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Time-reversal symmetry breaking and d-wave superconductivity of triple-point fermions
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We study the possibility of complex tensor (d-wave) superconducting order in three-dimensional semimetals
with chiral spin-1/2 triple-point fermions, which have an effective orbital angular momentum of L = 1 arising
from a crossing of three bands. Retaining the first three lowest order terms in momentum and assuming rotational
symmetry we show that the resulting mean-field d-wave ground state breaks time-reversal symmetry, but then
depends crucially on the coefficients of the two quadratic terms in the Hamiltonian. The phase diagram at a finite
chemical potential displays both the “cyclic” and the “ferromagnetic” superconducting states, distinguished by
the average value of the magnetization; in the former state it is minimal (zero), whereas in the latter it is maximal
(two). In both states we find mini Bogoliubov-Fermi surfaces in the quasiparticle spectrum, conforming to recent
general arguments.
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I. INTRODUCTION

Crystals’ space symmetries allow multiband crossings that
lead to topologically nontrivial bands and describe low-energy
fermions with effective higher angular momentum [1]. Such
exotic fermions provide a fascinating new area of condensed
matter physics, and naturally lead to exotic superconductivity,
for example, since fermions with higher angular momentum
can obviously be Cooper paired in various ways. Some recent
examples of semimetals with such higher effective angular
momentum that can lead to unconventional superconductivity
are the Rarita-Schwinger-Weyl (RSW) [2] and the Luttinger
semimetals [3–21], with spin-orbit coupled fermions with the
total angular momentum of L = 3/2.

Both the RSW and Luttinger semimetals have a crossing
of four energy bands. Three-band crossings [22–24], however,
are also possible, and were recently observed in CoSi [25] and
signs of superconductivity in such materials were observed
in PdSb2 [26]. The quasiparticles participating in the triple
band crossing appear as having an effective orbital angular
momentum of L = 1 and, as we will discuss, can therefore
form local Cooper pairs with a total angular momentum of
J = 0, 1, 2, i.e., exhibit s-, p-, and d-wave superconductivity,
respectively. The J = 0 channel was already studied by Lin
and Nandkishore in Ref. [27] and J = 1 vector pairing of
spinless fermions was examined in Refs. [28,29]. The three-
component p-wave (J = 1) and the five-component d-wave
(J = 2) superconducting order parameters are particularly
interesting, since they offer a possibility of the supercon-
ducting state breaking the time-reversal (TR) symmetry, and
thus manifesting some form of magnetism in coexistence
with superconductivity. The case of tensorial d-wave pairing
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is in this context especially rich. The possibility of d-wave
superconducting order of triple-point fermions has to our
knowledge not yet been studied, although it has enjoyed a
long history in relation to the physics of neutron stars [30] and
3He [31], and more recently, of Bose-Einstein condensates
[32] and Luttinger semimetals [3–21]. Closing this gap in
the growing literature on the subject and at the same time
continuing our systematic study of the d-wave superconduct-
ing order in various physical settings, we here focus entirely
on the J = 2 Cooper pairing of spin-1/2 fermions near a
single three-band (L = 1) crossing. We find an important new
feature emerging; in all previous studies the coefficient of
one of the three quartic terms in the Ginzburg-Landau theory
for the d-wave order parameter that discriminated between
different TR symmetry-broken superconducting states was
either precisely zero, or parametrically small and positive,
the latter leading to the cyclic ground state with maximal
TR symmetry breaking but zero magnetization. In contrast,
in the present case of triple-point fermions we find this cru-
cial Ginzburg-Landau coefficient to depend nontrivially on
the values of the coefficients of the two subleading, rota-
tionally invariant terms in the single-particle Hamiltonian,
which are quadratic in momentum. As a result, it can be
of either sign. The two superconducting ground states that
result from this dependence both break TR symmetry max-
imally, but differ crucially in their magnetization properties.
Whereas the already mentioned “cyclic” state has the minimal
(zero) average magnetization and only shows the quadrupo-
lar magnetic order, the “ferromagnetic” state shows maximal
average magnetization of two. The spin-1/2 triple fermions
appear therefore to be the system that may exhibit the ferro-
magnetic d-wave superconducting state, provided of course
that the pairing in the d-wave channel dominates over other
possibilities.

The paper is organized in the following way. In Sec. II we
introduce the Hamiltonian that describes low-energy fermions
with effective orbital angular momentum of L = 1 and spin
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FIG. 1. The energy dispersion of H (p) in the normal state for different values of c when b = 0 and μ > 0. Depending on the curvature of
the energy bands the number of Fermi surfaces varies from two for −v2/(4μ) < c < 0, to one for c = 0, and three for c > 0.

S = 1/2. These fermions can form Cooper pairs with total
angular momentum J = 0, 1, 2, as discussed in Sec. III. The
Ginzburg-Landau free energy for the d-wave superconducting
order parameter is studied at the mean-field level in Sec. IV,
where the potential ground states are introduced prior to the
calculation of the coefficients of the free energy, presented
in detail in Appendix C. In Sec. IV B we discuss how the
curvature of the energy band strongly influences the d-wave
superconducting ground state in the weak coupling regime,
and demonstrate that the curvature may be taken as the knob
that tunes between the cyclic and the ferromagnetic state.
Finally, in Sec. V we summarize our findings.

II. HAMILTONIAN

We consider the system of spin-1/2 fermions with the
low-energy spectrum of the lattice Hamiltonian exhibiting a
crossing of three bands [1] at the center of the Brillouin zone:

H (p) = 12×2 ⊗ [H0(p) − μ 13×3]. (1)

We can think of the left factor in the tensor product as acting
on the spinlike degree of freedom, and the H0 as acting on
the orbital-like degree of freedom. μ is the usual chemical
potential. For a crystal with cubic or tetragonal symmetry the
dynamics of the fermions near the crossing is described by
the following TR-symmetric Hamiltonian, expanded to the
second order in momentum:

H0(p) = v p · L + c p213×3 + b (p · L)2. (2)

The Hamiltonian effectively describes particles with angular
momentum of L = 1, with the three dimensional matrices Li,
i = 1, 2, 3 = x, y, z, that form the spin-1 representation of the
Lie algebra of the SO(3) group of rotations, with [Li, Lj] =
iεi jkLk . In the standard representation these are given by the
matrices

