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Quantum anomalous Hall insulator (QAH)/s-wave superconductor (SC) hybrid systems are known to be an
ideal platform for realizing two-dimensional topological superconductors with chiral Majorana edge modes. In
this paper we study QAH/unconventional SC hybrid systems whose pairing symmetry is p wave, d wave, chiral
p wave, or chiral d wave. The hybrid systems are a generalization of the QAH/s-wave SC hybrid system. In view
of the symmetries of the QAH and pairings, we introduce three topological numbers to classify the topological
phases of the hybrid systems. One is the Chern number, which characterizes chiral Majorana edge modes, and the
others are topological numbers associated with crystalline symmetries. We numerically calculate the topological
numbers and associated surface states for three characteristic regimes that feature the influence of unconventional
SCs on QAHs. Our calculation shows a rich variety of topological phases and unveils the following topological
phases that are not counterparts of the s-wave case: crystalline symmetry-protected helical Majorana edge modes,
a line node phase (a crystalline-symmetry-protected Bogoliubov Fermi surface), and multiple chiral Majorana
edge modes. The phenomena result from a nontrivial topological interplay between the QAH and unconventional
SCs. Finally, we discuss tunnel conductance in a junction between a normal metal and the hybrid systems and
show that the chiral and helical Majorana edge modes are distinguishable in terms of the presence or absence of
a zero-bias conductance peak.
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I. INTRODUCTION

Unconventional superconductors (SCs) with nonzero
topology, dubbed topological SCs, have been the subject of
intense study [1–8] since they host Majorana fermions on
their surface as surface zero-energy Andreev bound states.
The Majorana fermions follow non-Abelian statistics [9–14]
and have been proposed as a topological qubit to implement
fault-tolerant topological quantum computation [15]. To real-
ize emergent Majorana fermions, a lot of efforts have been
devoted to one-dimensional systems, such as semiconduc-
tor/SC hybrid systems [16–27] and a magnetic atomic chain
on superconductors [28–37].

Alongside those efforts, quantum anomalous Hall insulator
(QAH)/SC hybrid systems have attracted a lot of interest
as another platform for topological SCs. QAHs are two-
dimensional (2D) topological insulators that exhibit quantized
Hall conductance without an external magnetic field and host
chiral fermions on the edge [38–40]. The QAHs in proximity
to an s-wave SC become 2D topological SCs [41–44]. Due
to the breaking of time-reversal symmetry (TRS), the super-
conducting states belong to class D of the Altland-Zirnbauer
symmetry classes [45–50]. The topological phases are char-
acterized by the Chern number N . Figure 1 shows the phase
diagram of QAH/s-wave SC hybrid systems, where m is a
mass parameter and �0 is the amplitude of the gap function.
The phases with N = 2, 1, and 0 indicate the presence of
two, one, and zero chiral Majorana edge modes, respectively.
Recent experiments on QAH/topological SC/QAH junctions

observed a half-quantized conductance [51], which signals
the N = 1 phase [52–54], i.e., a single Majorana chiral edge
mode, but its existence is still open to debate [55–59].

Recently, QAH/SC hybrid systems have been general-
ized to hybrid systems with antiferromagnetic topological
insulators [57,60], s-wave SC with nontrivial topology [61],
or d-wave SCs [62]. Interestingly, such extended hybrid
systems bring other 2D topological phases showing helical
Majorana edge modes protected by a pseudo-TRS [57] and
multiple chiral Majorana edge modes [60–62]. These exotic
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FIG. 1. Phase diagram of the QAH/s-wave SC hybrid sys-
tem [41,44]. Here, m and �0 represent the mass gap and the
amplitude of the s-wave pair potential, respectively. N indicates the
Chern number for each phase.
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topological surface states have provided another route for
probing Majorana edge modes [61,62]. In addition, super-
conducting doped topological materials, including topological
insulators [63–66] and Dirac/Weyl semimetals [67–72], are a
promising platform to explore topological superconductivity
induced by topologically nontrivial electron states.

In this paper, we study topological phases of
QAH/unconventional SC hybrid systems as a generalization
of the QAH/s-wave SC hybrid system. Unconventional
SCs, which have non-s-wave pairing, can be realized
in cuprates [73–75], Sr2RuO4 [76–86], SrPtAs [87–89],
heavy-fermion materials [90–98], and so on. We consider
p-wave, d-wave, chiral p-wave, and chiral d-wave pairings
as possible non-s-wave pairings on the SC side and examine
a superconducting state realized by the topological interplay
between these pairings and the QAH.

Numerically calculating surface states and topological
numbers peculiar to QAH/unconventional SC hybrid systems,
we show that the hybrid systems exhibit versatile topological
phases with no counterpart of the QAH/s-wave SC hybrid
system; these topological phases are attributed to nontrivial
topology or spin structures in unconventional Cooper pairs.
For instance, chiral SCs manifest a nontrivial Chern number
(N �= 0). Thus, a nontrivial topological interplay may emerge
in the hybrid systems. We discuss possible topological phases
for three characteristic parameter regimes: (i) Eg > 2|�0|,
(ii) Eg < 2|�0|, and (iii) the metallic state, where Eg is the
amplitude of the insulating gap in the QAH and the metallic
state is the situation where the chemical potential lies above or
below the insulating gap. The topological properties of hybrid
systems for each parameter regime are briefly summarized as
follows. Hereafter, we assume topologically nontrivial states
in the underlying QAHs.

