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Weyl nodal-ring semimetallic behavior and topological superconductivity in crystalline
forms of Su-Schrieffer-Heeger chains
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We consider a three-dimensional model of coupled Su-Schrieffer-Heeger (SSH) chains. The analytically
soluble model discussed here reliably reproduces the features of the band structure of crystalline polyacetylene
as obtained from density-functional theory. We show that when a certain interchain coupling is sufficiently
increased, the system develops a ring of Weyl nodes. We argue that such an increase could be achieved
experimentally by intercalation or extreme pressure. With the addition of a simple intraorbital pairing term we
find that the system supports an exotic superconducting state with drumhead surface states and annular Majorana
states localized on the surface. In addition to suggesting a real material realization of a nodal ring semimetal
and possibly topological superconductivity, our results provide a different perspective on the SSH model,
demonstrating that a simple extension of this broadly impacting model can once again provide fundamental
insights on the topological behavior of condensed matter systems.
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I. INTRODUCTION

Since its introduction over four decades ago, the Su-
Schrieffer-Heeger (SSH) model [1] has served as a beautiful
and rather simply understood example of emergent quasipar-
ticles, qualitatively different from those in the noninteracting
system. The model was inspired by quasi-one-dimensional
materials such as polyacetylene, and despite its apparent
simplicity, has proven to be a tremendously rich description
that captures a variety of fascinating phenomena, including
solitons, topological transitions, edge states, and charge frac-
tionalization [2,3]. The SSH model also provided one of the
earliest examples of a nontrivial one-dimensional Berry phase,
known as the Zak phase [4], in a condensed matter system.

These early notions of topology, first explored within the
context of the SSH model and in the quantum Hall effect, have
become a central focus of modern condensed matter physics.
This renewed interest in the role of topology in condensed
matter systems was primarily motivated by the discovery of
topological insulators [5]. More recently a new class of topo-
logical materials has been discovered, the Dirac and Weyl
semimetals [6–12]. These materials are defined by the pres-
ence of a set of topologically protected band touching points,
which lead to unique transport properties. The set of proposed
topological semimetals has since been expanded to include
systems with lines or rings of degeneracies in their band
structures, which have been termed nodal-line or nodal-ring
semimetals [13–16]. Several examples of these systems have
already been proposed or reported in real materials [17–19].
These novel materials hold the promise of many impactful
applications, making a reliable description of their exotic be-
haviors a priority of condensed matter physics.

In this paper we provide a different perspective on the
well-studied SSH model, illustrating that this relatively simple
description, which yielded some of the earliest insights into
the topology of condensed matter systems, can be adapted
straightforwardly to describe the physics of topological nodal
semimetals. We present a three-dimensional (3D) analyti-
cally soluble model, inspired by the structure of crystalline
polyacetylene, consisting of coupled SSH chains. We show
that with an appropriate choice of the hopping parameters
it reliably reproduces the features of the band structure of
crystalline polyacetylene, as obtained from density-functional
theory (DFT). In addition, we demonstrate that the band struc-
ture of this model, when a diagonal hopping parameter is
increased, contains a Weyl nodal ring. It is conceivable that
this parameter regime could be experimentally accessed by
application of extreme pressure on crystalline polyacetylene.
We also find that, with the addition of simple pairing interac-
tions, the model supports a topological superconducting phase
characterized by the presence of surface Majorana fermions.
While our model could be realized experimentally in the con-
text of conjugated polymers, it is just as relevant to the case
of cold atoms, where there has been remarkable progress in
the realization of topological lattice models [20,21], including
Weyl semimetals [22] and nodal-ring semimetals [23].

The observation of superconductivity in topological sys-
tems has brought considerable attention to the problem of the
interplay of strong correlations and pairing with topology, in-
cluding in the context of Dirac and Weyl semimetals [24–30],
as well as nodal-line semimetals [31–33], which may support
exotic superconducting phases. Many models are known to
support topological superconductivity, typically characterized
by the presence of Majorana surface or edge states. Most
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FIG. 1. Tight-binding vs DFT band structure. We show the
band structure obtained from our lattice model, compared to
density-functional theory results using the experimentally measured
structural parameters [35]. We include an overall shift to the DFT
results to restore particle-hole symmetry about E = 0. The inset
shows the unit cell with relevant hopping elements

theoretical descriptions of these exotic superconducting states
assume the presence of p-wave or higher angular momentum
pairing terms. However, it was recently noted that topological
superconducting states can emerge from conventional s-wave
pairing interactions in Weyl systems. In these systems each
Weyl node is split by the interaction into a pair of Bogoliubov-
Weyl [24,26,34] nodes and Majorana states appear at the
boundaries. This behavior has also been recently explored in
nodal-ring semimetals [33] and does indeed emerge in our
model with the addition of an interorbital pairing term.

