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Layered three-dimensional centrosymmetric crystals can exhibit characteristics of noncentrosymmetric mate-
rials. This happens when each individual layer alone lacks inversion but, when combined, inversion symmetry is
restored; hence the designation locally noncentrosymmertic superconductors (LNCSs). In LNCSs, the effects of
impurities and subdominant magnetic field induced pairing channels remain unexplored. Using a minimal model,
we examine all pairing channels and show that there is always a subdominant superconducting instability that
is favored at high magnetic fields, which can substantially alter the magnetic field–temperature phase diagram.
Also, we find that the phase diagram responds to disorder in a nonmonotonic way, which can be subjected
to experimental verification. We apply these ideas to the recently unveiled two-phase superconducting phase
diagram of CeRh2As2. We identify the two phases as singlet-triplet mixed even- and odd-parity states at low and
high-fields, respectively. Furthermore, we predict the presence of two superconducting phases also for in-plane
magnetic fields in cleaner samples, since a high-field phase could have been so far hindered by impurity effects.

DOI: 10.1103/PhysRevB.104.134517

I. INTRODUCTION

Noncentrosymmetric superconductors have been exten-
sively studied since the discovery of CePt3Si [1,2]. In these
materials, inversion symmetry breaking introduces an an-
tisymmetric SOC that lifts the spin degeneracy and can
fundamentally affect the superconducting state. The nontrivial
spin texture around the Fermi surface leads to the development
of unusual properties, such as anisotropic spin susceptibility,
enhanced Pauli limit, spin singlet-triplet mixing, and mag-
netoelectric effect [3–9]. Remarkably, the phenomenology of
noncentrosymmetric superconductors can also be observed in
centrosymmetric materials if these are formed by subunits that
locally break inversion symmetry [10–14]. In these systems,
when SOC is comparable to or larger than interlayer hopping
(ILH) amplitudes, the effects of local noncentrosymmetricity
manifest and unconventional superconductivity can emerge
at high magnetic fields [10,11,15]. This possibility has been
originally discussed in the context of multilayer materials and
heterostructures, such as artificial superlattices of CeCoIn5

and YbCoIn5 [16,17].
Recent experiments on the locally noncentrosymmetric su-

perconductor (LNCS) and heavy fermion CeRh2As2 unveil
a rare magnetic field versus temperature phase diagram with
two superconducting phases [18] (see Fig. 1). Under a c axis
magnetic field, a phase transition from a low to a high-field
superconducting phase occurs around 4 T, and the upper crit-
ical field in this direction reaches up to 14 T, much above the
Pauli limit HP ≈ 0.5 T for a superconductor with a critical
temperature (Tc) of 0.26 K. This type of phase diagram has
been predicted by theories developed for LNCS supercon-

ductors [10–14,19,20], but was not observed in any previous
material or heterostructure lacking local inversion symmetry.
The observation of this unique two-phase phase diagram in
CeRh2As2 generates multiple questions, and has caused a
revival of research in LNCS [21–25].

In the standard theories for LNCS, conventional spin sin-
glet pairing is assumed to be the stable superconducting state
within each layer. Once a magnetic field is applied perpen-
dicularly to the layers, a pair-density wave (PDW) state,
with a sign change of the order parameter between layers
is favored under the requirement that Rashba SOC is larger
than ILH amplitudes [11,13–15,20]. However, CeRh2As2

displays only a small effective mass anisotropy (inferred
from the slope of the upper critical field around the critical
temperature [18]), indicating that the system is rather three-
dimensional. This is corroborated by recent first-principles
calculations [21,23] and by comparison to other 122 materials
in this family. As an example, CeCu2Si2 crystallizes in the
ThCr2Si2-type structure, the locally centrosymmetric analog
of the CaBa2Ge2-type structure of CeRh2As2, and displays a
three-dimensional spin density wave state supported by Fermi
surface nesting with superconductivity emerging around the
pressure-induced quantum critical point [26,27]. This leaves
us with the question: Are there other key ingredients besides
local inversion symmetry breaking for the development of the
unusual phase diagram displayed by CeRh2As2?

Heavy fermions usually exhibit rich phase diagrams
displaying heavy Fermi liquid behavior, magnetic and super-
conducting phases, as well as hidden orders, associated with
the development of multipolar order parameters [28]. The
small energy scales associated with the ordered states make
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FIG. 1. Schematic (B, T ) phase diagram of CeRh2As2. The
dashed line shows the transition line for in-plane (‖) magnetic field.
The solid line indicates the transition line for the c axis (⊥) magnetic
field. If the low and high-field phases have different superconducting
order parameters, the dot indicates a multicritical point that requires
a first-order phase transition separating the two phases (dotted line).
All quantities have units of energy. To recover the international units,
make B/Tc → μBB/(kBTc ).

these systems highly tunable and prone to quantum critical
phenomena [29,30]. In this context, the specific-heat coeffi-
cient of CeRh2As2 follows an unusual power-law dependence
in temperature below 4 K [18], indicating the proximity to a
quantum critical point. The presence of quantum fluctuations
is usually connected with the development of unconven-
tional superconductivity in these materials [31–34]. These
facts raise the question: Is pairing in unconventional chan-
nels important for the development of such two-phase phase
diagram?

Motivated by these questions, here we build up on our
previous paper [35] and revisit the problem of layered su-
perconductors from a microscopic perspective. Our goal is
to explore the effects of normal state parameters, magnetic
fields, the presence of subleading superconducting instabil-
ities, and impurities on the phase diagram of LNCS, with
focus on CeRh2As2. We highlight the competition between
intersublattice hopping (ILH) and SOC, explore the effects
of channel mixing promoted by magnetic field, and inves-
tigate the effects of nonmagnetic impurities in the low and
high magnetic-field phases. For this, we employ the linearized
quasiclassical Eilenberger formalism, which allows us to gain
analytical insights and perform a guided exploration of the
parameter space.

This paper is organized as follows. In Sec. II, we introduce
the minimal Bogoliubov–de Gennes Hamiltonian, written in
terms of the most general normal state model based on
a sublattice degree of freedom (DOF) associated with the
LNCS structure. We also introduce all possible supercon-
ducting states and highlight their properties. In Sec. III, we
develop the corresponding quasiclassical theory, including the
effect of isotropic scalar impurities. We derive the linearized

Eilenberger equations and solve them analytically for an ap-
propriate set of parameters. The solutions of the Eilenberger
equations provide us with the superconducting–normal state
transition lines. In Sec. IV, we obtain the complete phase dia-
gram and discuss the role of the subleading triplet channels. In
Sec. V, we study how nonmagnetic impurities affect the phase
diagram. The discussion in Sec. VI examines the parameters
that are consistent with experiments and identifies aspects
that require further investigation. In addition, we highlight
potentially interesting magnetic field effects in these systems
that could be the topic of future work. Appendices A and B
provide more detailed derivations of the results in the main
text.

II. THE MODEL

We start with the minimal Bogoliubov–de Gennes (BdG)
mean-field framework able to capture a LNCS structure by
including a sublattice DOF, in addition to the spin DOF. The
BdG Hamiltonian can then be expressed as an 8×8 matrix,

HBdG(k) = �†
k

[
Ĥ0(k) �̂(k)
�̂†(k) −Ĥ∗

0 (−k)

]
�k, (1)

where �†
k = (�†

k,�
T
−k ) is a Nambu vector with �†

k =
(c†

1k↑, c†
1k↓, c†

2k↑, c†
2k↓). Here, the operator c†

nks (cnks) corre-
sponds to the creation (annihilation) of an electron at the n
sublattice with momentum k and z-spin projection s =↑,↓.
Ĥ0(k) is the normal state Hamiltonian and �̂(k) the gap
matrix.

Throughout the remainder of the text, we set the Boltzmann
constant and Bohr magneton kB = μB = 1, such that all quan-
tities have units of energy, and we absorb the g factor into the
magnetic induction B.

A. The normal state Hamiltonian

The normal state Hamiltonian is a 4×4 matrix in sublattice
⊗ spin space. Focusing on CeRh2As2, we can construct a
specific normal state Hamiltonian considering the details of
its structure, characterized by the space group P4/nmm (No.
129). While the crystal is centrosymmetric, the atomic posi-
tions lack inversion symmetry.

Given the heavy fermion nature of the electronic structure,
we model the electronic degrees of freedom from the Ce sites
perspective. There are two inequivalent types of layers of Ce
sites: for the first type, Ce(1) sites are coordinated with As on
top and Rh at the bottom, while for the second type, Ce(2),
Rh, and As atoms are exchanged, as shown in Fig. 2. The two
inequivalent Ce sites give origin to a sublattice structure as
an internal DOF. These sites have a reduced C4v point-group
symmetry and are not centers of inversion. The center of
inversion lies at the midpoint between the two inequivalent
Ce sites. Therefore, inversion exchanges the sublattices.

The most general normal state Hamiltonian for CeRh2As2

can be written as (here we omit the Kronecker product ⊗)

Ĥ0(k) = ξ (k)τ0σ0 + t(k) · τσ0 + [τ3γ (k) − τ0B] · σ. (2)

Here, τ = (τ1, τ2, τ3) and σ = (σ1, σ2, σ3) are the Pauli ma-
trices vectors in sublattice and spin space, respectively.
Following Refs. [18,35], ξ (k) describes ILH processes.

