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The long-standing quest to determine the superconducting order of Sr2RuO4 (SRO) has received renewed
attention after recent nuclear magnetic resonance (NMR) Knight shift experiments have cast doubt on the
possibility of spin-triplet pairing in the superconducting state. As a putative solution, encompassing a body of
experiments conducted over the years, a (d + ig)-wave order parameter caused by an accidental near degeneracy
has been suggested [S. A. Kivelson et al., npj Quantum Mater. 5, 43 (2020)]. Here we develop a general
Ginzburg–Landau theory for multiband superconductors. We apply the theory to SRO and predict the relative size
of the order parameter components. The heat capacity jump expected at the onset of the second-order parameter
component is found to be above the current threshold deduced by the experimental absence of a second jump.
Our results tightly restrict theories of d + ig order, and other candidates caused by a near degeneracy, in SRO.
We discuss possible solutions to the problem.
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I. INTRODUCTION

26 years ago the layered perovskite Sr2RuO4 (SRO) was
found to harbour unconventional superconductivity below the
modest critical temperature Tc ≈ 1.5 K [1]. Its superconduct-
ing order was widely believed to be chiral p wave [2]. This
belief was primarily rooted in the absence of a drop in the
nuclear magnetic resonance (NMR) Knight shift [3], and the
indications of time-reversal symmetry breaking (TRSB) found
in muon spin relaxation [4] (μSR) and Kerr rotation [5] exper-
iments. Chiral p-wave superconductors open the possibility of
hosting Majorana zero modes which have intriguing applica-
tions to topological quantum computation [6].

Over the years, the number of experimental results not
conforming with the chiral p-wave hypothesis have accumu-
lated [7]. Among observations difficult to explain within the
chiral p-wave paradigm are indications of gap nodes inferred
from heat capacity [8,9], heat conductivity [10] and scanning
tunneling microscopy measurements (STM) [11], and the ab-
sence of a Tc cusp under uniaxial strain [12,13]. A peak in
the accumulated evidence was reached when the NMR Knight
shift experiment was repeated [14,15], now finding a substan-
tial reduction in the spin susceptibility at low temperature.
This has launched a renewed focus on the compound, both
experimentally [16–21] and theoretically [22–32].

The new NMR experiments [14,15] appear reconcilable
with a number of even-parity pseudospin singlet order pa-
rameters and possibly the helical p-wave pseudospin triplet
order parameters. However, the options are being narrowed
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down as thermodynamic shear elastic measurements [19] and
μSR [18] suggest that the superconducting order is likely
two-component, at least at temperatures well below Tc. A
very recent NMR experiment at low magnetic fields casts
further doubt on odd-parity order [20] (restricting any spin-
triplet component to be �10% of the primary component),
leaving pseudospin-singlet pairing as the most likely scenario.
Recently, two putative solutions to the long-standing puzzles
have been proposed.

A chiral d-wave order parameter (irreducible representa-
tion (irrep.) Eg of D4h in the group theory nomenclature)
could explain TRSB and the observed jump in the shear elas-
tic modulus c66 [19]. Indeed, the behavior of Tc and TTRSB

under both hydrostatic pressure and La substitution [33] is
similar, suggesting a symmetry protected degeneracy such as
this one. It was shown that a chiral d wave can be stabilized
by including certain kz-dependent spin-orbit coupling (SOC)
terms at sufficiently large Hund’s coupling [26]. However,
the prevailing belief has been that the material is effectively
two-dimensional (2D) [7,34], a belief which has recently
been examined and to some extent confirmed [22,24,35]. Fur-
thermore, the horizontal line node that the dxz + idyz order
possesses, would likely conflict with the experimental evi-
dence of vertical line nodes [10,11].

Another possibility, solving the latter issue, is an accidental
(near-)degeneracy between a dx2−y2 and gxy(x2−y2 )-wave order
parameter [28]. This scenario has the potential of explaining
both features of the temperature versus strain phase diagram,
indications of TRSB, vertical line nodes, and the shear elastic
modulus jump. However, although various theories find d-
wave order as the leading instability [22–24,27,30], an exotic
g-wave order becoming competitive currently lacks support
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from calculations using the relevant band structure. Moreover,
an accidental near degeneracy would imply the presence of
a secondary, possibly small, heat capacity jump at a tem-
perature TTRSB < Tc. Despite intensive search for a second
jump in high-precision measurements [16], such an observa-
tion remains elusive. On the other hand, such a secondary
heat capacity jump has been observed for the multicomponent
superconductor UPt3, which is believed to have chiral f -wave
order [36–38].

Here we address the feasibility of a d + ig order parameter
in SRO by taking on a microscopic perspective to discuss
the heat capacity anomaly. We first develop the framework
for a general multiband, multicomponent Ginzburg–Landau
(GL) theory where the expansion coefficients depend on the
band structure. Our theory reduces to that of Gor’kov [39]
for quadratic bands and a single-component s-wave order
parameter. Using band and gap structures applicable to SRO
we find, by numerical minimization of the free energy, that the
g-wave component prefers to have a magnitude of about 71%
of the d-wave component at low temperature. We calculate
the expected secondary heat capacity jump and evaluate it
numerically as a function of the order parameter component
sizes. The results predict a second jump larger than what is
seen experimentally, meaning fine tuning would be required in
any possible d + ig scenario. The same conclusion is reached
for other near degeneracy options.

Finally, variations of the general theory developed here
could also prove to have applications to exotic (chiral) super-
conductors [40] outside the scope of SRO, like FeAs-based
systems [41], UTe2 [42,43], and URu2Si2 [44,45].

II. THEORY: MULTIBAND GINZBURG–LANDAU

In this section, we develop a generic expansion of the free
energy in the order parameter close to the critical temperature
for a multiband superconductor. We initiate the approach for
a general multi-component order parameter on the lattice. We
vindicate the theory in the case of a single-component s-wave
order parameter for quadratically dispersing bands, for which
we reproduce well-established results [39]. Then we consider
the case of two nearly degenerate pseudospin singlet order
parameter components.

