disorder reduces the degree of superheating through
nucleation on the kinetic path before vanishing the activation
barrier. In this paper, through the dynamic hysteresis and
critical slowing down measurements supported by ZTRFIM
simulations, we experimentally report that in an athermal sys-
tem, the extended disorder overrules the spinodal instabilities
via heterogeneous nucleation.

II. EXPERIMENTAL RESULTS

Figure 1(a) shows that a typical resistance measurement
done as a function of temperature during the first-order phase
transformation (FOPT) at 200 K in polycrystalline Heusler
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FIG. 1. (a) The avalanche-like jump in resistance during the
transition. (b) Jerky-like peak during the transition seen in DTA
measurement (right inset). The off-transition DTA signal is shown
for comparison (left inset). (c) Return point memory for three partial
loops. The inset shows returning points more clearly in sub-subloops.
(d) Histogram of jerky latent heat as a function of magnitude. The
heat fluxes were measured in 1/7 sec interval, and the corresponding
temperature scanning rate was 6 K/min.

alloy. The details of sample preparation and characterization
are given in Appendix A. There is a thermal hysteresis (width
∼5 K) associated with the change in resistance of austen-
ite transition (∼197 K) during heating and the martensitic
transition (∼192 K) during cooling. The electronic transition
coupled with a magnetic and a structural transition occurs
through a series of avalanches. Each avalanche is accom-
panying with a jump in resistance [Fig. 1(a) (inset)] and a
corresponding jerky latent heat [Fig. 1(b)] [19]. The latent
heat of transitions is evaluated from the differential thermal
analysis (DTA) signal [Fig. 1(b) right inset] by numerically
fitting an equivalent model for the setup. A more detailed
description of the home-made DTA experimental setup can
be found elsewhere [29]. Figure 1(d) shows the distribution
of jerky heat as a function of their size. The jumps during
cooling are larger than the heating implies that the disorder
linked with the austenite transition is more comparable to
the martensitic transition [21,30]. Moreover, these asymmetric
jumps are independent of the driving rate (for details, refer to
Appendix B). Such kinetic asymmetry emerges due to the
heterogeneous nucleations at two distinct disorder points:
extended disorder [31–35] (structural twin walls [18,19,36],
surface-localized defects [37], dislocation [32], etc.), which
appear during heating branch of hysteresis on top of in-
trinsic disorder, which remains in both branches [31,36].
Return point memory of hysteresis loop [Fig. 1(c)] implies
the existence of intense disorder (above the critical value σc)
associated with ATPT [21,38].

Thermal hysteresis implies discontinuity in free energy
and discontinuity in entropy at the transition points. There-
fore, this transition can be termed as “zeroth-order” [12,39].
The continuation of free energy beyond the expected tran-
sition point (where the free energy of two phases intersect)

FIG. 2. Order parameter as a function of time [(a),(b)], and tem-
perature (c) acquired from quench-and-wait experiments for different
waiting temperatures. The order parameter finally reaches the steady-
state value [• within (c)] for a given sufficient wait. The steady-state
values coming out from dissipative phase ordering experiments are
very close to the dynamic hysteresis measurement of ramp rate
0.5 K/min [blue-line inside (c)]. The temperature quench rate of the
measurements was 40 K/min.

enlarges the lifetime of metastable state [1,39]. Consequently,
the metastable state acts like an equilibrium state and the
transition becomes athermal. Such continuation breaks at the
limit of stability due to the essential singularity of spinodal
points. At these points, the relaxation time of the metastable
state is expected to diverge [40]. The detailed mean-field free-
energy formalism of thermally driven hysteretic transition is
been discussed in Appendix H.

However, the phase ordering relaxation time is measured
by the quench and hold experimental technique. Starting from
an initial temperature of 120 K (or 250 K), which is far
from transition regions, the sample is heated up (or cooled
down) rapidly to a specific set temperature (TR), then allowed
to equilibrate for sufficient time. The temporal evolution of
resistance is represented in terms of insulator fraction (order
parameter) [41]. The detailed calculations of insulator frac-
tion are given in Appendix C. Figure 2 shows the insulator
fraction for different set temperatures for heating and cooling
quenches. After an adequate wait time (∼60 s), the system
reaches the quasistatic value. After that, no temporal evolution
of order parameter is observed (see Appendix C); suggests
that the system, driven by thermal fluctuations, unable to
jump the activation barrier and remains in the metastable local
minima. Such behavior indicates an athermal transition [9,42],
where the thermal fluctuations are suppressed by long-ranged
strain-strain force [11] and the kinetics of transition is only
controlled by external parameters. When the range of interac-
tion is very large (Coulomb type [43]), the fluctuation-related
barrier crossing becomes disabled, and the transition dynamic
should follow the deterministic track eventually, the transition
acts like the mean-field one [12]. Spinodal slowing down has
been observed under deep supersaturation in the athermal
system [14,16,44]. This slowing down can manifest as the
much-discussed delay in the onset of switching around the

144102-2



SUPPRESSION OF SPINODAL INSTABILITY BY … PHYSICAL REVIEW B 104, 144102 (2021)

185 190 195 200 205
2

4

6

8

10  Cooling
 Heating

R
el

ax
at

io
n 

tim
e,

 
 (s

)

Temperature (K)

(a)
180 190 200 210

2.0

2.2

2.4

2.6

2.8

R
es

is
ta

nc
e 

(m
)

Temperature (K)

0.5K/m
01K/m
02K/m
05K/m
10K/m
15K/m
20K/m
25K/m
30K/m
35K/m
40K/m

(b)

0.5 5 501 10
0.05

0.5

5

0.1

1
 Heating
 Cooling
  = 0.93
  = 0.85Te

m
pe

ra
tu

re
 s

hi
ft 

]  (
K)

Ramp Rate (K/min)

(c)

FIG. 3. (a) Temperature-dependent phase ordering relaxation
time constant. The time constant has been extracted by exponential
curve fitting in the temporal evolution of order parameter of quench
and hold experiments (Fig. 2). The vertical lines correspond to the
quasistatic transition temperatures for cooling (green) and heating
(orange). (b) Temperature-dependent resistance for different ramp
rates. (c) Log-log plot of shift in transition temperatures with tem-
perature scanning rates. The power laws fitting exponent coming out
to be ϒ ≈ 0.93 for heating and ϒ ≈ 0.85 for cooling.

bifurcation points of the FOPT (i.e., finite-time effects); the
change in the hysteresis loop area A(R) (or shift in transition
points) with R, the rate of change in the field H or temperature
T can dynamically scale as

A(R) = A0 + aRϒ. (1)

The quasistatic hysteresis loop area A0 must be nonzero for
such transitions [12,24,45–50]. The values of ϒ have been
obtained analytically [45], numerically [24,46,49], and exper-
imentally [12,47,48] in different systems, for the field as well
as temperature-driven FOPTs. The mean-field exponent ϒ =
2/3 is believed to be the signature of spinodal like transition
[12,46]. The dynamical scaling that resembles a spinodal-like
transition occurs when an inherent slowing down leads to
overshooting in the transition. Note that the power-law scaling
of hysteresis is considered a scale-free behavior of the charac-
teristic response time.