134517-2



SUPERCONDUCTIVITY IN DISORDERED LOCALLY … PHYSICAL REVIEW B 104, 134517 (2021)

FIG. 2. (a) Crystal structure of CeRh2As2. The dashed box in-
dicates the centrosymmetric unit cell. The sticks connect the Ce
atoms to the nearest Rh and As, which shows the different Ce(1) and
Ce(2) sublattice environments. The shaded boxes indicate the two
inversion-broken local environments. (b) Schematic Fermi surfaces
for the independent Ce sublattices. The blue arrows are the Rashba
spin texture, which have opposite directions in Ce(1) and Ce(2). The
red arrows show the texture of the magnetic field induced spin-triplet
d vector. (c) The relative orientation of magnetic field, Rashba SOC,
and field-induced triplets is indicated in the parallelepiped, whose
volume B × γ (k) · Im d(k) gives the singlet-triplet coupling. The
figure was produced with the aid of VESTA [36].

The vector t(k) = (t1(k), t2(k), 0) describes the symmetry-
allowed ILH processes:

t1(k) = c1t1 cos

(
kxa

2

)
cos

(
kya

2

)
cos

(
kzc

2

)
,

t2(k) = c2t2 cos

(
kxa

2

)
cos

(
kya

2

)
sin

(
kzc

2

)
, (3)

where c1 and c2 are normalization constants such that
〈t2

1(2)(k)〉k = t2
1(2), where 〈. . .〉k indicates the average over

the Fermi surface. Note that t2(k) is present due to the local
inversion symmetry breaking. The vector γ (k) is odd in mo-
mentum and corresponds to a staggered intrasublattice SOC
that also arises due to local inversion symmetry breaking. The
accompanying τ3 matrix ensures global inversion symmetry.
The crystal structure imposes γ (k) = (γx(k), γy(k), γz(k)),
where {γx(k), γy(k)} = cαα{sin(kya),− sin(kxa)} and
γz(k) = cλλ sin(kxa) sin(kya) sin(kza)[cos(kxa) − cos(kya)].
The amplitudes α and λ refer to the Rashba and Ising
components and cα(λ) are the respective normalization
constants. Because λ arises due to next-nearest sublattice
processes, we expect α > λ. Finally, B is the Zeeman
magnetic field.

B. The superconducting order parameters

From the microscopic perspective in sublattice ⊗ spin
space, any superconducting order parameter can be cast as a
matrix of the form

�̂(k) =
3∑

a,b=0

ηabd̂ab(k)τa ⊗ σb iσ2. (4)

Here, ηab carries the magnitude and phase of the order
parameter and d̂ab(k) is a normalized function of momen-
tum. The order parameters ηab with b = 0 correspond to
the spin-singlet Cooper pairs, whereas the order parame-
ters with b = 1, 2, 3 parametrize the spin triplets. Fermionic
exchange requires �̂(k) = −�̂T(−k), such that an order pa-
rameter with an antisymmetric (symmetric) matrix structure
τa ⊗ σb iσ2 is necessarily accompanied by a function d̂ab(k)
that is even (odd) in momentum. Note that, due to the
extra sublattice DOF, besides the usual momentum-even spin-
singlet and momentum-odd spin-triplet order parameters, a
momentum-odd spin-singlet or a momentum-even spin-triplet
order parameter is allowed if it is antisymmetric in the sublat-
tice DOF. Figure 3 summarizes all possible order parameters
within this model and their properties.

III. QUASICLASSICAL THEORY

The Gor’kov Green’s function G(k; ωn) corresponding to
the Hamiltonian in Eq. (1) satisfies the Gor’kov equation

[iωn1̂ − HBdG(k)]G(k; ωn) = 1̂, (5)

where ωn = (2n + 1)πT (n ∈ Z) are the Fermionic Matsub-
ara frequencies. We define the identity matrix 1̂ = ρ0 ⊗ τ0 ⊗
σ0, where ρ0 is the 2×2 identity in Nambu (particle-hole)
space. We can supplement it with ρ = (ρ1, ρ2, ρ3) to describe
the complete Nambu space.

A. The Eilenberger matrix equation

To develop the quasiclassical Eilenberger equations cor-
responding to the BdG Hamiltonian in Eq. (1), we should
identify which energy scales are expected to be small com-
pared to the Fermi energy EF, which is of the order (∼) of eV’s
[23]. For a magnetic field along the c axis, the upper critical
field in CeRh2As2 is ∼μBB ≈ 6×10−4eV. It is reasonable
to assume that all spin-related energy scales B, α, λ � EF.
Also, from the crystal structure, see Fig. 2, it is reasonable
to assume that the energy scales of intrasublattice processes
are larger than ILH processes [35]. To treat ILH and SOC
on equal footing, we also consider the ILH energy scales
t1, t2 � EF. Within a weak coupling perspective, we assume
that the superconducting order parameters energy scales Tc �
EF. With the hierarchy of energy scales set, the resulting qua-
siclassical theory elucidates the interplay of SOC, magnetic
field, ILH, and superconductivity. We will see that the relevant
phenomenology is realized for

Tc < t1, t2 < λ, α � EF. (6)

The Eilenberger equations derived in this paper are valid as
long as EF is the largest energy scale. In case λ, α ∼ EF, one
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FIG. 3. Properties of all superconducting order parameters ηab.
The sublattice index a labels the rows and the spin index b the
columns. The information of an order parameter is organized in 2×2
blocks that contain the order parameter ηab, whether it is even (E)
or odd (O) in k and parity, and the basis function d̂ab(k). Given the
sublattice exchange under inversion symmetry, the parity operator
is implemented as P = τ1 ⊗ σ0, accompanied by inversion of the
momenta in dab(k). The cartoons in the first column illustrate the
different character of the order parameters with intra- or intersublat-
tice Cooper pairing. + and − indicate the signs of the intrasublattice
order parameters. The column with b = {1, 2} lists the equal-spin
triplets that are induced by a c-axis magnetic field.

also could develop the Eilenberger equations in the band basis
instead of the spin basis [2].

To obtain the Eilenberger equation, we manipulate the
Gor’kov Eq. (5) following analogous steps as detailed in
Ref. [37]. The procedure yields

[(iωn1̂ − H(k))ρ3, ρ3G(k; ωn)] = 0, (7)

where ξ (k) is now removed from the problem by H(k) =
HBdG(k) − ξ (k)ρ3τ0σ0. We introduce the dimensionless qua-
siclassical Green’s functions [38,39]:

g(kF; ωn) =
∮

dξk

π
iρ3 G(k; ωn)

=
[

ĝ(kF; ωn) −i f̂ (kF; ωn)
−i f̂ ∗(−kF; ωn) −ĝ∗(−kF; ωn)

]
. (8)

Unlike the Gor’kov Green’s function G(k; ωn), the quasi-
classical Green’s function is evaluated only at the Fermi
momentum kF. We henceforth drop the F subscript.

Within the self-consistent Born approximation [39,40], we
also can include the effects of momentum-isotropic scalar im-
purities via the prescription H0

BdG(k) → H0
BdG(k) + 
(ωn),

where the impurity self-energy is given by


(ωn) = −i�〈g(k; ωn)〉kρ3, (9)

where � is the scalar impurity scattering rate. With these
elements, we can now write the Eilenberger matrix equation
from Eq. (7) as

[(iωn1̂ − H(k) − 
(ωn))ρ3, g(k; ωn)] = 0. (10)

Together with the normalization condition g2(k; ωn) = 1̂,
Eq. (10) determines all elements of g(k; ωn).

B. The linearized Eilenberger matrix equation

We are ultimately interested in the superconducting transi-
tion lines in the (B, T ) phase diagram. For this, we linearize
the Eilenberger Eq. (10) and solve for the superconducting
correlations f̂ (k; ωn). We parametrize the correlations by

ĝ(k; ωn) =
3∑

a,b=0

gab(k; ωn)τa ⊗ σb,

f̂ (k; ωn) =
3∑

a,b=0

fab(k; ωn)τa ⊗ σb iσ2. (11)

Linearization together with the normalization condition
imposes that only g00(k; ωn) = g∗

00(−k; ωn) = sgn(ωn) in
ĝ(k; ωn) survives. Here, sgn(ωn) is the sign function. With
this, we write the linearized Eilenberger equation, omitting
the momentum and frequency arguments of f̂ (k; ωn)

2iω̄n f̂ − Ĥ (k) f̂ + f̂ Ĥ∗(−k) = 2i sgn(ωn)�̄(k), (12)

where

ω̄n = ωn + � sgn(ωn), (13)

�̄(k) = �̂(k) + �〈 f̂ (k; ωn)〉k. (14)

Equation (12) is a 4×4 matrix equation, which we can solve
for all sixteen fab’s in terms of their averages. If one solves
the problem in the clean case, the substitutions ωn → ω̄n and
�̂(k) → �̄(k) yield the solutions in terms of the impurity
averages.