Lx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, (3)

Ly = i√
2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠, (4)

Lz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (5)

The low-energy Hamiltonian H0 is the most general such
Hamiltonian to the second order in momentum, measured
from the crossing. It also has a full rotational symmetry, which
we are assuming here for simplicity. The first (linear) term of
the Hamiltonian, proportional to the velocity v > 0, breaks the
inversion symmetry, and exhibits the crossing of two energy
bands linear in momentum and of a flat band (see Fig. 1). The
two remaining distinct second-order terms add curvature to
all three energy bands. The energy dispersion of the bands is
given by

E±1 = (b + c)p2 ± v|p| − μ, (6)

E0 = cp2 − μ. (7)

Depending on the curvatures of the bands, set by the param-
eters b and c, the number of Fermi surfaces at a chemical
potential μ > 0 varies from zero to three, as can be seen
in Fig. 1, where as an illustration we set b = 0 and varied
only c. When b + c < − v2

4μ
and c < 0 no energy band crosses

the chemical potential and no normal Fermi surface emerges,
whereas for − v2

4μ
< b + c and c < 0 the energy bands cross

the Fermi level twice, which leads to two Fermi surfaces. At
the special point b = 0, c = 0 only one Fermi surface appears,
and finally for b + c > − v2

4μ
with c > 0 we find all three Fermi

surfaces. The Fermi momenta and the Fermi velocities are
generally given by

kF,+1± = −v±
√

v2+4(b+c)μ
2(b+c) , vF,+1± =

√
v2 + 4(b + c)μ,

(8)

kF,0 =
√

μ

c , vF,0 = 2
√

cμ, (9)

kF,−1± = v±
√

v2+4(b+c)μ
2(b+c) , vF,−1± =

√
v2 + 4(b + c)μ.

(10)

An exception occurs when b = −c: E±1 become then lin-
early dispersive, but E0 remains parabolic. As a result, there is
always a Fermi surface at p = |μ

v
|, and another Fermi surface

emerges if kF,0 becomes real. In Sec. IV B we show that the
superconducting ground state of the system crucially depends
on the curvature of the energy bands.

The Hamiltonian H0 is invariant under TR symmetry and
thus commutes with the antiunitary operator T0 = U0K with
T 2

0 = +1, where K is the complex conjugation, and U0 is the
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TABLE I. The allowed local superconducting pairings with the
Cooper pair’s total angular momentum J , total spin S, and orbital
angular momentum L, and their corresponding pairing matrices
MJ . σi are the Pauli matrices and γa are defined as γ1 = L2

x −
L2

y , γ2 = 1√
3
(2L2

z − L2
x − L2

y ), γ3 = LxLz + LzLx , γ4 = LyLz + LzLy,
γ5 = LxLy + LyLx .

S L J MJ

0 0 0 12×2 ⊗ 13×3

1 1 0,1,2 σi ⊗ Lj

0 2 2 �a = 12×2 ⊗ γa

unitary matrix

U0 = e−iπLy =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠. (11)

The TR operator for the full Hamiltonian H (p) is given by
T = σ2 ⊗ T0 = UK with U = σ2 ⊗ U0, and therefore T 2 =
−1, as appropriate to particles with half-integer spin.

III. SUPERCONDUCTING ORDER PARAMETER

We consider next the local channels available for Cooper
pairing of the triple-point fermions. The chiral fermions with
orbital angular momentum of L = 1 and spin 1/2 can form
Cooper pairs with total-angular momentum J = 0, 1, 2, i.e.,
the pairing channels consist of s-, p-, or d-wave order param-
eter. More precisely, for two fermions with (S = 1/2) ⊗ (L =
1) we have the standard angular momentum algebra(

1

2
⊗ 1

)
⊗

(
1

2
⊗ 1

)
= (0 ⊕ 1) ⊗ (0 ⊕ 1 ⊕ 2), (12)

where the first bracket on the right-hand side refers to total
spin, and the second to the total orbital angular momentum.
Since the electrons obey Fermi statistics, the only allowed
combinations of total spin and total orbital angular momentum
are those that are completely antisymmetric under exchange
of particles, and these are (S, L) = {(0,0), (0,2), and (1,1)},
i.e., s-, d-, and p-wave order parameters. If we conveniently
consider pairing between time-reversed states [2], the pairing
matrices MJ that correspond to these allowed channels are
then even under time reversal, i.e., [MJ , T ] = 0. The differ-
ent pairing channels and the corresponding matrices that are
allowed by the Fermi statistic are listed in Table I, where the
channel (S, L, J ) = (0, 0, 0) corresponds to the s-wave order
parameter, (1, 1, J ) to the p-wave order parameter, and (0,2,2)
to the d-wave order parameter.

In this paper we focus on the (0,2,2) channel, i.e., the spin-
singlet d-wave order parameter, and neglect possible Cooper
pairing in other channels. The simplest Lagrangian yielding
the d-wave pairing may be written as

L = ψ†[∂τ + H (p)]ψ − g(ψ†�aUψ∗)(ψTU�aψ ), (13)

where ψ (x, τ ) = (a1,↑, a0,↑, a−1,↑, a1,↓, a0,↓, a−1,↓)T is a six-
component Grassmann field, τ denotes the imaginary time,
p = −i∇ is the momentum operator, the coupling g > 0, and
�a = 12×2 ⊗ γa. The sum over repeated indices is assumed.

The matrices γa, a = 1, 2, . . . , 5, are defined in the caption of
Table I. We ignore the issue of a possible physical origin of
the pairing interaction and take the coupling g as an effective
parameter that leads to a d-wave superconducting state. In-
stead of the dynamical pairing mechanism our problem is the
actual nature of the d-wave state in the system given the sim-
plest phenomenological interaction that manifestly favors this
particular order parameter, but does not distinguish between
its different components.

Just as the condensation of the single complex 
s =
〈ψTUψ〉 would correspond to the onset of the conventional
s-wave superconducting order parameter, the condensation of
any linear combination of the five complex 
a = 〈ψTU�aψ〉
indicates the onset of the d wave. The explicit expressions for
both 
s and 
a in terms of fermion operators are given in
Appendix A.