(i) Only a chiral edge mode is contributed to the super-
conducting state for Eg > 2|�0|, thereby leading to two chiral
Majorana edge modes irrespective of pairing symmetries.

(ii) Different topological phases appear for some pair-
ing symmetries when the gap function satisfies Eg < 2|�0|.
We find a crystalline-symmetry-protected helical Majorana
edge mode when the pairing symmetry is a p-wave pairing.
Moreover, a gapless phase appears when an inconsistency
occurs between the spin structures of the QAH and spin-triplet
pairing. The gapless phase is regarded as a crystalline-
symmetry-protected Bogoliubov Fermi surface.

(iii) Topological phases inherent in unconventional pair-
ings appear when the chemical potential lies at the bulk bands;
if the pair potential has nodes, zero-energy flat bands or sine-
curved states are realized on the surface. On the other hand, if
it has a full gap, we find multiple chiral Majorana edge modes,
the number of which is determined from a sum rule of the
Chern number. In addition, the gapless phase mentioned above
appears again since it is attributed to the mismatch of the spin
structures.

Finally, we discuss tunnel conductance in a normal
metal/(QAH/SC) junction as a probe to distinguish the
crystalline-symmetry-protected helical Majorana edge modes
from the chiral ones; the former exhibits a sharp zero-bias
conductance peak mediated by the zero-energy states pro-
tected by crystalline symmetry, whereas the latter does not
due to the interference of the zero-energy states [99].

FIG. 2. Schematic illustration of QAH/SC hybrid systems.

This paper is organized as follows. We formulate
QAH/unconventional SC hybrid systems in Sec. II A. The
symmetries and topological numbers are summarized in
Secs. II B and II C. The numerical method is introduced
in Sec. II D. In Sec. III A, we give an overview of
our findings for three characteristic parameter regimes in
the QAH/unconventional SC hybrid systems. In particu-
lar, we discuss topological properties and surface states for
crystalline-symmetry-protected helical Majorana edge modes,
a crystalline-symmetry-protected Bogoliubov Fermi surface,
and multiple chiral Majorana edge modes in Secs. III B, III C,
and III D, respectively. The relations to the tunnel conductance
are discussed in Sec. IV, and a summary is given.

II. QAH/SC MODEL

A. Formulation

We start from a minimum two-dimensional Hamiltonian
describing QAH states, HQAH = ∑

k ψ
†
k HQAH(k)ψk, with

ψk = (ck,↑, ck,↓)T and

HQAH(k) = m(k)σz + A(kxσx + kyσy), (1)

where m(k) = m + B(k2
x + k2

y ), A, and σi are a mass term, a
spin-orbital coupling term, and the Pauli matrices in the spin
space, respectively. The mass term breaks TRS and opens a
gap at k = 0; the energy spectrum is given by EQAH(k) ≡√

A2(k2
x + k2

y ) + [m + B(k2
x + k2

y )]2, leading to the insulating

gap Eg = 2|m|. For m/B < 0, the system belongs to the QAH
phase with a single chiral edge mode on the boundary [41].

Using Eq. (1), we model the QAH/SC hybrid system,
where the QAH is supposed to be stacked on an SC (see
Fig. 2). In the hybrid system, Cooper pairs in the SC are
induced to the QAH due to the proximity effect, and thus,
the QAH/SC system can be described by the Bogoliubov–
de Gennes (BdG) Hamiltonian, HBdG = 1

2

∑
k �

†
k HBdG(k)�k,

with �k = (ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)T and

HBdG(k) =
(

HQAH(k) − μ �(k)
�†(k) −H∗

QAH(−k) + μ

)
, (2)

where μ is the chemical potential and �(k) is the induced gap
function. In the following, we consider unconventional SCs,
and thus, �(k) describes non-s-wave Cooper pairings such as
p-wave, d-wave, chiral p-wave, and chiral d-wave pairs. For
spin-singlet Cooper pairings, we define the gap function as

�(k) = �0 f (k)(iσy), (3)
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where the form factor f (k) depends on Cooper pair symmetry
such that

f (k) =

⎧⎪⎪⎨
⎪⎪⎩

1 (s wave),
kxky (dxy wave),
k2

x − k2
y (dx2−y2 wave),

(kx ± iky)2 (chiral d ± id wave).

(4)

We note that the dxy-wave (dx2−y2 -wave) pairing hosts point
nodes at kx = 0 and ky = 0 (kx = ky and kx = −ky) on the
Fermi surface, whereas the chiral (d ± id)-wave pairing has
a full gap and breaks TRS spontaneously.

On the other hand, the gap function in spin-triplet Cooper
pairings is formally described as

�(k) = �0d(k) · σ(iσy), (5)

with d(k) = (dx(k), dy(k), dz(k)). The d vector represents the
spin degrees of freedom of Cooper pairs. The pν-wave and
chiral p-wave pairings are represented by the d vector with

di(k) =
{

kν (pν wave),
kx ± iky (chiral p ± ip wave) (6)

and d j = 0 when j �= i, where ν = x, y and i = x, y, z. For
the chiral (p ± ip)-wave pair, we fix the d vector along the
z direction. Note that the px- and py-wave pairings have a
pair of point nodes at kx = 0 and ky = 0 on the Fermi surface,
respectively.

