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Interplay between singlet and triplet pairings in multiband two-dimensional oxide superconductors
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We theoretically study the superconducting properties of multiband two-dimensional transition metal oxide
superconductors by analyzing not only the role played by conventional singlet pairings, but also by the triplet
order parameters, favored by the spin-orbit couplings present in these materials. In particular, we focus on the
two-dimensional electron gas at the (001) interface between LaAlO3 and SrTiO3 band insulators where the low
electron densities and the sizable spin-orbit couplings affect the superconducting features. Our theoretical study
is based on an extended superconducting mean-field analysis of the typical multiband tight-binding Hamiltonian,
as well as on a parallel analysis of the effective electronic bands in the low-momentum limit, including static
on-site and intersite intraband attractive potentials under applied magnetic fields. The presence of triplet pairings
is able to strongly reduce the singlet order parameters which, as a result, are no longer a monotonic function of
the charge density. The interplay between the singlet and the triplet pairings affects the dispersion of quasiparticle
excitations in the Brillouin zone and also induces anisotropy in the superconducting behavior under the action of
an in-plane and of an out-of-plane magnetic fields. Finally, nontrivial topological superconducting states become
stable as a function of the charge density, as well as of the magnitude and of the orientation of the magnetic
field. In addition to the chiral, time-reversal breaking, topological superconducting phase, favored by the linear
Rashba couplings and by the on-site attractive potentials in the presence of an out-of-plane magnetic field, we
find that a time-reversal invariant topological helical superconducting phase is promoted by nonlinear spin-orbit
couplings and by the intersite attractive interactions in the absence of magnetic field.

DOI: 10.1103/PhysRevB.104.134509

I. INTRODUCTION

The transition metal oxides represent a large class of ma-
terials with functional properties not only in the bulk but
also in heterostructures and nanostructures. In particular, the
two-dimensional electron gas (2DEG) at the (001) interface
between LaAlO3 (LAO) and SrTiO3 (STO) band insulators
has gained a continuously growing interest in recent years, as
an ideal playground to investigate the interplay between mag-
netism, superconductivity, and spin-orbit coupling. Indeed,
the 2DEG hosts a complex phase diagram, depending on the
electron density [1,2], on the temperature and on the applied
magnetic field.

It is well known that LAO/STO 2DEGs host an uncon-
ventional superconducting regime, achievable by tuning the
applied gate voltage. The origin of the superconductivity is
still not understood [3–7], and various open questions remain
unsolved about the role of quantum electronic correlations
[8,9], of multiband effects [10–13], and of the spin-orbit
coupling [14–18]. Moreover, the possibility of topological
superconductivity is also under debate [7,19–25].

*Corresponding author: llepori81@gmail.com

Even more interestingly, the superconducting critical
temperature, Tc, in the LAO/STO 2DEG exhibits a dome-
shape behavior, as a function of the applied gate voltage
[1,2,8,18,26–28]. When the carrier density increases, Tc first
increases up to a maximum value, T max

c � 300 mK, at an
optimal effective doping, then it starts to decrease. The result-
ing phase diagram is qualitatively very similar to that of high
Tc cuprates, of organic superconductors, of Fe-based super-
conductors, as well as of heavy fermions [29,30]. Recently,
the shape of the superconducting dome has been qualitatively
explained by assuming a particular real-space potential, effec-
tively attractive in suitable windows of momentum space, and
resulting into an extended s-wave pairing [12]. Moreover, a
forthcoming insightful work [31] showed that the formation
of a similar dome (or even many of them, when multiband
fermionic models are considered) is related generically to an
attractive potential with finite range. The same work shed
light on previous works, where the dome has been suggested
instead as an effect of the spin-orbit coupling [17,18,32,33].
Furthermore, an asymmetric response in shear-resistivity to
an applied magnetic field (in-plane or out-of-plane) has been
observed [34]: a similar asymmetry can suggest a possible
spatial asymmetry in the pairing.
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To address the open questions above, in this paper we
discuss the superconductivity in LAO/STO 2DEG, by making
a singlet-triplet mixed ansatz for the pairing and by study-
ing its physical consequences. This possibility looks pretty
natural, due to the inversion symmetry breaking term of the
heterostructure which gives rise to an effective Rashba-like
coupling, already known to favour mixed pairings [7,35,36].
Related notable effects are qualitative deviations of the stan-
dard BCS/BEC crossover [37]. The same possibility has been
corroborated quite recently, using a Monte Carlo approach
on a square lattice [38]: there, even a local (Hubbard) inter-
action proved sufficient for singlet-triplet mixing, provided
that a Rashba coupling is added. Interestingly, a singlet-triplet
mixed pairing allows (but does not imply) edge excita-
tions, protected by a nontrivial topology, whose presence has
not been ruled out so far by current transport experiments.
Moreover, it determines an asymmetric response to an ap-
plied magnetic field, qualitatively similar to that observed in
Ref. [34]. We finally notice that, while a pure triplet p-wave
pairing is ruled out by previous experiments which did not
detect the expected nodes in the superconducting gap [39,40],
instead a singlet-triplet mixed pairing would not contradict the
experimental results.

In this paper, we employ a tight-binding model including
the low-energy electronic structure of the LAO/STO 2DEG
with the dxy, dxz, dyz orbitals of the Ti atoms [14,41–44]. Var-
ious papers have pointed out the close relation between the
onset of the superconductivity and the filling of the degenerate
dxz/yz subbands, at an high density of states [45,46]. Then,
we adopt an attractive static potential, with both local and
nearest-neighbour terms, able to host all the pairing config-
urations mentioned above. In addition, we include the atomic
spin-orbit and the inversion asymmetric potential associated
with the orbital Rashba interaction. Finally, we consider a
magnetic field as a source of time reversal symmetry breaking.
To achieve our results, we perform a detailed analysis of
the most favorable topological superconducting phases. This
analysis is based on self-consistent computations of the or-
der parameters, minimizing the mean-field free energy in the
Hamiltonian parameters space, set by the electron filling, by
the attraction strengths, and by the amplitude and orientation
of the magnetic field.

We point out how the interplay of singlet and triplet
pairings is able to affect the superconducting properties of
LAO/STO 2DEGs. First, we show that the singlet order pa-
rameters are strongly reduced with increasing the role of
triplet pairings, thus acquiring a nonmonotonic dependence
on the charge density. Interestingly, some notable effects
are found related with nonlinear corrections to the effective
Rashba spin-orbit coupling. For instance, in the absence of
magnetic fields, the nonlinear spin-orbit terms, combined with
the triplet pairings, favor a quite stable (time-reversal invari-
ant) topological helical superconducting phase. The triplet
pairings are also responsible for an anisotropic behavior of the
superconducting order parameters, when the magnetic field is
applied in-plane and out-of-plane. Finally, in the presence of
out-of-plane magnetic fields, we recover (time-reversal break-
ing) chiral topological superconducting phases, also when the
triplet pairings are vanishing.

The paper is organized as follows. In Sec. II, we report
the main electronic properties of the normal state. In Sec. III,
we discuss the general set-up of the mean-analysis of su-
perconductivity. In Sec. IV, we analyze the superconducting
solutions at zero magnetic field. In Sec. V, we analyze the
effects of a magnetic field. Finally, we devote Sec. VI to our
conclusions and outlook.

II. NORMAL STATE

A. Model Hamiltonian

Following the derivation of Ref. [25], we write down the
general tight-binding Hamiltonian for the two-dimensional
LAO/STO-001 system by considering the 2DEG effectively
confined on a square with lattice step a = 3.9 Å ≡ 1. The
system has also a broken out-of-plane inversion symmetry,
having only the t2g orbitals close to the Fermi level. In
LAO/STO systems, the transition metal (TM)-oxygen bond
angle is almost ideal, and the three t2g-bands are mainly de-
coupled in the momentum space k.

Moreover, the dxy band has a truly two-dimensional char-
acter, while the dyz and dzx bands are quasi one-dimensional.
In the following, we denote with H0(k) the corresponding
normal-state contribution to the total system Hamiltonian in
momentum space. Moreover, herewith we use the index τ =
{yz, zx, xy} to refer to the three different t2g orbitals dyz, dzx,
and dxy, respectively, while we label the spin with σ = {↑,↓}.
In addition, we add a term HSO to the total Hamiltonian,
accounting for the atomic spin-orbit coupling of the TM ions.
Finally, we include the microscopic couplings arising from the
out-of-plane oxygen displacements around the TM, with the
inversion asymmetry giving rise to an effective hybridization
of dxy and dyz or dzx orbitals along the y or x directions,
respectively. We denote this contribution as HZ (k).

In momentum space, we set

H = D̂†(k)H (k)D̂(k) , (1)

with D̂(k) labeling the vector

[cyz,↑(k), cyz,↓(k), czx,↑(k), czx,↓(k), cxy,↑(k), cxy,↓(k)]t ,

(2)

(note the different grouping of the operators corresponding to
the various orbitals with respect to Ref. [25]), and

H (k) =
∑

τ

Hτ (k) = H0(k) + HSO + HZ (k) + HM . (3)

The various terms at the right-hand side of Eq. (3) are
grouped as follows. The first term H0(k) is the lattice band
term

H0(k) =
⎡
⎣εyz(k)I2x2 0 0

0 εzx(k)I2x2 0
0 0 εxy(k)I2x2

⎤
⎦, (4)

with

εyz(k) = 2t1y[1 − cos(ky)] + 2t2x[1 − cos(kx )],

εzx(k) = 2t1x[1 − cos(kx )] + 2t2y[1 − cos(ky)],

εxy(k) = 4t1 − 2t1x cos(kx ) − 2t1y cos(ky) + Et , (5)
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and the parameters set so that

t1x = t1y ≡ t1 = 300 meV,

t2x = t2y ≡ t2 = 20 meV,

Et = −50 meV. (6)

The second term in Eq. (3) is the atomic l − s spin-orbit
coupling term, given by

HSO = wSO l̂ ⊗ σ, (7)

with l̂ the vector operator describing the orbital angular
momentum and σ (the Pauli matrices) the spin angular mo-
mentum. In order to make the spin-orbit term explicit, we
introduce the matrices l̂x, l̂y and l̂z, which are the projections of
the l = 2 angular momentum operator onto the t2g subspace,

l̂x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, (8)

l̂y =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (9)

l̂z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, (10)

assuming {yz, zx, xy} as orbital basis. Using these operators,
we write the atomic spin-orbit coupling as

HSO = iwSO

⎡
⎣ 0 σz −σy

−σz 0 σx

σy −σx 0

⎤
⎦, (11)

with wSO = 10 meV.
The third term in Eq. (3) is the inversion symmetry break-

ing term HZ (k), given by

HZ (k) = γ [l̂y ⊗ I2x2 sin kx − l̂x ⊗ I2x2 sin ky], (12)

or equivalently

HZ (k) = iγ

⎡
⎣ 0 0 − sin(kx )I2x2

0 0 − sin(ky)I2x2

sin(kx )I2x2 sin(ky)I2x2 0

⎤
⎦,

(13)
with γ = 20 meV. This important term stems from the break-
down of a reflection symmetry along a particular axis of the
LAO/STO compounds, due to a corresponding lattice distor-
tion. The net effect is the mixing of the different orbitals yz,
zx, and xy, having different parity under the mentioned re-
flection symmetry. More details are in Ref. [25]. Furthermore,
the effects of the coupling γ on the stability of singlet and
triplet superconducting order parameters will be discussed in
Appendix E.