A. General formalism

We start with a single-particle tight-binding Hamiltonian
in orbital/spin space. Due to the presence of spin-orbit cou-
pling we transform to the band/pseudospin basis in which the
Hamiltonian is diagonal,

HN =
∑
μ,σ,p

ξμ(p)c†
μσ (p)cμσ (p). (1)

Above, ξμ(p) is the dispersion of band μ (μ = α, β, γ in
the case of SRO), and σ =⇑,⇓ denotes pseudospin, with σ̄

being the opposite pseudospin of σ . The sum over p runs over
the first Brillouin zone. c†

μσ (p) creates an electron in band μ

with pseudospin σ . See Appendix B for further details of the
noninteracting Hamiltonian. In this work, we choose to focus
on pseudospin singlet pairing. The pseudospin singlets that
we find will have a spin-triplet component, which, however,

TABLE I. One-dimensional, even-parity (pseudospin singlet) ir-
reducible representations of the tetragonal point group D4h [46].
Lattice harmonics of order parameters are listed in the Balian–
Werthamer basis [47], �σσ ′ = [id0(θ )σy]σσ ′ , where θ is the polar
angle (2D) [48].

Irrep. Name Lattice harmonics of d0(θ )

A1g s′ ∑∞
n=1 an cos(4nθ )

A2g gxy(x2−y2 )

∑∞
n=0 bn sin([4n + 4]θ )

B1g dx2−y2
∑∞

n=0 cn cos([4n + 2]θ )

B2g dxy
∑∞

n=0 dn sin([4n + 2]θ )

is small.1 We shall consider the pseudospin-singlet Cooper
pairing terms HSC as perturbations to the normal-state Hamil-
tonian HN close to the critical temperature, where

HSC =
∑
μ,σ,a

∑
p

[�aμ(p)c†
μσ (p)c†

μσ̄ (−p) + H.c.]. (2)

Here, �aμ(p) is the pseudospin-singlet order parameter of
band μ corresponding to irrep. a. The sum over p runs over
the Fermi surface sheet |ξμ(p)| < ωc ∼ kBT , where ωc � W
is an electronic cutoff small compared to the bandwidth W .
Considering only intraband terms is justified if the supercon-
ducting gap is small compared to the energy separation of the
bands at the Fermi level, which indeed is satisfied in SRO
where these energy scales are on the order of 0.5 meV [11] and
100 meV [35], respectively. We shall focus on the tetragonal
point group D4h, for which the relevant one-dimensional irreps
are listed in Table I and visualised in Fig. 1.

Proceeding with the Ginzburg–Landau (GL) approach we
expand the free energy density in the (multicomponent) or-
der parameter close to the critical temperature [39] (see also
Refs. [27,41,49–53]). We assume that the critical temperature

1As mentioned in Introduction, new NMR measurements [20],
going down to magnetic fields of B < 0.2Bc2 at T = 25 mK, have
constrained any spin-triplet component to be less than about 10%
of the spin-singlet component. The size of the spin-triplet compo-
nent in the pseudospin singlets is dictated by the strength of the
spin-orbit coupling [λ in Eq. (B2)] in the transformation cas(p) =∑

μ,σ uμσ
as (p)cμσ (p), where uμσ

as (p) is an eigenvector component of
hs(p) in Eq. (B2).

FIG. 1. Symmetries of the even-parity order parameters in chan-
nel (a) A1g, (b) A2g, (c) B1g, and (d) B2g. The black lines display the
Fermi surface applicable to the three-band case of Sr2RuO4, where
the three bands are denoted by α, β, and γ . The Fermi surface is
obtained using tight-binding parameters listed in Appendix B, as
extracted from density functional theory [13,54].
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FIG. 2. The pseudospin-singlet Cooper pair operator shown dia-
grammatically as a two-fermion composite operator.

of the order parameter in irrep. a is Tca. As the superconduct-
ing phase is entered, the corrections to the normal state free
energy, �F = FSC − FN, are caused by the superconducting
terms of Eq. (2). The corrections can be evaluated using the
Gibbs average of the S matrix [39,55,56],

�F = −T ln〈S〉, (3)

S = Tτ exp

(
−

∫ β

0
dτ HSC(τ )

)
, (4)

where β = 1/T (with kB = 1), τ = −iβ is imaginary time,
and Tτ is the time-ordering operator. The loop expansion of
�F , involving only connected diagrams, is given by

�F = −T (〈S〉c − 1)

≈ T

2!

∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ [HSC(τ1)HSC(τ2)]

〉
c

+ T

4!

∫ β

0
dτ1 · · ·

∫ β

0
dτ4 〈Tτ [HSC(τ1) · · · HSC(τ4)]〉c.

(5)

Pictorially this consists of closed connected diagrams with
only external � legs produced by combinations of the Feyn-
man diagram of Fig. 2.

To calculate the first and second terms of Eq. (5) for a
weakly coupled superconductor (which is valid near the criti-
cal temperature), bare Green’s functions are introduced as [52]

Gμ(p, τ1 − τ2) = −〈Tτ cμ⇑(p, τ1)c†
μ⇑(p, τ2)〉. (6)

This can be expressed in the Matsubara representation:
Gμ(p, ωn) = 1/(iωn − ξμ(p)), with fermionic Matsubara fre-
quencies ωn = π

β
(2n + 1) for integer n. We evaluate the

second and fourth-order contributions of Eq. (5), with corre-
sponding diagrams shown in Figs. 3(a) and 3(b), and find the
free energy, �F = �F (2) + �F (4),

�F =
∑

μ

(∑
a,p

αaμ(p, T )|�aμ(p)|2

+
∑
ai,pi

β{ai}μ({pi}, T )�∗
a1μ

(p1)

× �∗
a2μ

(p2)�a3μ(p3)�a4μ(p4)

)
, (7)

αaμ(p, T ) = −T
∑

n

Gμ(p, ωn)Gμ(−p,−ωn)

+ Tca

∑
n

Gμ(p, ωn)Gμ(−p,−ωn)|T =Tca , (8)

β{ai}μ({pi}, T ) = T

2
fa1a2a3a4δp1,p3

δp1,p4
δp2,p3

δp2,p4

×
∑

n

Gμ(p1, ωn)Gμ(p2, ωn)

× Gμ(−p3,−ωn)Gμ(−p4,−ωn), (9)

fa1a2a3a4 ≡ δa1a3δa2a4+δa1a4δa2a3+δa1a2δa3a4 − 2δa1a2δa2a3δa3a4 .