II. MODEL

We begin with a simplified tight-binding (TB) model of the
P21/a structure of crystalline trans-polyacetylene, as depicted
in Fig. 2 of Ref. [35]. Our model keeps all the relevant ele-
ments and symmetry aspects of the real structure, but is simple
enough to permit an exact solution. This compromise is made
in order to project out and provide a clear understanding of
the physics of this system. Despite its apparent simplicity, the
model shows remarkable agreement with the DFT calculation.

In the inset of Fig. 1 we present the unit cell and hopping el-
ements for our model, which provides a qualitative description
of the important features of the band structure of the P21/a
structure of crystalline trans-polyacetylene. The dimerized
SSH chains are along the x axis. The red and blue spheres rep-
resent carbon atoms whose color corresponds to their relative
position along the dimerized chain (A or B sublattice). The
dimerization leads to two different hopping matrix elements,
denoted here as w and v, along the chain. These SSH chains
run parallel to each other, forming the unit cell depicted in
the inset of Fig. 1. Though depicted here as collinear, in
polyacetylene the carbon atoms do not lie along a straight line,
rather forming bonds of 120◦ to facilitate the sp2 hybridization
of the 2s and two of the three 2p orbitals that form the bonds

FIG. 2. (a) Unit cell of modified lattice TB model. (b) Nodal
points in the kx-ky plane at kz = π/4. (c), (d) Band structure in
the ky-kz plane at different values of kx . (c) kx = π/4. (d) kx = 0.
The nodal line at kx = 0, which bounds the drumhead surface state
(light red), is highlighted in red. The model parameters are v = 2.7,
w = 1.9, t ′

d = 1.0, td = ty = tz = 0, and we take ax = ay = az = 1.

of the carbon atom with its nearest neighboring carbon atom
and a hydrogen atom (neglected in the structure depicted in
Fig. 1). The hopping of the third 2p (call it 2pz) electron of
the carbon atom forms the bands near the Fermi level. While
the physical presence of the hydrogen atoms along each chain
and their relative orientation is important in determining the
effective interchain hopping matrix elements, these atoms are
also abstracted out of our drawing for simplicity.

In addition to the hoppings w and v, we consider a carbon
to carbon interchain hopping matrix element along the y (ty)
and the z (tz) directions. We also include a hopping matrix
element along the diagonal (0,1,1) direction (td ). The most
general version of the model includes an additional hopping
along the (1,1,1) direction (t ′

d ) [depicted in Fig. 2(a)], but we
first consider the limit t ′

d → 0, corresponding to the unit cell
shown in Fig. 1. The unit cell is doubled along the x direction
because of the dimerization along that direction; however,
the interchain hopping matrix elements are independent of
whether the hopping is between carbon atoms on the A sub-
lattice or the B sublattice.

The TB Hamiltonian of the structure is given in k space as
Ĥ0 = ∑

k c†
kH0(k)ck, with

H0(k) =

⎛
⎜⎝

e(k) S V V ′
S∗ e(k) V ′ V
V V ′ e(k) S
V ′ V S∗ e(k)

⎞
⎟⎠, (1)
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FIG. 3. Surface states vs kz for a slab open along x. The sur-
face state is highlighted in red. The top two panels show the edge
spectrum with ty = tz = 0, and the bottom panels show the surface
spectrum for ty = tz = 0.3 (the remaining parameters are the same as
in Fig. 2). The left column is along the cut ky/2π = −0.228, and the
right column is along ky = kz. Inset: Nodal ring in the ky-kz plane and
drumhead state in the shaded red region. The dashed lines correspond
to the cuts used for the two columns.

where c†
k = (c†(A)

k c†(B)
k c†(C)

k c†(D)
k ) is the set of cre-

ation operators for electrons in the 2pz state on the A, B, C,
and D atoms (see Fig. 1 for labels), and

e(k) = −2ty cos(kyay) − 2tz cos(kzaz ), (2)

S = X + iY, (3)

X = (v + w) cos(kxax/2), (4)

Y = (v − w) sin(kxax/2), (5)