The last term in Eq. (3) describes the coupling of the
electron spin and orbital moments with an external magnetic
field B, whose direction is given by the vector M = −μBB/h̄,
with μB Bohr magneton:

HM = gs I3x3 ⊗ M · σ

2
+ M · ł ⊗ I2x2, (14)

which includes the gyromagnetic factor gs assumed equal to
2. In the absence of this term, the total Hamiltonian is time-

reversal invariant:

H (k) = U −1
T H∗(−k)UT , UT = I3x3 ⊗ σy (15)

(σy acting on the spin index σ , I3x3 on the τ index, and
UT U ∗

T = −I3x3), as it can be straightforwardly checked by
expressing H (k) in terms e. g. of Gell-Mann matrices (see
Appendix A). Therefore, in the absence of superconductive
pairing, H (k) belongs to the class AII of the classifica-
tion for topological insulators and superconductors, see, e.g.,
Refs. [47–49].

In the following part of the section, we will analyze the
bands in the normal state in the absence of the external mag-
netic field. The external field weakly affects the electronic
structure of the normal state, but its role will be relevant
in the analysis of the superconducting phases since the low
energy induced by the field competes with those due to the
superconducting pairings.

B. Band structure

In the left panel of Fig. 1, we show the “bare” τ bands,
which we derived by setting to zero both the spin-orbit cou-
pling and the inversion symmetry breaking term. We notice
that the lowest band is the xy one, separated by the energy
|Et | from the yz and zx bands, which are degenerate at kx = 0.
In the same figure, we plot the bands, as a function of kx, at
ky = 0. We identify the almost flat band with the yz one and
we also note that the dispersion of the zx band is negligible as
a function of ky and at fixed kx.

Introducing the spin-orbit coupling and the inversion sym-
metry breaking term, the τ bands are mixed together by the
rotation matrix M(k) that diagonalizes H (k). Therefore the
orbital character is mixed, giving rise to a more complex spec-
trum [25] and to new, “mixed” bands, which in the following
we label with the indices η{−,0,+}. In fact, we see that the spin-
orbit coupling and the inversion symmetry breaking mostly
affect the electronic bands at low densities. To evidence this
fact, in the central and right panels of Fig. 1, we report these
bands, which at finite values of the momentum exhibit avoided
crossing. In particular, in the right panel of Fig. 1, we focus
on small values of the momenta. We see that the η±-bands
display minima at finite momenta, which is traced back to
an emerging effective linear Rashba coupling (see Ref. [25]
and the next section). On the other hand, η0 shows a single
minimum at k = 0, indicating an enhanced importance of
nonlinear corrections.

In the following, we will carefully investigate the behavior
of the η0-band at small values of k. In fact, the minima of
the η0 band mark the density values where superconductivity
sets in. Indeed, theoretical and experimental studies suggest
the presence of superconducting phases in the range for the
lattice average filling ν approximately between the onset of
the η0 band and that of the η+ band (see e.g. [6]).

Therefore we focus on the electronic properties within
this density range. In the upper panel of Fig. 2, we plot the
density of states (DOS) of the η bands, as a function of the
single-particle energy (note that the density has the dimen-
sions of the inverse of an energy, since we set the lattice step
a = 1). The minima of the bands are characterized by steps
in the density of states. In the same panel, the projection
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FIG. 1. Plot of εyz(k), εzx (k), and εxy(k) (left, in meV), and of the mixed bands ε−,0,+(k) (middle and right), in the absence of magnetic
field, for ky = 0, and as functions of kx (still around kx = 0, then for ν → 0). In the middle panel, around kx ≈ 0.35, we have avoided crossings,
due to the role of the atomic spin-orbit coupling and the breaking inversion symmetry term.

of the DOS on the orbital basis xy, yz, and zx is also re-
ported, such to highlight their contributions. We remark that
the quasi-one-dimensional bands yz and zx provide the most
relevant contribution to the density of states. Actually, within
this energy range, the density of states due to the xy band is
almost constant, after a step at much lower energy (of the
order of Et ). This asymmetry in the density of states within
this energy range will be fundamental for the interpretation of
some superconducting properties, which are very sensitive to
the magnitude of the available electronic states. Finally, within
a slightly larger energy range, in the lower panel of Fig. 2, we
plot the carrier space density, as a function of the chemical
potential. For the parameters of the tight-binding model used
in this paper, the density at the minimum of yz and zx bands
is about 2 × 1013 cm−2. This value is in agreement with pre-
vious experimental results [50]. Moreover, we notice that, in
analogy with the behavior of the density of states, as soon as
the quasi-one-dimensional yz and zx bands start to be filled,
they rapidly become predominant. This occurs around zero
energy, where a crossover in the densities is visible. There,
the carrier density, of the order of 5 × 1013 cm−2, results half
from the xy band and half from the yz and zx ones.

C. Effective low-energy theories

In order to better spell out the following results, we
now present an effective theory for the η− and η0 bands,
around their common minima, at kx = ky = 0. To derive the
corresponding Hamiltonians we exploit the second-order de-
generate perturbation theory. We present the details of our
derivation in Appendix C. The results are respectively

H (eff )
− (k) = ε−(k) I − (

a1 kx + a2 k3
x

)
σy + (

a1 ky + a2 k3
y

)
σx,

(16)

with a1 = 8 meV (in units of the lattice step a ≡ 1), a2 =
43.46 meV, ε−(k) = ( − 54. + 280.8 (k2

x + k2
y )) meV (so that
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FIG. 2. (Top) Density of states of the τ -bands, as a function
of the single-particle energy. (Bottom) Carrier surface density, as a
function of the chemical potential.
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t (eff )
− = 280.8 meV), and

H (eff )
0 (k) =

[
ε0(k) i a3 k− − i a4 k3

+ − a5 kxky k+

−i a3 k+ + i a4 k3
− − a5 kxky k− ε0(k)

]
,

(17)

with k± = kx ± iky, a3 = 0.8 meV, a4 = 8.627 meV, a5 =
22.8 meV and ε0(k) = ( − 10.8 + 157.2 (k2

x + k2
y )) meV (so

that t (eff )
0 = 157.2 meV).

We notice that, around the minima of the η bands, kx =
ky = 0, an effective linear Rashba-like spin-orbit coupling
appears in both the effective Hamiltonians, together with a
nonlinear spin-orbit term. This second term is especially rel-
evant for the first dome on the η0 band, already at vanishing
filling, as the central and right panels of Fig. 1 suggest. It is
known [35] that the linear coupling, breaking space inversion
symmetry (as HZ (k) it derives from), favours triplet com-
ponents for superconducting pairings, inducing single-triplet
mixings, see, e.g., Refs. [51,52]. Instead, nonlinear spin-orbit
terms have been postulated to induce observable modifica-
tions on the spin polarization in inversion symmetric (001)
SrTiO3 compounds [53] and for Josephson junctions [36].
Other notable effects will be described in the following.

In Fig. 11 of Appendix C, we perform a direct comparison
of H (eff )(k)

− and H (eff )
0 (k) with the exact spectrum of H (k) in

Eq. (1). We see that the agreement is excellent up to kx,y ≈
0.2. This value must be compared with the typical momenta
where the η+ band starts to be populated, around kx,y = 0.4.
The corresponding filling is estimated to be approximately the
end of the superconductive dome [6]. Therefore we expect
H (eff )

0 (k) to describe approximately a low-density half of the
first dome. Importantly, H (eff )

− (k) and H (eff )
0 (k), that are a

central result in the present work, still act on the σ = {↑,↓}
indices, that are not mixed each others along the perturbation
theory procedure.

III. MEAN-FIELD ANALYSIS OF SUPERCONDUCTIVITY:
GENERAL SET-UP

In this section, we analyze the possible presence of su-
perconducting phases, within the same energy and density
ranges, and focusing in particular on the interplay of singlet
and triplet pairings.

A. Setting up the effective interaction Hamiltonian

In order to induce superconductivity in the 2DEG, in the
following, we consider a pertinent, nearly realistic, attractive
electronic interaction, together with its effects on the bands of
H (k). In particular, in the absence of more specific coupling
mechanism related to, e.g., antiferromagnetic correlations, we
rely on the “natural” mechanism, based on phonon exchange
plus screened Coulomb repulsion. While the phonon attrac-
tion is expected to be independent of the orbital index τ , the
Coulomb repulsion is expected to be more important within
the same orbital, due to the larger overlaps between the elec-
tronic wave functions. Therefore, in the low-density regime
analyzed in this paper, we choose the realistic attractive po-

tential given by

W = −
∑

i, j,τ,σ,σ ′
Ui, j niτσ n jτσ ′ −

∑
i, j,τ,τ ′ �=τ,σ,σ ′

Zi, j niτσ n jτ ′σ ′ ,

(18)
with the decay of Ui, j and Zi, j , with the separation i − j, ruled
by two different lengths ξU and ξV . The same lengths depend
on the electronic density ρe, that is, on the lattice average
filling ν, and are expected to be of the order of a few lattice
steps. Moreover, we assume a static potential, consistently
with the low charge density in the regime of Fermi energies
that we are considering. Actually, the dynamic part of the
potential from the phonon exchange can be extrapolated to the
low-energy limit, therefore the effective attractive potential at
the Fermi energy can be assumes as static [54,55].