(10)

In αaμ(p, T ), we subtracted off the contribution evaluated
at Tca to ensure that �F has a well-defined minimum for
T < Tca.

B. Specific limit

In this section, we consider a specific limit of the ex-
pression for the free energy derived above, and we verify
previously-established results in this limit. The details are
listed explicitly in Appendix A, we summarize the results
here.

To verify the theory we consider the simplifying case of
(i) assuming a single-component s-wave order parameter and
(ii) quadratic bands in two dimensions. The assumption (i)
amounts to setting �aμ(p) = �A1gμ ≡ �μ. This allows us to
pull the order parameters in Eq. (7) outside the p sums and
perform the Matsubara sums analytically. The resulting func-
tions are sharply peaked around the Fermi surface, and the p

FIG. 3. (a) Second-order and (b) fourth-order diagrams contributing to the free energy of Eq. (5). The algebraic expressions corresponding
to -(a) and (b) are given in Eqs. (8) and (9), respectively. The single-component, quadratic band case resulting in Eqs. (12) and (13) corresponds
to fixing a1 = a2 = a3 = a4 = A1g here.
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sums can be converted to integrals which can be evaluated in
closed form for quadratic bands. The final result for quadrati-
cally dispersing bands, ξμ(p) = p2/(2mμ), is

�F =
∑

μ

(α̃μ(T, Tc)|�μ|2 + β̃μ(T )|�μ|4), (11)

α̃μ(T, Tc) = ρμ

2

(
T

Tc
− 1

)
, (12)

β̃μ(T ) = ρμ

T 2

7ζ (3)

32π2
, (13)

with ρμ = V mμ/(2π ) being the density of states, ζ is the Rie-
mann zeta function, and where we assumed that T/Tc − 1 �
1. This is equivalent to the result of Gor’kov [39].

In the more general case, we assume that �aμ(p) =
�0

a�aμ(p). Here, �aμ(p) are normalized order parameters
belonging to irrep. a of the crystal point group, and �0

a are
the amplitudes of a given irrep, which are the variational
parameters over which we want to minimize our free energy.
We note that these variational parameters do not depend on
the band label μ since the relative amplitude of the gaps of a
given irrep on the different bands is assumed fixed in �aμ(p).
The free energy becomes

�F =
∑

a

α̃a(T, Tca)
∣∣�0

a

∣∣2 +
∑

ai

β̃{ai}(T )�0∗
a1

�0∗
a2

�0
a3

�0
a4

,

(14)

where the expressions for the GL coefficients α̃a and β̃{ai} are
found in Appendix A.

III. APPLICATION TO SRO

In this section, we apply the theory developed in Sec. II
to the multiband case of SRO. In Sec. III A, we calculate the
temperature-dependent order parameter weights. This is con-
trasted with the calculation of Sec. III B, where we estimate
the heat capacity jump expected at the onset of a second-order
parameter component as a function of the two component
sizes.

A. The relative order parameter weight

To minimize the free energy of Eq. (7), we employ the
gap ansätze listed in Tab. I. Specifically, we fit the ansätze
to the order parameters resulting from the microscopic weak-
coupling RG calculation of Ref. [24], thereby including order
parameter anisotropies expected for SRO (see Appendix D
for details). For the band structure we work with a (2D)
three-band model (which includes spin-orbit coupling), based
on density functional theory [13,54]. This model is presented
in Appendix B. We feed in the band structure of the α, β,
and γ bands and evaluate Eqs. (8) and (9) numerically us-
ing Monte-Carlo integration with the two-parameter theory
�F [{�0�aμ(p), i�0X�bμ(p)}] ≡ �F [�0, X ]. The function
�F [�0, X ] is minimized over the two scalar arguments: the
overall gap size �0 and the relative weight X as a function
of temperature. In the two-parameter theory, the d + ig hy-
pothesis is addressed by specifying a = B1g and b = A2g. In
addition to Ref. [24], several other RG calculations have been
performed [23,26,57–61], finding slightly different competing

FIG. 4. The weight X (T ), with an order parameter of the form
�(p) = �0(T )[�B1gμ(p) + iX (T )�A2gμ(p)] for Tc1 = 1.48 K and
Tc2 = 1.44 K. This result is obtained using the GL coefficients
Eqs. (A16) and (A17).

order parameters. However, one should not expect the shape
of �aμ(p) for a given a and μ to be vastly different in the
multiple different approaches.

The resulting form of X (T ) determined from minimization
of �F is shown in Fig. 4, employing a realistic three-band
dispersion described in Appendix B, with the corresponding
Fermi surface shown in Fig. 1. The value of X quickly
tends to a value >0.6 as the temperature is lowered through
TTRSB < Tc2.

B. The heat capacity anomaly

In a recent μSR experiment [18], two temperature scales
were probed under uniaxial strain: Tc and TTRSB as determined
from the heat capacity jump and the abrupt change in the
muon spin relaxation rate, respectively. The results indicate
that (i) there is a sharp onset of TRSB at TTRSB � Tc (with
TTRSB/Tc ≈ 0.94 when averaged over four samples) and (ii)
that the two temperatures split increasingly under uniaxial
strain.

However, measurements of the heat capacity resolved un-
der uniaxial strain did not observe any secondary heat capacity
jump, as would be expected with the onset of a second-order
parameter component [16,18,62]. This resulted in the exper-
imental bound, deduced from the measurement resolution
[16,18], that any secondary jump would have to be less than
about 1/20 of the primary one (which is �C/(γnTc) ≈ 0.74 ±
0.02 where γn = C/T is evaluated in the normal state [8]).