However, the signature of spinodal slowing down reflects
both in quench-and-hold and dynamic hysteresis measure-
ments (Fig. 3). The phase-ordering relaxation time constant
peaks at the transition points, but there is a clear qualita-
tive difference between the heating and cooling branch of
hysteresis [Fig. 3(a)]. The peaks are significantly milder in
the heating branch hinting nondiverging timescale of relax-
ation. Such nonrobust critical behavior in the athermal system
arises from local fluctuations induced by the impurities, which
acts as a heterogeneous nucleating site [51]. The extended
disorder along with crystal impurities is present during the
transition to the metal phase. The physics is controlled by
its disorder-induced fluctuations leading to a large rounding
of the timescale divergence. On the other hand, the transi-
tion back to the insulator phase has no extended disorder,

and a comparatively sharper peak is observed. Besides, we
also observe the asymmetric finite-time effect of the transi-
tions, the shift in transition temperature with the ramp rates
R [Fig. 3(b)]. Although the dynamical renormalized shifts
�T both for heating and cooling fulfill a scaling relationship
�T (R) = |T i

0 − T i
obs(R)| ∝ Rϒ , i = heat or cool around two

decades of ramp rates [Fig. 3(c)], the exponent are found to
be dissimilar: ϒ = 0.93 ± 0.13 for heating and ϒ = 0.85 ±
0.07 for cooling. The error in exponents has been calcu-
lated in Appendix G. The exponents are inconsistent with
the mean-field spinodal value (ϒ = 2/3). Such nonmean-
field behavior appears due to the coexistence of barrier-free
spinodal nucleation under deep supersaturation [14,20], and
barrier crossing heterogeneous nucleation at the impurity
center [18,20], which is more during heating compared to
cooling. ϒ > 2/3 has so far only been seen in the experiment
for glass transition of glycerol [48] and in (Monte Carlo)
simulation for Ising model [49] at the critical point.

III. SIMULATION RESULTS

To confirm the above interpretation (disorder sup-
pressed the spinodal instability), we have performed three-
dimensional (3D) zero-temperature (athermal) random field
Ising model simulations in the context of quench-and-hold
and dynamic hysteresis measurements where the magnetiza-
tion (order parameter) is the response function of an external
magnetic field (details can be found in Appendix E). The
nonequilibrium bistable system involving time-dependent bi-
furcation parameters such as magnetic field, temperature,
laser-field (in bistable semiconductor laser) can be reduced to
the spin system [47,52,53] as the instability point for such sys-
tems are similar to the fixed point of φ3 theory for field-driven
transitions [46]. Therefore, even though the experimental sys-
tem is temperature driven instead of field driven, the ZTRFIM
captures the essential nature of athermal transition, including
random disorder [21,54–56]. The Hamiltonian of the model is
given by

H = −J
∑

〈i, j〉
sis j −

∑

i

[H (t ) + hi]si, (2)

where Ising spins si = ±1, placed on the 3D lattice, coupled
with nearest-neighbor pairs through coupling strength J . H (t )
is the external field and hi represents the random field disorder,
taken from a Gaussian distribution of zero mean and variance
σ . σ represents the disorder strength.

The quench-and-hold experiments were performed in the
ZTRFIM system on a cubic lattice of size L3 under peri-
odic boundary conditions with disorder σ > σc. The critical
disorder σc separates a high-disorder regime where infinite
avalanche never happens, i.e., the field-versus-magnetization
hysteresis loop is continuous and a low-disorder regime where
hysteresis loop contains macroscopic jump [21,22]. The value
of σc = 2.16 and 2.23 for 3203 and 603 system, respectively
[21,30]. Although σc is now known up to the five decimal
point of accuracy [σc(L → ∞) = 2.27205] for the infinite
system size limit [57,58]. We choose a fully polarized initial
state, and then the magnetic field is abruptly set to a specific
value close to the transition point as the system is allowed to
equilibrate at T = 0. The thorough numerical protocols are
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FIG. 4. Phase ordering relaxation time constant during wait after
rapid increasing (a) and decreasing (b) fields drawn from ZTRFIM
simulations of size 1283 for disorder strength σ = 2.25, 2.3, 2.5,
3, and 3.5. (c) The time constant peak values for increasing (•) and
decreasing (�) fields as a function of system size for different disor-
der strengths. Note that a little mismatch of peak height during field
increasing and decreasing for a particular disorder strength depends
upon how close one can reach the transition points.

discussed in Appendix E 2. The equilibration time (relaxation
time) sharply peaks at the transition, although the peak height
decreases with the increasing disorder strength (Fig. 4). The
relaxation time peak grows slowly with system size, showing
a mild finite-size effect, unlike power-law growth in the case
of classical criticality followed by spinodal transition with
critical disorder. This manifests the nonrobust critical behav-
ior of spinodal transition.

To quantify the role played by disorder on spinodal tran-
sition, we study the dynamic hysteresis in the ZTRFIM. The
systematic shift in coercive fields Hc(R), the fields at which
the transition takes place, with the field rates R fulfill a scaling
relationship similar to the experiment [Eq. (1)] where the
steady-state coercive field Hc(0) is no longer a free parameter
(see Appendix E 1 for details). Here no excess disorder (unlike
experiments) is induced either during increasing or decreasing
the field; consequently, the asymmetric exponents are not
expected and observed. Most importantly, the exponent ϒ

increases with the increasing disorder, and the scaling does
not form when the disorder crosses a threshold level σth =
3.30 [30] (Fig. 5). ϒ is independent of system size as it
is directly linked with the timescale divergence [59]. Above
σth, disorder-induced nonperturbative athermal fluctuations
destroy the spinodal singularity, and transition occurs through
percolation [60]. The experimentally observed exponents em-
phasize that the cooling cycle is more critical than the heating.

IV. CONCLUSIONS

Based on the RFIM calculations, we argue that for the
systems with low disorder the transition is governed by a small
number of relatively large macroscopic jumps. In contrast,
systems with large disorder display smooth transitions with
a large number of small-size avalanches, and the lopsided dis-
order gives rise to asymmetric avalanches in the superheating

2.25 2.50 2.75 3.00 3.25 3.50

0.5

0.6

0.7

0.8

0.9

1.0

2.25 2.50 2.75 3.00 3.25
-1.4

-1.2

1.2

1.4

L = 64
L = 128
L = 256
L = 350
MF
Expt.