The bands τ , τ ′ are mixed together by the rotation matrix
M(k) that diagonalizes H (k); M(k) accordingly affects the
potential W in Eq. (18), as well. It is difficult to deal with
the transformed potential, since M(k) depends on k and the
Fourier transform of W contains 4 momenta ki, i = 1, . . . , 4.

Therefore, in this paper, we analyze the effects, especially
on the topology, of the full potential W , focusing on its first
term, diagonal on the orbital index τ . This choice is moti-
vated by the energy gap between the η− and η0 bands around
k = 0, where the superconductive dome is located [6], being
approximately δEη = 43 meV. This gap is an obstruction for
the zero-momentum pairings between (unbalanced species in)
the bands, and forbids them from attractions such that the
superconductive gap, calculated at vanishing unbalance, is un-
der a threshold around δEη (see Refs. [56–58] and references
therein). Furthermore, nonzero-momentum balanced pairings
are known to require at least a subtle fine-tuning between
interaction and density [37,56–58].

Within the tight-binding model, we focus on the on-site and
the nearest neighbor contribution of the attractive potential be-
tween electrons in states with the same orbital symmetry. The
local interaction necessarily couples electrons with opposite
spins favoring spin-singlet symmetry. On the other hand, we
assume that the term due to the nearest neighbors takes into
account the equal spin contribution controlling the spin-triplet
instability. Hence, we simplify W according to

W = −U
∑
i,τ

niτ↑ niτ↓ − V

2

∑
iδτσ

niτσ ni+δτσ , (19)

where i and j label two dimensional vectors associated to the
lattice sites, U and V are the local and nearest neighbor pairing
energy, respectively, and niτσ = c†

iτσ ciτσ is the local density
operator for the σ spin polarization and the τ orbital, at a given
position i, whose nearest neighbor sites are indicated by δ.
In Appendix D, we discuss additional attractive terms which
have not been introduced in Eq. (19).

As specified in the section title, we have considered in
Eq. (19) an effective interaction, in particular an attractive
local Hubbard term. We note that in Ref. [59] a local repul-
sive Hubbard term, around 2 eV, has been predicted from
tunneling spectroscopy. In fact, this value of U is not large,
but it is comparable with the electron bandwidth. Further-
more, in LAO/STO systems analyzed in this paper, the typical
densities per spin polarization are low compared to, e.g., the
half-filling regime. Accordingly, the net contribution to the
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total energy from Hubbard interaction is limited. Moreover,
it is known that, in these density regimes, the effects from
polaron dynamics are relevant on the electronic states [55,60]
giving rise to a net lowering of the Hubbard interaction for
the 2D quantum gas. Finally, our effective model for the local
interaction has been widely used in the literature, for example
[20–23,25] quoted in the introduction.

In the following, we will check that W in Eq. (19)
qualitatively reproduces the most interesting features of su-
perconductivity in LAO/STO compounds [6], with the values
of U and V , yielding the superconducting behavior discussed
in this paper always, being of the order of hundreds of meV.

B. Mean-field analysis

We now analyze, within mean-field approximation, the
Hamiltonian in Eq. (1), with the interaction in Eq. (19), by
mostly focusing onto the zero temperature case.

Due to the introduction of the nearest neighbor attractive
term V , it becomes important to properly infer the profile
of the superconducting order parameter in real space. In the
following, we do so by encompassing within our mean-field
approach both the spin and the orbital degrees of freedom.
In particular, we recover the appropriate pairing ansatz by
analyzing the set of the irreducible representations of the
point-group symmetry of the square lattice, by assuming
over-all translational invariance (we provide the details in Ap-
pendix B). Moreover, in the absence of an externally applied
magnetic coupling, we retain time-reversal invariance. As a
result, we obtain

W ≈ −U
∑
i,τ

Diτ [c†
iτ↑c†

iτ,↓ + H.c.]

− V

2

∑
i,τ,δ,σ

[Fiτσ (δ)c†
iτσ c†

i+δτσ + H.c.]

+U
∑

iτ

D2
iτ + V

2

∑
i,τ,δ,σ

|Fiτ,σ (δ)|2. (20)

In Eq. (20), Diτ = 〈ciτ↓ciτ↑〉 is the singlet pairing amplitudes,
depending on the orbital index τ , with 〈〉 denoting the ground
state average, and the over-all gauge choice is made so that
the singlet order parameters �τ

is = UDiτ are real. The local
s-wave pairing corresponds to the most favored superconduct-
ing instability [61–64]. Finally, Fiδσ (δ) = 〈ci+δτσ ciτσ 〉 are the
equal spin triplet pairing complex amplitudes, depending on
both τ and σ . Due to the space inversion symmetry of the
square lattice, Fiτσ (δ) = Fiτσ (−δ), and the triplet amplitudes
along the y axis have only a phase different from those along
the x axis: Fiτσ (δy) = θσ Fiτσ (δx ), with Fiτσ (δx ) = Fiτσ fixed
real. In Appendix D, we discuss additional pairings which
could be considered in the system.

We point out that our ansatz for the superconducting mean
field is diagonal in bare bands εi, therefore interorbital pair-
ing between the rotated bands ηi is present since we get the
corresponding gap parameters via a self-consistent procedure,
minimizing the (free) energy of the system, where the mixing
between the εi bands is included. The statement is reinforced
by the fact that, in the absence of inversion symmetry break-
ing term γ , the structure of the gaps is changed. Indeed, as

discussed in Appendix E, the coupling γ is relevant to control
the interplay between singlet and triplet order parameters.

At the mean-field level, the triplet and the singlet-triplet
mixed pairing are separately determined by the nearest neigh-
bor part of the potential in Eq. (19), and by the spin-orbit
(Rashba-like and nonlinear) terms in Eqs. (16) and (17)
[35], and their onset is clearly enforced by the combined
effect of the two terms. However, in the absence of the V
term in Eq. (19) (therefore with only an Hubbard attrac-
tion), mean-field decoupling does not yield triplet components
(indeed, recover these terms requires resorting to alterna-
tive approaches, such as Monte-Carlo simulations, see, e.g.,
Ref. [38]). Therefore we expect that the mean-field approach
overestimates the singlet components, while the emergence of
triplet components appears even more substantiated.

In momentum space, we describe the set of pairing config-
urations in Eq. (20) within the general matrix parametrization
[51]

�τ (k) =
(

c↑(k)
c↓(k)

)†

�̃τ (k)

(
c↑(−k)
c↓(−k)

)∗
, (21)

with

�̃τ (k) = i
(
�τ

s (k) I2x2 + dτ (k) · σ
)
σy. (22)

In particular, Eq. (22) can be rewritten in components as (see
Appendix A for more details):(

�τ
s , �τ

t,↑↓[α (sx + i sy) + β (sx − i sy)],

�τ
t,↑(sx + i sy), �τ

t,↓ (sx − i sy)
)
, (23)

with �τ
t,σ = −iV Fτσ and s{x,y} ≡ sin k{x,y}. Since no interac-

tion term ∝ V between electrons with opposite spins is present
in Eq. (19), then �τ

t,↑↓ = 0 in Eq. (23).
In principle, all the parameters in Eq. (23) may have

nonzero phases. However, time-reversal invariance, with the
same UT for the positive-energy sector as in Eq. (15), sets the
phases to 0 (see Ref. [52] and Appendix A). The ansatz in
Eq. (23) perfectly reproduces the superconducting solutions
known in the literature as px + ipy and px − ipy, which are
known to support topological helical superconductivity at zero
magnetic field [65,66]. Moreover, from Eq. (22), the triplet
pairing vector d(k) (giving the superconducting excitation
gap, in the absence of the singlet pairing) is given by following
components:

dx(k) = 2V Frσ sin(kya), dy(k) = −2V Frσ sin(kxa), (24)

with dz(k) = 0. Indeed, in [67] it has been shown that the su-
perconducting transition temperature is maximized when the
spin-triplet pairing vector d (k) is aligned with the polarization
vector g(k) (essentially two-dimensional) parametrizing the
spin-orbit coupling. Additional details about the properties of
the pairing vector d (k) will be provided in Appendix D.

We comment finally that the possibility of helical phases
[68], with Cooper pairs with nonzero momentum, has not been
considered in the present work. Similar phases are expected
to be suppressed in the regime of small filling for the η0 band,
where, around k = 0, effective Rashba terms are not linear but
at least cubic in the momentum. We point out that the most
interesting results discussed in the next sections focus just on
this parameter regime.
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IV. SUPERCONDUCTING SOLUTIONS AT
ZERO MAGNETIC FIELD

In this section, we analyze the interplay between the triplet
and the singlet order parameters, in the absence of an external
magnetic field.

A. Emergence and stability of the superconducting solution

To assess the presence and the stability of the supercon-
ducting states, we solve the self-consistent equations by using
a variational method. Specifically, we study variationally the
zero-temperature mean-field grand-canonical free-energy �

determined by the pairing in Eq. (23) plus the single-particle
Hamiltonian in Eq. (1). In particular, we numerically mini-
mize �, varying Diτ , Fiτσ . In the minimization procedure, we
vary the superconductive amplitudes, the interaction strength
U in Eq. (19) in the interval �U = [0, 500] meV, and the
interaction strength V in the interval �V = [0, 1000] meV.
We consider a square lattice with side-length L, with L =
[40, 240] sites, finding a satisfying convergence starting from
L = 120. Furthermore, we set μ = EF , EF being the Fermi
energy at a fixed ν and, typically, between the minima of the
η0 and η+ bands.

By means of our variational procedure, beyond the normal
state and a singlet-pairing regime, we find a range of values for
U and V where the singlet and triplet pairings coexist. Instead,
as pointed out in the previous subsection, no triplet pairing
between different spins is found (we will comment later on
on this result). When the coexistence takes place, the ratio
between U and V can be tuned such that the triplet component
of the order parameter is not negligible or even dominant
[further details and insight on the solutions described below
will be given in Sec. IV B, via the analysis of the effective
Hamiltonian in Eq. (17)].