In this section, we incorporate the above constraints by
assuming that Tc = Tc1 = 1.48 K and Tc2 = 1.44 K, and we
emphasize that the results remain fairly insensitive to small
variations in TTRSB: X (T → 0) changes by less than 3% if Tc2

is reduced to 1.40 K. The height of the two heat capacity peaks
relative to each other is hence not affected by the choice of
TTRSB. However, the precise value of TTRSB is important for the
comparison between theory and experiment. If Tc and TTRSB

are too close, the separate peaks cannot be distinguished. The
application of uniaxial strain along the a axis may help in
separating these two temperatures (cf. Ref. [16]). Even in this
case, only one heat capacity jump is observed (cf. Ref. [18]).
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The heat capacity is evaluated with

C(T ) = 2
∑

μ

∑
p

Eμ(p)
df [Eμ(p)]

dT
, (15)

with quasiparticle energies Eμ(p) = (ξμ(p)2 + |�μ(p)|2)
1
2

and f (z) = (1 + exp(βz))−1 denoting the Fermi function. As-
suming that the order parameter takes the form

�(p) = �0,a(1 − T/Tc)
1
2 �a(p),

+ i�0,b(1 − T/TTRSB)
1
2 �b(p) (16)

(where band indices are suppressed) leads to the following
expressions for the ratio of the secondary (T = TTRSB) to the
primary (T = Tc) heat capacity jump [28]:

η = �C

TTRSB

∣∣∣∣
T =TTRSB

/�C

Tc

∣∣∣∣
T =Tc

=
(

�0,b

�0,a

Tc1

TTRSB

)2 〈|�b(p)|2I (p)〉FS〈|�a(p)|2〉FS

, (17)

I (p) =
∫ ∞

0
du (cosh[(u2 + z(p)2)

1
2 ])−2, (18)

z(p) = �0,a�a(p)(1 − TTRSB/Tc)
1
2 /(2TTRSB). (19)

Here the Fermi surface average is evaluated as 〈 f 〉FS =
1∑
ν ρν

∑
μ

∫
Sμ

d p
(2π )2

f
vμ(p) , where vμ(p) = |∇ξμ(p)| is the Fermi

velocity, ρμ is the density of states [see Eq. (B6)], and where
the integral runs over Fermi surface sheet Sμ.

A color plot of η for the d + ig scenario (a = B1g and
b = A2g) is shown in Fig. 5 along with the current experimen-
tal threshold, η � 0.05 [16,19]. For the order parameters, we
use those obtained in Ref. [24], as well described by the three
leading lattice harmonics listed in Appendix D. In Fig. 5(b),
we display the expected specific heat anomaly for parameters
close to the experimental threshold, and in Fig. 5(c), we show
the specific heat for the GL solution of Sec. III A.

The results suggest that the order parameter of Eq. (16)
appears consistent with experiments [16,19] when �0,A2g �
0.6�0,B1g . This should be compared with the results of mini-
mizing the GL theory in Fig. 4, for which �0,A2g ≈ 0.71�0,B1g

and the second heat capacity jump is greater than the exper-
imental threshold. The result indicates that, in order to be
consistent with experiment, a second-order parameter com-
ponent would need to be smaller than that predicted with our
theory. Details of the heat capacity calculation are listed in
Appendix E.

We note that TTRSB is not well-known from experiments.
However, the size of the jump found in our theory is relatively
independent of TTRSB. The importance of the value of TTRSB is
that if it is too close to Tc, then the two heat capacity jumps
will not be able to be resolved in experiments. We note that
when strain is applied, the difference between Tc and TTRSB

increases [18]. However, even under applied strain, no second
heat capacity jump is observed [16]. Our formalism can be
extended to the strained case by using the appropriate band
structure and band gaps—we leave this to future work.

FIG. 5. Heat capacity anomaly for a B1g + iA2g order parameter
in SRO. (a) Contour lines for the ratio of the second heat capacity
jump to the primary heat capacity jump, η, from Eq. (17), with
TTRSB = 1.43 K and Tc = 1.48 K using order parameters with three
lattice harmonics (see Appendix D). The parameter space consistent
with the current experimental threshold, η � 0.05, is marked by the
cross-hatched region [16,19]. For the dispersion, we use the (2D)
three-band model listed in Appendix B. (b) Specific heat at the point
marked with “�” in (a). (c) Specific heat for the GL solution of
Sec. III A. The normalized specific heat per temperature is compared
to the data of Refs. [8,16].
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An ultrasound spectroscopy experiment recently mapped
out the symmetry-resolved elastic tensor of SRO [19]. The
results indicate discontinuous jumps in the compressional
elastic moduli (A1g) and in only one of the shear elastic
moduli (B2g). This observation would be consistent with a
two-component order parameter where the two components,
if belonging to different irreps, form bilinears only in these
two channels. As deduced from the direct product table of the
irreps in Table I, this would be the case for B1g + iA2g and
for A1g + iB2g. However, only the first of these cases would
have symmetry-protected line nodes and thereby offer a robust
explanation of the observed heat capacity [8], heat conduc-
tivity [10], and STM measurements [11]. In Appendix D,
we examine the order parameter combination A1g + iB2g for
completeness. The same conclusion that the heat capacity
jump is inconsistent with the experimental data is reached
for this order parameter, and the qualitative features remain
fairly insensitive to the precise order parameters used. From
a microscopic perspective, this latter order parameter, s′ + id ,
was recently found to be a viable candidate when including
longer-range Coulomb terms in a random phase approxima-
tion scheme [61].