D
yn

am
ic

al
ex

po
ne

nt
,ϒ

Disorder strength, σ

Decreasing

H
c(

R
=0

)Increasing

Hysteresis width (ΔHc)
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temperature mean-field dynamical exponent, ϒ ≈ 0.62 ± 0.01. The
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and supercooling kinetic processes. Heterogeneous nucleat-
ing droplets emerge from disorder-induced local fluctuation
on the kinetic path before reaching the spinodal instabil-
ity. However, the thermal growth of the droplets suppressed
by a long-range interacting force leads to a nonmean-field
spinodal slowing down: relaxation times are peaking but not
diverging and show mixed order (first-order and continuous)
fracture at the transitions [61,62]. The crossover from the
robust mean-field spinodal, i.e., with diverging correlation
length and susceptibility, to the nonrobust mixed transition,
exhibiting nonuniversal dynamical exponents, takes place due
to the finite-correlation length whose growth is bounded by
the average distance between the disorder points [51]. As
disorder increases, the heterogeneous nucleation increases,
which leads to the suppression of spinodal more and more,
and finally reaches a threshold level where a distinct crossover
takes place from spinodal-like to percolation behavior [61].

Finally, we conclude by saying that when the thermal
fluctuation is irrelevant, disorder-induced local fluctuation
smeared the spinodal instabilities, and our results established
the existence of spinodal-singularity beyond mean-field.
Similar behavior has been seen in simulations of low-
disorder RFIM [22], 2D-Ising model [63], and Kob-Andersen
model [64].
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FIG. 6. Room temperature XRD of Mn50Ni40Sn10 Heusler alloy
using CuKα radiation.

APPENDIX A: SAMPLE PREPARATION AND
CHARACTERIZATION

The Mn50Ni40Sn10 off-stoichiometric Heusler alloy is pre-
pared using an arc-melting technique inside a 4N purity argon
atmosphere. The metals (Mn, Ni, and Sn) are more than 99.9%
pure. We seal the as-prepared ingot separately in evacuated
quartz ampoules to anneal the samples at 900 ◦C for 96 h.
We immediately cool the ampoule by quenching it into the ice
water. The crystallographic parent phase of the samples has
been confirmed from the room temperature x-ray diffraction
(XRD) patterns, recorded using CuKα radiation. Finally, we
perform the compositional analysis by energy dispersive anal-
ysis of x-ray attached with a field emission scanning electron
microscope.

Structural and magnetic properties: Figure 6 shows
the room temperature XRD pattern for off-stoichiometric
Mn50Ni40Sn10 Heusler alloy, which confirms the presence of
cubic austenite (Hg2CuTi- type) phase [65]. One can notice
the coexistence of a small amount of tetragonal martensite
phase also. The temperature-dependent field cooled cooling
(FCC) and zero-field cooled (ZFC) magnetization of the mate-
rial are recorded under 100 Oe fields (Fig. 7). Figure 7 shows a
magnetic transformation near 270 K, the ferro-para transition
at Curie temperature (TCA) in the austenite phase. Around T
= 200 K, the magnetization of the sample rapidly decreases
on cooling. The material transforms from a highly magnetic
cubic austenite structure to a weakly magnetic tetragonal
martensite structure. A thermal hysteresis associated with this
transition has been observed both in magnetic and transport
measurements. The transition is recognized as a first-order
magneto-structural transition. Below this temperature, the
magnetization again increases due to the presence of a Curie
point in the martensite phase. A temperature below 125 K, a
glassy phase may exist, which might show the effect of the
exchange bias [66].

Recalling the XRD data, we have found that the martensite
phase exists near room temperature. The magnetic measure-
ments in Fig. 7 also show that the structural transition resides

FIG. 7. Magnetization vs temperature and resistance versus tem-
perature of a polycrystalline Mn-Ni-Sn based Heusler alloy.

near 200 K. It is unusual to observe the XRD peaks of a
low-temperature structure at a temperature 100 degrees above
the transition. It is only possible if the sample has a significant
amount of disorder and strain [67,68].

APPENDIX B: RATE-DEPENDENT AVALANCHE

In the DTA experiments corresponding to Figs. 1(b) and
1(d), we obtain jerky latent heat peaks related to the formation
of new phase nucleated at the defect points. Moreover, the
amount of jerky heat released during cooling is more compare
to the heating. The DTA curve in Fig. 1 corresponds to the
temperature scanning at the rate of 6 K/min. In the athermal
ATPT, the system has to be driven above some minimum
temperature or field rate, below which no avalanches can
be detected due to insignificant excitations in the metastable
states [4]. On the other hand, the transition becomes continu-
ous rather than a series of avalanches above this driving rate,
where the timescale of each avalanche is smaller than the data
acquisition time [69]. In between 0.5 K/min and 10 K/min
temperature scanning rates, we were able to measure the MIT
through a series of avalanches. The driving-rate dependence
of the critical exponents of the avalanche distribution in first-
order phase transitions had been observed previously [4,5].
However, the asymmetry in the superheating and supercooling
kinetic processes are independent of the sweep rate [70].

Figure 8 shows the latent heat jump distribution for
two different temperature scanning rate of 4 K/min and
8 K/min. Both the curves manifest that the large jump ap-
pears in the cooling branch of the hysteresis. The driving
rate-dependent results indicate that an apparent asymmetry is
always observed for an individual rate within our measure-
ment capabilities.

APPENDIX C: PHASE-ORDERING TIME

In Fig. 2, we have plotted the insulator fraction or order
parameter (φ) as a function of time and temperature. The
quench-and-hold measurements’ temperature starts from a
perfectly insulating state (or metallic state). The sample is
heated up (or cooled down) rapidly to a specific set tempera-
ture, then allowed to equilibrate. Simultaneously, the sample’s

144102-5



TAPAS BAR, ARUP GHOSH, AND ANURAG BANERJEE PHYSICAL REVIEW B 104, 144102 (2021)

FIG. 8. Avalanche distribution of jerky latent heat as a function
of magnitude, measured in 1/7 sec interval. The two curves corre-
spond to two different temperature scanning rates: 4 K/min (left)
and 8 K/min (right).

resistance was recorded and converted to the insulator frac-
tion (order parameter φ) using a percolation model based
on McLachlan’s general effective medium theory [41]. The
model reads

φ

(
σ

1/t
I − σ

1/t
E

)
(
σ

1/t
I + Aσ

1/t
E

) + (1 − φ)

(
σ

1/t
M − σ

1/t
E

)
(
σ

1/t
M + Aσ

1/t
E

) = 0, (C1)

where σM and σI are the conductivities of metallic and in-
sulating phases. A is defined as (1 − φc)/φc, where φc is the
insulator fraction at the percolation threshold. φc = 0.16 and
the critical exponent t = 2 for three-dimensional system.

Figure 9 shows the first 50 seconds of phase evolution
after reaching the set temperature, and the phase ordering
relaxation times τ are inferred by the fitting equation given
below:

φ(t ) = [φt=0 − φeq] exp (−t/τ ) + φeq, (C2)

where φeq stand for quasistatic value of the order parameter.

(a) (b)

FIG. 9. Temporal evolution of order parameter (insulator frac-
tion) during wait after shock heating (a) and cooling (b). Solid lines
are exponential fits.

FIG. 10. (a) DTA signal as a function of temperature for different
ramp rates. (b) The scaling of shift in transition temperatures as a
function of ramp rates follows the exponents ϒ = 0.88 (cooling) and
ϒ = 0.97 (heating).