First, we focus on the regime of values for U and V where
only the singlet pairing is stable. As shown in Fig. 3, this
occurs for U = [300, 400] meV and for V < 600 meV. Su-
perconductivity becomes stable once the chemical potential
μ is set above the minimum of the rotated band η0, around
−54 meV. Conversely, no pairing is observed for lower values
of μ. As reported in Fig. 3, for U < 300 meV, superconduc-
tivity is not found (that is true at any μ).

In the left panel of Fig. 4, corresponding to U = 350 meV
and V = 0, we plot the singlet order parameters, showing
that they are different from zero, starting from the min-
imum of intermediate pair of bands (μ goes from about
−10 meV to about 20 meV). The obtained starting point
for superconductivity is in agreement with the appearance
of a finite density of states, shown in the previous Sec-
tion, and with the experimentally measured behavior of the
superconducting pairing [6,46]. We remark that we always
find �

yz
s = �zx

s in the self-consistent superconducting so-
lutions. Moreover, as shown in the left panel of Fig. 4,
not only �

yz
s , but also �

xy
s is different from zero, starting

from the minimum of the η0 band. Due to the difference
of mass and density of states in the normal state, �

xy
s is

smaller than �
yz
s . We also point out that, increasing the car-

rier density, the order parameters get enhanced continuously:
apparently, there is no dome, as a function of the density.
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V
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m
eV

)

U (meV)

SINGLETNORMAL

TRIPLET
S+P
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-2

-1

 (meV)

 Singl+Tripl 

 Singl 

 Normal

FIG. 3. (Top) Phase diagram in the plane U -V to distinguish
the normal state (absence of superconductivity), singlet, triplet and
singlet+triplet (S+P) superconducting phases at the chemical po-
tential μ = −9 meV (close to the onset of intermediate electronic
bands). (Bottom) Comparison between the grand-canonical free en-
ergies of the normal state, of the singlet-pairing and the triplet-singlet
superconductive ground-states, at U = 350 meV and V = 600 meV.

This finding matches the general result in Ref. [31], relat-
ing the presence of superconducting domes with finite-range
potentials.

Then, we consider the effect of a nonzero attractive term
∝ V . As reported in Fig. 3, for V � U , the triplet is the
dominant pairing, while the singlet pairing tends to vanish.
However, Fig. 3 shows an intermediate regime, from values
of V slightly smaller than 2U , where the order parameters
coexist. In the middle panel of Fig. 4, we plot the singlet order
parameters for the different orbitals in the same regime, as a
function of the chemical potential. At finite V , the appearance
of a triplet pairing parallels a reduction of the s-wave order
parameters. In particular, the smallest one, �xy

s assumes values
in agreement with experimental estimates, around 0.1 meV.
Therefore there is a destructive interference between singlet
and triplet amplitude pairings. Moreover, this interplay is also
able to induce a dome, as a function of the density, beginning
from the place where the density of states of the normal phase
shows a step. We notice that a similar behavior takes place at
higher densities, corresponding to the minimum of the band
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FIG. 4. (Left) Zero temperature singlet pairing amplitudes, for U = 350 meV and V = 0 meV. (Middle) The same as in the left panel, but
for U = 350 meV and V

2 = 300 meV. (Right) Zero temperature triplet pairing amplitudes, again for U = 350 meV, V
2 = 300 meV. Notice that,

in the absence of magnetic field, �τ
t = �τ

t,↑ = �τ
t,↓.

η+, where the density of states has another step. Therefore
our theoretical calculation predicts that, beyond the overdoped
regime of the first dome, corresponding to the band η0, there
is a possibility of a second dome with similar extent, related
to the higher energy band η+. We observe finally the presence
of a regime where U �= 0 and V �= 0 but the normal state is
favoured. This effect is due to a low density of states in the
analyzed range of chemical potential, much lower (at least two
orders of magnitude) than in a standard metal. To rule out the
possibility that this would be due to finite-size effects, in our
calculation, we analyzed L × L square lattices up to L = 160,
checking numerical convergence of the superconductive gap
parameters. Also a MF analysis on the η− and η0 bands,
starting from the effective theory in Eq. (17), led to the same
conclusion.

Finally, in the right panel of Fig. 4, we plot the ↑ triplet
amplitudes for the orbital τ , again at U = 350 meV and
V
2 = 300 meV. In analogy with the singlet pairing, we always
find �

yz
t,σ = �zx

t,σ , therefore the orbital yz and zx are strongly
coupled also in the triplet channel. Moreover, since there is
no applied magnetic field, �τ

t,↑ = �τ
t,↓. We notice that the

triplet pairings always increase as a function of the density,
then the reduction of the singlet pairing is compensated by an
enhancement of the triplet channel, for all the values of the
chemical potentials.

In the lower panel of Fig. 3, we perform a comparison
between the grand-canonical free energies of the normal state,
of the singlet-pairing and the triplet-singlet superconductive
ground-states, at U = 350 meV and V = 600 meV. We point
out that the grand-canonical potential can be lowered in a
significant way if the triplet component is included in the
energy balance.

In Fig. 5 (top), we plot the relative critical temperature for
the singlet order parameters, obtained by employing the mean-
field approach, and by varying the particle density and by
setting U = 350 meV and V

2 = 300 meV. Moreover, the range
for the single-particle energy to starts from the bottom of the
η0 band. We recover a dome-shaped plot, with the maximum
critical temperature T max

c � 1 K. At this critical temperature,
the triplet order parameters are reduced, in comparison to their

value at zero temperature, however they are not necessarily
zero.

More in detail, we locate the beginning the first dome
at energy E = μ = −10 meV and electronic density n =
2.14 × 1013 cm−2, the maximum of Tc at E = −7 meV and
n = 2.6 × 1013 cm−2, and finally the end of the first dome
at E = −2.5 meV and n = 3.3 × 1013 cm−2. These values
can be compared, e.g., with experimental data in Ref. [50],
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0.5
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C
C

M
A

X

n 1013 cm-2)

THEORY

2.0 2.5 3.0
0.0

0.5

1.0

C
C

M
A

X

n 1013 cm-2)

EXPERIMENT

FIG. 5. (Top) Relative critical temperature for singlet order pa-
rameters, at U = 350 meV, V

2 = 600 meV, and μ varying, starting
from the bottom of η0 as calculate in this paper. (Bottom) Relative
critical temperature taken from Ref. [50].
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summed up in the lower panel of Fig. 5. There the same
dome is measured between n = 1.8 × 1013 cm−2 and n =
3.1 × 1013 cm−2, the top of the dome being around n =
2.4 × 1013 cm−2. Therefore we find a reasonable agreement
between theory and experiment. We remark that experimental
data [26,50] have identified a critical value nc of the density
of the order of 1.8–1.9 × 1013 cm−2, which characterizes the
underdoped superconducting regime. Actually, in comparison
with experimental results, as reported in Fig. 5, the theoretical
data show only a slight shift of the entire phase diagram. In
our approach, this effect depends only on the energy Et which
measures the energy distance between the band xy and yz
in Hamiltonian (5). If a slightly smaller value than 50 meV
had been chosen, a perfect agreement with the experimental
critical temperature would be obtained.

Since the triplet order parameter depends on the momen-
tum k, it is interesting to plot the Bogoliubov-de Gennes
spectrum obtained by using the superconducting order param-
eters obtained from the minimization of the free energy �.
In Fig. 6, we focus onto μ = −9 meV, that is, a chemical
potential slightly higher than the minimum of the band η0.
First, in the upper panel of Fig. 6, we plot the spectrum
corresponding to the normal state. The zeros correspond to
the center zone η0 and the finite momentum zone η− whose
origin is xy-like. At finite momentum, there is a small splitting
of the zeros, due to the fact that this value of the chemical
potential is close to the avoided crossing of the electronic
bands. In the middle panel of Fig. 6, we plot the spectrum
corresponding to the singlet pairing. The gaps correspond to
the center zone η0 and the finite momentum zone η− whose
origin is xy-like. Therefore the gaps at finite momentum are
smaller than those at center zone. However, when only the
singlet is present, along the �X (ky = 0 or kx = 0) and �M
(kx = ky) directions, the gaps are perfectly symmetric. Finally,
in the left panel of Fig. 6, we consider the combined effect
of singlet and triplet pairings. We notice that the spectrum
drastically changes with respect to the case where only the
singlet is present. In particular, the gaps get reduced along
�M direction. This behavior can be ascribed to the sx and sy

dependence of the order parameter given in Eq. (23): along the
�M direction, at finite wave vector, the gap is mainly given by
singlet channel.

To conclude, we mention the interesting possibility to con-
sider possible superconductive solutions from the continuum
effective Hamiltonians in Eqs. (16) and (17). We analyzed
their presence, by adding an attractive potential as in Eq. (19).
Working with lattice sizes up to L = 256, we found only
normal solutions in large ranges for U and V (as large as
in Sec. III). We ascribe this outcome to relevant finite-size
effects at the considered low fillings ν < 0.1, required for the
validities of the effective theories in Eqs. (16) and (17).

B. Clues of emerging topology at zero magnetic field

The pairing in Eq. (23), preserving time-reversal invari-
ance, leads to a Bogoliubov Hamiltonian in the class DIII of
the classification for topological insulators and superconduc-
tors [47–49]. Indeed, UT = I3x3 ⊗ I2x2 ⊗ σy, UT U ∗

T = I12x12,
and UC = I3x3 ⊗ σy ⊗ σy, UC U ∗

C = −I12x12 (the second ma-
trices in the Kronecker products acting on the Nambu-Gorkov
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FIG. 6. (Top) Bogoliubov-de Gennes spectra at μ = −9 meV, for
U = V = 0 meV. (Middle) The same as in the upper panel, but for
U = 350 meV, V = 0 meV. (Bottom) The same as in th upper panel,
but for U = 350 meV and V

2 = 300 meV.

indices). The chiral symmetry US = UT UC = UC UT , U 2
S =

I12x12, is also realized, however not affecting the topology
class (see Appendix A). In this class, nontrivial topological
configurations are possible. Therefore, in the following, we
are going to explore this possibility.
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V = 520 meV μ = 14 meV (second dome) in the right panel. The probability P of the first edge state corresponding to the spectrum of the left
panel as a function of the position y (in units of the lattice parameter a) for different values of kx . For all the plots, finite size Ly = 950, along
the y axis, is adopted.