IV. CONCLUSIONS

In this paper, we have examined the d + ig-wave order
parameter hypothesis as a candidate model for the super-
conductivity in SRO. We developed a generic multiband,
multi-component Ginzburg–Landau theory for tetragonal lat-
tice systems. We found that the theory favours a g component
with magnitude of 71% of the d components at low temper-
ature. On the other hand, the lack of observation of a second
heat capacity jump [16] requires the g-wave component to be
less than about 60% of the d-wave component. Together, these
two results place tight restrictions on any possible d + ig sce-
nario. Although the d + ig candidate may reconcile a number
of experiments, a robust justification for a near degeneracy
of d and g-wave order parameters is yet to be found. This
outstanding issue is even more apparent when bearing in mind
that numerous calculations based on realistic band structures
have yet to find a competitive g-wave order parameter [13,22–
24,26,27,30,57–60].

The continued squeezing of the range of acceptable the-
oretical scenarios compatible with experiment suggests that
further experimental results might need revisiting. In the
end, SRO might be more similar to the cuprates than pre-
viously thought, and interface experiments have hinted at

time-reversal symmetry-invariant superconductivity [63]. One
could imagine the scenario of a cuprate-like dx2−y2 -wave order
parameter, where the apparent observation of TRSB originates
from an anisotropic order parameter component caused by
dislocations, magnetic defects, or domain walls [64], or mech-
anisms not intrinsically related to superconductivity [29].

We also note that yet another order parameter candidate, of
the form d + ip, has recently been suggested based on the near
degeneracy between even and odd-parity order parameters in
the 1D Hubbard model [65]. This order can potentially recon-
cile junction experiments suggesting odd-parity order [63,66–
68] with other indications of a nodal d wave [10,11,13,14].

The current experimental situation taken at face value ap-
pears to leave somewhat exotic options that at least would
require further microscopic examination. These new hypothe-
ses warrant careful (re)examination in hopes of unifying
theory and experiment to converge on a solution to the pairing
symmetry puzzle in SRO.
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APPENDIX A: SPECIFIC INSTANCES OF THE GL
THEORY

1. General expressions for the Ginzburg–Landau coefficients

Here we consider the Ginzburg–Landau theory derived in
the main text. Assuming �aμ(p) = �0

a�aμ(p). Here, �aμ(p)
are the normalized RG gaps and �0

a are the amplitudes of a
given irrep, which are the variational parameters over which
we want to minimize our free energy. We note that these
variational parameters do not depend on the band label μ

since the relative amplitude of the gaps of a given irreps on
the different bands is already fixed from our calculation of the
RG gaps. In this case, the theory of Eqs. (7)–(9) reduces to

�F = �F (2) + �F (4) =
(∑

a

α̃a(T, Tca)
∣∣�0

a

∣∣2 +
∑

ai

β̃{ai}(Tc)�0∗
a1

�0∗
a2

�0
a3

�0
a4

)
, (A1)

α̃a(T, Tca) =
∑
n,μ,p

|�aμ(p)|2
(

−T
∑

n

Gμ(p, ωn)Gμ(−p,−ωn) + Tca

∑
n

Gμ(p, ωn)Gμ(−p,−ωn)|T =Tca

)
, (A2)

β̃{ai}(T ) = T

2
fa1a2a3a4�a1μ(p)∗�a2μ(p)∗�a3μ(p)�a4μ(p)

∑
n

Gμ(p, ωn)Gμ(p, ωn)Gμ(−p,−ωn)Gμ(−p,−ωn). (A3)

134506-6



MICROSCOPIC GINZBURG-LANDAU THEORY AND … PHYSICAL REVIEW B 104, 134506 (2021)

Here fa1a2a3a4 is as given in Eq. (10). The frequency sums of Eqs. (A2) and (A3) are evaluated analytically, and we arrive at the
following GL coefficients:

�F =
(∑

a

α̃a(T, Tca)
∣∣�0

a

∣∣2 +
∑

ai

β̃{ai}(T )�0∗
a1

�0∗
a2

�0
a3

�0
a4

)
, (A4)

α̃a(T, Tca) = −V
∑

μ

∫
d p

(2π )d

(
tanh [ξμ(p)/(2T )]

2ξμ(p)
− tanh [ξμ(p)/(2Tc)]

2ξμ(p)

)
|�aμ(p)|2, (A5)

β̃{ai}(T ) = fa1a2a3a4

V

2T 3

∑
μ

∫
d p

(2π )d
h(ξμ(p)/T )�a1μ(p)�a2μ(p)�a3μ(p)�a4μ(p), (A6)

where we have used the fact that the RG gaps are real, and where we introduced

h(x) ≡ sinh x − x

4x3(1 + cosh x)
. (A7)

For two irreps,

�F = α̃1(T, Tc1)|�1|2 + α̃2(T, Tc2)|�2|2 + β̃1111(T )|�1|4 + β̃1122(T )
(
4|�1|2|�2|2 + �2

1�
∗2
2 + �∗2

1 �2
2

) + β̃2222(T )|�2|4,
= �2

0[α̃1(T, Tc1) + α̃2(T, Tc2)X 2] + �4
0[β̃1111(T ) + 2β̃1122(T )X 2 + β̃2222(T )X 4], (A8)

α̃a(T, Tca) = −V
∑

μ

∫
d p

(2π )d

(
tanh [ξμ(p)/(2T )]

2ξμ(p)
− tanh [ξμ(p)/(2Tca)]

2ξμ(p)

)
|�aμ(p)|2, (A9)

β̃1111(T ) =
∑

μ

V

2T 3

∫
d p

(2π )d
h(ξμ(p)/T )�1μ(p)4, (A10)

β̃1122(T ) =
∑

μ

V

2T 3

∫
d p

(2π )d
h(ξμ(p)/T )�1μ(p)2�2μ(p)2, (A11)

β̃2222(T ) =
∑

μ

V

2T 3

∫
d p

(2π )d
h(ξμ(p)/T )�2μ(p)4. (A12)

2. Single s-wave component

Here we consider the Ginzburg–Landau theory under the
assumptions of (i) a single-component s-wave order param-
eter and (ii) quadratic bands in 2D. Under these simplifying
assumptions, we reproduce the results originally obtained
by Gor’kov [39]. We assume an s-wave order parameter,

i.e., �aμ(p) = �A1gμ ≡ �μ so the free energy simplifies
to

�F = �F (2) + �F (4)

=
∑

μ

(α̃μ(T, Tc)|�μ|2 + β̃μ(Tc)|�μ|4), (A13)

FIG. 6. (a) Fermi surface sheets resulting from the model of Eq. (B1), and (b) the Fermi velocity as a function of the in-plane angle θ (θ ′)
for bands β and γ (α), cf. Ref. [70].
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TABLE II. Tight-binding parameters for Eqs. (B2) and (B3).