C. The self-consistency and pair-breaking condition

Finally, the solutions for the correlations fab(k; ωn) are
supplied to the self-consistency condition for the order param-
eters:

ηab ln
T

Tab
+ πT

∑
n∈Z

[
ηab

|ωn| − 〈d̂ab(k) fab(k; ωn)〉k

]
= 0.

(15)

In the most general case, each order parameter dab(k) =
ηabd̂ab(k) has an associated superconducting critical tempera-
ture Tab, which is defined in the absence of SOC, magnetic
field, and ILH processes. The Tab’s are defined in favor of
the dimensionless coupling strength λab = ln[2eγ εc/(πTab)],
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where εc is a characteristic cutoff energy of the pairing inter-
action [37,39,41].

It is interesting to note that the modified commuta-
tor, Ĥ (k) f̂ − f̂ Ĥ∗(−k), in Eq. (12) relates to pair-breaking
effects, and resembles the superconducting fitness mea-
sure [42,43]. If this modified commutator vanishes, then
〈d̂ab fab〉k = ηab/|ωn|, which when substituted into Eq. (15)
yields T = Tab. This means that there are no pair-breaking
effects and that the order parameter is completely compatible
with the underlying electronic structure.

IV. PHASE DIAGRAMS

Among the 16 order parameter possibilities listed in Fig. 3,
the superconducting fitness analysis for the regime specified
in Eq. (6) suggests four dominant order parameter candidates:
{η00, η13, η30, η23} [35]. However, because the triplet candi-
dates {η13, η23} have a d vector that is perpendicular to the
layers, they are not limited for in-plane magnetic fields, which
is inconsistent with the experimental data [18,22]. Therefore,
even though we have no knowledge so far on the pairing
mechanism, we are left with only {η00, η30} as suitable dom-
inant candidates, which we examine in detail in the next
subsections.

We also investigated the regime t1, t2 > α, λ for which the
effects related to local noncentrosymmetricity lose relevance.
In this case, the fitness analysis suggests a dominance of
the η01(02) and η11(12) triplets. However, these triplets leave
the critical field enhancement for an in-plane direction unex-
plained.

As we shall see, η00 is the primary order parameter de-
scribing the low-field phase of CeRh2As2. According to the
properties listed in Fig. 3, the η00 order parameter is intra-
sublattice, spin-singlet, momentum even, and parity even. We
henceforth simply refer to η00 dominated states as the even
phase. Similarly, η30 is the primary order parameter describ-
ing the high-field phase and is an intrasublattice, spin-singlet,
momentum-even, and parity-odd order parameter. It is also
called a PDW because of the staggered phase of the order
parameter across the layers. We simply refer to η30 dominated
states as the odd-phase.

A. The low-field even-phase

To illustrate the general procedure, we solve the linearized
Eilenberger matrix equation (12) for B = (0, 0, B) in more
detail here than in subsequent sections. For a magnetic field
along the c axis, it is the Rashba SOC component α that
enhances the critical field. For this reason, we set the Ising
component λ = 0 in this section. Although we need to solve
a system of 16 equations given by Eq. (12), analytic so-
lutions are possible for t1 = 0 or t2 = 0. The conclusions
of this paper do not depend on whether t1, t2, or both are
included. However, the calculations simplify significantly if
only one of them is treated in the analysis. For this reason,
we choose to treat t1 and t2 separately. Solving the system
for all fab’s, let us now analyze the solution for f00. We omit
the momentum and frequency arguments for conciseness, and
obtain

f00 = |ω̄n|
(
ω̄2

n + γ2 + t2
1(2)

)
d̄00 + isgn(ωn)B

[(
ω̄2

n + t2
1(2)

)
d̄03 − γy(±t1(2)d̄21(11) + ω̄nd̄31) + γx(±t1(2)d̄22(12) + ω̄nd̄32)

](
ω̄2

n + t2
1(2)

)(
ω̄2

n + B2
) + ω̄2

nγ
2

. (16)

Here, d̄ab(k) = dab(k) + �〈 fab(k; ωn)〉k. In the terms with
±t1(2), +t1 corresponds to the case when only t1 is present,
and −t2 corresponds to the case when only t2 is included.
Note that even if we only allow the d00 order parameter to
exist (by setting all other dab = 0), some d̄ab channels might
still acquire a finite value due to impurities. In the following,
we focus on the clean solutions of η00 first, and make no
assumption on the vanishing of other order parameters that
might couple to the dominant η00.

To obtain the transition line for the even phase in the
(B, T ) phase diagram in the clean case (� = 0), we should
feed Eq. (16) to the self-consistency condition in Eq. (15). If
we choose an s-wave-like state for d̂00 = 1, such that d00 =
η00d̂00 = η00, the average of Eq. (16) yields

〈 f00〉k = |ωn|
(
ω2

n + α2 + t2
)
η00 + i

√
2Bαη31(32)(

ω2
n + t2

)(
ω2

n + B2
) + ω2

nα
2

. (17)

When we take the average leading to Eq. (17), instead of
performing the angular integrations exactly, a good approx-
imation is to perform the substitutions 〈γ2(k)d00(k)〉k →
α2〈d00(k)〉k and 〈t2

1(2)(k)〉k → t2. These approximations are
discussed in detail in Ref. [37], and allow us to make an-
alytical progress yet still obtain qualitatively correct results.

Also, we used the same basis function harmonic for the triplet
components as the Rashba SOC (see Appendix A for more
details)

d31(32)(k) = η31(32)d̂31(32)(k), (18)

d̂31(32)(k) = ∓
√

2γ̂y(x)(k). (19)

In fact, this is the only basis function harmonic that couples
to the singlets; see red d-vector textures in Fig. 2(b). The
joint action of SOC and magnetic field selects the harmonic
in Eq. (19). One can think of the magnetic field converting the
singlets that initially have the same texture as SOC into equal-
spin triplets [41]. The converted triplets contribute to the triple
product B × γ (k) · Im d(k), according to the parallelepiped in
Fig. 2(c). In Fig. 3, we summarize the symmetry properties
of the superconducting order parameters. These properties are
extensively used to obtain the relevant correlation averages
that enter the self-consistency condition Eq. (15).

Before obtaining the (B, T ) transition curve, let us check
the known limits of Eq. (17). If B = 0, then 〈 f00〉 = η00/|ωn|
such that triplets, SOC, and ILH have no bearing on the
η00 singlets. If α = 0, then 〈 f00〉 = |ωn|η00/(ω2

n + B2), which
leads to Pauli limiting of the singlets. If t = 0, the sublattices
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FIG. 4. Transition lines of the low-field even phase {η00, η31(32)}. The heading titles of each plot indicate which parameters are fixed, and
the line legends show the parameter that changes. (a) Suppression of the critical field for larger ILH t . (b) Enhancement of the critical field for
larger SOC. (c) Enhancement of the critical field by the presence of subleading instabilities for the magnetic field induced triplets with critical
temperature T31(32). The enhancement due to the subleading triplets is only significant for t � T00.

decouple and the physics maps to the noncentrosymmetric
situation discussed in Refs. [37,41]. When SOC, mag-
netic field, and ILH interplay, the η00 even-parity singlets
couple to the even-parity equal-spin field induced η31(32)

triplets.
Since η00 couples to η31(32), we also need the average

〈
d̂31(32) f31(32)

〉
k =

|ωn|
[− iBα√

2
η00 + (

ω2
n + B2

)
η31(32)

]
(
ω2

n + t2
)(

ω2
n + B2

) + ω2
nα

2
. (20)

This is obtained by writing the solution for f31(32) and then
taking the average 〈d̂31(32) f31(32)〉k; see Appendix A.

We now feed Eqs. (17) and (20) to the self-consistency
condition Eq. (15). Fixing η00 to be real, the resulting insta-
bility condition reveals that η00 only couples to the imaginary
part η31(32) = iIm η31(32), that is, the singlets and triplet or-
der parameters have a relative phase difference of π/2. The
self-consistency condition for the coupled {η00, η31(32)} state
is (T31 = T32),[

ln T
T00

+ S00 S00,31(32)

S00,31(32) 2
(
ln T

T31
+ S31

)][
η00

Im η31(32)

]
= 0, (21)

where

S00 = πT
∑
n∈Z

[
1

|ωn| − |ωn|
(
ω2

n + α2 + t2
)(

ω2
n + t2

)(
ω2

n + B2
) + ω2

nα
2

]
,

S31 = πT
∑
n∈Z

[
1

|ωn| − |ωn|
(
ω2

n + B2
)(

ω2
n + t2

)(
ω2

n + B2
) + ω2

nα
2

]
,

S00,31(32) = πT
∑
n∈Z

√
2Bα|ωn|(

ω2
n + t2

)(
ω2

n + B2
) + ω2

nα
2
. (22)

Equation (22) clearly shows that the even-parity singlet-triplet
coupling is a result of the joint action of magnetic field and
SOC. The three Matsubara sums can be evaluated as a sum
of root functions. Rewriting the self-consistency Eq. (21)

as Pevenη = 0, the (B, T ) transition line is determined by
det(Peven) = 0.