The five complex components of 
 = (
1, . . . , 
5) and
the pairing matrices �a transform as j = 2 irreducible repre-
sentation of the SO(3). (See Appendix B.) We may therefore
arrange the five 
a into a matrix φ, which is an irreducible
second-rank tensor under rotations, defined as

φi j = 
aMa,i j . (14)

The five real Gell-Mann matrices [33] Ma provide a basis
of three-dimensional symmetric real traceless matrices. We
choose the particular representation in which

φ =

⎛
⎜⎝


1 − 1√
3

2 
5 
3


5 −
1 − 1√
3

2 
4


3 
4
2√
3

2

⎞
⎟⎠. (15)

IV. GINZBURG-LANDAU THEORY

In the first part of this section we describe the general
Ginzburg-Landau free energy for rotationally invariant sys-
tems that describes the phase transition to the d-wave order
parameter, and analyze the possible superconducting ground
state configurations that would minimize it. We then discuss
the dependence of the actual superconducting ground state in
the present case on the values of the parameters b and c which
add curvature to the energy bands.

A. Possible superconducting ground states

The Ginzburg-Landau free energy describing a finite-
temperature second-order phase transition towards a d-wave
order parameter is given by [13,31]

F (
) = F2(
) + F4(
) + O(
6), (16)

with the terms quadratic and quartic in the uniform order
parameter as

F2(
) = r
∗
a
a, (17)

F4(
) = q1(
∗
a
a)2 + q2|
a
a|2 + q3

2
Tr(φ†φφ†φ). (18)

The superconducting phase ensues when the quadratic coeffi-
cient r < 0; the coefficient q1 also needs to be positive for F to
be bounded from below. Note that the quartic term multiplied
by the coefficient q1 has the same value for all normalized
states, so the value of the coefficient q1 does not play a role
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in the selection of the superconducting order parameter. The
signs and magnitudes of the two remaining coefficients q2

and q3 generally decide the broken symmetry state of the
system. Let us first understand the role of the coefficient q2,
and assume q3 to be sufficiently small. The value of the prod-
uct |
a
a|2 in our representation quantifies the overlap of
the macroscopic superconducting state with its time-reversed
counterpart [2]. Hence, if q2 < 0, the real order parameters
which describe TR-preserving states maximize this term, and
are therefore favored. The matrix φ can then be rotated into
the diagonal form:

φreal = 
1M1 + 
2M2, (19)

with the relative values of 
1 and 
2 that need to be deter-
mined from higher order terms, or by considering Gaussian
fluctuations around the mean-field solution. If, on the other
hand, q2 > 0, the complex states with 
a
a = 0 and with
maximally broken TR symmetry are preferred. There are also
infinitely many order parameters which break TR symmetry
maximally, so q2 alone does not uniquely select the super-
conducting ground state. This brings us to the role of the
remaining coefficient q3. The sign of q3 decides which of
the complex superconducting states that break TR maximally
is the superconducting ground state. The third term in the
right-hand side of Eq. (18) with the coefficient q3 may be
shown to be related to the average magnetization of the state
[2], so that when q2 > 0 and q3 < 0, the state with maximal
average magnetization and maximally broken TR symmetry
is favored. This is the ferromagnetic state with

φferro = 
√
2

(M1 + iM5). (20)

However, if the coefficients q2 and q3 both are positive, then
the magnetization of the ground states needs to be minimized
while keeping the TR symmetry maximally broken. These
two requirements are not mutually exclusive, and are in fact
fulfilled by the cyclic state, which is defined as

φcyclic = 
√
2

(M1 + iM2). (21)

The details of arriving at Eqs. (19), (20), and (21) are
presented in Appendix B. The potential ground states con-
figurations can also be systematically identified from a
symmetry-based classification [32,34] of the d-wave order
parameter. These states always show some residual symme-
try, breaking the rotational SO(3) invariance of the normal
state. For instance, the ferromagnetic state and the cyclic
state, which will be of our main interest eventually, have the
remaining SO(2) and tetragonal symmetry, respectively.

The complete phase diagram for rotationally invariant d-
wave superconductors was first obtained by Mermin [31] and
has also been rederived and discussed at length in Ref. [2].
The one-loop values of the quartic coefficients have been
computed in several examples so far. Most importantly, for
the spherically symmetric Luttinger semimetals and standard
BCS d-wave superconductors, q3 has been shown to be ex-
actly zero [13,18,31,34], whereas for the RSW semimetals q3

FIG. 2. The phase diagram of d-wave superconductor in
semimetals described by H (p), as a function of c and b. This plot is
obtained for μ = 1 and v = 1. We find two different superconducting
ground states that break the time-reversal symmetry maximally: the
ferromagnetic state (red) and the cyclic state (blue). The white area
corresponds to −v2/(4μ) > c + b and c < 0, when the energy bands
do not cross the chemical potential in the normal state.

turns out to be small and positive [2]. In the case of three-band
crossing under consideration here we show that a qualitatively
novel situation arises with q3 having either sign, depending on
curvatures of the energy bands.

In the next section we describe the results of the compu-
tation of the quartic coefficients for triple-point fermions, and
use it to determine the d-wave superconducting ground state
of the system.

B. Superconducting ground state

After performing the standard but lengthy one-loop in-
tegration over triple-point fermions (details are given in
Appendix C), we find that for a finite and positive chemi-
cal potential the coefficients q1 and q2 are always positive
irrespective of the values of the parameters b and c in the
Hamiltonian, and have the standard temperature dependence
of ∼1/T 2 [35,36]. In contrast, the coefficient q3 changes its
sign depending on the values of b and c, as shown in Fig. 2,
and it depends only logarithmically on temperature.