APPENDIX D: DYNAMIC HYSTERESIS IN DTA
MEASUREMENTS

Figure 10 shows that the dynamic hysteresis scaling, which
has been observed in an independent thermodynamic mea-
surement using the DTA technique. There is ambiguity in
figuring out the transition temperatures from the DTA curve of
a lower rate due to the multiple minor peaks. It is worth noting
that the lower value of the data dominates the straight-line
fits in a log-log graph. Therefore we narrowly consider the
smoothed (degree 100) data with ramp 4 K/min and above to
achieve scaling exponent from DTA measurements. Neverthe-
less, the exponent values remain consistent with the preceding
values extracted from resistance data. The transition tempera-
tures, hence the exponent values, differ a bit depending upon
the degrees of smoothness. That is why we may regard these
measurements as rough. Note that the dynamical exponent
in the heating branch is higher than the cooling branch of
hysteresis. Despite having some limitations of the technique,
the qualitative findings are somewhat supreme as the results
are obtained from the thermodynamics measurement.

APPENDIX E: ZERO-TEMPERATURE RANDOM-FIELD
ISING MODEL

This section provides the details on the algorithm for
simulating the zero-temperature random field Ising model
(ZTRFIM). The Hamiltonian for the random field Ising model
can be written as

H = −J
∑

〈i, j〉
sis j −

∑

i

[H (t ) + hi]si, (E1)

The Ising-like spins, si = ±1 are on three-dimensional cubic
lattice of linear dimension L with periodic boundary condi-
tions. The nearest neighbor spins interact ferromagnetically
with interaction strength denoted by J . We set J = 1 for this
paper. All the spins on the lattice experience an external time-
dependent uniform field H (t ). The form of H (t ) depends on
the real situation we would like to simulate and is discussed in
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detail below. Additionally, a random site-dependent but static
magnetic field hi is also present. The random local hi is chosen
from a random Gaussian distribution, V (h) given by

V (h) = 1√
2πσ 2

e−h2/(2σ 2 ), (E2)

where σ is the width of the distribution and denotes the
disorder strength in this model. We average all the physical
quantities using 50–100 independent disorder realizations.
Here the random field Ising model is simulated at the zero
temperature, and therefore, there are no thermal fluctuations.
The spin-flip is entirely determined by the sign change of the
local field

Ei = J
∑

j

s j + hi + H, (E3)

where the sum over j is over the neighbor sites of i. For a
cubic lattice we have six neighbors at each site. This local
field determines the spin flip completely at each time step as
there is no thermal fluctuations.

1. Dynamic hysteresis

We use a linear ramping of the field, H (t ) = H0 + Rt
where R is the rate of change of the magnetic field and H0

is the initial external field strength at t = 0. The algorithm to
obtain the magnetization at each step as the external field is
linearly increased is presented below.

(1) We set the spin for every site to si = −1. Similarly, we
fix the field to H (0) = −H0, where at −H0, all the spins are
expected to be in the down configuration, i.e., we have a fully
polarized system.

(2) We increase the external magnetic field by R such that
H (t ) = H (t − 1) + R.

(3) We check all the sites if the local field defined in
Eq. (E3) changes sign on any over the lattice.

(4) We flip the spins of the sites where the local field Ei

changes sign.
(5) Next, we move to the next time step by increasing the

field by R. Hence, we repeat steps 2–5 until all the spins are
flipped.

We highlight the difference between this dynamic al-
gorithm and the quasistatic simulations of ZTRFIM in
Refs. [21,30]. For a quasistatic process that corresponds to
R → 0 in our notation, the system is allowed to equilibrate
before increasing the magnetic field. To perform the equili-
bration, if a spin flips in step (3), the local energy of all sites
needs to be re-evaluated to confirm whether the initial flip
triggers the flipping of other spins. This procedure continues
until none of the local energy flips sign for a set magnetic field
H (t ). Only after ensuring that we have reached equilibrium
for that H (t ), the magnetic field is increased further. Here, the
equilibration procedure is bypassed in the linear ramping to
capture the nonequilibrium nature of the physical quantities.

The algorithm presented above can be extended when all
the spins are in up-configuration, as we linearly decrease the
field from H (0) = H0 with the rate R. Therefore, the increas-
ing and decreasing magnetic field leads to the two branches of
the magnetization-field graph in Fig. 11.

z

FIG. 11. Magnetization φ (order parameter) versus external field
H for different ramp rate yield in the 3D-ZTRFIM simulations of
system size 2563 under periodic boundary conditions for disorder
strength σ = 2.25 and 3.25. Ramp rate (→ 0) indicate the steady
state hysteresis.

In Fig. 11, we show that for a prolonged ramping, the
magnetization curve indeed approaches the quasistatic value.
Note that hysteresis is symmetric to the origin (Fig. 11). The
shift in coercive fields Hc(R), the fields at which the magne-
tization changes the sign, from the steady-state coercive field
Hc(R = 0) fulfill a scaling relation with fields rate R:

�Hc(R) = |Hc(R) − Hc(0)| ∝ Rϒ. (E4)

Figure 12 shows the power-law fitting for the different
disorders, and the fitting deteriorates with the increasing dis-
order from the critical disorder. The scaling exponent versus
disorder graph has been shown in Fig. 5. It is worth noting
that when the disorder strength higher than a threshold value
σth ≈ 3.30, the fitting with a single exponent will not be
feasible (see Appendix G).

Zero-temperature mean field

Furthermore, we also performed a zero-temperature mean-
field analysis of same model. In order to do so, the spin flip is

FIG. 12. The shift in coercive fields Hc(R) from the steady-state
coercive fields Hc(0) follow a power law with ramp rate. (—) repre-
sent linear fitting with exponent ϒ .
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z

z

FIG. 13. Temporal evolution of order parameter φ in phase-
ordering simulation on ZTRFIM of system size 2563 for σ = 2.25.
The individual color represents the distinct quenched-field shown
in the equilibration time (relaxation time) vs quenched-field graph
(inset) for decreasing (a) and increasing (b) the fields.

determined by

Ei = Jzm + hi + H, (E5)

where z is the average number of nearest neighbors and m is
the average magnetization of the system m = ∑N

i=1 si. Note
that here the local field is determined by the average magneti-
zation of the whole system instead of neighboring spin. Using
the spin-flip protocol of equation (E5) we perform the same
algorithm presented in the previous section.

2. Time constant

We also find the time required for a fully polarized system
to relax to a steady state when the external field is suddenly
quenched to a certain value, mimicking the quench-and-hold
experiment. The algorithm for the same is presented below:

(1) First we set the spins on every site to si = −1 or s = 1.
(2) Next, we fix the external magnetic field to H = Hf for

which we need to find the time to reach steady state. We also
initialize the time constant to τ = 0.

(3) We check all the sites if the local field defined in
Eq. (E3) changes sign on any of the sites.

(4) If there is a sign change of the local field on any site,
we flip the spin on that site.

(5) If in step 4 there is at least a single flip over the whole
lattice, we increase the unit of time τ = τ + 1 and then again
repeat the steps from 3 to 5.

(6) If during the check, in step 3, there is no flip over the
whole lattice, we exit the process. The time during the exit is
the relaxation time τ .