We have analyzed the topological features of the (mini-
mal energy) mean-field superconducting solutions, within the
tight-binding scheme exposed in the above. In particular, we
have examined different values of chemical potential. Corre-
spondingly, we found signatures of helical superconductivity,
both in the first and second dome. As an example, in the
left and middle panels of Fig. 7, we show the Bogoliubov
spectrum at μ = −9 meV (that is, in the correspondence of
the second dome, that means for the η0 bands), for a lattice
that is infinite along the x axis, but is finite along y axis,
thus breaking translational invariance in that direction. In
particular, along the y axis, we have considered a finite size
of Ly = 950 sites, with hard-wall boundary conditions. Then,
we have calculated the excitation spectrum at fixed kx, finding
that two finite-energy edge states are present within the bulk
gap, which become degenerate at kx = 0. This can be ascribed
to the fact that, at the onset of the first dome (μ � −10 meV),
as shown in Fig. 1, the energy spectrum in the normal state
does not present a linear Rashba coupling. Therefore, in the
limit of small wave vectors, the dispersion of the edge states
is not linear, as a function of kx. Rather, it is nearly flat.
As shown in the middle panel of Fig. 7, for small values
of kx, the wave functions corresponding to the in-gap edge
states are well localized close to an edge of the system. With
increasing kx, their wave-function tends to spread over all the
bulk.

We point out that the observed behavior is mostly related to
the triplet pairing. Indeed, at zero magnetic field, the singlet
pairing term alone is not able to provide nontrivial topolog-
ical phases. However, at μ = −9 meV, we have checked a
topological phase transition, induced by the attractive term V
in Eq. (19) when the triplet order parameters are stable (see
Fig. 3). In particular, the results shown in Fig. 7 are obtained
when singlet and triplet pairings coexist above a critical value

of the attractive potential V . In Sec. IV C, we discuss in detail
the nature of those phase transitions.

We have also analyzed some features, possibly topological,
at higher values of the carrier density. In the left panel of
Fig. 7, we report the excitation spectrum, with finite size along
y axis and at μ = 14 meV. Even if the excitation spectrum is
more complex in comparison with that shown at lower densi-
ties, at zero magnetic field, we still find the presence of in-gap
edge states, which gradually merge in the bulk continuum,
with increasing kx.

C. Further insights from the effective theory

Starting from the full multiband Hamiltonian in Eq. (1), it
is rather cumbersome to characterize entirely the full topol-
ogy content of our system, since it is tough to recover the
required analytical form of the band wave functions in mo-
mentum space [47–49]. However, this task can be achieved,
at least partially, starting from the effective Hamiltonians in
Eqs. (16) and especially (17). This approaches demonstrates
to be valuable also for a better characterization of the entire
phase diagram in the considered range of fillings, as well as
of the nature of the first superconducting dome.

Since in most of the available literature [6], the supercon-
ducting dome is located approximately in correspondence of
the η0 band, we focus mainly on H (eff )

0 (k) in Eqs. (17), with
superconducting pairings added. We recall that H (eff )

0 (k) is
expected to described properly at least the lower-density half
of the dome. Moreover, the resulting Bogoliubov Hamilto-
nian shares the same (time-reversal and charge-conjugation)
symmetry content as the multiband one in Eq. (20), therefore
allowing (but not guaranteeing) the same topological phase
structure. Indeed, a similar discussion can be performed di-
rectly for the τ bands, obtaining the same qualitative results:
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for a given pair content, the effective spin-orbit g(k) (absent
in the τ bands basis) has only quantitative effects on the phase
diagram.

We assume again a pairing �(k), in the form of Eq. (22) (at
this stage, we do not need to specify the precise form of the
corresponding attractive potential, which instead we generi-
cally denote as G). The resulting Bogoliubov Hamiltonian is
of the general form HBG

0 = 1
2

∑
k ψ

†
kH(k)ψk, with

H(k) =
(

h0(k) �(k)
�†(k) −hT

0 (−k)

)
(25)

ψk = (ck↑, ck↓c†
−k↑, c†

−k↓)T and

h0(k) = ξ0(k) I2x2 + g(k) · σ. (26)

with ξ0(k) = ε0(k) − μ [μ measured from ε0(k = 0)]. By
time-reversal symmetry, it turns out that ξ0(k) and g(k) are
symmetric and antisymmetric in k, respectively [69]. The
Hamiltonian in Eq. (25) has the spectrum [69]

E±(k) =
√

(ξ0(k) ± |g(k)|)2 + (�s ± |d(k)|)2 (27)

if d(k) [see Eq. (22)] is aligned with g(k), which is the most
likely possibility, as we noted above. In three-dimensional
systems, this spectrum can give rise to topologically protected
nodal lines, where E−(k) = 0, leading to nodal (noncen-
trosymmetric) superconductors. These systems require a
partially different topological classification from the tenfold
way for fully gapped ones [52,70], as well as for their edge
modes [71]. However, in two dimensions, only isolated zeros
for E±(k) = 0 can occur, not topologically protected, and
identified as transition points.

We analyze separately three configurations for d(k): (i)
pure s-wave (spin singlet) pairing, (ii) pure p-wave (triplet)
state, and (iii) mixed s-p waves pairing. In the first config-
uration, no topology is realized: the phase is continuously
connected with a purely BCS one, where g(k) = 0. Indeed,
in spite of g(k) �= 0, since �s �= 0, no zeros of E±(k) can
occur in between and for a certain k. This regime clearly
corresponds to that in Sec. IV for the multiband model in
Eq. (20), at μ = −9 meV, U < 300 meV, and V = 0.

In the normal state, due to the terms in Eqs. (11) and
(13), mixing the spins, only the sum of the spin currents
is conserved, related to the global symmetry group U (1)V ,
in turn defined by the transformations: c↑(k) → eiθ c↑(k),
θ = [0, 2π ), and the same for c↓(k). Therefore, due to the
bilinear pairing condensate 〈c↑(k)c↓(−k)〉 = �s, the sponta-
neous symmetry breaking

U (1)V → Z2V (28)

occurs, where for Z2V ∈ U (1)V , θ = {0, π}.
Similarly, in the configuration ii), when �s = 0, two

phases can be realized a priori, in this scheme discerned by the
sign of μ [49,72]. These two phases, one with non trivial and
one with trivial topologies, are continuously connected with
those at g(k) = 0. This because the unique zeros of E±(k)
can occur where d(k) = 0, that means at k = 0. In this point,
also g(k) = 0 and ε0(k) = 0, therefore E±(k) = μ. Now, as
G → 0, then μ ≈ kF > 0 (since the filling of the η0 band
is positive), while the condition μ = 0, separating the two

phases, occurs for G large enough (similarly as in the previous
section). Again, the breaking pattern in Eq. (28) is realized.

The data from the mean-field analysis on the lattice sug-
gests that the topological phase sets in for U � 250 and V �
550 meV, where we find the triplet pairing (see Fig. 3). The
same phase, a superconducting counterpart of a quantum spin
Hall phase, is the unique possible topological one in the DIII
class and in two dimensions [47–49], and it is also known as
helical superconducting phase. Moreover, this is labeled by a
topological index n = 1, witnessing the number of pairs of
edge states, related by the time-reversal conjugation [49,65].
This index (written for the general case, e.g. in Ref. [66]) be-
comes, in the limit of decoupled spin sectors, g(k) → 0, ∀ k,
[49]:

n = 1
2 (n↑ − n↓) mod 2, (29)

where n↑ = 1 and n↓ = −1 label the topological phases (with
broken time-reversal invariance, then in the D class of the
ten-fold way classification [47–49]) described in Ref. [72].
The numbers n↑/↓ = ±1 correspond to nontrivial element of
the first homotopy class [73–75], π1(Õ), on a circle Õ around
the high symmetry node at k = 0. In particular, the nontrivial
homotopies are related to the phase factors e±i φk parametriz-
ing as follows the nonvanishing p-wave gaps (connected by
time reversal conjugation):

�t,↑/↓ (kx ± i ky) = �t,↑/↓ |k| e±i φk . (30)

Therefore, for instance, n = 0 for the extended s-wave case,
considered in Ref. [12]. In the more general case where the
spin sectors are coupled together (as when g(k) �= 0, or in
the presence of a superconducting pairing between the two
spin-species, as in the case iii), the topological index n = 1
can be expressed in terms of Chern numbers of positive-
and negative-energy eigenstates [66]. Alternatively, the same
index can be defined as a winding number of a phase [76],
exploiting directly the full Bogoliubov Hamiltonian HBG(k),
instead of its bands (see [77] for more details).

Finally, in the configuration (iii), where singlet and triplet
pairings coexist, a trivial and a topological phase can be again
realized a priori. Referring to the Hamiltonian in Eq. (26),
they are separated by the condition [on G, μ, �s, and d(k)]
that E−(k) = 0, for a certain |k|. This is expected for |�s| ∼
|�t,↑| = |�t,↓|. Again, the breaking pattern in Eq. (28) is
realized. Being again in the DIII class of the ten-fold way
classification, the two phases belong respectively to the same
topological classes of the phases in the case (ii), then they are
discerned by the same topological index [66,76].

This situation corresponds to the singlet-triplet coexisting
regime, found in Sec. IV. Correspondingly, the presence of
edge states indicates that between the two possible phases de-
scribed above, the topological one is realized. In the following
section, we will analyze its response to an applied magnetic
field.

V. SUPERCONDUCTING SOLUTIONS IN THE
PRESENCE OF A MAGNETIC FIELD

It is important, on the experimental point of view as well,
to consider how the above scenario is modified under the
application of a uniform magnetic field, inducing the Zeeman
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FIG. 8. (Top) Singlet order parameter �xy
s , as a function of the

magnetic field along the z axis for U = 350 meV and for different
values of the attractive term V and at μ = −9 meV. (Bottom) Same
as in the upper panel, but with the magnetic field along the x axis. We
recall that in Eq. (19) the nearest neighbor pairing has coupling V

2 .

term in Eq. (14). For this purpose, we start with discussing
how an applied magnetic field modifies the superconducting
order parameter.

A. Effects of the magnetic field on the superconducting
order parameter

The first macroscopic effect is the breakdown of the
time-reversal symmetry. Along this direction, we analyze the
effects of an external magnetic field on the superconducting
solutions, considering field orientations both along the z axis
(out-plane) and the x axis (in-plane).