V = −4td cos(kyay/2) cos(kzaz/2), (6)

V ′ = −8t ′
d cos(kxax/2) cos(kyay/2) cos(kzaz/2). (7)

All hopping parameters are in units of eV.
We first consider the case of t ′

d = 0. Our model can be
diagonalized exactly and has the following set of bands:

E±
1 (k) = − 2ty cos(kyay) − 2tz cos(kzaz )

±
√

X 2 + Y 2 + V 2 + 2|V |
√

X 2 + Y 2,

E±
2 (k) = − 2ty cos(kyay) − 2tz cos(kzaz )

±
√

X 2 + Y 2 + V 2 − 2|V |
√

X 2 + Y 2. (8)

In Fig. 1 we compare the bands from our TB model to the
band structure obtained via DFT using the experimentally
determined structural parameters [35]. We observe that the

features of the DFT band structure (gray curves in the figure)
are well reproduced.

III. NODAL-RING SEMIMETAL AND DRUMHEAD STATES

We now consider a related, analytically soluble model,
by taking the limit of td → 0 while t ′

d �= 0, and illustrate
that this simple modification of the previous model can re-
alize a 3D Weyl nodal-ring semimetal. We note that for the
structure depicted in Fig. 2 (i.e., P21/a) this requires the
second closest neighbor hopping (diagonal, blue to red) to be
dominant over the closest neighbor hopping (diagonal, blue
to blue), which may be difficult to achieve experimentally.
However, the Hamiltonian corresponding to this case has an
identical form to the Hamiltonian for the P21/n structure (see
Appendix A), with the second closest neighbor hopping t ′

d
becoming a closest neighbor hopping. This Hamiltonian, with
larger interchain-hopping matrix elements, may be realized by
the application of extreme pressure, which should make the
system more three dimensional, as opposed to the currently
experimentally accessible structure that has a quasi-1D nature.
The application of high pressure may stabilize one or the other
structure, both of which support nodal-ring states. Addition-
ally, while we focus on the limit of td → 0 for demonstration,
because it permits an analytic solution, we observe that the
nodal-ring state exists across a broad parameter regime, in-
cluding for the case of both finite td and t ′

d , and is also robust
with respect to the magnitudes of ty and tz (see Fig. 3).

The eigenvalues in this case (td = 0, t ′
d �= 0) are the follow-

ing four bands:

E+
± (k) = e(k) ± λ+, (9)

E−
± (k) = e(k) ± λ−, (10)

λ± =
√

(|X | ± |V ′|)2 + Y 2. (11)

A ring of Weyl nodes is formed by the E−
± bands at the set

of momenta satisfying the equations, Y = 0, |X | = |V ′|. The
solutions to these equations are

kx = 0,

∣∣∣∣cos

(
kzaz

2

)∣∣∣∣
∣∣∣∣cos

(
kyay

2

)∣∣∣∣ = v + w

8t ′
d

, (12)

which specify a nodal ring, provided r ≡ (v + w)/(8t ′
d ) � 1.

We show an example of the nodal ring in Appendix B.
In Figs. 2(c) and 2(d) we illustrate the emergence of the

nodal ring in the bulk band structure as the value of kx ap-
proaches zero. For clarity we show only E−

± , and note that
the E+

± bands do not participate in the formation of the nodal
ring. When we fix kz (or ky) and plot the band structure in the
kx-ky (or kx-kz) plane we observe a pair of Weyl nodes [see
Fig. 2(b)], the full set of which, obtained by varying ky and kz,
forms the nodal line.

When the system is finite in the x direction, a doubly
degenerate drumhead surface state bounded by the nodal ring
forms [36]. This surface state is depicted in red in Fig. 2(d).
The surface spectrum is plotted versus kz in Fig. 3 for two
different choices of the hopping parameter ty and tz and for two
values of ky. The drumhead surface state is again highlighted
in red. Notice that when ty and tz are nonzero, the drumhead
state becomes dispersive.
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FIG. 4. Nodal rings, surface spectrum, and wave-function am-
plitudes. Upper left: Projected nodal ring in the ky-kz plane, with
μ = 0.2, � = 2.0 (ky and kz are in units of 2π and the remaining
parameters are identical to Fig. 2). Region I contains four drumhead
states, region II, two annular Majorana surface states, and region III,
four annular Majorana surface states. Lower left: Surface spectrum
along the ky axis. The vertical dashed lines are a guide to the eye
for the region boundaries. We plot the surface states in color. Upper
right: Components of the wave function for a Majorana state at the
momentum indicated by the blue box in the upper left panel. The
inset shows the square modulus of the wave function for the two
Majorana states at this momentum. Lower right: Components of the
wave function for a surface state at the momentum indicated by the
red box in the upper left panel.