B. Symmetries

In the following, we summarize the symmetries of the
QAH/SC hybrid systems, which are useful to define the
topological numbers in Sec II C. First, let us consider the
symmetries of the normal Hamiltonian (1). In the QAH, TRS
(T = iσyK) is absent, but crystalline symmetries that keep the
Hamiltonian (1) invariant exist. Equation (1) satisfies twofold
rotation symmetry in the z axis,

C2zHQAH(k)C−1
2z = HQAH(−k), C2z = iσz. (7)

In addition, although twofold rotation symmetries in terms
of the x and y axis (C2x and C2y) are not symmetries of the
Hamiltonian, the combination with TRS keeps the Hamilto-
nian invariant. That is, the combined operations, defined by
Ax = C2xT and Ay = C2yT , satisfy

AxHQAH(kx, ky)A−1
x = HQAH(−kx, ky), Ax = σzK, (8)

AyHQAH(kx, ky)A−1
y = HQAH(kx,−ky ), Ay = K, (9)

which we call magnetic-reflection symmetry in this paper.
Here, K is the complex-conjugation operator.

Next, we consider symmetries of the QAH/SC hybrid sys-
tems (2) that break TRS but preserve particle-hole symmetry:

CHBdG(k)C−1 = −HBdG(−k), C = τxK, (10)

where τi are the Pauli matrices in the Nambu space. Hence,
our systems belong to class D of the Altland-Zirnbauer sym-
metry classes.

In addition, the crystalline symmetries (7), (8), and (9) are
again symmetries of the BdG Hamiltonian, whose representa-
tions are modified due to pairing symmetry. The gap functions
transform, under the action of g = C2z, Ax, and Ay, as

g�(k)gT = ±�(Dgk), (11)

TABLE I. Representations of crystalline symmetries in QAH/SC
hybrid systems.

Pairing symmetry C2z Ax Ay �Ax �Ay

s wave iσzτz σzτzK K σzτy τx

dxy wave iσzτz σzK τzK σzτx τy

dx2−y2 wave iσzτz σzτzK K σzτy τx

Chiral d ± id wave iσzτz σzτzK K σzτy τx

px wave (d ‖ x̂) iσzτz σzτzK K σzτy τx

px wave (d ‖ ŷ) iσzτz σzK τzK σzτx τy

px wave (d ‖ ẑ) iσz σzK K σzτx τx

py wave (d ‖ x̂) iσzτz σzK τzK σzτx τy

py wave (d ‖ ŷ) iσzτz σzτzK K σzτy τx

py wave (d ‖ ẑ) iσz σzτzK τzK σzτy τy

Chiral p ± ip wave iσz σzK K σzτx τx

where Dg obeys the change in momentum in Eqs. (7), (8),
and (9) and the plus and minus signs represent the parity of
the gap functions in terms of g. Thus, to be consistent with
Eq. (11), representations of g in the Nambu space are given by

G =
(

g 0
0 ±g∗

)
, (12)

where + (−) comes from the parity of gap functions in
Eq. (11). In the matrix representation, the BdG Hamiltonian
and the particle-hole operator satisfy

GHBdG(k)G−1 = HBdG(Dgk), CG = ±GC, (13)

where the sign reflects the parity of the gap function in
Eq. (11). The explicit representations of G = C2z, Ax, and Ay

are summarized in Table I. Here, we use calligraphic fonts for
the symmetries in the BdG Hamiltonian.

Furthermore, the combination of G and C constitutes chiral
operators, �Ax ≡ eiφAxC and �Ay ≡ eiφ′AyC, which satisfy

�Ax HBdG(kx, ky)�−1
Ax

= −HBdG(kx,−ky), (14)

�Ay HBdG(kx, ky)�−1
Ay

= −HBdG(−kx, ky), (15)

where we choose the phase factors φ and φ′ as �2
Ax

= �2
Ay

=
14×4, with 1N×N being the N × N identity matrix. These chiral
operators are defined for all gap functions; see the rightmost
columns in Table I.

C. Topological numbers

We here discuss possible topological numbers inherent in
the symmetries of the QAH/SC hybrid system.

1. Chern number

Since the QAH/SC hybrid systems break TRS, we can
define the Chern number N as

N =
∑

n∈occ

∫
BZ

d2k
2π

(
∂an,y

∂kx
− ∂an,x

∂ky

)
, (16)

an,i = −i〈un,k| ∂

∂ki
|un,k〉, (17)

when the energy spectrum is fully gapped over the 2D Bril-
louin zone (BZ). Here, |un,k〉 is an eigenstate of HBdG(k)
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with a band label n and momentum k, and the summation
is taken over the occupied states. The Chern number corre-
sponds to the number of chiral Majorana edge modes through
the bulk-boundary correspondence, and its sign is related to
the direction of edge currents; for instance, chiral Majorana
edge modes associated with the Chern numbers N = 1 and
−1 propagate in opposite directions. In the QAH/s-wave SC
hybrid systems, the Chern number takes N = 0, 1, and 2
(see Fig. 1).