In Fig. 4, we show the transition lines for the combined
even-parity {η00, η31(32)} state obtained from det(Peven) = 0.
In panels (a)–(c) we vary t , α and T31, respectively. Whereas
α and the subleading triplet channel T31 enhance the critical
field, ILH t makes the system more 3D, thus suppressing
the critical field. Also, since t appears in the denominator of
Eq. (22), the larger t , the weaker the coupling between the
order parameters. For t = 0, the critical field is sensitive to
the subleading triplet channel T31 and diverges at low temper-
atures; see panel (a). The hoppings t cut off the divergence.
The sensitivity to T31 only remains as long as t � T00. In
CeRh2As2, we expect t > T00 such that T31 loses relevance
as a mechanism to enhance the upper critical field for the even
phase.

From this analysis, we conclude that for the low-field even
phase, SOC provides the main mechanism for the enhance-
ment of the critical field. Also, we can highlight that ILH and
magnetic field work against the even phase. The order param-
eter η00 accommodates badly to the spin texture imposed by
SOC together with ILH. In contrast, we will now see that the
high-field phase dominated by η30 accommodates well to the
spin texture.

B. The high-field odd-phase

In this section, we look at the odd solution of the linearized
Eilenberger Eq. (12), which has η30 as the dominant order
parameter. Here, it is also possible to obtain analytic solutions
if either t1 or t2 is included in the analysis. For t1(t2), we find a
combined odd-parity {η30, η01, η02, η23} ({η30, η01, η02, η13})
phase. Again, we use the properties listed in Fig. 3 together
with the singlet-triplet coupling selected order parameter basis
functions. The intersublattice order parameters η23(13) acquire
the same basis function as the ILHs. Whether t1 or t2 is
included is of secondary importance, and we choose to present
the results for t1 = t .

We find the pair-breaking equation that describes the tran-
sition line of the coupled {η30, Im η01, Im η02, Im η23} state. It
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FIG. 5. Wheel showing that different pairwise combinations of
the parameters {α, t, B} couple different odd-phase order parameters.
At zero magnetic field, η30 decouples from {η01(02), η23}. SOC α

couples {η01, η02}.

reads

det

⎡
⎢⎢⎢⎣

ln T
T30

+ S30 S30,01 S30,02 S30,23

S30,01 ln T
T01

+ S01 S01,02 S01,23

S30,02 S01,02 ln T
T02

+ S02 S02,23

S30,23 S01,23 S02,23 ln T
T23

+ S30

⎤
⎥⎥⎥⎦

= 0. (23)

Let us also denote this condition by det(Podd) = 0. We
present the detailed derivation of Eq. (23) in Appendix B.
The Matsubara sums are listed in Eqs. (B11)–(B16), and ana-
lytically evaluated in Eqs. (B17)–(B21). The order parameter
Im η23 accompanies the same Matsubara sum as for η30, which
means that they would have the same phase diagram for a
magnetic field along the c axis if they were decoupled and had
the same critical temperatures [35]. The term S30,23 causes
their coupling, which, according to Eq. (B16), happens only
at finite magnetic field. The magnetic field induced η01(02)

triplets couple to both η30 and η23, but in different ways. They
couple to the η23 triplets even without magnetic field, but only
couple to η30 at finite field. The wheel in Fig. 5 summarizes

which pairwise combination of {α, t, B} couples which order
parameters.

Starting the analysis considering that the critical tempera-
ture of the field-induced triplets are negligible, T30 � T23, T01,
we can discuss the effects of the normal-state parameters; see
Figs. 6(a) and 6(b). We can conclude that a larger α enhances
the Pauli limit, while a larger t reduces the critical temperature
at zero field. For strong enough ILH t , the transition line
might develop a re-entrant behavior. This is illustrated by the
dashed-green and solid-brown curves in Fig. 6(a). If one looks
at the experimentally obtained phase diagram of CeRh2As2,
reproduced in Fig. 1, the high-field transition line hints such
a re-entrance. Figs. 6(c) and 6(d), summarize the effects of
the subleading triplet instabilities that couple to η30 through
the magnetic field. In Fig. 6(c) we show the effect of the
T01(02) channel, and Fig. 6(d) shows the effect of adding the
T23 channel.

These results indicate that for the high-field odd-phase,
both Rashba SOC and the presence of subleading instabilities
provide mechanisms for the enhancement of the critical field.
Whereas the even phase is insensitive to its subleading chan-
nel T31, the odd phase is sensitive to its subleading channels
T01(02) and T23; compare Figs. 4(c) and 6(c). Therefore, if one
finds evidence of an unconventional pairing mechanism that
is able to stabilize the triplet channels in CeRh2As2, a naive
fit to the experimental odd-phase transition line that does not
take into account the subleading triplet channels might lead to
inaccurate conclusions. More precisely, there is a surface in
{α, T01, T23} parameter space that yields the same (T, B) point
on the transition line. Additional knowledge about any of
these parameters, either from experiments or first-principles
calculations, could reduce the surface to a curve.

Mathematically, the insensitivity (sensitivity) of the even
(odd) phase to T31 (T01) can be seen from the Matsubara sums
S00,31(32) in Eq. (22) and S30,01(02) in Eq. (B14). In S00,31(32), t
only occurs in the denominator, which shows that the larger t ,
the less relevant T31. In S30,01(02), t occurs in both numerators
and denominator and as a consequence T31 remains relevant. A
similar analysis can be repeated for T23. Physically, in contrast

FIG. 6. Transition lines of the high-field odd-phase. (a) Reduction of the critical temperature at zero field and the enhancement of the
critical field for larger ILH t . (b) Enhancement of both the critical temperature at zero field and the critical field for larger SOC α. (c) Dominant
η30 phase taking into account the admixing of η01(02) triplets. In contrast to the even phase, the odd phase is sensitive to the subleading triplets.
(d) Dominant η30 phase taking into account the admixing of η23 triplets.
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FIG. 7. Full phase diagram with t = α = 2T00 and Tsub = T31 =
T01 = T23. The odd (even) phase is sensitive (insensitive) to the sub-
leading triplet channels. A finite Tsub moves the multicritical point to
the right and enhances the critical field.

to the odd phase, ILH processes obstruct singlet to triplet
conversion by magnetic field in the even phase.

C. Joining the even and odd phases

We are now in a position to join the even- and odd-phase
solutions into a single phase diagram. Because the even and
odd order parameters do not couple at the linearized level, we
know that they are mutually excluding phases. Another way to
see this is that one cannot continuously deform η00 into η30,
which guarantees a first-order phase transition between them
[44]. The second-order transition line including both phases
can be obtained by a simple comparison of the even- and
odd-phase instability conditions. The realized transition line
is determined by det(P) = 0, where

P = Peven if det(Peven) < det(Podd)

P = Podd otherwise. (24)

An alternative way to see this is noticing that the super-
conducting free energy depends on the determinants [45].
Equation (24) determines the lower free energies between the
even and odd phases. Here, we do not obtain the first-order
transition line, as this would require a treatment beyond lin-
earization.

In Fig. 7, we illustrate the superconducting transition as
determined by Eq. (24). The figure also shows the insensi-
tivity (sensitivity) of the even (odd) phase to its subleading
instabilities. For illustrative purposes, we set all subleading
critical temperatures to a single value Tsub. The presence of
Tsub moves the multicritical point to the right.

V. EFFECT OF SCALAR IMPURITIES

Here, we address the effect of isotropic scalar impurities
introduced in Eq. (9) on the phase diagram. The question that
motivates this section is: Does the system respond to disorder
like a centrosymmetric or a noncentrosymmetric supercon-
ductor? The short answer is neither. We now show that for
the even phase, the response depends on the energy scale

ratio α/t . The odd phase has its own peculiar behavior that
depends on both α/t and t/Tc. As a minimal model calcula-
tion, below we only consider the dominant η00 and η30 order
parameters.

A. Disordered even phase

For the even phase, we solve for the corresponding
correlations f00; see Eq. (16). Note that even if d00 is en-
forced to be the only allowed order parameter in Eq. (16),
other d̄ab’s are populated by the impurities. Taking the av-
erage of Eq. (16), one sees that the only other average
that contributes is d̄03 = �〈 f03(k; ωn)〉k. Solving the Eilen-
berger equation for 〈 f03〉k, we obtain the pairing correlation
average:

〈 f03〉k = iBsgn(ωn)
[
ω̄2

n + t2
]
η00

|ωn||ω̄n|(|ωn||ω̄n| + α2) + ω2
nt2 + B2

(
ω̄2

n + t2
) .

(25)

Substituting Eq. (25) into Eq. (16) and taking the average, we
then obtain

〈 f00〉k = [|ω̄n|(|ωn||ω̄n| + α2) + |ωn|t2]η00

|ωn||ω̄n|(|ωn||ω̄n| + α2) + ω2
nt2 + B2

(
ω̄2

n + t2
) .

(26)

Note that for B = 0, this simply yields 〈 f00〉k = η00/|ωn|,
which shows that the critical temperature remains unaffected
in the presence of impurities, as guaranteed by Ander-
son’s theorem [46]. Also, for α = 0 we have 〈 f00〉k =
|ωn|η00/(ω2

n + B2), from which one obtains the Pauli limiting
effect. Equation (26) is fed to the self-consistency condition
Eq. (15) that after performing the Matsubara sum yields now
a �-dependent transition line.