IV. BERRY PHASE

The eigenstates of the λ−(k) eigenvalue, which correspond
to the band with Weyl character, are given by the vector |ψ−〉
with components a = (V ′ − εS)/(2λ−), b = −ε/2, c = 1/2,
d = −εa, where ε ≡ sgn(XV ′).

Using these eigenstates we can calculate the Berry connec-
tion vector, A ≡ −i〈ψ−|∇k|ψ−〉,

A = 1

2
∇kφk, φk = tan−1

[ Y

X − εV ′
]
. (13)

This implies for a line integral on a circular contour centered
around any specific point on the nodal line,∮

A · dk = 1

2
[φk(α = 2π ) − φk(α = 0)]. (14)

The contour is in the plane perpendicular to the kx direction
and α is the azimuthal angle which defines a point of the
contour. See Appendix B for a more detailed description. The
function φk(α) has a singularity when the denominator of
Eq. (13) vanishes. This happens on a 2D surface and intersects
the ky-kz plane at the nodal line. Any such closed contour
around the nodal line crosses this surface twice, with the value
of φk at each singularity contributing a value of π to the
integral, so we obtain

∮
A · dk = π .

V. TOPOLOGICAL SUPERCONDUCTIVITY
AND MAJORANA STATES

Having demonstrated that our model supports a Weyl nodal
ring, we proceed by adding interactions in order to study the
exotic superconducting states that emerge in the ground state
of the interacting model.

We consider a mean-field Bogoliubov–de Gennes (BdG)
Hamiltonian of the form

ĤBdG = 1

2

∑
k

(c†
kc−k )M̂(ckc†

−k ),

M̂ ≡
(
H0(k) − μ �

�† −Hᵀ
0 (−k) + μ

)
. (15)

The matrix H0(k) corresponds to Eq. (1), and the gap function
� = I2×2 ⊗ i�0σy, where I2×2 is the 2 × 2 identity matrix
and σy is a Pauli matrix.

We now solve the BdG equations in a slab geometry (with
finite x dimension). The presence of interactions causes the
nodal ring to split into two rings, which bound regions hosting
different numbers of surface states with distinct topological
characters (see the upper left panel of Fig. 4). These surface
states are dispersionless even in the presence of a finite chem-
ical potential (see the lower left panel of Fig. 4).

In order to characterize these surface states as Majorana
states we examine the components of their wave functions.
The Majorana states are defined by the property of their cre-
ation and annihilation operators, γ

†
k = γ−k. The Hamiltonian

in Eq. (15), for the case of finite x dimension, is diagonalized
by Bogoliubov operators,

γ
†
k‖ =

∑
i

ai
k‖c

†(A)
i,k‖ + bi

k‖c
†(B)
i,k‖ + ci

k‖c
†(C)
i,k‖ + di

k‖c
†(D)
i,k‖

+ ei
k‖c

(A)
i,−k‖ + f i

k‖c
(B)
i,−k‖ + gi

k‖c
(C)
i,−k‖ + hi

k‖c
(D)
i,−k‖ , (16)

where i labels the layer in the finite direction, and k‖ =
(ky, kz ). The Majorana condition γ

†
k = γ−k implies (up to an

arbitrary phase),

ai
k‖ = (

ei
−k‖

)∗
, bi

k‖ = (
f i
−k‖

)∗
,

ci
k‖ = (

gi
−k‖

)∗
, di

k‖ = (
hi

−k‖

)∗
. (17)

In the right column of Fig. 4 we plot the amplitudes ci
k‖ , and

gi
−k‖ of the wave function for a Majorana surface state (top)

at ky/2π = kz/2π = 0.05 and a drumhead state (bottom) at
ky/2π = kz/2π = 0.228. Both states are localized on the edge
of the system, however, only the Majorana state satisfies the
condition of Eq. (17). We plot only the amplitudes ci

k‖ and

gi
−k‖ , but we note that all components of the Majorana state

satisfy Eq. (17).