Parameter t1 t2 t3 t4 t5 t6 μ1D λ

Value (meV) 296.2 −57.3 52.6 −15.6 −15.1 −11.6 315.6 −50.7

α̃μ(T, Tc) = −T
∑
n,p

Gμ(p, ωn)Gμ(−p,−ωn)

+ Tc

∑
n,p

Gμ(p, ωn)Gμ(−p,−ωn)|T =Tca , (A14)

β̃μ(T ) = T

2

∑
n,p

Gμ(p, ωn)Gμ(p, ωn)Gμ(−p,−ωn)

× Gμ(−p,−ωn). (A15)

The frequency sums of Eqs. (A2) and (A3) are evaluated
analytically, and we arrive at the following GL coefficients:

α̃μ(T, Tc) = −V
∫

d p
(2π )d

(
tanh [ξμ(p)/(2T )]

2ξμ(p)

− tanh [ξμ(p)/(2Tc)]

2ξμ(p)

)
, (A16)

β̃μ(T ) = V

2T 3

∫
d p

(2π )d
h(ξμ(p)/T ), (A17)

upon replacing the momentum sums by
∑

p → V
∫ d p

(2π )d ,
where V is the unit cell volume. We have used the fact that
the integrands are sharply peaked about the Fermi surface
and so we can extend the integral over p from an integral
over the Fermi surface to an integral over the entire Brillouin
zone. Next, we evaluate Eqs. (A16) and (A17) for quadratic
bands in 2D, ξμ(p) = p2

2mμ
, with p = |p| and mμ being the

effective mass of band μ, and with the Brillouin zone integrals∫
d p → ∫ ∞

0 d p p
∫ 2π

0 dφ. To evaluate the basic integral of
Eq. (A17), 1

2

∫ ∞
0 du sinh u−u

4u3(1+cosh u) , we make use of the following
series expansions:

2

1 + cosh(x)
= cosh−2(x/2) = 4e−x

∞∑
n=0

(−1)n(1 + n)e−nx,

(A18)

sinh(x) − x =
√

π

2

∞∑
m=1

x2m+1

4m�(m + 1)�(m + 3
2 )

, (A19)

∞∑
n=0

(−1)n 1

(1 + n)x
= (1 − 21−x )ζ (x). (A20)

TABLE III. Tight-binding parameters for Eq. (B4).

Parameter t̄1 t̄2 t̄3 t̄4 t̄5 t̄6 t̄7 μ2D

Value (meV) 369.5 123.2 20.4 13.9 −6.0 3.2 2.8 432.5

By equating the resulting expression for βμ with the result
derived by Gor’kov [39], we find that

7ζ (3)

32π2
=

√
π

8

∞∑
l=1

(1 − 23−2l )
�(2l − 1)

4l�(l+1)�(l+ 3
2 )

ζ (2l − 2) ⇒

ζ (3) = 8π2

7

∞∑
n=0

(1 − 2 · 2−2n)ζ (2n)

(2n + 1)(2n + 2)(2n + 3)
, (A21)

where ζ (0) = −1/2. In fact, both of the terms inside the sum
of Eq. (A21) individually yield a series expansion for ζ (3):

ζ (3) = −8π2

5

∞∑
n=0

ζ (2n)

(2n + 1)(2n + 2)(2n + 3)22n
, (A22)

ζ (3) = −8π2

3

∞∑
n=0

ζ (2n)

(2n + 1)(2n + 2)(2n + 3)
. (A23)

The most rapidly convergent series of the two, Eq. (A22),
along with plenty of other variations, was discovered by Chen
and Srivastava [69]. The latter one, however, does not appear
to have been discussed in the literature.

Finally, for the coefficients α̃μ, we assume that T/Tc −
1 � 1 and retain the leading term in a Taylor expansion. The
result is

α̃μ = ρμ

2

( T

Tc
− 1

)
, (A24)

β̃μ = ρμ

T 2
c

7ζ (3)

32π2
, (A25)

with ρμ = V mμ/(2π ) being the density of states and ζ the
Riemann zeta function. This is equivalent to the result of
Gor’kov [39]. Repeating the above exercise for linearly dis-
persing bands, ξμ(p) = vμ p, results instead in

α̃μ = ρμ ln 2
( T

Tc
− 1

)
, (A26)

β̃μ = ρμ

16T 2
c

, (A27)

where now ρμ = V Tc/(2πv2
μ).

FIG. 7. Comparison of the numerical result for X (T ) with
the order parameter combination �(p) = �0(T )[�B1gμ(p) +
iX (T )�A2gμ(p)] using two different Hamiltonians. The DFT
Hamiltonian is described in Appendix B, the ARPES Hamiltonian is
described in Ref. [24] (here at kz = 0). The results are very similar.
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3. Including fluctuations

In general the order parameter could depend on the
center-of-mass momentum (|q| � kF ), which would al-

low us to describe spatial fluctuations of the super-
conducting order parameter. Equation (2) would then
read

HSC =
∑
μ,σ,a

∑
q,p

[�aμ(p, q)c†
μσ (p + q/2)c†

μσ̄ (−p + q/2) + H.c.], (A28)

where �aμ(p, q) is the pseudospin-singlet order parameter of band μ corresponding to irrep. a. When repeating the steps of
Sec. II A with the above order parameter we now find the following generalized versions of Eqs. (7)–(9):