An increasing scattering rate � undoes not only the critical
field enhancement by SOC but also the effects related to
ILH. In Fig. 8, the effect of � on the even transition line is
illustrated by blue curves. In the plots, t/Tc = 2 and α/t = 5.
Figure 8(a) shows an almost clean situation with �/Tc = 0.1.
At low temperatures, one can identify a t caused depression,
which cuts off the critical field even in the clean case. As
discussed in Sec. II A, we expect α > t in CeRh2As2, so
impurities first undo the effects due to t . Comparing Figs. 8(a)
and 8(b), the t caused depression is undone by �. Next, a
stronger scattering rate of �/Tc = 6 starts undoing the crit-
ical field enhancement caused by α. Comparing Figs. 8(b)
and 8(c), the critical field is reduced. In the � → ∞ limit,
the transition line is set by the Pauli limit; see dashed-green
curve in Fig. 8(c). Remarkably, as impurities first undo the
critical field suppression caused by t , they effectively generate
a critical field enhancement. Therefore, one can expect larger
critical fields in the even phase for disordered samples. We
also illustrate this unusual behavior in Fig. 10, and by an
animated version of Fig. 8 found in the online Supplemental
Material [47].

B. Disordered odd phase

We repeat an analogous procedure for f30. Now, the im-
purities populate d̄33 = �〈 f33(k; ωn)〉k. Solving for 〈 f33〉k,
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FIG. 8. The effect of impurities on the even and odd phases. We set T00 = T30 = Tc, t/Tc = 2 and α/t = 5. (a) Almost clean situation
with �/Tc = 0.1. (b) �/Tc = 2. The odd-phase state suffers more than the even phase. Nonetheless, the odd phase is more robust than a naive
unconventional state which is obliterated for �/Tc ∼ 1. (c) �/Tc = 6. The odd phase is now subdominant with respect to the even phase.
(d) The effect of the scattering rate on the effective zero-field odd-phase transition temperature T ∗

30. If t is sufficiently small (up to t/Tc = 4),
the pair-breaking effect by impurities is continuous and nonmonotonic. For higher values of t (t/Tc = 5), pair-breaking becomes qualitatively
Abrikosov-Gor’kov-like. T ∗

30 of the odd phase might revive in dirty systems, but remains subdominant with respect to the even-phase.

then substituting into the solution for f30 and taking the average, we obtain

〈 f30〉k

=
[(

ω̄2
n + α2

)
(|ωn||ω̄n| + α2 + t2) + B2(|ωn||ω̄n| + α2)

]
η30

(|ωn||ω̄n|+α2+t2)
[|ωn|

(
ω̄2

n + α2
) + |ω̄n|t2

] + B2
[
2|ωn|

(
ω2

n +α2
) + �(α2+4ω2

n ) +�2(3|ωn| + �) −2|ω̄n|t2
] + B4|ω̄n|

.

(27)

Substitution into the self-consistency condition Eq. (15) yields
the pair-breaking equation in terms of a Matsubara sum that
can be expressed in terms of root functions for efficient plot-
ting purposes.

Let us examine the clean and dirty limits. In the clean limit
(� = 0), we recover (see Appendix B)

〈 f30〉k =
(
ω2

n + α2
)(

ω2
n + α2 + B2 + t2

)
η30

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

] .

The opposite � → ∞ limit gives 〈 f30〉k = |ωn|η30/(ω2
n +

B2), and the transition line is determined simply by the Pauli
limit.

In Fig. 8, the orange curves illustrate the effect of � on
the odd-phase transition lines. We see that the critical field is
sensitive to disorder, while the critical temperature is robust.
These figures were generated for t/Tc = 2, namely, very small
ILH. From Fig. 8(d), we see that Tc can be strongly suppressed
in presence of impurities for larger values of t/Tc. The robust-
ness for small t/Tc can be understood by considering the limit
of decoupled layers t = 0. Since the impurity potential acts
locally, it does not lead to interlayer scattering. Hence, there
is no mixing of gaps with different signs by impurities. Once
ILH is turned on, interlayer processes start to mix gaps with
different signs, contributing to a reduction of the average gap,
and ultimately to the reduction of the critical temperature.

Both ILH and SOC enhance the critical field of the
odd-phase (in contrast to the even-phase, where only SOC
enhances the field). Considering that the impurities wash out
the effects of the smallest energy scales, impurities would then

cause a reduction of Tc for the odd phase (and an enhancement
for the even phase).

Figure 8(d) displays the evolution of the critical tempera-
ture of the odd-phase as a function of the scattering rate. We
observe an enhancement of Tc as the scattering rate increases.
This unusual behavior happens because in the limit � → ∞,
the solutions for f00 and f30 coincide. Physically, this can
be understood as the disorder attempting to uniformize the
superconducting phases, such that the odd phase inherits the
critical temperature of the even phase, T/Tc → 1 for � → ∞.
However, as can be seen in Fig. 8(c), above a certain critical
scattering rate, although the critical temperature of the η30 or-
der parameter increases, it remains subdominant with respect
to η00, such that the enhancement in the critical temperature
would not be observable.

Since for the large � limit the even and odd solutions
merge, one can define a critical impurity scattering rate �c

for which the odd-phase becomes subdominant with respect
to the even phase; see Fig. 8(c). In Fig. 9, we show a color
map of the critical scattering rate �c as a function of SOC
and ILH. We identify three regions of the parameter space:
(i) no odd phase, which corresponds to the purple region; (ii)
the purple-blue border at which �c/Tc ∼ 1, corresponding to a
sensitive odd phase; (iii) the green to red region with α/Tc > 1
for which the odd phase is robust �c/Tc � 10.

VI. DISCUSSION

Based on our results, we now discuss the phase diagram
of CeRh2As2. We start examining the upper critical fields
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FIG. 9. Color map of the critical scattering rate �c necessary to
obliterate the odd phase as a function of α and t . There is no odd
phase in the purple region. The purple-blue border delimits the region
where the odd phase is sensitive, �c/Tc ∼ 1. The odd phase is robust
in the region α/t > 1 with �c/Tc � 10.

as measured by experiments [18], from which we can ex-
tract a set of parameters that can quantitatively reproduce
the phase diagram. Then, we contrast these parameters with
what is known from first-principles calculations and compare
CeRh2As2 to other related materials. Furthermore, we specu-
late on future developments in both theory and experiment.

A. Experimentally observed upper critical field

CeRh2As2 displays two superconducting phases as a func-
tion of c-axis magnetic field (see Fig. 1). The low-field even
phase is associated with the (extrapolated) upper critical field
of about 5 T, while the high-field odd-phase is robust up to
about 15 T. Under in-plane magnetic fields, only the even
phase is observed, and it survives up to magnetic fields of
the order of 2 T. All the critical fields mentioned above are
remarkably high for a material with a critical temperature of
about 0.26 K.

To get a more quantitative measure of these unusually high
upper critical fields, we can think in terms of the Pauli limit
BP. For weakly coupled superconductors without SOC, the
Pauli limit is given by [48]

μBBP =
√

2�0

g
= π

√
2

eγ

kBTc

g
. (28)

For g = 2, the ratio μBBP/(kBTc) ≈ 1.25. In CeRh2As2, the
in-plane (‖) and perpendicular (⊥) g-factor is estimated to be
g‖ ≈ 1.43 and g⊥ ≈ 1.11 [18]. This leads to the naive ratio
estimates of μBB‖

P/(kBTc) ≈ 1.74 and μBB⊥
P /(kBTc) ≈ 2.25.

The experimentally obtained upper critical fields in CeRh2As2

display the ratios μBB‖
c2Low/(kBTc) ≈ 5, μBB⊥

c2Low/(kBTc) ≈
12, and μBB⊥

c2High/(kBTc) ≈ 36 [18]. All upper critical fields
are beyond the Pauli limit. Therefore, it is interesting to in-

FIG. 10. Transition lines comparing the clean (dashed) and dis-
ordered cases (solid). The in-plane (‖) lines were obtained by
considering only the Ising SOC component λ, and the perpendicular
(⊥) by considering only Rashba SOC α. We used t/Tc = 25, α/t = 5
and λ/t = 2.4. For these parameters, the perpendicular odd phase be-
comes subdominant to the even phase for �/Tc � 12.8. The disorder
enhances the even phase by undoing the suppression caused by t . The
black point indicates the thermodynamic multicritical point.

troduce the measure of a Pauli limit violation ratio defined
as PVR = Bc2/BP [49], which takes values PVR‖

Low ≈ 3,
PVR⊥

Low ≈ 5, and PVR⊥
High ≈ 16 [50].

The crystal structure of CeRh2As2 (see Sec. II) reveals that
the small in-plane Pauli limit enhancement might be attributed
to an Ising SOC component λ, whereas the larger enhance-
ment of the perpendicular Pauli limit stems from the Rashba
SOC component [18,35]. We comment on the constraints on
parameter regimes for both magnetic field directions sepa-
rately below.