The relaxation time results are presented in Figs. 4(a) and
4(b). This timescale arises because the system relaxes to a
steady state by series of small avalanches [21,30]. Figure 13
shows the time evolution of the magnetization when the field
is quenched to a particular value, and the magnetization φ

finally reached the steady-state after time τ . Equilibration time
τ peaks at the transition points (coercive fields) [Figs. 4 and 13
(inset)] demonstrating that dynamics slow down considerably
near the spinodal point.

FIG. 14. (a) Relative variance Rm of m(H ) calculated at 〈m〉 =
0.6 of the φ vs H curve as a function of system size L for different
values of disorder σ . The Rm follow a power law decay with the L,
Rm ∼ Lp. (b) The scaling factor p calculated for selected values of
〈m〉 as a function of σ . For σ > 2.30, Rm strongly decaying with the
system size (p > 3). On the other hand, the decay is comparatively
slow for σ � 2.30.

APPENDIX F: SELF-AVERAGING PROPERTY AND
DISORDER-INDUCED ERROR

In this section, we study the self-averaging property of the
random field Ising model system that concerns the depen-
dence of physical quantity, let us say the magnetization φ(H ),
with the disorder. If φ(H ) is a self-averaging quantity, most
disorder realizations will provide the same value of φ(H ) in
the thermodynamic limit. In that case, a very few numbers
of sample average is good enough to provide an appropriate
φ(H ) through numerical simulation. If the system is not self-
averaging, the magnetization strongly depends on the disorder
realization. Even in an infinite system, one would not get a
meaningful result from a single realization; demanding for
repetitive measurements over many samples [71].

The self-averageness of the RFIM system of disorder
strength σ can be estimated from the relative variance of
magnetization,

Rm = [〈m(H )2〉 − 〈m(H )〉2]

〈m(H )〉2
, (F1)

where 〈...〉 denotes the average over disorder. The system is
self-averaging, if Rm → 0, and nonself-averaging, if Rm ∝
const �= 0, as L → ∞. The system is consider to be weak
self-averaging if Rm ∝ L(α/ν) for L → ∞ [58].

Figure 14 shows the system is always self-averaging for
σ > σc [71]. However, we find that there are two regimes
of self-averaging, strongly self-averaging for σ > 2.3 and
weakly self-averaging for σ � 2.30. The weak self-averaging
has been observed, as expected, near the pure critical point
(at σ = σc), which is very different from the spinodal points.
In the weak regime (2.3 > σ > σc). We have checked that
the dynamical hysteresis exponent ϒ converges within 10–
20 disorder sample average. The fitting error is much larger
than the sampling error. However, the maximum disorder-
induced errors can be estimated from the standard deviation of
magnetization δφ. We generate two set of hysteresis curve by
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FIG. 15. (a) Least square fitting error vs the exponent ϒ for
different values of the quasistatic transition temperature T0 and
(b) corresponding reduced chi-square statistical quality χ2/DOF vs
ϒ . The minimum error are corresponding to minimum of χ2/DOF;
ϒ = 0.92 for heating and ϒ = 0.85 for cooling.

adding and subtracting δφ(H ) with the φ(H ); and simulta-
neously calculated the two exponents ϒφ+δφ and ϒφ−δφ . The
difference between the two exponents δϒdisorder = |ϒφ+δφ −
ϒφ−δφ| can be considered as maximum disorder-induced
error. In the strong self-averaging region (σ > 2.3), the
disorder-induced error δϒdisorder is an order of magnitude
lower than the fitting error δϒfitting. In the weakly self-
averaged regime, the disorder error is larger than the fitting
error. The total errors, the sum of fitting and disorder-induced
errors, are exhibit in Fig. 5. The fitting error has been de-
scribed in the next section.

APPENDIX G: POWER-LAW FITTING AND ERROR

The dynamical renormalized shifts �T (|T i
0 −

T i
obs(R)|, i = heat or cool ) follows scaling with temperature

rates R such as
∣∣T i

0 − T i
obs(R)

∣∣ = aRϒ. (G1)

The exponent ϒ was extracted by fitting the above equation
[Eq. (G1)] with the experimentally and numerically obtained
data points. We analyzed the data set twice using the best
straight-line fitting method and statistical distribution of the
nonlinear fitting method.

The best straight-line fitting: In Eq. (G1), there are three un-
known parameters, T i

0 the quasistatic transition temperature,
ϒ and the constant a. The constant a could be bypassed by
fitting a straight line in the log-log graph, where the slope of
the straight line would be the ϒ . We varied the T i

0 within the
acceptable region to achieve the best straight line fit. The ac-
ceptable values of T i

0 stand below (or above) T i
R1, the observed

transition temperature under the lowest heating (or cooling)
rate. Since �T is a monotonic increasing function of R, the
acceptable region (let say δT ) is bounded by transition tem-
perature difference under two low rates (|T i

R1 − T i
R2|) whose

difference is larger than the lowest rate (i.e., R2 − R1 > R1).
Precisely (TR1 − δT ) < T0 < TR1 and (TR1 + δT ) > T0 > TR1

are the allowed quasistatic temperatures region for heating and
cooling.

Figure 15(a) shows that the least square error in the slope
of the straight line as a function of the exponent. Each point of

the graph corresponds to a hand-picked quasistatic transition
temperature T i

0 . The exponent corresponding to the minimum
of reduced chi-square statistical quality (χ2/DOF) could be
thought of conclusive exponent. The χ2/DOF in Fig. 15(b)
define as

χ2

DOF
= 1

DOF

∑

i

(Oi − Ei )2

�2
i

. (G2)

where Oi is the ith observed data and Ei is the ith expected data
of the straight-line fit. The degree of freedom (DOF) equals
to the number of observations minus the number of fitting
parameters. The values of �, the uncertainty of transition
temperatures, are not quite clear as it strongly depends on
where we extract the transition temperature and how much in-
certitude is acceptable. In Fig. 15(b) we calculate the χ2/DOF
by considering � = 0.003 K to 0.1 K for R = 0.5 K/min
to 40 K/min. The exponent is coming out to be ϒ = 0.92
for heating and ϒ = 0.85 for cooling, which is close to the
exponents corresponding to the minimum of “error in slope”
in Fig. 15(a).

However, the lower values of the data dominate in the
straight line fitting on the log-log graph. Small changes in T i

0 ,
worsen the lower-rate transition temperature shift �T , lead to
a significant change in the exponent value. For these reasons,
we come up with more logical data fitting kits where every
data point contributes equally to extract the scaling exponent.

Statistical distributions of nonlinear fitting: The simplest
technique is to pick out any four data points out of the whole
set of data and calculate the scaling exponent for all possibil-
ities. The exponent’s acceptance can be judged according to
the quasistatic temperature, which has been calculated using
that exponent. The histogram of all accepted exponents will
follow a normal distribution where the mean value can be
considered the final scaling exponent.