To understand the different temperature dependence of the
quartic terms’ coefficients, and in particular why the sign of
the coefficient q3 is influenced by b and c, let us consider
μ > 0 and set b = 0 for simplicity so that only the param-
eter c determines the curvature of the energy bands. In this
case we find that q1 and q2 are positive for all physically
relevant values −v2/(4μ) < c, whereas the coefficient q3 is
only positive if c � 0 and it is negative for c > 0. The reason
for this change in sign of q3 lies in the analytical structure of
the integrands of q1,2,3, and, in particular, in the way that this
structure depends on the curvature of the energy bands. To
this end we carry out the finite-temperature Matsubara sum of
the one-loop integral over fermions that define the coefficients
and Taylor expand around the Fermi momenta of the nor-
mal state. The coefficients q1,2,3 then reduce to the following

134512-4



TIME-REVERSAL SYMMETRY BREAKING AND D-WAVE … PHYSICAL REVIEW B 104, 134512 (2021)

form:

q1,2(T, c, b) ≈
∫ �

0
dk

∑
i

(
k2

F,i

a(1,2)
kF,i v3

F,i|k − kF,i|3 + a(1,2)
t,i T 3

+ 1

v2

1

b(1,2)
kF,i vF,i|k − kF,i| + b(1,2)

t,i T
+ O(|k − kF|0)

)
(22)

and

q3(T, c, b) ≈
∑

i

∫ �

0
dk

1

v2

1

b̃kF,ivF,i|k − kF,i| + b̃t,iT
+ O(|k − kF|0), (23)

where {a(1)
kF,i, a(1)

t,i , b(1)
kF,i, b(1)

t,i }, {a(2)
kF,i, a(2)

t,i , b(2)
kF,i, b(2)

t,i }, and
{b̃kF,i, b̃t,i} are numerical constants associated with
quartic coefficients q1, q2, and q3, respectively. Here
the sum is over all Fermi surfaces indexed by i,
and kF,i and vF,i represent the Fermi momentum and
Fermi velocity of the corresponding Fermi surface.

Finally, performing the momentum integration in Eq. (22),
we find that q1,2 acquire the usual ∼1/T 2 temperature de-
pendence to the leading order in inverse temperature, with
the next order correction proportional to log(T ). In the co-
efficient q3, however, the leading order term in the integrand
that would be of the form of (ãkF,iv

3
F,i|k − kF,i|3 + ãt,iT 3)−1 is

absent, leaving the first nonzero term in the Taylor expansion
proportional to (b̃kF,ivF,i|k − kF,i| + b̃t,iT )−1. The absence of
the leading order term causes the different temperature depen-
dence of q1,2 and q3, and it was also found in the example of
d-wave pairing of the RSW fermions in Ref. [2]. We find that
the coefficients near the critical temperature (Tc) are given by
the following expressions to the leading order in μ/Tc � 1:

q1,2(Tc, c, b) =
∑

i

η
(1,2)
i

k2
F,i

vF,i

1

T 2
c

+ O[log(μ/Tc)] (24)

and

q3(Tc, c, b) = 1

v2

∑
i

η̃i
1

vF,i
log(μ/Tc), (25)

where η
(1)
i , η

(2)
i , and η̃i are numerical coefficients.

What still remains to be explained is the dependence of the
coefficient q3 on parameters b and c. As we already noted,
parameters b and c determine which energy bands cross the
Fermi level and thus control the number of Fermi surfaces
in the normal state. Hence, the parameter c sets the num-
ber of terms that contribute to the coefficients when we set
b = 0. For example, if c < 0, there are two Fermi surfaces,
and to obtain the quartic coefficients one needs to sum over
i = +1+,+1−. In other words, the coefficients then receive
two contributions with the same Fermi velocity vF,+1+ =
vF,+1− but with different Fermi momenta kF,+1+ and kF,+1− ,
as defined in Eqs. (8)–(10). If c = 0, the energy band E+1

crosses the Fermi level only once, and there is simply one
Fermi momentum and the accompanying Fermi velocity that
contributes to the quartic coefficients. The situation changes
drastically for c > 0 where all three energy bands cross the
Fermi level; we then find three different Fermi surfaces and
the sum is over i = −1+, 0,+1+ in Eqs. (24) and (25), with
three different Fermi momenta kF,0, kF,−1+ , kF,+1+ and two
different Fermi velocities vF,0 and vF,±1+ . The leading order
terms in the weak-coupling (μ/Tc � 1) expressions for the

quartic coefficients with b = 0 are given as

q1(Tc, c) = C1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v2+2cμ

c2
√

v2+4cμ

1
T 2

c
for c < 0,

μ2

v3T 2
c

for c = 0,

v2+2cμ+8
√

cμ
√

v2+4cμ

c2
√

v2+4cμ

1
T 2

c
for c > 0,

(26)

q2(Tc, c) = q1(Tc, c)/2, and

q3(Tc, c)

= C3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

v2
√

v2+4cμ
log(μ/Tc) for c < 0,

1
2v3 log(μ/Tc) for c = 0,

1
3v2

(
3√

v2+4cμ
− 2√

cμ

)
log(μ/Tc) for c > 0,

(27)

with C1 = 1/(21/331/615120π ), and C3 = 3/(35π2). The co-
efficients q1 and q2 are positive for all values of c since all

terms in the sum
∑

i η
(1,2)
i

k2
F,i

vF,i
arising from different Fermi

surfaces are positive. The situation is, however, different for
the q3 coefficient; for c � 0, there are two Fermi surfaces that
bring in two positive contributions to q3 and yield a positive
sign for q3. On the other hand, when c > 0, an additional
Fermi surface appears and there is a competition between
the contributions arising from different Fermi surfaces, i.e., a
competition between η̃0/vF,0 and η̃±1+/vF,±1+ . In other words,
if we only consider contributions arising due to the expan-
sions around kF,±1+ , which corresponds to η̃±1+/vF,±1+ ∝
3/

√
v2 + 4cμ, the sign of q3 would be positive. However,

when we include the contribution from the expansion around
kF,0 which corresponds to η̃0/vF,0 ∝ −2/

√
cμ, it always dom-

inates and ultimately leads to a negative sign for q3. As a
result, for b = 0, the cyclic state is favored if c � 0, and the
ferromagnetic state is preferred when c > 0.

As already mentioned earlier, for μ > 0 and c < 0, we get
positive contributions from two Fermi surfaces that originate
from the same band E+1. A similar situation also arises when
one considers μ < 0 and c > 0. In such a case, the E−1 band
intersects the Fermi level twice instead, forms two Fermi
surfaces at two different momenta, and eventually leads to
two positive contributions to q3. One can easily check that the
expressions for quartic coefficients stay invariant when one si-
multaneously transforms {μ → −μ, b → −b, and c → −c}.
This invariance suggests that the phase diagram for a positive
chemical potential and the phase diagram for a negative chem-
ical potential are related by two joint reflections, one around
the b axis and the other around the c axis.
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FIG. 3. BF surfaces that occur in the superconducting ground state of the fermionic system described by H (p) with v = 1 and μ = 1.
Depending on the parameters b and c, the cyclic state exhibits 8, 16, or 24 BF surfaces as shown in the first three panels from the left. However,
the ferromagnetic state appears in a narrow region of the phase diagram where 6 BF surfaces emerge as shown in the fourth panel.