B. Enhanced c-axis Pauli limit

1. Low-field phase

From Sec. IV A, we conclude that for the low-field phase,
the upper critical field can only be enhanced by a finite Rashba
SOC. For a PVR⊥

Low ≈ 5, our analysis suggests a ratio α/t ≈
5 for a relatively disordered superconductor with �/(kBTc) ≈
4 (see full green line in Fig. 10). Interestingly, a theoretical fit
to the experimental phase diagram (ignoring orbital limiting)
is only obtained in the presence of impurities; compare solid
and dashed curves in Fig. 10.

2. High-field phase

From Sec. IV B, we concluded that both Rashba SOC and
the presence of subleading instabilities are good mechanisms
for the enhancement of the upper critical field in the high-field
phase. For this phase, ILH t suppresses the critical tempera-
ture of the high-field phase. The (extrapolated) value of the
critical temperature for the high-field phase is ≈0.16 K, with
a re-entrance of about 0.02 K. Assuming the intralayer pairing
mechanism to be the same for both low- and high-field phases,
our analysis suggests t/Tc ≈ 25, fixing t ≈ 0.56 meV.

Concerning the magnitude of SOC, if we neglect the ef-
fects of subleading instabilities and use the value of α/t ≈ 5
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(fixing α ≈ 2.8 meV) that is in agreement with the low-field
phase, we find a PVR ≈ 16, in good agreement with what
is observed for the high-field phase (see solid green line in
Fig. 10). This shows that the phase diagram can be quantita-
tively reproduced, considering only the effects of Rashba SOC
(and impurities). It is important to emphasize here, though,
that a similar phase diagram could be obtained for a finite Tsub
and different ratios of t/Tc, α/t , and �/Tc. Note, also, that
the consideration of orbital depairing would give even more
freedom for the fitting parameters.

C. Enhanced in-plane Pauli limit

Up to now, we discussed the pair-breaking equations for
a magnetic field along the c axis. These equations remain
invariant as long as the applied magnetic field is perpendicular
to the SOC texture. This allows us to qualitatively assess the
in-plane magnetic field enhancement caused by perpendicu-
lar Ising SOC. The same solutions apply, but now B is in
plane and α → λ. From the discussion in Sec. IV A, we con-
clude that for the low-field phase in the presence of in-plane
magnetic fields, the critical field can only be enhanced by a
finite Ising SOC. For a PVR ≈ 3, our analysis suggest a ratio
λ/t ≈ 2.4, fixing λ ≈ 1.2 meV.

D. Effects of impurities

1. Low-field phase

The critical temperature T00 is unaffected by nonmagnetic
impurities if the pairing is of s-wave nature, as expected by
Anderson’s theorem. Note, though, that impurities lead to
nontrivial effects on the critical field in both field directions.
In particular, for scattering rates � satisfying Tc < � � t , the
detrimental effect of ILH on the critical field is reduced, which
effectively leads to an enhancement of the critical field in
disordered samples. For strong scattering rates t < � � α, λ,
impurities would start undoing the enhancement promoted
by Rashba or Ising SOC, leading to a reduction of the crit-
ical field in more disordered samples. This effect is seen in
Fig. 8. This nonmonotonic dependence of the critical field as
a function of the impurity scattering rate seems to be a unique
feature of LNCSs.

2. High-field phase

The critical temperature T30 is suppressed by nonmagnetic
impurities [take B = 0 in Eq. (27)]. This can be understood by
the unconventional nature of this order parameter, which has a
staggered phase across the layers. Even if pairing is of s-wave
nature within the layers, a finite ILH introduces horizontal
line nodes, making this superconducting state susceptible to
impurities. This phenomenon can be understood in terms of a
generalized Anderson’s theorem [51].

3. Critical scattering rate and multicritical point

Putting the low- and high-field phases together, we define
a critical scattering rate �c above which the high-field phase
becomes subdominant with respect to the low-field phase at
all temperatures and fields. This maximum scattering rate
depends on both α/Tc and on t/Tc. Given the parameters
discussed above, the current samples of CeRh2As2 are located

in the robust region depicted in Fig. 9, with the high-field
phase at least ten times more robust against impurities than
one would expect for an unconventional superconducting state
with nodes. For the parameters used in Fig. 10, a scattering
rate of �/Tc ≈ 12.8 would be necessary to obliterate the odd
phase.

Impurities also affect the position of the multicritical point
in the (B, T ) phase diagram. In the clean case, larger values
of α/t , Tsub and T30 move the multicritical point to the right.
Assuming that α > t , a larger scattering rate � affects the
multicritical point in two ways: (i) � enhances the critical
field of the even-phase moving the multicritical point up; (ii)
� suppresses the odd phase’s critical temperature T30, which
moves the multicritical point to the left.

4. Absence of the odd phase for in-plane fields

Interestingly, in the clean limit, an in-plane magnetic field
together with the Ising SOC also favors the odd phase; see
dashed-blue curve in Fig. 10. However, because λ < α, disor-
der and ILH are more effective in suppressing the odd-phase
for in-plane fields. For the parameters used in Fig. 10, the in-
plane odd-phase disappears for �c/Tc � 2.9. Note that Fig. 9
can be reinterpreted for λ in an in-plane magnetic field. This
means that the in-plane high-field phase is at the border of the
sensitive region. This explains why the high-field phase is not
observed in current experiments for in-plane fields, and sug-
gests that its observation might be possible in cleaner samples.
A systematic experimental study of samples with different
residual sensitivities and the corresponding variations in the
upper critical field of the odd phase could assess this behavior
since for CeRh2As2 kBTc ≈ 0.02 meV, a scattering rate of the
same order is expected to correspond to a rather clean system.
Controlling the amount of disorder by external means, such
as by electron irradiation [52,53], could provide a interesting
line for further experimental investigations.

E. Hierarchy of energy scales

From the discussion above, we conclude that only if
α > λ > t is assumed, one can generate a phase diagram
in qualitative agreement with experiments. For a quantita-
tive agreement, we use t/Tc = 25, α/t = 5, λ/t = 2.4, and
�/Tc = 4 to generate the phase diagram displayed in Fig. 10.

The energy-scale hierarchy α > λ > t might seem nonin-
tuitive at first. Note that the ILH amplitude t is dominated
by hopping processes between nearest layers, while λ is as-
sociated with Ising SOC originated from next-nearest layer
processes. In this context, we need to remind the reader that
these parameters enter the quasiclassical formalism as effec-
tive contributions of the corresponding terms at the Fermi
surface. These parameters are all accompanied by nontrivial
momentum-dependent form factors, as discussed in Sec. II A.
Interestingly, depending of the position of the Fermi surfaces
on the Brillouin zone, this nonintuitive hierarchy can be satis-
fied, as recently discussed in Ref. [24].

We briefly discuss how this energy-scale hierarchy is in
agreement with recent first-principles calculations [21,23].
Looking at the dispersion of the bands crossing the Fermi
surface along the � − Z direction, we can estimate an ILH
amplitude of the order of 100 meV. With kBTc ≈ 0.02 meV,
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the condition t/Tc � 1 is satisfied and we can safely neglect
the presence of subleading instabilities for the enhancement
of the upper critical field of the low-field phase. The estimate
of Rashba and Ising SOCs from these calculations is not so
straightforward. Momentum-dependent SOC can be estimated
from a comparison of the bands calculated in presence and
absence of relativistic effects, as presented in Fig. S4 of
Ref. [23]. For bands far away from the Fermi surface, there
are clear momentum-dependent band splittings of the order
of 200 meV (in particular, around −2 eV along the X − M
direction). Note, though, that the electrons associated with
these bands are primarily d electrons from Rh atoms, so we
expect the magnitude of these momentum-dependent SOC
terms in the bands closer to the Fermi surface to be larger,
since these bands are composed primarily of f electrons from
the Ce atoms, with larger atomic number. This simple analysis
suggests that SOC terms can, in fact, be larger than ILH in this
material.

F. Comparison to other materials

Phase diagrams with multiple superconducting phases are
rare, and have only been reported in two other heavy fermion
materials: UPt3 [54–56] and UTe2 [57]. The presence of
strong correlations or quantum fluctuations supporting pairing
in unconventional superconducting channels seems to be a key
ingredient among these materials [31–34].

It is worth noting that there are several superconducting
materials with the same CaBe2Ge2-type structure: LaIr2Si2

[58], SrPd2Bi2 [59], SrPd2Sb2 [60], SrPt2As2 [61], LaPd2Bi2

[62], and LaPd2Sb2 [63]. All these materials have a supercon-
ducting critical temperature of around 1 K, but none displays
the remarkable transition to a high-field phase within the
superconducting state. Interestingly, these materials usually
display two polymorphs, the tetragonal form with CaBe2Ge2-
type structure and the monoclinic form with ThCr2Si2-type
structure, the first consistently favoring the occurrence of
superconductivity [59,64,65]. One possible explanation for
this distinction is the proximity to a van Hove singular-
ity for CaBe2Ge2-type materials, which is often associated
with a nearby structural, electronic, or magnetic instability
[23,59]. A systematic study of materials in the pnictide family
suggests that phonon-mediated pairing provides a consistent
picture for the origin of superconductivity in these systems
[60]. The development of conventional superconductivity in
these isostructural materials suggests that the lack of inversion
symmetry alone does not guarantee the development of an un-
conventional superconducting phase at high magnetic fields.