2. One-dimensional winding number classified by Z

The QAH/SC systems host additional crystalline sym-
metries (13), (14), and (15) which allow us to define
crystalline-symmetry-protected topological numbers. Using
the chiral symmetries [Eqs. (14) and (15)], we can define a
crystalline-symmetry-protected one-dimensional (1D) wind-
ing number [43,100] in a 1D subspace of the BZ,

W[�Ai ] = i

4π

∫ π

−π

dkiTr

[
�Ai H

−1
BdG(k)

∂

∂ki
HBdG(k)

]
, (18)

where we fix kx = 0 for �Ay and ky = 0 for �Ax . The
nonzero 1D winding number ensures the existence of zero-
energy modes at the edges of the 1D subspace through the
bulk-boundary correspondence. The 1D winding number is
intrinsically related to the Chern number, so |W[�Ai ]| counts
the number of chiral Majorana edge modes that cut across
kx = 0 or ky = 0 in the surface BZ. For instance, when we
consider the QAH/s-wave SC hybrid system and impose the
open (periodic) boundary condition in the x (y) direction,
W[�Ax ] describes zero modes at ky = 0 in the surface BZ;
the 1D winding number takes W[�Ax ] = 1 when N = 1,
while W[�Ax ] = 0 when N = 0, 2 [43] because only a single
chiral Majorana edge mode cuts across ky = 0. Hereafter, we
abbreviate W[�Ai ] as W unless otherwise specified.

3. Zero-dimensional topological number classified by Z2

In addition, the QAH/SC hybrid systems satisfy twofold
rotation symmetry,

C2zHBdG(k)C−1
2z = HBdG(−k), (19)

which leads to a crystalline symmetry-protected zero-
dimensional (0D) Z2 invariant when the parity of the gap
function is odd under C2z, i.e., {C2z, C} = 0. Combining
Eq. (19) with C = τxK in Eq. (10), the BdG Hamiltonian
satisfies

(−iτxC2z )HBdG(k) = −[(−iτxC2z )HBdG(k)]T , (20)

where we add −i to make the operator real. Equation (20)
indicates that the matrix is screw symmetric, and thus, we can
define a Pfaffian invariant,

(−1)ν = sgn

{
Pf[(−iτxC2z )HBdG(k′)]
Pf[(−iτxC2z )HBdG(k′′)]

}
, (21)

which takes ν = 0, 1 ∈ Z2 since Pf[(−iτxC2z )HBdG(k)] ∈ R.
Here, k′ and k′′ are arbitrary wave numbers in the 2D BZ. If
ν = 1 mod 2, a gapless point exists on a line connecting k′

and k′′; namely, one of the wave numbers is enclosed by a
line node. In terms of topology, the line node is analogous to

the Bogoliubov Fermi surface [101–106]. Thus, we call it a
crystalline-symmetry-protected Bogoliubov Fermi surface.

D. Numerical method

We numerically calculate the surface density of states
(SDOS) and the topological numbers to explore topological
surface states through the bulk-boundary correspondence. We
perform the numerical calculation on a square lattice by re-
placing ki → sin ki and k2

i → 2(1 − cos ki ) in Eq. (2).
For SDOSs, we impose the periodic boundary condition for

the y axis and the semi-infinite boundary condition for the x
axis (see Fig. 2). Using the surface Green’s function Gs(ky, E ),
the angle-resolved SDOS is defined by

ρ(ky, E ) = − 1

π
Im[PeGR(ky, E )], (22)

with the retarded Green’s function

GR(ky, E ) = Gs(ky, E + iη), (23)

where E is the energy of the semi-infinite system, η is an
infinitesimal positive number, and Pe = (τ0 + τz )/2 is the
projection onto the electron states. The surface Green’s func-
tion in the semi-infinite system is obtained using Umerski’s
method [107].

For topological numbers, the Chern number (16) is cal-
culated using the gauge-invariant method [108], where the
Chern number is defined on the discretized Brillouin zone
with a mesh size of Nx × Ny, which approaches the exact
Chern number when the mesh is sufficiently large. We choose
Nx = Ny = 512 in this paper. The obtained Chern number is
consistent with the results for SDOSs. Similarly, the winding
number (18) is calculated on the discretized Brillouin zone,
where we directly replace the integral by a summation since
Eq. (18) does not depend on the choice of the gauge. In the
numerical calculation, we fix ky = 0 and take a replacement∫

dkx → 2π
Nx

∑
, with Nx = 10 000.

In the following, we fix A = 0.1 and B = 1 and
choose the other parameters to be (m,�0, μ) =
(±0.05, 0.025, 0), (±0.05, 0.025, 0.01), (±0.05, 0.175, 0),
(±0.05, 0.175, 0.01), and (±0.05, 0.025, 0.06). The first and
second parameters belong to the regime Eg > 2|�0|, the third
and fourth belong to Eg < 2|�0|, and the fifth belongs to the
metallic states, where Eg = 2|m| is the insulating gap and
m < 0 (m > 0) describes the topologically nontrivial (trivial)
phases of the QAH. For Eg > 2|�0| and Eg < 2|�0|, we also
check the dependence of the chemical potential because an
accidental degeneracy of surface zero-energy states occurs
when μ = 0, while it disappears when μ �= 0 [99].

III. RESULT

A. Overview

We apply the numerical methods to the QAH/
unconventional SC hybrid systems. The results are
summarized in Table II, where gap structures, surface
states, and topological numbers are shown in the three
parameter regimes. The SDOSs on the (10) surface in the
QAH/s-wave, QAH/px-wave, QAH/py-wave, QAH/dxy-wave,
QAH/dx2−y2 -wave SC hybrid systems are schematically
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TABLE II. Summary of surface states (SSs) and bulk gap structures (GSs) in the QAH/unconventional SC hybrid systems, where we
assume that the QAH is topologically nontrivial (m < 0) and the semi-infinite (periodic) boundary condition is imposed in the x (y) direction.
Here, N and W represent the Chern number (16) and the winding number (18) defined at ky = 0. The GSs are classified as a full gap, a
point node, and a line node in the 2D BZ, where the line node is a crystalline-symmetry-protected Bogoliubov Fermi surface, as discussed in
Sec. III C. For SSs, chiral Majorana edge modes (chiral) are stabilized by the Chern number, whereas the helical Majorana edge modes (helical)
are protected by the winding number. In the metallic state regime, px-wave, dxy-wave, and dx2−y2 -wave pairings host point nodes, which lead
to a flat band or a sine curve state, as shown in Fig. 3. Note that a dash (—) indicates no surface state and/or the Chern number is ill defined.