�F = �F (2) + �F (4) =
∑

μ

(∑
a,p,q

αaμ(p, q, T )|�aμ(p, q)|2

+
∑

ai,pi,qi

β{ai}μ({pi}, {qi}, T )�a1μ(p1, q1)∗�a2μ(p2, q2)∗�a3μ(p3, q3)�a4μ(p4, q4)

)
, (A29)

αaμ(p, q, T ) = −T
∑

n

Gμ

(
p + q

2
, ωn

)
Gμ

(
−p + q

2
,−ωn

)
+ Tca

∑
n

Gμ(p, ωn)Gμ(−p,−ωn)|T =Tca , (A30)

β{ai}μ({pi}, {qi}, T ) = T

2
fa1a2a3a4δp1+ q1

2 ,p3+ q3
2
δp1− q1

2 ,p4− q4
2
δp2− q2

2 ,p3− q3
2
δp2+ q2

2 ,p4+ q4
2

×
∑

n

Gμ

(
p1 + q1

2
, ωn

)
Gμ

(
p2 + q2

2
, ωn

)
Gμ

(
−p3 + q3

2
,−ωn

)
Gμ

(
−p4 + q4

2
,−ωn

)
, (A31)

fa1a2a3a4 ≡ δa1a3δa2a4 + δa1a4δa2a3 + δa1a2δa3a4 − 2δa1a2δa2a3δa3a4 . (A32)

APPENDIX B: TIGHT-BINDING MODEL

We consider an effective yet accurate two-dimensional,
three-band, tight-binding model for Sr2RuO4,

HK =
∑
k,s

ψ†
s (k)hs(k)ψs(k), (B1)

where ψs(k) = [cxz,s(k), cyz,s(k), cxy,−s(k)]T and where s ∈
{↑,↓} denotes spin and a ∈ {xz, yz, xy} denotes the d orbitals
of the Ruthenium atoms in SRO which are relevant close to
the Fermi energy. The matrix hs(k) is well approximated by

FIG. 8. Order parameters from Ref. [24] for J/U = 0.20 (full lines) and lattice harmonics fits (dashed lines) with three lattice harmonics
for irreps. (a) A1g, (b) A2g, (c) B1g, and (d) B2g. We note that including more lattice harmonics in the fit to the A1g order parameter in (a) has a
negligible effect on the corresponding relative weight X (T ) in the Ginzburg–Landau minimization of Fig. 11. The quality of the fit for the β

and γ sheets we ascribe to the fairly coarse k resolution used in Ref. [24].
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the 3 × 3 block diagonal matrix

hs(k) =
⎛
⎝εxz(k) −isλ iλ

isλ εyz(k) −sλ
−iλ −sλ εxy(k)

⎞
⎠, (B2)

where spin-orbit coupling is parametrized by λ, and the above
energies are given by

ε1D(k‖, k⊥) = −2t1 cos k‖ − 2t2 cos(2k‖) − 2t3 cos k⊥
− 4t4 cos k‖ cos k⊥
− 4t5 cos(2k‖) cos k⊥ − 2t6 cos(3k‖) − μ1D,

(B3)

ε2D(kx, ky) = −2t̄1[cos kx + cos ky] − 4t̄2 cos kx cos ky

− 4t̄3[cos(2kx ) cos(ky) + cos(2ky) cos(kx )]

− 4t̄4 cos(2kx ) cos(2ky)

− 2t̄5[cos(2kx ) + cos(2ky)]

− 4t̄6[cos(3kx ) cos(ky) + cos(3ky) cos(kx )]

− 4t̄7[cos(3kx ) + cos(3ky)] − μ2D, (B4)

with the identifications εxz(k) = ε1D(kx, ky), εyz(k) =
ε1D(ky, kx ), and εxy(k) = ε2D(kx, ky). We extract the
tight-binding parameters, via the Wannier functions for the Ru
t2g electron orbitals, resulting from a fully relativistic density
functional theory calculation which includes spin-orbit
coupling [13,54]. Extracted parameters are listed in Tables II
and III. The hoppings returned from a fully relativistic
calculation in general are complex. As a cutoff procedure we
included terms (real and imaginary parts) greater than 10 meV
for the three orbitals considered, except for the xy − xy terms.
For the xy − xy terms, we included a few subleading terms,
including terms as small as 2.8 meV. The reason for this was
to make sure the gamma band was sufficiently finely resolved
under the application of c-axis strain, for which the gamma
band approaches a double van Hove singularity. This will be
relevant for future work investigating the effects of strain.
With this procedure all the hopping terms are real.

We now diagonalize the single-particle Hamiltonian by go-
ing from the orbital/spin basis with electron operators cas(k)
to the band/pseudospin basis with electron operators cμσ (k),
where μ ∈ {α, β, γ } denotes the three bands of SRO which in-
tersect the Fermi energy and σ ∈ {⇑,⇓} denotes pseudospin.
In the band/pseudospin basis, the tight-binding Hamiltonian
is diagonal:

HK =
∑
μ,σ,k

ξμ(k)c†
μσ (k)cμσ (k). (B5)

The resulting Fermi surface sheets and Fermi velocities are
shown in Fig. 6. A recent high-resolution ARPES experiment
[70] deduced the Fermi velocities at the Fermi level for bands
β and γ . Compared to this experiment the effective model
used here is seen to capture the correct behavior for vγ , but the
behavior of vβ (the curvature) is slightly off. Quantitatively,
however, this discrepancy is too small to affect the results ob-
tained here in any noticeable way. This was checked explicitly
by comparing the results for η in Eq. (17) to those obtained
with vμ(k) = 1 eVa fixed.

TABLE IV. Lattice harmonics coefficients of the A1g and A2g

order parameter (see Table I) obtained at J/U = 0.20 of Ref. [24],
normalized such that maxθ,μ �aμ(θ ) = 1.