Let us consider Ti and Tj be the observed transition tem-
peratures under ramp rate Ri and Rj . We assume that shift
in transition temperature from the quasistatic limits T0 under
temperature scanning rate will follow a power law:

Ti = T0 + aRϒ
i , Tj = T0 + aRϒ

j (G3)

where the unknown constant a could be negative or positive
depending upon the cooling or heating. The impact of qua-
sistatic temperature to determine the exponent can be taken
off by subtracting the above equations:

(Ti − Tj ) = a
(
Rϒ

i − Rϒ
j

)
. (G4)

If N be the total total number of data points we can pick up
two points in a NC2 (say N1) possible ways. We eliminate
the unknown constant a by divide the Eq. (G4) with the same
equation for another pair of data {k, l}, i.e.,

(Ti − Tj )

(Tk − Tl )
=

(
Rϒ

i − Rϒ
j

)
(
Rϒ

k − Rϒ
l

) (G5)

Iterative numerical solutions of the above equation gives us
N1C2 numbers of ϒ .

For each ϒ there are two T0:

T {i, j}
0 =

Ti − ( Ri
R j

)ϒ
Tj

1 − ( Ri
R j

)ϒ
, T {k,l}

0 = Tk − (Rk
Rl

)ϒ
Tl

1 − (Rk
Rl

)ϒ
(G6)
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FIG. 16. Distribution of fitting exponent ϒ . The exponents were
calculated using four independent points out of the whole data set,
and every data point has an equal impact for extracting the fitting
exponent.

There is no restriction imposed on the value of T0, which
is not acceptable for Eq. (G3) itself. The values of ϒ

for which the inferred T0 lying inside the acceptable re-
gions [(TR1 − δT ) < T heat

0 < TR1 and (TR1 + δT ) > T cool
0 >

TR1] are allowed to draw the statistical distribution of
exponent.

The mean of the distribution (Fig. 16), ϒmean = 0.93 for
heating and ϒmean = 0.85 for cooling, are compared to the
best straight-line fitting exponents (Fig. 15). The histogram’s
standard deviation, larger than the best straight line fitting
error, can be considered the maximum error of the results.
Note that the distribution in the cooling branch is quite sharp
compared to the heating, and the error in heating (standard
deviation) is twice the error in cooling.

FIG. 17. Distribution of exponents for numerically evaluated dy-
namic hysteresis in ZTRFIM for disorder strength σ = 2.25 (a),
2.75 (b), 3.25 (c), and 3.50 (d). The exponents (ϒ) are extracted
from iterative numerical solutions of Eq. (G5). The distribution
broadened as the disorder strength increased [(a)–(c)] and finally
above the threshold value (σth ≈ 3.30) the distribution is no longer
Gaussian (d).

FIG. 18. (a) Graphical representation of free energy vs order
parameter for different temperatures and associated (b) measurable
order parameter versus temperature for an athermal system. The
measurable order parameter values for different temperatures are
computed from the (local or global) free energy minimum to which
the system became trapped depending upon the previous history. The
schematic diagram of free energy (c) and entropy (d) corresponding
to the thermally driven hysteretic transition (b) are calculated from
a mean-field compressible Ising model [12] where there are two
free parameters, Tc, which represent the cooling transition point
and other parameter ξ fixed the heating transition points. We pick
up Tc = 192.28 and ξ = 0.1255 just to fit experimentally obtained
quasistatic transition temperatures. Arrows indicate the directions of
heating (blue) and cooling (red). It is important to note that the jump
in free energy and entropy in thermally driven hysteretic transition is
not restricted to the numerical model that we choose.

Error in simulated exponent: In the simulation, quasistatic
temperature T0 is known, Eq. (G1) has only one unknown
parameter in the log-log graph. The error in the straight line
fitting can be used as estimates of error (Fig. 12). However, the
goodness of the fitting is visible in the statistical distributions
methods (Fig. 17) although the mean of the distribution is
lower than the straight-line fitting exponent. Note that the ϒ

are calculated using Eq. (G5) without any restriction on the
value of T0. That causes some errors in the mean value.

APPENDIX H: FREE-ENERGY FORMALISM OF
HYSTERESIS

A hysteresis arises because the system gets trapped in
the metastable local minima and cannot reach the global
minimum state within the experimental timescale. This is
only possible when the system has insufficient fluctuations
so that it can not cross the activation barriers separating the
two phases. Depending upon the strength of fluctuations and
barrier height, one can classified first-order phase transition
(FOPT) into three classes.

(i) When the fluctuations are significant, the system es-
capes from the local energy well to the global energy
minimum through nucleation, and one would not observe
hysteresis under equilibrium circumstances [1]. The phase
transition takes place at the binodal point where the minimum
of both the free energy well are in the same footing [3rd curve
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from the above in Fig. 18(a)]. This is the condition for the
usual FOPT where the free energy is always convex under
Maxwell’s construction.

(ii) When the thermal fluctuations are insignificant in the
kinetics of phase transformation (athermal), the metastable
phase of a system can persist right up to the limit of
metastability, spinodal point (mean-field concept), where the
activation barrier against nucleation vanishes [1,72]. Here, the
double-well free energy converted to a single well, which
is the usual case for continuous transitions [blue and red
curves in Fig. 18(a)]. Hence, one would expect to see the
divergence of the correlation length along with divergence of
the relaxation time of the order parameter as observed in a
continuous transition. At those points of inflection, the free
energy and entropy both are discontinuous, as observed in
the schematic diagram Figs. 18(c) and 18(d). In the experi-
ment, the signature of such discontinuity is observed through
hysteresis (free energy jump) accompanied by latent heat
(entropy jump).

(iii) When the fluctuations are in-between the two extreme
conditions mentioned above, one may observe the hysteresis
along with latent heat but would not expect any signatures of
criticality. In this case, the free energy and the entropy are
also discontinuous, but jumps are comparatively less than the
spinodal transitions [above and below the binodal point B in
Fig. 18(c)]

In this paper, we are in class (ii), where we experimen-
tally observed dynamic scaling and critical slowing down
(signature of continuous transition in the FOPT) differs this
transition from the usual FOPT. This kind of athermal (or
spinodal) transition arises due to the suppression of fluctua-
tions by the long-range force during structural phase transition
of many complex functional materials. [3]. The concept of
the spinodal first appeared in the van der Waals equation,
but it has been viewed only as an interesting artifact of the
mean-field approximation [1,12,72]. However, we report that
the disorder suppressed the spinodal instability and provided
a nonmean-field dynamical exponent.
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[30] O. Perković, K. Dahmen, and J. P. Sethna, Avalanches,
Barkhausen Noise, and Plain Old Criticality, Phys. Rev. Lett.
75, 4528 (1995).

[31] However, at classical critical point, the type of extended dis-
order, whether quench [32–34] or anneal [35], is controversial
for fine-tuning the criticality. Fortunately, we are apart from
the classical critical point, and we also observed twining even
after a fair amount of training the sample, and thus we would
consider the quenched character of disorder for the modeling
purposes.

[32] F. J. Perez-Reche, L. Truskinovsky, and G. Zanzotto, Training-
Induced Criticality in Martensites, Phys. Rev. Lett. 99, 075501
(2007).