Eg > 2|�0| Eg < 2|�0| Metallic state

Pairing symmetry GS SS (N ,W) GS SS (N ,W) GS SS (N ,W)

s wave Full gap Chiral (2,0) Full gap Chiral (1,1) Full gap Chiral (1,1)
px wave (d ‖ x̂) Full gap Chiral (2,0) Full gap Chiral (2,0) Point node Flat band (—, 1)
px wave (d ‖ ŷ) Full gap Chiral (2,0) Full gap Helical (0,2) Point node Sine curve (—, 1)
px wave (d ‖ ẑ) Full gap Chiral (2,0) Line node — (—, 0) Line node — (—, 0)
py wave (d ‖ x̂) Full gap Chiral (2,0) Full gap — (0,0) Point node — (—, 0)
py wave (d ‖ ŷ) Full gap Chiral (2,0) Full gap Chiral (2,0) Point node — (—, 0)
py wave (d ‖ ẑ) Full gap Chiral (2,0) Line node — (—, 0) Line node — (—, 0)
Chiral p ± ip wave Full gap Chiral (2,0) Line node — (—, 0) Line node — (—, 0)
dxy wave Full gap Chiral (2,0) Full gap Chiral (2,0) Point node Sine curve (—, 0)
dx2−y2 wave Full gap Chiral (2,0) Full gap Chiral (2,0) Point node Sine curve (—, 1)
Chiral d + id wave Full gap Chiral (2,0) Full gap Chiral (2,0) Full gap Chiral (−1, 1)
Chiral d − id wave Full gap Chiral (2,0) Full gap Chiral (2,0) Full gap Chiral (3,1)

shown in Figs. 3 and 4. In what follow, we overview emergent
topological phases for each regime.

1. Eg > 2|�0|
In this regime, the topology of the QAH is mainly con-

tributed to the surface states. We observe two chiral Majorana

edge modes for all the hybrid systems when m < 0. Their
stability is ensured by the Chern number N = 2.

2. Eg < 2|�0|
Once the magnitude of the pair potential exceeds the

insulating gap, we find topological phases unique to

FIG. 3. Schematic illustration of SDOSs in the QAH/s-wave and QAH/px-wave SC hybrid systems. For the px-wave pairing, we choose
the direction of the d vector to be d ‖ x̂, d ‖ ŷ, and d ‖ ẑ. We illustrate surface states for three parameter regimes: Eg > 2|�0|, Eg < 2|�0|, and
the metallic state, where Eg is the insulating gap and �0 is the amplitude of the gap function. The red solid (blue dotted) lines represent edge
states for superconducting QAHs (QAHs). The blue shaded areas describe the energy range of the gap function �0. We note that the direction
of the Majorana edge modes is opposite to that predicted by the Chern numbers in Table II since the QAH/SC hybrid system is located at
x > 0.
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FIG. 4. Schematic illustration of SDOSs in the QAH/unconventional SC hybrid systems with py-wave, dxy-wave, and dx2−y2 -wave pairings.

unconventional pairings. For the px-wave (d ‖ x̂), py-wave
(d ‖ ŷ), and d-wave pairings, the two chiral Majorana edge
modes appear again. On the other hand, a helical Majorana
edge mode emerges for the px-wave pairing (d ‖ ŷ). In this
phase, the Chern number is zero, while the 1D crystalline-
symmetry-protected winding number is nonzero. Thus, only
the magnetic-reflection symmetry protects the helical Majo-
rana edge mode. Note that the crystalline-symmetry-protected
helical Majorana edge mode is distinguished from one pro-
tected by TRS since the system breaks TRS; see Sec. III B for
more discussion.

Moreover, we find a line nodal phase, i.e., a completely
gapless phase, for the px-wave (d ‖ ẑ), py-wave (d ‖ ẑ), and
chiral p-wave pairings even when �0 is finite. The line node
originates from the mismatch of the spin structures between
the QAH and the d vector. We will show that the line node is
protected by the 0D topological number in Sec. III C.

3. Metallic state

We tune the chemical potential to the metallic regime; that
is, the Fermi level lies above or below the insulating gap. In
this regime, the hybrid systems realize superconducting states
inherent in unconventional pairings; the gap structures reflect
the pairing symmetries except for the gapless phase. For gap
functions with point nodes, surface states associated with
point nodes emerge [109], where the spin-orbit coupling in the
QAH gives a moderate change for some pairing symmetries.
For instance, the px-wave pair (d ‖ ŷ) has a surface sine curve
state. The surface sine curve state is a dispersed surface state
terminating at the point nodes (see Fig. 3) and is attributed to
the spin-orbit coupling term in the QAH, which breaks the
chiral symmetry (14) and can open a gap at ky �= 0 in the

surface. The same modifications also occur for the dxy-wave
and dx2−y2 -wave pairings, whose surface densities of states
exhibit a sine curve state [17,110] (see Fig. 4). Note that the
sine curve states appear in the QAH/dx2−y2 -wave SC hybrid
systems even when the dx2−y2 -wave SC does not show any
surface states on the (10) surface [111,112].