Finally, let us see how a finite parameter b influences the
superconducting state of the system. As shown in Fig. 2, in
the case of the positive chemical potential, the cyclic state
is the preferred superconducting state for c � 0 and finite
b. However, for positive c we find that the superconducting
state could be either the cyclic or the ferromagnetic state
depending on the value of b. To understand the phase diagram
qualitatively, let us assume again a finite, positive value of
c and b = 0. As we already noted, for b = 0 and c > 0, the
negative contribution arising due to the expansion around
kF,0 always dominates the positive kF,±1+ contribution and q3

is consequently negative. However, coefficient η̃0/vF,0 gets
progressively weaker with increasing |b|, and it even changes
sign at a finite value of b. On the other hand, the two coeffi-
cients η̃±1+/vF,±1+ for b + c > 0 (η̃+1±/vF,+1± for b + c < 0),
always stay positive. As a consequence, one finds a phase
boundary where the positive contribution from the Fermi sur-
faces at kF,±1± exceeds the negative contribution from near
the Fermi momentum kF,0, and any further increase of the
absolute value of the parameter b only yields the cyclic state
as the superconducting ground state.

The curvature of the energy bands is thus found to be the
“knob” that can tune between the cyclic and the ferromagnetic
superconducting state.

C. Bogoliubov-Fermi surfaces

In this section we analyze the energy spectrum of the
Bogoliubov–de Gennes (BdG) quasiparticles which are de-
scribed by the BdG–Hamiltonian

∑
p �†HBdG� with

HBdG =
(

H (p) 
a�a


∗
a�a −H (p)

)
, (28)

where the Nambu spinor is given by �(ωn, p) =
[ψ (ωn, p),Uψ∗(−ωn,−p)]. We focus on the quasiparticle
energy spectrum for the cyclic and the ferromagnetic
state, and find that both of these TR-symmetry-breaking
states exhibit extended regions in the momentum space
where the energy vanishes. These regions are known
as Bogoliubov-Fermi (BF) surfaces [9,37–44] and can
be determined by identifying the momentum points
that satisfy det[HBdG(p)] = 0. The emergence of these

BF surfaces in the present case is elaborated on in
Appendix D.

The mini BF surfaces that emerge for the cyclic and the fer-
romagnetic superconducting states are shown in Fig. 3. Note
that the number of BF surfaces is tied to the number of Fermi
surfaces present in the normal state. If the superconducting
ground state is the cyclic state, for example, then it displays 8,
16, or 24 BF surfaces depending on whether it has one, two,
or three Fermi surfaces in the normal state. The BF surfaces
in this case generally appear along the diagonals of a cube
centered at the origin of the momentum space. This picture
changes in the ferromagnetic state; this state emerges in a
narrow region of the phase diagram where the normal state
generally has three Fermi surfaces. As a result, it typically ex-
hibits six BF surfaces centered around the z axis. We observe
that despite of the triple-point fermion Hamiltonian’s lack of
inversion symmetry, the BF surfaces appear nevertheless, in
accord with the general arguments presented in Ref. [43].

V. CONCLUSION

In conclusion, we have studied the d-wave superconduc-
tivity in the system of spin-1/2 fermions with triple-band
crossings. In the weak-coupling limit and for a nonzero chem-
ical potential, we have shown that the superconducting ground
state prefers breaking of the time-reversal symmetry, which
leads to a competition between two distinct superconducting
ground states that do so maximally: the cyclic and the ferro-
magnetic states. In contrast to previously studied examples,
however, here we find that either of the two superconducting
states can be the mean-field ground state, depending on the
the parameters b and c in the single-particle Hamiltonian,
which are directly related to the curvature of the energy bands.
We have obtained the mean-field phase diagram below the
superconducting critical temperature for finite chemical po-
tential. In addition, the spectrum of the BdG quasiparticles
in the cyclic and the ferromagnetic state is computed. Both
of these states display multiple Bogoliubov-Fermi surfaces,
in agreement with the general expectation for the multi-
band noncentrosymmetric superconductors that break time
reversal [43].
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Our main result is the surprising effect of the central m = 0
band on the coefficients of the Ginzburg-Landau free energy.
When this band is found to intersect the Fermi level, it yields
a contribution to the key quartic term coefficient q3 of the
opposite sign of that from the other two bands, and that way
it may overturn the overall sign of the q3. Since the sign
of this coefficient directly determines the time-reversal bro-
ken superconducting ground state, a negative q3 leads to the
appearance of the ferromagnetic state in the phase diagram.
This state exhibits the maximal average magnetization, in
addition to maximal breaking of time reversal dictated by the
always-positive quartic term coefficient q2. This is the first
time, to the best of our knowledge, that such a possibility
arises in a simple model that shows three-dimensional d-wave
superconductivity.
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APPENDIX A: TENSOR ORDER AND COOPER PAIRING

The condensation of 
a = 〈ψTU�aψ〉 indicates the onset
of the d-wave superconductivity where a = {1, . . . , 5}. These
five components of 
a have the explicit form in terms of the
original fermionic operators as


1 = 2i〈a1,↓a1,↑ + a−1,↓a−1,↑〉, (A1)


2 = 2i√
3
〈a−1,↓a1,↑ + a1,↓a−1,↑ + 2a0,↓a0,↑〉, (A2)


3 = 2i√
3
〈−a0,↓a1,↑ − a1,↓a0,↑ + a−1,↓a0,↑ + a0,↓a−1,↑〉,

(A3)


4 = 2√
2
〈a0,↓a1,↑ + a1,↓a0,↑ + a−1,↓a0,↑ + a0,↓a−1,↑〉,

(A4)


5 = 2〈−a1,↓a1,↑ + a−1,↓a−1,↑〉, (A5)

with the coefficients which may be recognized as related
to the usual Clebsch-Gordan coefficients. In the case of a
reduced cubic symmetry, (
1,
2) would belong to the E
representation, while (
3,
4,
5) would belong to the T2g

representation.
In contrast, the standard s-wave order parameter

corresponds to


s = 〈ψTUψ〉 = 2i〈a1,↓a−1,↑ + a−1,↓a1,↑ − a0,↓a0,↑〉. (A6)