[33] B. Cerrut and E. Vives, Random-field Potts model with dipo-
larlike interactions: Hysteresis, avalanches, and microstructure,
Phys. Rev. B 77, 064114 (2008).

[34] E. Vives, J. Goicoechea, J. Ortín, and A. Planes, Universality in
models for disorder-induced phase transitions, Phys. Rev. E 52,
R5 (1995).

[35] F. J. Perez-Reche, C. Triguero, G. Zanzotto, and L.
Truskinovsky, Origin of scale-free intermittency in struc-
tural first-order phase transitions, Phys. Rev. B 94, 144102
(2016).

[36] W. Fan, J. Cao, J. Seidel, Y. Gu, J. W. Yim, C. Barrett, K. M. Yu,
J. Ji, R. Ramesh, L. Q. Chen, and J. Wu, Large kinetic asymme-
try in the metal-insulator transition nucleated at localized and
extended defects, Phys. Rev. B 83, 235102 (2011).

[37] L. Kang, L. Xie, Z. Chen, Y. Gao, X. Liu, Y. Yang, and W.
Liang, Asymmetrically modulating the insulator-metal transi-
tion of thermochromic VO2 films upon heating and cooling by
mild surface-etching, Appl. Surf. Sci. 311, 676 (2014).

[38] Return point memory has been observed above the critical
disorder below that it is completely absent, see M. S. Pierce,
C. R. Buechler, L. B. Sorensen, S. D. Kevan, E. A. Jagla,
J. M. Deutsch, T. Mai, O. Narayan, J. E. Davies, K. Liu, G. T.
Zimanyi, H. G. Katzgraber, O. Hellwig, E. E. Fullerton, P.
Fischer, and J. B. Kortright, Disorder-induced magnetic mem-
ory: Experiments and theories, Phys. Rev. B 75, 144406 (2007).

[39] R. Gilmore, Catastrophe Theory for Scientists and Engineers
(Dover, New York, 1981).

[40] X. An, D. Mesterházy, and M. A. Stephanov, On spinodal
points and Lee-Yang edge singularities, J. Stat. Mech. (2018)
033207.

[41] D. Kumar, K. P. Rajeev, J. A. Alonso, and M. J. Martínez-Lope,
Slow dynamics in hard condensed matter: A case study of the
phase separating system NdNiO3, J. Phys.: Condens. Matter 21,
185402 (2009); K. H. Kim, M. Uehara, C. Hess, P. A. Sharma
and S.-W. Cheong, Thermal and Electronic Transport Properties
and Two-Phase Mixtures in La5/8−xPrxCa3/8MnO3, Phys. Rev.
Lett. 84, 2961 (2000).

[42] H. Zheng, W. Wang, D. Wu, S. Xue, Q. Zhai, J. Frenzel, and
Z. Luo, Athermal nature of the martensitic transformation in
Heusler alloy Ni-Mn-Sn, Intermetallics 36, 90 (2013).

[43] A. S. McLeod, E. van Heumen, J. G. Ramirez, S. Wang, T.
Saerbeck, S. Guenon, M. Goldflam, L. Anderegg, P. Kelly, A.
Mueller et al., Nanotextured phase coexistence in the correlated
insulator V2O3, Nat. Phys. 13, 80 (2017).

[44] P. Bhimalapuram, S. Chakrabarty, and B. Bagchi, Elucidating
the Mechanism of Nucleation near the Gas-Liquid Spinodal,
Phys. Rev. Lett. 98, 206104 (2007).

[45] M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hys-
teresis in two model spin systems, Phys. Rev. B 42, 856 (1990);
M. Rao and R. Pandit, Magnetic and thermal hysteresis in the
O(N)-symmetric (�2)3 model, ibid. 43, 3373 (1991); M. Rao,
Comment on “Scaling Law for Dynamical Hysteresis”, Phys.
Rev. Lett. 68, 1436 (1992).

[46] F. Zhong, and J. Zhang, Renormalization Group Theory of Hys-
teresis, Phys. Rev. Lett. 75, 2027 (1995); F. Zhong and Q. Chen,
Theory of the Dynamics of First-Order Phase Transitions: Un-
stable Fixed Points, Exponents, and Dynamical Scaling, ibid.
95, 175701 (2005); N. Liang and F. Zhong, Renormalization
group theory for temperature-driven first-order phase transitions
in scalar models, Front. Phys. 12, 126403 (2017); F. Zhong,
Renormalization-group theory of first-order phase transition dy-
namics in field-driven scalar model, ibid. 12, 126402 (2017).

[47] P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling Law for
Dynamical Hysteresis, Phys. Rev. Lett. 65, 1873 (1990); G. P.
Zheng and J. X. Zhang, Thermal hysteresis scaling for first-
order phase transitions, J. Phys.: Condens. Matter 10, 275
(1998); W. Lee, J.-H. Kim, J. G. Hwang, H.-R. Noh, and W.
Jhe, Scaling of thermal hysteretic behavior in a parametri-
cally modulated cold atomic system, Phys. Rev. E 94, 032141
(2016).

[48] Y. Z. Wang, Y. Li, and J. X. Zhang, Scaling of the hysteresis
in the glass transition of glycerol with the temperature scanning
rate, J. Chem. Phys. 134, 114510 (2011).

[49] P. Shukla, Hysteresis in the Ising model with Glauber dynamics,
Phys. Rev. E 97, 062127 (2018).

[50] S. Pal, K. Kumar, and A. Banerjee, Universal scaling of charge-
order melting in the magnetic field-pressure-temperature land-
scape, Phys. Rev. B 102, 201109(R) (2020).

144102-12

https://doi.org/10.1103/PhysRevLett.78.1408
https://doi.org/10.1103/PhysRevE.59.5049
https://doi.org/10.1103/PhysRevB.66.054406
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1103/PhysRevLett.78.4885
https://doi.org/10.1103/PhysRevLett.112.174301
https://doi.org/10.1103/PhysRevD.102.114510
https://doi.org/10.1007/s10955-012-0687-3
https://doi.org/10.1063/5.0056857
https://doi.org/10.1103/PhysRevLett.75.4528
https://doi.org/10.1103/PhysRevLett.99.075501
https://doi.org/10.1103/PhysRevB.77.064114
https://doi.org/10.1103/PhysRevE.52.R5
https://doi.org/10.1103/PhysRevB.94.144102
https://doi.org/10.1103/PhysRevB.83.235102
https://doi.org/10.1016/j.apsusc.2014.05.135
https://doi.org/10.1103/PhysRevB.75.144406
https://doi.org/10.1088/1742-5468/aaac4a
https://doi.org/10.1088/0953-8984/21/18/185402
https://doi.org/10.1103/PhysRevLett.84.2961
https://doi.org/10.1016/j.intermet.2013.01.012
https://doi.org/10.1038/nphys3882
https://doi.org/10.1103/PhysRevLett.98.206104
https://doi.org/10.1103/PhysRevB.42.856
https://doi.org/10.1103/PhysRevB.43.3373
https://doi.org/10.1103/PhysRevLett.68.1436
https://doi.org/10.1103/PhysRevLett.75.2027
https://doi.org/10.1103/PhysRevLett.95.175701
https://doi.org/10.1007/s11467-016-0633-y
https://doi.org/10.1007/s11467-016-0632-z
https://doi.org/10.1103/PhysRevLett.65.1873
https://doi.org/10.1088/0953-8984/10/2/006
https://doi.org/10.1103/PhysRevE.94.032141
https://doi.org/10.1063/1.3564919
https://doi.org/10.1103/PhysRevE.97.062127
https://doi.org/10.1103/PhysRevB.102.201109


SUPPRESSION OF SPINODAL INSTABILITY BY … PHYSICAL REVIEW B 104, 144102 (2021)

[51] Y. Imry and M. Wortis, Influence of quenched impurities on
first-order phase transitions, Phys. Rev. B 19, 3580 (1979).