On the other hand, a fully gapped SC with multiple chiral
Majorana edge modes is realized when the SC side has chiral
d ± id-wave pairings, which host the nontrivial Chern number
N = ∓2. The numerical calculation shows a sum rule of the
Chern numbers: 1 − 2 = −1 for the chiral d + id-wave pairs
and 1 + 2 = 3 for the chiral d − id-wave pairs, where the first
(second) number represents the Chern number of the QAH
(chiral SCs). Note that the sum rule also holds true for the
s-wave case as 1 + 0 = 1. To understand the sum rule of
the QAH/chiral SC hybrid systems, we discuss an effective
Hamiltonian projected onto the Fermi level in Sec. III D;
the effective Hamiltonian explains the sum rule as the phase
winding of an effective gap function.

B. Crystalline-symmetry-protected helical Majorana
edge modes

It is known from the K-theoretical classification that 2D
class-D SCs with magnetic-reflection symmetry are classified
by double-integer numbers Z × Z [100], where the first and
second numbers represent the Chern number N and the 1D
winding number W defined in Sec. II C. Those topological
numbers are not independent of each other, and a mini-
mal set of topological numbers is given by e1 = (1, 1) and
e2 = (1,−1) ∈ Z × Z [100]. Other topological phases can be
constructed from their combinations: le1 + me2 (l, m ∈ Z).
Thus, we find a topological phase without the Chern number
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FIG. 5. SDOSs on the (10) surface for the QAH/px-wave
(d ‖ ŷ) SC hybrid systems, where the parameters are chosen to
be (m, �0, μ) = (−0.05, 0.175, 0) in (a) and (−0.05, 0.175, 0.01)
in (b).

when the topological number is proportional to e1 − e2. In
this phase, the Chern numbers of e1 and e2 are canceled out,
whereas the 1D winding number remains nonzero and takes
an even integer. As a result, two chiral Majorana edge modes
flow in the opposite direction, but a gap opening perturba-
tion between them is prohibited by the 1D winding number
protected by the magnetic-reflection symmetry; the resultant
surface state turns out to be a crystalline-symmetry-protected
helical Majorana edge mode even when TRS is absent.

From the calculation of topological numbers, we find the
topological phase with (N ,W ) = (0, 2) when the pairing
symmetry on the SC side is the px-wave pairing (d ‖ ŷ)
(see Table II). As expected, the obtained SDOS shows the
crystalline-symmetry-protected helical Majorana edge mode
with a band crossing at ky = 0 in Fig. 5(a). Furthermore, when
μ �= 0, each counterpropagating edge mode has different ve-
locities since the surface states do not need to respect TRS
[see Fig. 5(b)]. This property makes a sharp contrast to the
conventional helical Majorana edge mode protected by TRS.

We show a topological phase diagram of the QAH/px-
wave (d ‖ ŷ) SC hybrid systems in Fig. 6, where the phase
boundary is determined from the gap closing of the energy
spectrum as it signals topological phase transitions. When

FIG. 6. Topological phase diagrams of the QAH/px-wave (d ‖
ŷ) SC hybrid systems for (a) μ = 0 and (b) μ �= 0 as a function of
the mass term m, the spin-orbit coupling A, and the gap function
�0. (c) The topological numbers in each phase: (i) a fully gapped
topologically trivial phase, (ii) a fully gapped topological phase with
the two chiral Majorana edge modes, (iii) one with the crystalline-
symmetry-protected helical Majorana edge modes, and (iv) a point
node phase with a sine curve state.

FIG. 7. The bulk energy spectrum (left) and the SDOS on the
(10) surface (right) in the QAH/py-wave (d ‖ ẑ) SC hybrid system
with the parameters (m,�0, μ) = (−0.05, 0.025, 0.06). The numer-
ical calculation shows a line node (a gapless phase) due to the
mismatch of the spin structure between the QAH state and d vector.

μ = 0, topological phases are divided into three regimes:
(i) a fully gapped topologically trivial phase classified by
(N ,W ) = (0, 0) for m > 0, (ii) a fully gapped topological
phase with the two chiral Majorana edge modes classified by
(2,0) for A > �0 and m < 0, and (iii) one with the crystalline-
symmetry-protected helical Majorana edge mode classified by
(0,2) for A < �0 and m < 0 [see Fig. 6(a)]. (iv) On the other
hand, when μ �= 0, a point node phase with W = 1 appears
in between the topologically trivial and nontrivial phases. In
this phase, a surface sine curve state associated with the point
nodes appears. The fully gapped topological phases remain
stable in the parameter regime [see Fig. 6(b)].

C. Crystalline-symmetry-protected Bogoliubov Fermi surface

Our numerical calculations show a line node phase, i.e.,
a completely gapless phase, when the d vector is parallel to
the z axis (see Fig. 7). The gapless phase originates from
the mismatch of spin structures between the QAH and the
gap function. We here discuss the topological stability of the
line node. The QAH/p-wave (d ‖ ẑ) SC hybrid system pos-
sesses neither TRS nor spatial-inversion symmetry. Instead,
it has twofold rotation symmetry (7), which plays the same
role as the spatial-inversion symmetry in 2D space. When
the SC side has the d vector parallel to the z axis, it yields
the commutation relation {C, C2z} = 0, which enables us to
define a crystalline-symmetry-protected 0D Z2 invariant (21)
that protects a line node even for odd-parity SCs. We note
that the Z2 invariant is a generalization of that defined in
three-dimensional even-parity SCs without TRS [101–106].