First, we focus on the singlet order parameter related to the
orbital xy, �s

xy. We recall that this order parameter provides an
estimate of the minimal superconducting gap in the excitation
spectrum. In the upper panel of Fig. 8, we plot this quantity, as
a function of Mx, and for different values of V . In particular,
we focus on the under-doped regime of the first dome, at μ =
−9 meV. For V = 0, there is a continuous curve, as a function
of the magnetic field. However, there is a range of values for

V where the order parameter shows a discontinuity. Actually,
this discontinuity marks the onset of the triplet pairing, which,
on the other hand, start weakening the singlet order parameter
(see Fig. 3). As shown below, the triplet pairing can lower the
ground-state energy, at increasing magnetic field and fixed V .
Therefore there is a transition between a phase with only the
singlet pairing to a phase with combined singlet and triplet
pairings. With increasing V , the triplet pairing becomes stable
at lower strengths of the magnetic field (Indeed, we have
shown above that, for V > 560 meV, there is the formation
of the triplet pairing even at Mz = 0). For these values of V ,
the reduction of the singlet order parameter is quite rapid as a
function of the strength of Mz.

In the lower panel of Fig. 8, we plot �s
xy as a function of

Mx, for different values of V . There is a different coupling
between the in-plane magnetic field and the triplet order pa-
rameter. Therefore the role of the triplet pairing is affected not
only by the density, but also by the orientation of the mag-
netic field. Indeed, it can be responsible of the experimentally
measured magnetic field anisotropy, in some superconduct-
ing properties, between the in-plane and out-of-plane field
configurations [34]. In particular, in the under-doped regime
of the first dome, at μ = −9 meV, the anisotropy emerging
from the comparison between the upper and lower panels of
Fig. 8 is present but not marked. Indeed, the behavior of the
order parameter, as a function of Mx, follows that as a function
of Mz, the first behavior being characterized only by slightly
smaller values of critical fields (at different V ).

In order to deeply analyze the role of the anisotropy of
the superconducting solutions, we consider different fillings,
comparing the behaviors of the order parameters between
the first dome, beginning at the minimum of the η0 band
(μ ≈ −10 meV), and the second one, related to the η+ band
(μ ≈ 10 meV). Therefore, in the left and the middle panels
of Fig. 9, we consider two values of μ: μ = −4 meV, cor-
responding to the over-doped regime of the first dome, and
μ = −11 meV, corresponding to the under-doped regime of
the second dome. In the left panel we analyze the behavior
of �s

xy, as a function of Mz, and in the middle panel we draw
a similar plot, evidencing the dependence on Mx. Actually,
as shown in Fig. 9, at μ = −4 meV, there is an anisotropy
favoring the stability along the z-axis. O n the other hand,
as discussed above, the triplet pairing becomes stronger with
increasing density, and it systematically weakens the singlet
amplitudes. Moreover, the triplet order parameters are more
sensitive to the magnetic field along the z axis (as shown in
the right panel of Fig. 9) than to the one along the x axis.
Therefore, with increasing density, the anisotropy changes
drastically. In particular, at μ = 11 meV, the critical field
along z is less than 1 meV, while that along x becomes larger
than unity. Therefore the results are in qualitative agreement
with experimental data [34], where the anisotropy is more
marked. Indeed, even if the role of the triplet pairing can be
relevant to inducing anisotropy in the superconducting order
parameters, it is not enough to explain all the relevant features
found in LAO/STO-001 as a function of in-plane and out-of-
plane magnetic fields.

Finally, in the right panel of Fig. 9, we have carefully
analyzed also the behavior of the triplet pairing, as a function
of Mz, finding a remarkable linear dependence of the triplet
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order parameters, opposite for the two spin components: one
is enforced, the other one is weakened.

B. Clues of emergent topology in the presence of a magnetic field

We now focus on the possibility of topology in the presence
of a magnetic field. In these conditions, the breakdown of
the time-reversal symmetry makes the topology class of the
system to change from DIII to D. In two dimensions, the latter
class still allows nontrivial topology, still labeled by a Z index
(Z2 for 1D systems; in this case the precise calculation of the
related invariant has been performed in [25]). In this way, a
magnetic field can preserve the edge states that we discuss in
Sec. IV B.

Still analyzing the possible presence of edge states, we
find that topological properties are favored by an out-of-plane
magnetic field, but disfavored by an in-plane one. Indeed, they
are weakened with changing the orientation of the magnetic
field from the z to x axis, and there here are characteristic
angles (around π

4 ) where a topological phase transition takes
place. Eventually, for a sufficiently intense in-plane magnetic
field, one only gets trivial topological phases, in agreement
with Ref. [21].

In order to detect the chiral topological superconducting
phase when Mx is subrelevant, we consider again a lattice
with a finite size along the y axis. In this case, the increase
of Mz is able to induce a phase transition, as soon as it takes
a value of the order of the chemical potential, as measured
from the bottom of the subband: Mz >

√
μ̃2 + �2, where μ̃

is the chemical potential measure from the bottom of the η+
subbands, and � is the effective superconductive gap. Thus
the critical values to enter the topological phase depend in
general on U , V , and μ. In the upper and lower panels of
Fig. 10, we show the results obtained at V = 0, with only
the singlet pairing present. We remark that, in contrast with
the results of the previous Section at zero magnetic field,
now the topological phases can be driven by the singlet order
parameters only. We find that the chiral Majorana edge states
have a linear dispersion as a function of kx, and are quite

localized at the edge for small values of kx, similarly as in
Ref. [21]. As usual, with increasing kx, these states merge into
the bulk continuum.

Again the described picture can be understood in better
qualitative details by analyzing the effective Hamiltonians in
Eqs. (16) and (17), in analogy with the discussion at M = 0
in Sec. III A. Since the Zeeman term in Eq. (14) has the form
HM = I3x3 ⊗ M · σ , it is sufficient to add this term to H (eff )

0 ,
as described in the Appendix C [before Eq. (4)], in spite of
the fact that the zx and yz bands are mixed to yield the η0

band: this mixing is diagonal on the spin σ index. In Eq. (26),
the same added term results in the shift g(k) → g(k) + M,
losing explicitly the antisymmetry required by time-reversal
invariance [69].

A Zeeman term, H (z)
M = Mzσz, along the z axis, orthogonal

to the plane of our system, creates an effective unbalance
in the chemical potentials with respect to σ . This imbalance
is known to spoil the s-wave pairing �τ

s (as well as �τ
p,↑↓,

if present), leading to the normal phase, or at most to a
normal-superconductive mixed one (a secondary possibility
that we neglect, in the light of the stability of the p-wave
pairing, see below) [56–58]. This transition occurs, in the
low-pairing limit, around the value Mz = μ↑−μ↓

2 = �τ
s√
2
, the so

called Chandrasekhar-Clogston limit (strictly valid for per-
turbative Hubbard attractions) [56]. Concerning the triplet
pairings �t,↑ and �t,↓, they are spoiled asymmetrically by
the Mz term, mainly via the shift of the chemical poten-
tials μ↑,↓. In particular, if Mz > 0, μ↓ is decreased (at fixed
�t,↓). At a critical value of Mz, the condition μ↓ = 0 is re-
alized. Then, the topological phase with n↓ = −1 is driven
to a topologically trivial phase, still with p-wave pairing
(the strongly-coupled phase in Ref. [72]). At the point μ↓ =
0, a zero in the Bogoliubov gap is reached. The residual
topology from the ↑ contribution is encoded in the n↑ =
1 ∈ Z phase, belonging to the D class of the ten-fold way
classification.

A qualitatively similar phase evolution, determined by the
effective unbalances induced by Mz, is valid if the phases do
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FIG. 10. (Top) Bogoliubov spectrum for varying kx , V = 0 meV,
μ = 14 meV, and finite size Ly = 950 sites along the y axis. (Bottom)
Probability of the edge state as a function of the position (in units
of the lattice parameter a) for different values of kx (in units of
π/a). The value of Mz, inducing a topological phase transition (see
the main text), is smaller than the critical value suppressing the
self-consistent superconducting solutions.

not host a nontrivial topology, a possibility allowed by sym-
metry considerations only, and possibly occurring in certain
coupling regions, as mentioned in Sec. IV B.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the onset and the phys-
ical consequences of a singlet-triplet pairing in the two
dimensional electron gas at LAO/STO-001 interfaces. This
configuration looks rather natural a priori, due to the inver-
sion symmetry breaking term in the tight-binding Hamiltonian
of the system. We have made an extended superconducting
mean-field analysis of this multiband tight-binding Hamilto-
nian, as well as of effective electronic bands in the limit of
low values of the momentum. We have included static on-
site (favoring spin-singlet pairings) and intersite (promoting
spin-triplet order parameters) intraband attractive potentials
under applied magnetic fields. It is interesting to notice that

a singlet-triplet mixed pairing here results robust for extended
regions of the analyzed space of parameters.

We have found various interesting features, as a reduction
of the singlet order parameter, as a function of the charge
density, an asymmetric response to in-plane and out-of-plane
magnetic fields (a fact already observed experimentally [34]),
and the possibility on nontrivial topology and protected
edge states. In particular, nonlinear spin-orbit couplings and
intersite attractive interactions make stable a time-reversal
invariant topological helical superconducting phase in the ab-
sence of a magnetic field.

In this paper, we have discussed the interplay between
singlet and triplet order pairings in the clean limit. Effects
of dilute nonmagnetic impurities can affect the properties
of noncentrosymmetric superconductors [68]. For example,
the impurity effects on the critical temperature are similar to
those in multiband centrosymmetric superconductors. More-
over, Anderson’s theorem holds for singlet pairing [68,78].
Indeed, we expect that disorder effects can induce a reduction
of the triplet order parameters changing only quantitatively
the interplay between singlet and triplet pairings. This is the
reason why in the paper the focus has been on the properties
related to the singlet order parameters.