APPENDIX B: POTENTIAL GROUND STATES

Since the irreducible representations of the SO(3) of given
dimension are unique, the tensor d-wave order parameter is
entirely equivalent to a quantum state in the spin-2 Hilbert
space. The five real Gell-Mann matrices in Eq. (15) which
form the basis in the irreducible tensor (symmetric traceless
matrix) space, under the SO(3) rotations transform exactly

as the following states, given as linear combinations in the
standard basis:

|M1〉 = 1√
2

(| − 2〉 + |2〉)

|M2〉 = |0〉

|M3〉 = 1√
2

(| − 1〉 − |1〉)

|M4〉 = i√
2

(| − 1〉 + |1〉)

|M5〉 = i√
2

(| − 2〉 − |2〉), (B1)

where Jz|m〉 = m|m〉 and m = 0,±1,±2. For the five-
component d-wave superconducting order parameter, the free
energy to the quartic order can be shown to have the following
form [13,31]:

F (
) = r
∗
a
a + q1(
∗

a
a)2 + q2|
a
a|2

+ q3

2
Tr(φ†φφ†φ) + O(
6). (B2)

Mermin was the first to directly minimize the above free
energy for the d-wave order parameter [31]. In a related
approach, in the context of the spinor Bose-Einstein conden-
sates, Kawaguchi and Ueda employed an elegant and general
symmetry-based approach based on Michel’s theorem [32].
They found that among all the ground state candidates with
some residual symmetry, the real states, the ferromagnetic
state, and the cyclic state are the only true minima of the
Ginzburg-Landau free energy, each one winning in a different
part of the parameter space. In the above “real” (TR invariant)
basis |Mi〉 these states are given by

�
real = (
1,
2, 0, 0, 0), (B3)

�
ferro = 
√
2

(1, 0, 0, 0, i), (B4)

�
cyclic = 
√
2

(1, i, 0, 0, 0). (B5)

Note that �
ferro is simply proportional to the state |2〉, and
therefore has the maximal magnetization. �
cyclic, on the other
hand, has the average magnetization of zero, as may be easily
checked. Both states break the TR maximally, i.e., 
i
i = 0.
In terms of three-dimensional traceless matrices, these states
are equivalent to the following matrix order parameters:

φreal = 
1M1 + 
2M2, (B6)

φferro = 
√
2

(M1 + iM5), (B7)

φcyclic = 
√
2

(M1 + iM2). (B8)

APPENDIX C: COMPUTATION OF THE COEFFICIENTS

Here we outline the computation of the coefficients q1,2,3 in
the Ginzburg-Landau free energy. As usual, one first obtains
the mean-field expression for the free energy by integrating
out the fermionic degrees of freedom for a constant order
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parameter, and then expands the mean-field free energy to the
quartic order in the order parameter. These steps lead to

F2(
) =
(

1

g
δab − 1

2
Kab

)

∗

a
b, (C1)

F4(
) = 1

4
Kabcd


∗
a
b


∗
c
d , (C2)

with

Kab = tr
∫ �

Q
G0(ωn, μ, q)�aG0(−ωn, μ, q)�b, (C3)

Kabcd = tr
∫ �

Q
G0(ωn, μ, q)�aG0(−ωn, μ, q)�b

×G0(ωn, μ, q)�cG0(−ωn, μ, q)�d . (C4)

The measure of the integrals are given by∫ �

Q
:= T

∑
n∈Z

∫ �

q
:= T

∑
n∈Z

∫
q��

d3q

(2π )3
, (C5)

with the fermionic Matsubara frequency ω = (2n + 1)πT ,
the temperature T , and the ultraviolet cutoff � � μ, T . The
fermionic Green’s function is defined as

G0(ωn, μ, p) = [iωn − H (p)]−1. (C6)

To determine the coefficients q1,2,3 we insert the
states 
1 = 
(0, 1, 0, 0, 0), 
2 = 
√

2
(1, i, 0, 0, 0), and


3 = 
√
2
(0, 0, 1, i, 0) in Eq. (C4) and thus obtain the

following matching conditions:

F4(
1) = (q1 + q2 + q3)
4, (C7)

F4(
2) = (
q1 + 2

3 q3
)

4, (C8)

F4(
3) = (q1 + q3)
4. (C9)

Next we present the expressions for the coefficients with the setting of v = 1. In such a scenario, the quadratic coefficient r
is given by

r(g, μ, T,�) = 1
g − 1

2 K11(T, μ,�), (C10)

where

K11 =
∫ �

Q
(4(p8(b + c)2(2b2 + 10bc + 15c2) − p6(2μ(b + c)(7b2 + 30bc + 30c2) + 4b2 + 14bc + 15c2) + p4(ω2(17b2

+ 40bc + 30c2) + μ(37b2μ + 2b(60cμ + 7) + 30c(3cμ + 1)) + 2)

+ 5p2(ω2(−8bμ − 12cμ + 1) − μ2(8bμ + 12cμ + 3)) + 15(μ2 + ω2)2))/

(15(cp2 − μ − iω)(cp2 − μ + iω)(p2(b + c) − μ + p − iω)(p(p(b + c) − 1) − μ − iω)

× (p2(b + c) − μ + p + iω)(p(p(b + c) − 1) − μ + iω)). (C11)

The transition temperature for different b and c parameters can be obtained from r(g, μ, Tc,�) = 0. Here we refrain from going
into details of the result for the transition temperature, which ultimately has the standard weak-coupling form, and focus on
the nature of the superconducting ground state. This requires the computation of the quartic terms in the Ginzburg-Landau
expansion. For a finite chemical potential μ, the coefficients of the three independent quartic terms are given by

q1(T, b, c) =
∫ �

Q
(2p2(b2(b + c)4(8b2 + 48cb + 63c2)p14 + (b + c)2(−32b4 − 176cb3 − 201c2b2

− 2(b + c)(b + 3c)(40b + 63c)μb2 + 42c3b + 105c4)p12 + (3(101μ2b6 + 4μ(143cμ + 20)b5

+ 2(cμ(578cμ + 195) + 8)b4 + 8c(cμ(125cμ + 67)