One fundamental aspect that distinguishes CeRh2As2 from
the isostructural materials mentioned in the previous para-
graph is the presence of localized f electrons in the Ce
atoms. CeRh2As2 can be thought of as a Kondo lattice ma-
terial, with one localized f electron associated with each
Ce3+ ion coexisting with a sea of light conduction electrons
stemming from the Rh and As atoms. At high temperatures,
the localized f electrons act as incoherent scattering centers,
but below the coherence temperature, Tcoh, the localized and
itinerant electrons hybridize, giving rise to a coherent heavy
Fermi liquid with an enhanced effective mass [66,67]. For
CeRh2As2, the characteristic maximum of the resistivity as a

function of temperature suggests Tcoh ≈ 20 − 40 K. At 0.5 K,
the specific-heat coefficient reaches values of the order of 1
J/mol K2. These two observations indicate the presence of
well-defined heavy quasiparticles at the Fermi surface just
above the superconducting state [18]. The heavy fermion na-
ture of the normal state can be important in two different
ways. First, the magnitude of the Rashba SOC depends on
the atomic number Z , therefore CeRh2As2 should display the
largest Rashba SOC among the mentioned materials. Second,
the heavy fermion character might be important to guarantee a
mechanism for superconductivity in unconventional channels
associated with the subleading instabilities discussed here.

G. Perspectives

Our formalism introduces the effects of magnetic field by
directly coupling to the spin DOF. To also consider the orbital
effect, one might develop a microscopic Ginzburg-Landau
expansion, for which our paper provides a suitable starting
point. One could, for instance, derive the Ginzburg-Landau
coefficients as used in Ref. [25] from the microscopic theory
provided here. For a more realistic treatment, we suggest
starting from the Eilenberger matrix Eq. (10), consider α, λ, t1,
and t2 simultaneously, and develop the corresponding Riccati
equations for numerical simulations of the Abrikosov lattice.
This would allow for a realistic study of the vortex state
throughout the first-order phase transition between the low-
and high-field superconducting phases. It is expected that the
vortex core size suffers a discontinuity through the transition,
which could lead to irreversible effects in the thermodynamics
[19,25,68]. Another idea would be to examine whether the
phase winding of the vortices adopt the registry of the odd
phase. This would imply sublattice-dependent π shifts in the
vortex phases, leading to a distinctive twisted phase structure
of the Abrikosov flux line. We speculate that this would lead
to interesting effects.

Even though Fig. 10 gives a good fit to the experimen-
tal phase diagram, indicating that our treatment is likely to
contain the essential physics, a more complete treatment can
also include the pairing mechanism, a more detailed band
structure and the angular dependence of the g factor and Maki
parameters. We speculate that inclusion of the orbital effect
would require a larger α/t ratio for an equivalent fitting.

Still, from a theoretical perspective, it would be of interest
to establish the nature of the pairing mechanism. In this con-
text, pairing from multipolar Kondo interactions provides an
interesting scenario [69–71], given the hidden order observed
above the superconducting transition temperature [18].

From the experimental side, it would also be useful to have
more detailed experiments with cleaner samples and lower
temperatures to determine the presence and location of nodes
in the superconducting gap in both low- and high-field phases.
Also, magnetization data, which can tell us about properties
of the vortex lattice could highlight unusual aspects associ-
ated with the high-field phase. Experiments under pressure or
strain are also potentially interesting, since these can change
the ratios α/t and λ/t , which should have a clear influence on
the critical temperature and upper critical fields that could be
traced back within our framework.
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VII. CONCLUSION

Layered LNCSs are good candidates to observe magnetic
field induced two-phase superconductivity. CeRh2As2 is a
prototypical example. From all possible low- and high-field
superconducting phases, we pinpoint a dominant singlet even
to odd transition for CeRh2As2. The even and odd phases have
a rich superconducting wave function with both singlet and
triplet parts. In contrast to centrosymmetric crystals without
local noncentrosymmetricity, singlet-triplet mixing in LNCSs
is possible due to the additional sublattice DOF. In addition
to the usual even-singlet and odd-triplet states, even triplets in
the low-field phase and odd singlets in the high-field phase can
be realized. Up to now, phenomenological properties of new
superconductors relied on whether the crystal is centrosym-
metric or noncentrosymmetric. Local noncentrosymmetricity
might also lead to unique phenomenology under a magnetic
field.

One hallmark of LNCSs that we have identified in this
paper is the distinct response of the even and odd phases to
impurities. They enhance the critical field of the even phase
beyond the Pauli limit but suppress the odd phase, leading to

a change in the position of the multicritical point in the phase
diagram. It would be interesting to see if the change in posi-
tion of the multicritical point can be assessed experimentally.

Our results provide a suitable starting point for further
studies planning to go inside the phase diagram and inves-
tigate the first-order phase transition in more detail. The
framework can be readily translated to van der Waals super-
conductors such as few-layer transition metal dichalcogenide
and twisted graphene systems.
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APPENDIX A: DETAILED DERIVATIONS FOR THE EVEN-PHASE

Solving the linearized Eilenberger Eqs. (12) for B = (0, 0, B) and t1(k) = t t̂1(k) in the clean case, and using the properties
of the order parameters listed in Fig. 3, the solution for f31(32) gives

f31(32) = |ωn|
[ ± iBγy(x)d00 + (

ω2
n + γ 2

x(y) + B2
)
d31(32) + γxγyd32(31)

](
ω2

n + t2
)(

ω2
n + B2

) + ω2
nγ

2
+ (terms that vanish in the next average). (A1)

The signs +(−) apply for f31(32). We now use d31(32)(k) = η31(32)d̂31(32)(k), where d̂31(32)(k) = ∓√
cγ̂y(x)(k), with c = 2, due to

the fact that {η31, η32} is a pair. We retain c to follow the parts that are affected by it. Applying the same approximation scheme
mentioned in Sec. IV A, we obtain the averages

〈 f00〉k = |ωn|
(
ω2

n + α2 + t2
)
η00 + i

√
cBαη31(32)(

ω2
n + t2

)(
ω2

n + B2
) + ω2

nα
2

, (A2)

〈
d̂31(32) f31(32)

〉
k = |ωn|

[−i
√

cBαη00/2 ± cα2
〈
γ̂ 2

x γ̂ 2
y

〉
k(η31 − η32) + c

(
ω2

n + B2
)
η31(32)/2

](
ω2

n + t2
)(

ω2
n + B2

) + ω2
nα

2
. (A3)

Using η31 = η32, the term with 〈γ̂ 2
x γ̂ 2

y 〉k does not contribute. Let us rewrite Eqs. (A2) and (A3) more neatly as

〈 f00〉k = A1η00 + i
√

cA2η31(32);
〈
d̂31(32) f31(32)

〉
k = −i

√
c

A2

2
η00 + cA3η31(32), (A4)

where A1, A2, and A3 can be identified by comparison with Eqs. (A2) and (A3). With no loss of generality, we choose η00 to be
real and write η31(32) = Reη31(32) + iImη31(32). Substituting Eqs. (A4) and into their respective self-consistency conditions Eq.
(15) gives (

ln
T

T00
+ S00

)
η00 + S00,31(32)Imη31(32) − iS00,31(32)Reη31(32) = 0, (A5)

S00,31(32)η00 + 2

(
ln

T

T31
+ S31

)
Imη31(32) − 2i

(
ln

T

T31
+ S31

)
Reη31(32) = 0, (A6)

where

S00 = πT
∑

n

[
1

|ωn| − A1

]
; S00,31(32) = πT

∑
n

√
cA2; S31 = ln

T

T31
+ πT

∑
n

[
1

|ωn| − cA3

]
. (A7)
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The Matsubara sums yield Eqs. (21) in the main text. Organizing the coupled equations in matrix form, we obtain⎡
⎢⎣ln T

T00
+ S00 S00,31(32) −iS00,31(32)

S00,31(32) 2
(
ln T

T31
+ S31

)
0

0 0 ln T
T31

+ S31

⎤
⎥⎦

⎡
⎣ η00

Imη31(32)

Reη31(32)

⎤
⎦ = 0. (A8)

From the determinant of the matrix in Eq. (A8), one sees that η00 couples only to Imη31(32). One might wonder, what happens
to Re η31(32)? The instability condition is

imaginary part︷ ︸︸ ︷
det(Peven)

real part︷ ︸︸ ︷(
ln

T

T31
+ S31

)
= 0, (A9)

where the first term contains Im η31(32) and the second term describes Re η31(32). Therefore, even if T31 � T00, Im η31(2) couples
to η00 (and condenses at T00), whereas Re η31(2) only condenses at T31 � T00.