A natural development of the present work is the study
of the effective shape of the dome, that means the finite-
temperature dependence. We mention here that we also
performed mean-field calculations at finite temperature, find-
ing a first dome for the singlet order parameter, corresponding
with the η0 band, and with a shape qualitatively very simi-
lar to that reported in Ref. [6]. However, to achieve reliable
quantitative details, the inclusion of fluctuations beyond mean
field is required. On the same regard, we also mention a very
recent paper [13], where two-different purely s-wave phases
have been predicted around the optimal doping, where the crit-
ical temperature is maximized. The relation with the present
work surely deserves future attention. Other future general-
izations of the present work are aimed to include the effect
of the second term on the multiband potential in Eq. (18),
that is interorbital attractive potentials. Closely related, a rele-
vant issue consists of the possibility of nonzero-momentum
superconductive couplings between different η bands. This
feature extremely unlikely in translational invariant systems
[56–58], is known to be more stable in lattice systems, see,
e.g., Refs. [79–81].

Finally, we point out that effects due to unconventional su-
perconductivity can be confirmed not only by thermodynamic
properties but also by response properties such as the I-V
characteristics of Josephson junctions [7,36]. In quasi-one-
dimensional systems, notable properties can be deduced from
anomalous Josephson effects [82,83] and local spectroscopic
measurements [84]. These probes could be also used to disen-
tangle superconducting topological features from trivial ones
in the actual two dimensional case.
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APPENDIX A: HAMILTONIAN SYMMETRIES

In this Appendix, we discuss the symmetries of the normal
Hamiltonians in Eqs. (3) and (17), as well as the correspond-
ing Bogoliubov Hamiltonians with the pairing in Eq. (23)
added.

The normal Hamiltonians in Eqs. (3) (here considered at
vanishing Zeeman coupling HM) can be expressed in terms of
Gell-Mann matrices {λi}, acting on the on the τ index, times
the Pauli matrices acting on the spin index σ :

(a(k) I3x3 + b(k) λ3 + c(k) λ8) ⊗ I2x2

+ wSO (−λ2 ⊗ σz + λ5 ⊗ σy − λ7 ⊗ σx )

+ γ (sin kx λ5 ⊗ I2x2 + sin ky λ5 ⊗ I2x2), (A1)

the precise expressions for a(k), b(k), and c(k) being unim-
portant here. Exploiting now the property for the Pauli
matrices, {σi, σ j} = δi j , it is know immediate to prove
[Eq. (15)]:

H (k) = U −1
T H∗(−k)UT , UT = I3x3 ⊗ σy. (A2)

In the Nambu-Gorkov basis �(k) = ( c(k)
iσy c†(−k)

), c(k) = (c↑(k)
c↓(k)

),

H (k) is recast as follows:

H (k) → HBG(k) =
(

H (k) 02 x 2

02 x 2 −H (−k)

)
(A3)

so that UT becomes UT = I3x3 ⊗ I2x2 ⊗ σy, the second iden-
tity in the Kronecker product acting on the Nambu-Gorkov
indices. The normal effective Hamiltonian in Eq. (17) for
the η0 band, neglecting the out-of-diagonal contribution with
higher momentum power than one, reads (see the derivation
in Appendix C):

H (eff )
0 (k) = ( − 10.8 + 157.2 (k2

x + k2
y )

)
I2x2

− a3 kx σy + a3 ky σx. (A4)

with ε0(k) = ( − 10.8 + 157.2 (k2
x + k2

y )) meV (so that

t (eff )
0 = 157.2 meV) and a3 = 0.8 meV. It holds

H (eff )
0 (k) = Ũ −1

T H (eff )∗
0 (−k)ŨT , ŨT = σy, (A5)

ŨT = σy acting on the spin index, as σy in Eq. (A2). In the
Bogoliubov form, obtained as above for H (k), ŨT = I2x2 ⊗
σy.

The next step is to include the pairing in Eqs. (22) and (23).
We have to consider the three spin channels:

〈cτ
↓(k)cτ

↓(−k)〉 = ei φτ
↓↓ �τ

t,↓(kx − i ky), (A6)

〈cτ
↑(k)cτ

↑(−k)〉 = ei φτ
↑↑ �τ

t,↑(kx + i ky), (A7)

and

〈cτ
↑(k)cτ

↓(−k)〉 = ei φτ
↑↓ (�τ

s,↑
+�τ

t,↑[α (kx + i ky) + β (kx − i ky)]). (A8)

Two global phase factors between ei φτ
↑↓ , ei φτ

↑↑ , and ei φτ
↓↓ can

be reabsorbed overall via a phase redefinition of the fermionic
annihilation operators. However, even in this way the third
phase cannot be reabsorbed. This phenomenon a condensed
matter counterpart to (minimal model for) the CP ∼ T viola-
tion in particle physics, via chiral fermion condensation [85].
We choose to keep the phase factor ei φτ

↑↓ .
We notice that time-reversal invariance, interchanging the

spins, imposes �τ
t,↑ = �τ

t,↓, a result also found by the mini-
mization procedure of the mean-field free energy in the main
text. Dividing all the parameters in Eq. (A8) in real an imagi-
nary parts, it is useful to parametrize them as follows:

〈cτ
↑(k)cτ

↓(−k)〉 = (
�τ

1 + i �τ
2

) + (
�τ

3 + i �τ
4

)
kx

+ (
�τ

5 + i �τ
6

)
ky. (A9)

Therefore, for each τ band, we obtain for the 4 x 4 pairing
block Hamiltonian H τ

�(k) of the total one H�(k):

H τ
�(k) = �τ

1 (σx ⊗ I2x2) + �τ
2 (σy ⊗ I2x2)

+ (
�τ

1 kx + �τ
1 ky

)
(σx ⊗ σz )

− (
�τ

2 kx + �τ
4 ky

)
(σy ⊗ σx ). (A10)

Imposing now time reversal invariance of the total multiband
Hamiltonian HBG(k) + H�(k) [see Eq. (A3)],

HBG(k) + H�(k) = V −1
T

(
H∗

BG(−k) + H∗
�(−k)

)
VT , (A11)

we immediately obtain that it must hold

VT = UT = I3x3 ⊗ I2x2 ⊗ σy, (A12)

and importantly �2 = �4 = �6 = 0. That means that all the
pairing couplings in Eqs. (A6)–(A8) must be real, as claimed
in the main text. At this point is straightforward to obtain that
HBG(k) + H τ

�(k) is also invariant under charge conjugation:

HBG(k) + H�(k) = −U −1
C (H∗

BG(−k) + H∗
�(−k))UC,

with UC = I3x3 ⊗ σy ⊗ σy. (A13)

A further symmetry of the Bogoliubov Hamiltonian
[(HBG(k) + H�(k)] is the chiral symmetry

HBG(k) + H�(k) = U −1
S (H∗

BG(−k) + H∗
�(−k))US,

US = UT UC = UC UT , U 2
S = I12x12, (A14)

composed by the product of time- and charge-conjugation
symmetries. Chiral symmetry does not change the topology
class of the Bogoliubov Hamiltonian, remaining DIII.

APPENDIX B: SETTING THE PAIRING ANSATZ

On a general lattice, the mean field approach to super-
conductivity proceeds identifying all the possible pairings
corresponding to the irreducible representations of the point-
group symmetry of the lattice: the ansatzs for the pairings
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are expressed in terms of them [51]. This procedure is anal-
ogous to the expansion in terms of spherical harmonics in the
isotropic, SO(3) invariant, free space.

The spectra in Eq. (5), in the absence of the spin-orbit and
inversion terms in Eqs. (11) and (13), display a D2 point group
symmetry [86]. However, due to the presence of the latter two
terms, in order to implement the mean field approach, we have
still to assume all the pairings allowed by the symmetry of the
isotropic square lattice. This lattice has (finite) point group
symmetry D4, containing D2 and composed by the group C4

of the rotation of angles θn = n π
2 , n = 0, . . . , 3, and by the

reflections around one (vertical or horizontal) axes (see, e.g.,
Ref. [86]).

In this case, the basis functions labeling the irreducible
representations which the eightfold regular representation de-

composes in, are k2
x + k2

y , k2
x − k2

y , kxky, (kx
ky

). The first three

(parity even) functions, together with the constant c, can be
assumed as a basis for the spin-singlet pairings, while the (par-
ity odd) doublet can be assumed as a basis for the spin-triplet
pairing. Summing up, the superfluid pairing can be generally
assumed as:

� = �s,0 + �s,1 m(|k|) + �s,2 f (|k|) k2
x − k2

y

|k|2
+ �s,3 g(|k|) k̂xk̂y + �t h(|k|) (k̂x + ik̂y), (B1)

plus possible powers of these terms (required, e.g., in the
presence of a strong cubic Rashba-coupling, as in Ref. [53]).
Notice however that pairings involving higher powers than
1 should be less relevant around kx = ky = 0. Both in the
effective theories for ε− and ε0 bands, it is expected that the
spin-orbit interaction (including the relevant nonlinear correc-
tions) plays a critical role in determining the pairings that set
in. The effect of a linear spin-orbit coupling has been studied
in Ref. [35], where a mixing (singlet-triplet and s-p wave) has
been identified. The same situation could be expected here.
However, the nonlinear spin-orbit couplings could change the
picture.

APPENDIX C: DERIVATION OF THE EFFECTIVE
THEORIES IN EQS. (16) AND (17)

In order to probe the presence of non-BCS pairings, sug-
gested by recent works, it is useful to restart considering the
structure of the εyz, εzx, and εxy bands (in the absence of
Zeeman couplings), as well as the real bands ε+,i, ε0,i, and ε−,i

(in the following we will neglect the degeneracy index i, for
sake of brevity) resulting from the mixing of them, according
to the Hamiltonian in Eq. (3). The plots of them are given in
Fig. 1.

It is clear that the mixing of the εyz, εzx, and εxy is relevant
only around their band-touching points, around the momenta
kx = ky = 0 and kx = k0 ≈ ±0.35, ky = 0, as expected from
the low ratios γ

t1
and �so

t1
in Eq. (3). Clearly, the importance

of the same mixing relatively to the three bands depends on
which ones are touching each others: around kx = 0, the bands
εyz, εzx undergo an important mixing, while around the point
kx = k0, ky = 0 (kx = 0, ky ≈ ±0.35), the bands εzx, and εxy

(εyz, and εxy) do.