To verify that the line node is protected by the crystalline-
symmetry-protected Z2 invariant, we numerically calculate
Eq. (21) in the gapless phases in the QAH/py-wave (d ‖ ẑ)
SC hybrid system. Figures 8(a) and 8(b) show the SDOSs for
Eg < 2|�0| and the metallic state, respectively. Both cases
exhibit line nodes at the intersection of electron and hole
bands. Figures 8(c) and 8(d) illustrate the sign of the Pfaffian
in Eq. (21) for Eg < 2|�0| and the metallic state, where we fix
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FIG. 8. SDOSs on the (10) surface and the sign of the Pfaffian in
the QAH/py-wave (d ‖ ẑ) SC hybrid system, where the parameters
are chosen to be (m, �0, μ) = (−0.05, 0.175, 0) in (a) and (c) and
(−0.05, 0.025, 0.06) in (b) and (d); these parameters belong to the
cases with Eg < 2|�0| and the metallic state, respectively. In (a) and
(b), the SDOSs exhibit a line node on the intersection of the electron
and hole bands. In (c) and (d), we show the sign of the Pfaffian in
Eq. (21) at E = 0, where k′′ is fixed to (0,0). Red (blue) represents the
region with ν = 0 (ν = 1). The sign change, which is the boundary
between the red and blue regions, corresponds to the line node.

k′′ = (0, 0) and vary k′. The line nodes appear on the bound-
ary of the regions with ν = 0 (red) and ν = 1 (blue); namely,
they are protected by the crystalline-symmetry-protected Z2

invariant.

D. Multiple chiral Majorana edge modes

When the chemical potential lies above or below the in-
sulating gap, the normal Hamiltonian forms a Fermi surface,
and a superconducting gap arises on it. Then, superconducting
states inherent in pairing symmetries arise in conjunction with
a modification by the spin-orbit coupling in the QAH. In this
regime, we find multiple chiral Majorana edge modes in the
QAH/chiral (d ± id)-wave SC hybrid systems since the chiral
(d ± id)-wave SCs have nonzero Chern numbers, which man-
ifest chiral Majorana edge modes. However, the number of
chiral Majorana edge modes in the hybrid system is different
from that in the chiral (d ± id)-wave SC. The reason is the
Chern number in the QAH also affects the bulk topology,
and thus, the number of chiral Majorana edge modes obeys
a sum rule of the Chern numbers in the QAH and the chiral
(d ± id)-wave SC.

Figure 9 shows the SDOSs of QAH/chiral (d ± id)-wave
SC hybrid systems in the metallic regime. We find three chiral
Majorana edge modes (dE/dky < 0) for the (d − id)-wave
pairing and a single chiral Majorana edge mode (dE/dky > 0)
for the (d + id)-wave pairing. Since the chiral (d ± id)-wave
SCs have Chern number N = ∓2, the Chern number in the
hybrid systems is shifted by 1.

To understand the sum rule of the Chern numbers, we
employ the analogy between superconducting Dirac Hamilto-

FIG. 9. SDOSs on the (10) surface in the QAH/(d ± id)-wave
SC hybrid systems with (m, �0, μ) = (−0.05, 0.175, 0.06). The
SDOSs exhibit (a) three chiral Majorana edge modes for the (d −
id)-wave pairing and (b) a single chiral Majorana edge mode for the
(d + id)-wave pairing. Here, we enlarge �0 to check the chiral Ma-
jorana edge modes. The superconducting gap on the Fermi surface is
given by Eq. (27).

nians and spinless chiral p-wave superconductors [113,114].
The analogy is made by projecting the BdG Hamiltonian (2)
onto the Fermi surface. Provided that μ ∼ v|k| and μ � Eg =
2|m|, we can ignore m(k), and the normal Hamiltonian is
diagonalized by the unitary transformation,(

c̃k,↑
c̃k,↓

)
≡ 1√

2

(
1 e−iθk

eiθk −1

)(
ck,↑
ck,↓

)
, (24)

where θk = arctan(ky/kx ). The projected Hamiltonian with
the basis c̃k,↑ is then described as

H̃BdG = (v|k| − μ)c̃†
k,↑c̃k,↑ + �0

2
{ f (k)e−iθk c̃†

k,↑c̃†
k,↑ + H.c.}.

(25)

Combined with Eq. (4), Eq. (25) has an effective gap function
of

�̃(k) ≡
⎧⎨
⎩

�0e−iθk (s wave),
�0|k|2eiθk (chiral d + id wave),
�0|k|2e−3iθk (chiral d − id wave).

(26)

The results are consistent with the numerical calculation and
show that the sum rule of the Chern number is interpreted as
the change in the phase winding in the effective gap function.
In a similar way, in the hole-doping regime (μ � −Eg), we
also have the sum rule of the Chern number by reversing
the sign of the phase winding in the QAH. Note that the
similar results hold true even when m(k) �= 0. In this case,
the effective gap function is obtained as

�̃(k) = A|k|
EQAH

�0 f (k)e−iθk . (27)