APPENDIX B: DETAILED DERIVATIONS FOR THE ODD-PHASE

1. Solutions of the averages

We look at the same solution set obtained for all fab’s in Appendix A, but now analyze the relevant quasiclassical Green’s
functions for the odd-phase {η30, η01(02), η23}, namely, { f30, f01(02), f23}. The solutions are

f30 =
(
ω2

n + γ2
)(

ω2
n + γ2 + t2 + B2

)
d30 + iB

(
ω2

n + γ2 + B2 − t2
)
(γxd02 − γyd01) + 2iBt

(
ω2

n + γ2
)
d23

|ωn|
[
ω2

n + γ2 + (B + t )2
][

ω2
n + γ2 + (B − t )2

] , (B1)

f01(02) = ±iBγy(x)
(
ω2

n + γ2 + B2 − t2
)
d30 + [(

ω2
n + γ 2

x(y) + t2
)(

ω2
n + γ2 + t2

) + B2
(
2ω2

n + 2γ 2
x(y) + γ 2

y(x) − 2t2
) + B4

]
d01(02)

|ωn|
[
ω2

n + γ2 + (B + t )2
][

ω2
n + γ2 + (B − t )2

]
+ γxγy

(
ω2

n + γ2 + B2 + t2
)
d02(01) ± tγy(x)

(
ω2

n + γ2 + t2 − B2
)
d23

|ωn|
[
ω2

n + γ2 + (B + t )2
][

ω2
n + γ2 + (B − t )2

] , (B2)

f23 = −2itB
(
ω2

n + γ2
)
d30 + t

(
ω2

n + γ2 + t2 − B2
)
(γyd01 − γxd02) + (

ω2
n + γ2

)(
ω2

n + γ2 + t2 + B2
)
d23

|ωn|
[
ω2

n + γ2 + (B + t )2
][

ω2
n + γ2 + (B − t )2

] . (B3)

We omitted additional terms in the solutions that later vanish in the averages. Looking at these solutions, one can readily identify
the parameters that couple different order parameters according to the wheel in Fig. 5. We now calculate the relevant averages
that enter the self-consistency condition Eq. (15). To avoid the exhaustive repetition of the denominator, let us define

D = |ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

]
. (B4)

We now write d30(k) = η30, d01(02)(k) = η01(02)d̂01(02)(k) with d̂01(02)(k) = ∓√
cγ γ̂y(x)(k), and d23(k) = η23d̂23(k) with

d̂23(k) = √
ct t̂1(k). Here cγ = 2 and ct = 1. The averages that enter the self-consistency condition are

D〈 f30〉 = (
ω2

n + α2
)(

ω2
n + α2 + B2 + t2

)
η30 + iB

[√
cγ

2
α
(
ω2

n + α2 + B2 − t2
)
(η01 + η02) + 2

√
ct t

(
ω2

n + α2
)
η23

]
, (B5)

D〈d̂01(02) f01(02)〉 = − i
√

cγ Bα

2

(
ω2

n + α2 + B2 − t2
)
η30 + cγ

2

[(
ω2

n + α2

2
+ t2

)(
ω2

n + α2 + t2
) + 2B2

(
ω2

n + 3α2

4
− t2

)
+ B4

]
× η01(02) − cγ α2

(
ω2

n + α2 + B2 + t2
)〈
γ̂ 2

x γ̂ 2
y

〉
η02(01) − √

cγ ctαt
〈
t̂2
1 γ̂ 2

y(x)

〉(
ω2

n + α2 + t2 − B2
)
η23, (B6)

D〈d̂23 f23〉 = − 2i
√

ct Bt
(
ω2

n + α2
)
η30 − √

ct cγ αt
(
ω2

n + α2 + t2 − B2
)(〈

t̂1γ̂
2
y

〉
η01 + 〈

t̂1γ̂
2
x

〉
η02

)
+ ct

(
ω2

n + α2
)(

ω2
n + α2 + B2 + t2

1

)
η23. (B7)

The averages involving two square terms evaluate to 〈γ̂ 2
x γ̂ 2

y 〉k = 1/16 and 〈t̂2
1 γ̂ 2

y(x)〉k = 1/4. Let us rewrite the averages more
neatly as

〈 f30〉 = B1η30 + i
√

cγ B2(η01 + η02) + i
√

ct B3η23, (B8)

〈d̂01(02) f01(02)〉 = −i
√

cγ B2η30 + cγ B4η01(02) − cγ B5η02(01) − √
cγ ct B6η23, (B9)

〈d̂23 f23〉 = −i
√

ct B3η30 − √
cγ ct B6(η01 + η02) + ct B1η23. (B10)

The Bi’s (i = 1 . . . 6) can be identified by comparison with Eqs. (B5)–(B7). The six Bi’s lead to six distinct Matsubara sums.
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2. Matsubara sums

Writing the real and imaginary parts relative to η30, and using the self-consistency condition Eq. (15), we identify the
following Matsubara sums:

S30 = πT
∑
n∈Z

[
1

|ωn| − B1

]
= πT

∑
n∈Z

[
1

|ωn| −
(
ω2

n + α2
)
(ω2

n + α2 + B2 + t2)

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

]]
, (B11)

S01(02) = πT
∑
n∈Z

cγ B4 = πT
∑
n∈Z

[
1

|ωn| − cγ

2

(
ω2

n + α2

2 + t2
)(

ω2
n + α2 + t2

) + 2B2
(
ω2

n + 3α2

4 − t2
) + B4

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

]
]
, (B12)

S01,02 = πT
∑
n∈Z

cγ B5 = πT
∑
n∈Z

cγ

16

α2
(
ω2

n + α2 + B2 + t2
)

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

] cγ =2= S01(02)

4
, (B13)

S30,01(02) = πT
∑
n∈Z

√
cγ B2 = πT

2

∑
n∈Z

√
cγ Bα

(
ω2

n + α2 + B2 − t2
)

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

] , (B14)

S30,23 = πT
∑
n∈Z

√
ct B3 = πT

∑
n∈Z

2
√

ct Bt
(
ω2

n + α2
)

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

] , (B15)

S01(02),23 = πT
∑
n∈Z

√
cγ ct B6 = πT

∑
n∈Z

√
cγ ct

4

αt
(
ω2

n + α2 − B2 + t2
)

|ωn|
[
ω2

n + α2 + (B + t )2
][

ω2
n + α2 + (B − t )2

] . (B16)

The Matsubara sum in Eq. (B12) is convergent for cγ = 2. In contrast to the Matsubara sums of the even phase, all Matsubara
sums of the odd phase can be performed analytically without appealing to root functions. They are listed below:

S30 = 1

2

∑
l=±

(B + lt )2

α2 + (B + lt )2 Re H

(
−1

2
+ i

√
α2 + (B + lt )2

2πT

)
+ α2(B2 + t2) + (B2 − t2)2

[α2 + (B + t )2][α2 + (B − t )2]
ln 4, (B17)

S01(02) = 1

4

∑
l=±

α2

α2 + (B + lt )2 Re H

(
−1

2
+ i

√
α2 + (B + lt )2

2πT

)
+ α2(α2 + B2 + t2) ln 2

[α2 + (B + t )2][α2 + (B − t )2]
, (B18)

S30,01(02) = 1

4
√

2

∑
l=±

α(B + lt )

α2 + (B + lt )2 Re H

(
−1

2
+ i

√
α2 + (B + lt )2

2πT

)
+ 1√

2

αB(α2 + B2 − t2)

[α2 + (B + t )2][α2 + (B − t )2]
, (B19)

S30,23 = 1

2

∑
l=±

l (B + lt )2

α2 + (B + lt )2 Re H

(
−1

2
+ i

√
α2 + (B + lt )2

2πT

)
+ Btα2 ln 16

[α2 + (B + t )2][α2 + (B − t )2]
, (B20)

S01(02),23 = 1

4
√

2

∑
l=±

l (B + lt )2

α2 + (B + lt )2 Re H

(
−1

2
+ i

√
α2 + (B + lt )2

2πT

)
+ 1√

2

αt (α2 − B2 + t2) ln 2

[α2 + (B + t )2][α2 + (B − t )2]
. (B21)

Here, H (z) = ∑z
k=1 k−1 is the Harmonic number, which is related to the digamma function ψ (z) via

H
(− 1

2 + z
) = ψ

(
1
2 + z

) + γ , (B22)

where γ is the Euler-Mascheroni constant. One can develop α � t and t � α expansions if one is interested in pushing analytic
results further. An expansion in B might also be useful to derive a Ginzburg-Landau theory.

3. The instability condition

Rewriting the self-consistency condition in matrix form and identifying the Matsubara sums, we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln T
T30

+ S30 S30,01 S30,02 S30,23 −iS30,01 −iS30,02 −iS30,23

S30,01 ln T
T01

+ S01 S01,02 S01,23 0 0 0
S30,02 S01,02 ln T

T02
+ S02 S02,23 0 0 0

S30,23 S01,23 S02,23 ln T
T23

+ S30 0 0 0
0 0 0 0 ln T

T01
+ S01 S01,02 S01,23

0 0 0 0 S01,02 ln T
T02

+ S02 S02,23

0 0 0 0 S01,23 S02,23 ln T
T23

+ S30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

η30

Imη01

Imη02

Imη23

Reη01

Reη02

Reη23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(B23)
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The pair-breaking equation is given by the determinant of the matrix above, which is given in Eq. (23). The magnetic field only
couples the imaginary parts of the triplet components to η30.
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