VI. SUMMARY AND CONCLUSIONS

Since its introduction, the SSH model has been one of the
most important and well-studied models of condensed matter
physics. The model has served as a foundational descrip-
tion of many of the novel concepts that have since become
central to the field of condensed matter. In this paper we
have introduced an analytically soluble 3D extension of the
SSH model which, for appropriate choices of its hopping
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parameters, describes well the band structure of crystalline
polyacetylene as obtained by DFT. We observe that when a
specific diagonal hopping is made sufficiently large a Weyl
nodal ring forms in the band structure, whose projection
bounds drumhead topological surface states. This intriguing
state of 3D stacked SSH chains, in principle, can be realized
by applying high pressure on the crystallized polyacetylene
or by doping or intercalation of atoms which can increase the
effective 3D hopping amplitudes. We find that both the P21/a
and the P21/n structures, either of which may be stabilized
under pressure, support a nodal-ring state, and that this state
is stable across a large parameter regime, which offers a broad
window for experimental realizations. Starting from this Weyl
nodal-ring structure, by adding an interaction coupling elec-
trons on carbon atoms of different sublattices within the same
unit cell, we find topological superconductivity supporting
both Bogoliubov-Weyl quasiparticles and annular Majorana
surface states. In addition to the fascinating physics this sys-
tem displays, it also provides a different perspective on a
well-known model, placing it again at the heart of modern
condensed matter physics and reorienting it towards the recent
direction of exotic topological phenomena, including topolog-
ical superconductivity.
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APPENDIX A: TB MODEL FOR P21/n STRUCTURE

In Fig. 5 we provide the unit cell for our TB model of
the P21/n structure of crystalline polyacetylene. This model
yields four bands of the form

E±
1 (k) = − 2ty cos(kyay) − 2tz cos(kzaz )

±
√

X 2 + Y 2 + V 2 + 2|V ||X |,
E±

2 (k) = − 2ty cos(kyay) − 2tz cos(kzaz )

±
√

X 2 + Y 2 + V 2 − 2|V ||X |, (A1)

FIG. 5. Unit cell and band structure for the model of P21/n
crystalline polyacetylene.

FIG. 6. An example of the nodal ring.

FIG. 7. (a) The function φ is plotted as a function of the angle α,
by taking its value in the interval (−π/2, π/2]. (b) The function φ is
plotted as a function of the angle α by choosing the value, from the
multitude of its values, that yields a continuous function.
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which are plotted along with the DFT results (gray
curves).

APPENDIX B: NODAL LINE AND BERRY
PHASE CALCULATION

Figure 6 demonstrates an example of a nodal line on the
ky-kz plane, which is obtained for a definite value of the ratio
parameter r defined by Eq. (12) of the main text. The blue
circle in the figure denotes a particular point on the nodal
line, with coordinates (ky, kz ) = (1, 1.712 67), that we have
selected to demonstrate below how the integral in Eq. (14) of
the main text is evaluated.

After selecting a point on the nodal line, which lies on the
ky-kz plane, we define a circular loop around the nodal line
which lies on a plane perpendicular to the nodal line. This loop
is schematically drawn in Fig. 7 as an inset. Then, we wish
to calculate the line integral

∮
A · dk around this loop. The

instantaneous position on the loop is specified by the angle α

shown in the inset of Fig. 7.

In Fig. 7 the function φk(α) is plotted as a function of α

as extracted from Eq. (13) numerically. However, we note that
the function tan−1 is a multivalued function and the function
plotted in Fig. 7(a) only gives the value of the function in
the interval [−π/2, π/2]. This definition only works correctly
when the angle is needed in an interval of α which contains
no singularity or branch cut. However, the function tan φk
has a singularity when the denominator of Eq. (13) vanishes.
This happens on a 2D surface which is perpendicular to the
kx direction and intersects the ky-kz plane at the nodal line.
So, the path crosses this surface twice. Since we are looking
for a smooth, i.e., continuous, transition of the phase φ as a
function of α we need to pick the value (from the multitude of
its possible values) of tan−1 that yields a continuous line. This
implies that we need to add π for each of the singularities
shown in Fig. 7(a). Namely, we need to choose the solution
which is plotted in Fig. 7(b). Therefore, we obtain∮

A · dk = 1

2
[φk(α = 2π ) − φk(α = 0)] = π. (B1)

[1] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

[2] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev.
Mod. Phys. 60, 781 (1988).

[3] M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).
[4] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[6] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[7] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D.

Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain,
and Y. L. Chen, Science 343, 864 (2014).

[8] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and
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