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied QAH/unconventional SC
hybrid systems with px-wave, py-wave, dxy-wave, dx2−y2 -
wave, chiral (p ± ip)-wave, and chiral (d ± id)-wave pair-
ings. By focusing on the three characteristic parameter
regimes and numerically calculating the SDOSs and the topo-
logical numbers, we have found a variety of topological
phases with exotic topological phases enabled by the interplay
between the QAH and unconventional SCs. The gap structure,
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FIG. 10. Tunneling conductance in the normal metal/QAH/px-wave (d ‖ ŷ) SC junction. The angle-resolved conductance, the total
conductance, and the angle-resolved conductance at ky = 0 in the case of (a1)–(a3) (N ,W ) = (2, 0) and (b1)–(b3) (0,2), respectively. Here, we
define the normal metal as HN = 2tN(2 − cos kx − cos ky ) − μN, whose parameters are chosen to be (tN, μN ) = (10, 10). In the QAH/px-wave
(d ‖ ŷ) SC hybrid system, we choose (A, B, m, �0, μ) = (0.1, 1, −0.05, 0.025, 0) for (a1), (a2), and (a3) and (0.1, 1, −0.05, 0.175, 0) for
(b1), (b2), and (b3).

surface states, and topological numbers are summarized in
Table II, and the characteristic surface states are illustrated
in Figs. 3 and 4. We have unveiled distinctive topological
phases with crystalline-symmetry-protected helical Majo-
rana edge modes (Sec. III B), crystalline-symmetry-protected
Bogoliubov Fermi surfaces (line nodes; Sec. III C), and mul-
tiple chiral Majorana edge modes (Sec. III D). In particular,
unlike the (pseudo-)TRS-protected helical Majorana edge
modes [57,115], the crystalline-symmetry-protected helical
Majorana edge modes do not respect TRS and allow counter-
propagating edge currents with different velocities. The large
variety of topological phases offers a platform for systematic
study of topological phases and enables us to design exotic
topological SCs experimentally.

Finally, we discuss tunnel conductance in a junction be-
tween a normal metal (x > 0) and the QAH/unconventional
SC hybrid systems (x < 0) as a probe of the topological
phases, which can be determined from the SDOSs and the
topological numbers [43,109,112,116–123]. The behavior of
tunnel conductance is briefly summarized as follows. Here-
after, we assume a normal metal without spin-orbit coupling
with quadratic dispersion and an insulating barrier between
the normal metal and the QAH/unconventional hybrid system
in the metallic regime. The periodic boundary condition is
imposed for the y axis, and the angle-resolved conductance
is defined in terms of ky.

(i) Tunnel conductance depends on the 1D winding num-
ber when the QAH/SC hybrid systems have a full gap and
show topological surface states [43,116]; the angle-resolved
conductance becomes enhanced in the gap and shows a zero-
bias conductance peak at ky = 0 when W is nonzero, while
the vanishing of conductance occurs when W is zero due

to the interference of degenerate Majorana fermions [99].
This scenario can be applied to the topological phases with
(N ,W ) = (−1, 1), (1,1), (2,0), (0,2), and (3,1), including
the QAH/px-wave (d ‖ ŷ) SC hybrid systems showing the
crystalline-symmetry-protected helical Majorana edge modes.

(ii) Tunnel conductance directly reflects the bulk density
of states when the superconducting state has nodes but a
surface state is absent [112]. In particular, the crystalline-
symmetry-protected Bogoliubov Fermi surface behaves like
a normal Fermi surface and thus can be observed as fi-
nite zero-bias conductance in the absence of the insulating
barrier [123].

(iii) Tunnel conductance exhibits a sharp zero-bias con-
ductance peak (a broadened zero-bias conductance peak)
when the superconducting state has point nodes involving
a surface flat band (a surface sine-curve state). Such be-
haviors have been studied in the context of unconventional
SCs [109,112,117–122].

We numerically calculate tunnel conductance in a junc-
tion between a normal metal (x > 0) and the QAH/px-wave
(d ‖ ŷ) SC hybrid system (x < 0) using the Lee-Fisher
formula [43,124] to understand the difference between
the chiral and helical Majorana edge modes classified by
(N ,W ) = (2, 0) and (0,2), where the angle-resolved con-
ductance and the total conductance are defined by γ (ky, E )
and �(E ) = ∑

ky
γ (ky, E ); see Ref. [43] for the explicit

expressions.
Figure 10 shows the tunnel conductance in the normal

metal/[ QAH/px-wave (d ‖ ŷ) SC junction. We here consider
the two parameter regimes, Eg > 2|�0| and Eg < 2|�0|, for
the purposes of comparison; their topological numbers are
given by (N ,W ) = (2, 0) and (N ,W ) = (0, 2), respectively.
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For (N ,W ) = (2, 0), we find two chiral Majorana edge
modes on the (10) surface [Fig. 10(a1)]. The total conductance
decreases and is close to zero in the gap [see Fig. 10(a2)],
whereas the angle-resolved conductance at ky = 0 drastically
vanishes at E = 0 [Fig. 10(a3)]. The vanishing of the conduc-
tance results from the degeneracy of the zero modes at ky = 0
being accidental and not protected by any symmetry [43,99].
On the other hand, for (N ,W ) = (0, 2), the crystalline-
symmetry-protected helical Majorana edge modes appear on
the (10) surface [Fig. 10(b1)] and significantly affect the con-
ductance; the total conductance increases in the gap and peaks
at E = 0 [Fig. 10(b2)], and the angle-resolved conductance
at ky = 0 exhibits a sharp zero-bias peak at E = 0 owing to
the nonzero 1D winding number [Fig. 10(b3)]. The results are
consistent with previous studies [43,116], and thus, the chiral

and helical Majorana edge modes are distinguishable though
the tunnel conductance.
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