We focus first around the point kx = ky = 0. In this region,
due to the relatively small ratios λ1 = γ

Et
= 0.4 and λ2 =

�so
Et

= 0.2 effective expressions can be obtained for ε+, ε0, and
ε−, exploiting second-order perturbation theory (in standard
notation):

En(λ) = E (0)
n + λ2

∑
k �=n

|〈k(0)|V |n(0)〉|2
E (0)

n − E (0)
k

+ O(λ3), (C1)

and, in the presence of two perturbations λ1 V1 and λ2 V2:

En(λ) = E (0)
n +Et

2
∑

i

λ2
i

∑
k �=n

|〈k(0)|Vi|n(0)〉|2
E (0)

n − E (0)
k

+ Et
2 λ1λ2

∑
k �=n

(
〈k(0)|V1|n(0)〉〈n(0)|V2

∣∣k(0)
0

〉
E (0)

n − E (0)
k

+ H.c.

)

+ O(λ3). (C2)

1. Lower band

We start with the derivation of the effective theory for the
η− band. Exploiting Eq. (C2), the couplings of εxy with εyz

and εzx, included perturbatively, yields to

H (eff )
− =

(
εxy + Et

2 λ2
1 sin2 kx + λ2

2

εxy − εyz
+ Et

2 λ2
1 sin2 ky + λ2

2

εxy − εzx

)
I

+ 2 Et
2 λ1 λ2

(
σy sin kx

εxy − εyz
− σx sin ky

εxy − εzx

)
+ O

(
λ3

i

)
,

(C3)

and, expanding in powers of kx and ky:

H (eff )
− (k) = ε−(k) I − (

a1 kx + a2 k3
x

)
σy + (

a1 ky + a2 k3
y

)
σx,

(C4)

with a1 = 8 meV (in units of the lattice step a ≡ 1), a2 =
43.46 meV, ε−(k) = ( − 54.0 + 280.8 (k2

x + k2
y )) meV (so

that t (eff )
− = 280.8 meV). The spectrum of the effective Hamil-

tonian in Eq. (C4), compared with the exact one, is shown in
Fig. 11. The agreement is excellent around kx = ky = 0.

2. Central band

The derivation of the effective theory for the η0 band is
more subtle. Indeed, the εyz, εzx are degenerate at kx = ky = 0,
then before applying second-order perturbation theory, some
elaboration of the Hamiltonian (3) is required. In particular,
we notice that HZ (k) in Eq. (13) do not mix εzx with εyz.
Therefore we start diagonalizing exactly the partial Hamilto-
nian H0(k) + HSO in the subspace εzx with εyz, by a unitary
transformation O = diag(O2x2, 1)). This transformation does
not mix the spins, therefore O can ne also written as O =
Õ2x2 ⊗ I2x2. In this way, we obtain

H ′
0 + H ′ (rid)

SO =
⎡
⎣εa I 0 0

0 εb I 0
0 0 εxy I

⎤
⎦ , (C5)

with εa < εb around kx = ky = 0. At this level, the spins get
mixed each others. The bands εa, εb, and εxy are coupled
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FIG. 11. Comparison of the exact bands from Eq. (1) (black
lines) with the bands of the effective Hamiltonians in Eqs. (16) and
(17) (dashed lines).

further by the terms from HSO and HZ (k), rotated by O:

H ′
0 + H ′

SO + H ′
Z =

⎡
⎣εa I 0 V

0 εb I W
V † W † εxy I

⎤
⎦, (C6)

where

V (k) ≡ V =
[

a(k) b(k)

−b∗(k) a(k)

]
(C7)

is the matrix mixing the εa and εxy bands, while W is the ma-
trix mixing εb and εxy. The precise expressions for its elements
are rather involved and not immediately relevant here. No fur-
ther coupling between εb and εa occurs from HSO and HZ (k).

The effect of V and W is introduced perturbatively, as
above, obtaining for εa:

H (eff )
0 = εa I + 1

εa − εxy

[|a(k)|2 + |b(k)|2 −a(k)b(k) + a∗(k)b(k)

−a∗(k)b∗(k) + a(k)b∗(k) |a(k)|2 + |b(k)|2
]

(C8)

Expanding all these expressions around kx = ky = 0, we obtain approximately (and up to momentum powers bigger than 3):

H (eff )
0 (k) =

[
ε0(k) a3 (ikx + ky) − a4 (ikx − ky)3 − a5 kxky(kx + iky)

a3 (−ikx + ky) + a4 (ikx + ky)3 − a5 kxky(kx − iky) ε0(k)

]
, (C9)

with a3 = 0.8 meV, a4 = 8.627 meV, a5 = 22.8 meV, and
ε0(k) = ( − 10.8 + 157.2 (k2

x + k2
y )) meV (so that t (eff )

0 =
157.2 meV). We see that the dispersion is very close to that
before the perturbative mixing. The spectrum of the effective
Hamiltonian in Eq. (17), compared with the exact one, is
shown in Fig. 11. The agreement is excellent around kx =
ky = 0.

Adding a Zeeman term as in Eq. (14) is rather straightfor-
ward. Indeed, since the Zeeman term in the same equation has
the form HM = I3x3 ⊗ M · σ , it is sufficient to add the term
M · σ to H (eff )

− .
The same situation is realized for H (eff )

− , since, as we de-
scribed before Eq. (C5), the matrix O, mixing the zx and yz
bands, is diagonal in the spin index σ , O = Õ2x2 ⊗ I2x2. In
Fig. 11, we compare the exact bands from Eq. (1) with the
bands of the effective Hamiltonians in Eqs. (16) and (17).

APPENDIX D: ADDITIONAL PAIRINGS

In this Appendix, we discuss additional pairings which
could be considered in the system.

In Eq. (19), an intersite attraction between particles with
opposite spins can be included, as well. Correspondingly, we
considered also a triplet term related to a pairing between
opposite spins. However, the self-consistent solution of the
superconducting phase showed that this term is always zero
in the range of U and V that we have considered in this paper.
Actually, in the triplet pairing representation, this term would
correspond to a vector dz(k), which comes out to vanish. This
is quite typical of two-dimensional superconductors with in-
plane spin-orbit coupling [67,87], such as the one we consider

here, while an out-of-plane spin-orbit coupling tends to favour
a nonzero dz. That dz(k) = 0 can be already inferred from
Eq. (17). Indeed, in Ref. [67], it has been shown that the
superconducting transition temperature is maximized when
the spin-triplet pairing vector d (k) [see Eq. (23)] is aligned
with the polarization vector g(k) parametrizing the spin-orbit
coupling [HSO(k) = g(k) · σ ]. For H (eff )

0 (k) in Eq. (17) (ne-
glecting the out-of-diagonal terms with power in the momenta
higher than one, subleading around k = 0), we have

H (eff )
0 (k) ≈ ε0(k) I2x2 + g1(k) σx + g2(k) σy, (D1)

with g1(k) = 0.8 kx and g2(k) = −0.8 ky, and g3(k) = 0.
Therefore it is expected that dz(k) = 0.

Finally, it is worth commenting on the fact that, strictly
speaking, we make the ansatz in Eq. (20) for the unrotated
τ bands. However, the same ansatz can be adopted at least
for the low-density regime of the η− and especially η0 bands,
the latter doublet being the regime where superconductivity is
postulated [6]. Indeed, around k = 0, one gets (see Appendix
C for details),

η0,σ (k) = α(yz),σ (k) c(yz),σ (k) + α(zx),σ (k) c(zx),σ (k), (D2)

with τ = (yz, zx):

|ατ,σ (k → 0)| = 1√
2

+ O
(
k2

x

) + O
(
k2

y

)
. (D3)

Therefore, since the same mapping is also diagonal in σ , it
preserves, up to phases, the structure of the s-p pairing (at
most linear in the momenta), at least around k = 0. This be-
havior is even strengthened for the η− band, that results from
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FIG. 12. Singlet (left) and triplet (right) pairing amplitudes (in meV) for the τ = zx bands, as a function of the chemical potential (in meV).
The attractive couplings in Eq. (19) are set as U = 350 meV and V

2 = 290 meV.

the mixing around k = 0 of the xy bands with the others: in
fact, this mixing is suppressed by the energy gap Et in Eq. (5).

It is also worth stressing that we do not add a spin-singlet
intersite contribution. Indeed, our analysis focuses on the
regime of low filling, where the occupied electronic states
are close to k = 0. In the small momentum limit, the spin-
singlet intersite term would give rise to extended s-wave order
parameter (ruled by a sum of cosines of the momentum) which
would result in just a subleading additive contribution to the
standard s-wave parameter induced by on-site attractive terms.
Therefore we neglected it, adding instead the leading nonzero
contribution with equal spins (that is also more relevant once
one turns on a magnetic field).

APPENDIX E: EFFECTS OF INVERSION-SYMMETRY
BREAKING TERM

In Sec. IV of the main text, we have found a large regime
for U and V , where triplet and singlet pairings coexist in the
first dome. Then we inferred that this mixing, allowed by V ,
stems from the parallel contributions of the spin-orbit term in
Eq. (11) and of the inversion breaking one in Eq. (13). Indeed,
at the effective level, they result together in the Rashba-like

coupling of Eq. (17), known to induce a mixing of pairings
with different parity [35]. More in detail, in the same regime
of energies, the contribution of Eq. (11) is dominant on that
of Eq. (13) (vanishing at k = 0), a fact can be inferred also in
the direct construction of Eq. (17).

It is important to investigate directly this effect of the
spin-orbit term in Eq. (11) on the mixing of the pairings.
For this purpose, we repeat the mean field procedure per-
formed above, switching off the same term. In the resulting
Fig. 12, again at fixed U = 350 meV, V

2 = 290 meV, and
μ = −9 meV, it appears clear that Eq. (11) collaborates to
enforce the triplet pairing, correspondingly lowering the sin-
glet component. However, this effect does not look critical,
changing the previously found behaviours only quantitatively.
Therefore the major role to the singlet-triplet mixing seems, in
the analyzed regimes, to result from the V term of the potential
in Eq. (19), even for chemical potentials close to the Lifshitz
point where the first dome starts. In turn, the V term can be
ascribed to the relatively low charge densities at the location
of the dome. For these reasons, similar results are obtained at
higher chemical potentials going from the first to the second
dome. We ascribe the present result to the ability, described
in Sec. III, of the mean-field approach to grasp the interplay
between singlet and triplet components.
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