μ a1,μ a2,μ a3,μ μ b0,μ b1,μ b2,μ

α +0.855 +0.007 +0.067 α +0.269 −0.127 +0.038
β −0.225 −0.329 +0.116 β −0.895 −0.062 +0.052
γ −0.097 −0.296 −0.303 γ −0.022 −0.219 +0.150

Serving as a supplementary calculation the relative band
densities at the Fermi level produced with this model are
ρμ/ρtot = 0.163, 0.314, 0.523 for μ = α, β, γ , respectively,
with

ρμ =
∫

Sμ

dk
(2π )2

1

|∇ξμ(k)| , (B6)

where Sμ is the Fermi surface sheet corresponding to band μ.
These values may be compared to those obtained with other
models.

APPENDIX C: COMPARISON OF HAMILTONIANS

In the past various models have been used to describe
the band structure of the t2g Ru orbitals of SRO, see, e.g.,
Refs. [23,24,26,57] for some recent ones. In Fig. 7, we com-
pare the results for X (T ) using two different Hamiltonians for
the band structure. The Hamiltonians compared is that of Ap-
pendix B (denoted by “DFT Hamiltonian”) to the 3D model of
Ref. [24] at kz = 0 (denoted by “ARPES Hamiltonian”). The
comparison demonstrates that the results are insensitive to the
input tight-binding model at the current level of precision.

APPENDIX D: ORDER PARAMETERS AND FURTHER
PLOTS

The lattice harmonics for the order parameters of Table I
are in general band-dependent. The microscopically obtained
gap structures of Ref. [24] (at J/U = 0.20) can be well de-
scribed by the lowest three lattice harmonics. The result of a
fitting procedure of the order parameters of symmetries A1g,
A2g, B1g, and B2g are listed in Tables IV and V and shown in
Fig. 8. We note that these order parameters strictly were ob-
tained for a different band structure (i.e., a three-dimensional
dispersion based on a band structure fit) than that described
in Appendix B, though the quantitative differences are small
in terms of the Fermi surface physics. For the purpose of
quantifying the heat capacity anomaly in a realistic model
we take these order parameters as reasonable input for the
Ginzburg–Landau minimization procedure, while noting that

TABLE V. Same as in Table IV but for symmetry channels B1g

and B2g (see Table I).

μ c0,μ c1,μ c2,μ μ d0,μ d1,μ d2,μ

α −0.912 −0.011 −0.078 α −0.120 +0.010 −0.051
β +0.783 +0.143 +0.022 β +0.943 −0.060 −0.099
γ +0.358 +0.288 −0.007γ −0.492 −0.230 +0.0004
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FIG. 9. The same as described in the caption of Fig. 5 but using only the leading lattice harmonics from Table I for (a) a B1g + iA2g order
parameter, and (b) a A1g + iB2g order parameter.

the framework developed here is general and may be em-
ployed for other input order parameters in future work.

To supplement the results for the heat capacity ratio η

shown in Fig. 5, Fig. 9 shows the result of the same calculation
using only the leading lattice harmonic. Comparing the two
figures shows that including more structure in the order pa-
rameter increases the size of the parameter space compatible
with experiment [16]. Moreover, Fig. 10 shows the outcome
of the same calculation for the alternative order parameter
combination A1g + iB2g, using the three leading lattice har-
monics from Tables IV and V here, respectively. For this order
parameter combination the results indicate compatibility with
experiments when �0,B2g � 0.4�0,A1g . Finally, Fig. 11 shows
the results of minimizing the GL theory of Sec. II for the
A1g + iB2g order parameter.

APPENDIX E: SECOND HEAT CAPACITY JUMP

The heat capacity jump at TTRSB is determined by the
discontinuity in ∂|�|2/∂T , as seen from the normalized ex-
pression (the constant γn below is defined such that 1 =

FIG. 10. The same as described in the caption of Fig. 5 but here
for an order parameter of the form A1g + iB2g, using the advanced
order parameters with the three leading lattice harmonics from Ta-
bles IV and V.

C(T )/(T γn)|T >Tc ) [71]

C(T )

T γn
= 3

4π2(kBT )3

×
∫ ∞

−∞
dξ

〈
ξ 2+|�μ(p, T )|2− T

2
∂|�μ(p,T )|2

∂T

cosh2
(Eμ(p)

2kBT

)
〉

FS

,

(E1)

where the Fermi surface average is evaluated as

〈A〉FS = 1∑
ν ρν

∑
μ

∫
Sμ

d p
(2π )2

A

vμ(p)
, (E2)

where vμ(p) = |∇ξμ(p)| is Fermi velocity of band μ. Assum-
ing a gap function of the following form

�μ(p, T ) = �0(T )[�1μ(p) + iX (T )�2μ(p)], (E3)

the free energy of Eq. (A8) is minimized by

X (T )2 =
{

α̃1(T,Tc1 )β̃1122(T )−α̃2(T,Tc2 )β̃1111(T )
α̃2(T,Tc2 )β̃1122(T )−β̃2222(T )α̃1(T,Tc1 )

for T < TTRSB

0 for T > TTRSB
,

(E4)

FIG. 11. The weight X (T ), with an order parameter of the form
�(p) = �0(T )[�A1gμ(p) + iX (T )�B2gμ(p)] for Tc1 = 1.48 K and
Tc2 = 1.44 K. This result is obtained using the GL coefficients
Eqs. (A16) and (A17).
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and

�0(T )2

=

⎧⎪⎨
⎪⎩

− 1
2

α̃2(T,Tc2 )β̃1122(T )−β̃2222(T )α̃1(T,Tc1 )
β̃1122(T )2−β̃2222(T )β̃1111(T )

for T <TTRSB

− α̃1(T,Tc1 )
2β̃1111(T )

for TTRSB < T <Tc

0 for T >Tc

,

(E5)

one can derive

∂|�μ(p, T )|2
∂T

∣∣∣∣
TTRSB+ε

TTRSB−ε

= 1

2

∂α̃1(T,Tc1 )
∂T β̃1122(T ) − ∂α̃2(T,Tc2 )

∂T β̃1111(T )

β̃1122(T )2 − β̃2222(T )β̃1111(T )

×
(

− β̃1122(T )

β̃1111(T )
�1μ(p)2 + �2μ(p)2

)
. (E6)
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