[52] F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with
temperature scanning rate, Phys. Rev. E 51, 2898 (1995).

[53] A. Hohl, H. J. C. van der Linden, R. Roy, G. Goldsztein, F.
Broner, and S. H. Strogatz, Scaling Laws for Dynamical Hys-
teresis in a Multidimensional Laser System, Phys. Rev. Lett. 74,
2220 (1995).

[54] The mean-field spinodal cannot in general survive in short-
range low-dimensional (d = 2, 3) systems [23] due to the
existence of high enough thermal fluctuation but the long-range
physics can be studied through RFIM at zero temperature [22]
although the notion of spinodal instability has recently been
observed in finite dimensional short-range interacting system
[55] even at finite temperature [56].

[55] L. Berthier, P. Charbonneau, and J. Kundu, Finite Dimensional
Vestige of Spinodal Criticality above the Dynamical Glass
Transition, Phys. Rev. Lett. 125, 108001 (2020).

[56] A. Pelissetto and E. Vicari, Dynamic Off-Equilibrium Tran-
sition in Systems Slowly Driven across Thermal First-Order
Phase Transitions, Phys. Rev. Lett. 118, 030602 (2017).

[57] N. G. Fytas and V. Martín-Mayor, Universality in the Three-
Dimensional Random-Field Ising Model, Phys. Rev. Lett. 110,
227201 (2013).

[58] N. G. Fytas and V. Martín-Mayor, Efficient numerical methods
for the random-field Ising model: Finite-size scaling, reweight-
ing extrapolation, and computation of response functions, Phys.
Rev. E 93, 063308 (2016).

[59] The finite size effect will cancel out during steady-state subtrac-
tion and finally provide a robust dynamical exponent.

[60] A. A. Moreira, C. L. N. Oliveira, A. Hansen, N. A. M.
Araújo, H. J. Herrmann, and J. S. Andrade, Jr., Fracturing
Highly Disordered Materials, Phys. Rev. Lett. 109, 255701
(2012).

[61] A. Shekhawat, S. Zapperi, and J. P. Sethna, From Damage
Percolation to Crack Nucleation Through Finite Size Criticality,
Phys. Rev. Lett. 110, 185505 (2013).

[62] T. Rizzo, Fate of the Hybrid Transition of Bootstrap Perco-
lation in Physical Dimension, Phys. Rev. Lett. 122, 108301
(2019).

[63] B. Scheifele, I. Saika-Voivod, R. K. Bowles, and P. H. Poole,
Heterogeneous nucleation in the low-barrier regime, Phys. Rev.
E 87, 042407 (2013).

[64] B. P. Bhowmik, S. Karmakar, I. Procaccia, and C. Rainone, Par-
ticle pinning suppresses spinodal criticality in the shear-banding
instability, Phys. Rev. E 100, 052110 (2019).

[65] L. Ma, S. Q. Wang, Y. Z. Li, C. M. Zhen, D. L. Hou, W. H.
Wang, J. L. Chen, and G. H. Wu, Martensitic and magnetic
transformation in Mn50Ni50−xSnx ferromagnetic shape memory
alloys, J. Appl. Phys. 112, 083902 (2012); Q. Tao, Z. D. Han,
J. J. Wang, B. Qian, P. Zhang, X. F. Jiang, D. H. Wang, and
Y. W. Du, Phase stability and magnetic-field-induced marten-
sitic transformation in Mn-rich NiMnSn alloys, AIP Adv. 2,
042181 (2012).

[66] A. Ghosh, P. Sen, and K. Mandal, Measurement protocol
dependent magnetocaloric properties in a Si-doped Mn-rich
Mn-Ni-Sn-Si off-stoichiometric Heusler alloy, J. Appl. Phys.
119, 183902 (2016).

[67] A. Ghosh and K. Mandal, Effect of structural disorder on the
magnetocaloric properties of Ni-Mn-Sn alloy, Appl. Phys. Lett.
104, 031905 (2014).

[68] B. Ravel, J. O. Cross, M. P. Raphael, V. G. Harris, R. Ramesh,
and L. V. Saraf, Atomic disorder in Heusler Co2MnGe mea-
sured by anomalous x-ray diffraction, Appl. Phys. Lett. 81,
2812 (2002).

[69] A. Sharoni, J. G. Ramírez, and I. K. Schuller, Multiple
Avalanches across the Metal-Insulator Transition of Vanadium
Oxide Nanoscaled Junctions, Phys. Rev. Lett. 101, 026404
(2008).

[70] J. D. Valle, N. Ghazikhanian, Y. Kalcheim, J. Trastoy, M. H.
Lee, M. J. Rozenberg, and I. K. Schuller, Resistive asymmetry
due to spatial confinement in first-order phase transitions, Phys.
Rev. B 98, 045123 (2018).

[71] X. Illa, M.-L. Rosinberg, and E. Vives, Influence of the driving
mechanism on the response of systems with athermal dynamics:
The example of the random-field Ising model, Phys. Rev. B 74,
224403 (2006).

[72] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
1995).

144102-13

https://doi.org/10.1103/PhysRevB.19.3580
https://doi.org/10.1103/PhysRevE.51.2898
https://doi.org/10.1103/PhysRevLett.74.2220
https://doi.org/10.1103/PhysRevLett.125.108001
https://doi.org/10.1103/PhysRevLett.118.030602
https://doi.org/10.1103/PhysRevLett.110.227201
https://doi.org/10.1103/PhysRevE.93.063308
https://doi.org/10.1103/PhysRevLett.109.255701
https://doi.org/10.1103/PhysRevLett.110.185505
https://doi.org/10.1103/PhysRevLett.122.108301
https://doi.org/10.1103/PhysRevE.87.042407
https://doi.org/10.1103/PhysRevE.100.052110
https://doi.org/10.1063/1.4758180
https://doi.org/10.1063/1.4772626
https://doi.org/10.1063/1.4948962
https://doi.org/10.1063/1.4862431
https://doi.org/10.1063/1.1513216
https://doi.org/10.1103/PhysRevLett.101.026404
https://doi.org/10.1103/PhysRevB.98.045123
https://doi.org/10.1103/PhysRevB.74.224403