+ 10)b3 + c2(cμ(315cμ + 16) + 87)b2 − 12c3(35cμ + 1)b − 42c4(5cμ + 1))

− b2(b + c)2(47b2 + 30cb − 63c2)ω2)p10

+ (−572μ3b5 − μ2(2312cμ + 585)b4 − 24μ(cμ(125cμ + 67) + 10)b3

− 2(9cμ(2cμ(35cμ + 2) + 29) + 16)b2

+ 4c(9cμ(70cμ + 3) − 20)b + (124μb5 + (88cμ + 169)b4 + 8c(107 − 36cμ)b3

− 252c2(cμ − 6)b2 + 1008c3b + 105c4)ω2

+ 21c2(3cμ(25cμ + 8) + 1))p8 + (−b2(118b2 + 204cb + 63c2)ω4

− (44μ2b4 + 8μ(107 − 36cμ)b3 + (197 − 378cμ(cμ − 8))b2
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+ 12c(252cμ + 61)b + 84c2(5cμ + 7))ω2 + μ(578μ3b4

+ 4μ2(375cμ + 134)b3 + 3μ(cμ(315cμ + 16) + 87)b2

− 4(9cμ(70cμ + 3) − 20)b − 42c(2cμ(25cμ + 9) + 1)) + 8)p6

+ 3((68μb3 + 2(21cμ + 86)b2 + 252cb − 35c2)ω4

+ (2μ(−16μ2b3 − 42μ(cμ − 6)b2 + 2(252cμ + 61)b + 7c(15cμ + 28)) + 25)ω2

+ μ2(μ(−100μ2b3 − 2μ(63cμ + 2)b2

+ 12(35cμ + 1)b + 21c(25cμ + 8)) + 7))p4 + 21(−3b2ω6 + (10cμ − 3b(bμ + 12)μ + 2)ω4

+ μ2(−20cμ + 3b(bμ − 16)μ

− 28)ω2 + 3μ4(−10cμ + b(bμ − 4)μ − 2))p2

+ 105(μ − ω)(μ + ω)(μ2 + ω2)2))/(315((b + c)p2 + p − μ − iω)2

× (cp2 − μ + iω)2((b + c)p2 + p − μ + iω)2(p((b + c)p − 1) − μ

+ iω)2(−cp2 + μ + iω)2(−(b + c)p2 + p + μ + iω)2), (C12)

q2(T, b, c) =
∫ �

Q
(p2(b2(b + c)4(8b2 + 24cb + 21c2)p14 + (b + c)2(−56μb5 − 2(109cμ + 16)b4 − 8c(36cμ + 13)b3

− 3c2(42cμ + 65)b2 − 210c3b − 105c4)p12 + (3(55μ2b6 + 4μ(65cμ + 14)b5

+ 2(5cμ(46cμ + 29) + 8)b4 + 8c(cμ(45cμ

+ 88) + 7)b3 + 5c2(3cμ(7cμ + 64) + 25)b2 + 4c3(175cμ + 37)b

+ 70c4(3cμ + 1)) − b2(b + c)2(5b2 − 6cb − 21c2)ω2)p10

+ (4μ(ω2 − 65μ2)b5 − (5(184cμ + 87)μ2 + (56cμ − 19)ω2)b4

+ 8(−2c(9cμ + 11)ω2 − 3μ(cμ(45cμ + 88) + 7))b3

+ 2(3c(−14c(cμ + 8)ω2 − 5μ(2cμ(7cμ + 72) + 25)) − 16)b2

− 4c(3c(56cω2 + μ(350cμ + 111)) + 14)b

− 105c2(c(cω2 + μ(15cμ + 8)) + 1))p8 + (−b2(34b2 + 60cb + 21c2)ω4

+ (28μ2b4 + 16μ(9cμ + 11)b3 + (42cμ(3cμ + 32)

− 23)b2 + 36c(56cμ + 5)b + 84c2(5cμ + 1))ω2 + μ(230μ3b4

+ 4μ2(135cμ + 176)b3 + 15μ(3cμ(7cμ + 64) + 25)b2

+ 4(3cμ(350cμ + 111) + 14)b + 210c(2cμ(5cμ + 3) + 1)) + 8)p6

+ 3((20μb3 + 2(7cμ − 48)b2 − 84cb + 35c2)ω4

− (2μ(8μ2b3 + 14μ(cμ + 8)b2 + 6(56cμ + 5)b

+ 7c(15cμ + 4)) − 3)ω2 + μ2(μ(−36μ2b3 − 6μ(7cμ + 40)b2

− 4(175cμ + 37)b − 35c(15cμ + 8)) − 35))p4 + 21(−b2ω6

+ (2 − μ(10c + b(bμ − 12)))ω4 + μ2(20cμ + b(bμ + 32)μ + 4)ω2

+ μ4(30cμ + b(bμ + 20)μ + 10))p2

− 105(μ − ω)(μ + ω)(μ2 + ω2)2))/(315((b + c)p2 + p − μ − iω)2

× (cp2 − μ + iω)2((b + c)p2 + p − μ + iω)2(p((b + c)p − 1)

− μ + iω)2(−cp2 + μ + iω)2(−(b + c)p2 + p + μ + iω)2), (C13)
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q3(T, b, c) =
∫ �

Q
(105c8 p16 + 8b7(cp2 − μ)p14 − 840c7μp14 + b6(95(μ − cp2)2

+ 49ω2)p12 + 35c6(12(7μ2 + ω2) − 7p2)p12

+ 8b5(cp2 − μ)(55c2 p4 − (110cμ + 3)p2 + 55μ2 + 44ω2)p10

+ 210c5μ(7p2 − 4(7μ2 + 3ω2))p10 + b4(203ω4 + (1222c2 p4

− (2444cμ + 111)p2 + 1222μ2)ω2 + 25(μ − cp2)2(43c2 p4 − (86cμ + 9)p2 + 43μ2))p8

+ 35c4(5p4 − 15(7μ2 + ω2)p2

+ 6(35μ4 + 30ω2μ2 + 3ω4))p8 − 140c3μ(5p4 − 5(7μ2 + 3ω2)p2

+ 6(μ2 + ω2)(7μ2 + 3ω2))p6 + 8b3(cp2 − μ)(190c4 p8

− c2(760cμ + 91)p6 + (c(303cω2 + 2μ(570cμ + 91)) + 3)p4 − ((760cμ + 91)μ2

+ 3(202cμ + 23)ω2)p2

+ (μ2 + ω2)(190μ2 + 113ω2))p6 + b2(259ω6 + (1771c2 p4 − 2(1771cμ + 41)p2

+ 1771μ2)ω4 + (2765c4 p8 − 28c2(395cμ

+ 39)p6 + 3(14cμ(395cμ + 52) + 25)p4 − 28μ2(395cμ + 39)p2

+ 2765μ4)ω2 + (μ − cp2)2(1253c4 p8 − 2c2(2506cμ + 561)p6

+ 3(2cμ(1253cμ + 374) + 55)p4 − 2μ2(2506cμ + 561)p2

+ 1253μ4))p4 − 7c2(5p6 − 6(25μ2 + 3ω2)p4 + 15(35μ4 + 30ω2μ2

+ 3ω4)p2 − 60(μ2 + ω2)2(7μ2 + ω2))p4

+ 14cμ(5p6 − 2(25μ2 + 9ω2)p4 + 15(μ2 + ω2)(7μ2 + 3ω2)p2 − 60(μ2 + ω2)3)p2

+ 8b(cp2 − μ)(70c6 p12 − 105c4(4cμ + 1)p10 + 6c2(35c(cω2

+ μ(5cμ + 2)) + 6)p8 − (c(7c(120cμ + 19)ω2

+ 2μ(35cμ(20cμ + 9) + 36)) + 1)p6 + (210c2ω4 + (14cμ(90cμ + 19) + 25)ω2

+ 6μ2(35cμ(5cμ + 2) + 6))p4 − 7(μ2 + ω2)

× (4ω2 + 15μ(4cμ2 + μ + 4cω2))p2 + 70(μ2 + ω2)3)p2

+ 105ω8 − 35(p2 − 12μ2)ω6 + 7(p4 − 45μ2 p2 + 90μ4)ω4

− 35μ2(p2 − 3μ2)(p2 − μ2)2 + (−13p6 + 126μ2 p4 − 525μ4 p2

+ 420μ6)ω2)/(105((b + c)p2 + p − μ − iω)2(cp2 − μ + iω)2

× ((b + c)p2 + p − μ + iω)2(p((b + c)p − 1)

− μ + iω)2(−cp2 + μ + iω)2(−(b + c)p2 + p + μ + iω)2). (C14)

At finite temperatures, all of these integrals are finite upon introducing an UV-cutoff � and can be evaluated by performing the
Matsubara sums and momentum integrations numerically. Generally the most significant contributions at low temperature come
from the regions near the normal Fermi surfaces. An approximate ansatz for integrands of q1,2,3 can be constructed from first
calculating the zero-temperature and the finite-temperature Matsubara sums, then expanding them around the Fermi surfaces.
Whereas the first one captures the divergent behavior of integrand at zero temperature, the latter can be used to extract the
temperature dependence. Our analysis shows that the coefficients q1,2 always stay positive, and hence sign of the coefficient q3

selects the superconducting ground state.

APPENDIX D: EMERGENCE OF THE BF SURFACE

In this Appendix we briefly explain why BF sur-
faces emerge in the TR-breaking superconducting states.

To this end we use the iterative procedure introduced in
Ref. [43], where an effective Hamiltonian was found for
the energy band crossing the chemical potential at a fixed
momentum.
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In the present case, the 12×12 BdG Hamiltonian with

HBdG =
(

12×2 ⊗ [H0(p) − μ] 
a(12×2 ⊗ γa)


∗
a(12×2 ⊗ γa) −12×2 ⊗ [H0(p) − μ]

)
(D1)

can be reduced to a 6×6 Hamiltonian upon rearranging the
blocks of the matrix to HBdG = 12×2 ⊗ hBdG. hBdG is defined
as

hBdG =
(

H0(p) − μ γ

γ † −[H0(p) − μ]

)
, (D2)

where the pairing matrix is given by γ = 
aγa. The eigen-
states of the Hamiltonian H0(p) are defined as φ±1(p) and
φ0(p). We further use the following properties of the pairing
matrices and the eigenstates, namely

U †
0 γaU0 = γ T

a (D3)

and

φ−1(p) = U0φ+1(p)∗, (D4)

φ1(p) = U0φ−1(p)∗, (D5)

φ0(p) = U0φ0(p)∗. (D6)

Hence, the BdG-Hamiltonian for H (p) which describes
fermions with an angular momentum of L = 1 and a spin of
S = 1/2 can be cast into the following form:

hBdG(p) =

⎛
⎜⎜⎜⎜⎜⎝

E1 X 0 A 0 B
X̄ −E1 D̄ 0 C̄ 0
0 D E0 Y 0 A
Ā 0 Ȳ −E0 D̄ 0
0 C 0 D E−1 X
B̄ 0 Ā 0 X̄ −E−1

⎞
⎟⎟⎟⎟⎟⎠, (D7)

where the intra- and interband couplings are defined as

X = φ
†
1 (p)γφ1(p), (D8)

Y = φ
†
0 (p)γφ0(p), (D9)

A = φ
†
1 (p)γφ0(p), (D10)

B = φ
†
1 (p)γφ−1(p), (D11)

C = φ
†
−1(p)γφ+1(p), (D12)

D = φ
†
0 (p)γφ+1(p). (D13)

In the normal state there can be up to three Fermi surfaces,
since the curvature of the energy bands determines which
energy bands intersect the Fermi level. Here, let us assume
that the energy band E+1 intersects the Fermi level once and
study whether a BF surface emerges in the superconducting
state. After integrating out the energy bands that are far above
the chemical potential, the energy band closest to the chemical
potential is described by the following effective Hamiltonian
in second order perturbation theory:

He f =
(

E1 X

X̄ −E1

)
−

(
−|A|2

E0
− |B|2

E1
0

0 |D|2
E0

+ |C|2
E1

)
. (D14)

The interband pairing between the different states introduces
both a shift in the momentum and in the energy of the energy
bands of the BdG quasiparticles when A �= D and C �= B,
which is the case if time-reversal symmetry is broken.
The shift in the energy leads to the emergence of the BF
surfaces.
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