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Recent studies have emphasized the importance of impurity scattering for the optical Higgs response of

superconductors. In the dirty limit, an additional paramagnetic coupling of light to superconducting condensate
arises, which drastically enhances excitation. So far, most work concentrated on the periodic driving with light,
where the third-harmonic generation (THG) response of the Higgs mode was shown to be enhanced. In this paper,
we extend this analysis by calculating full temperature and frequency dependence of THG to better compare

the theory with current experimental setups. We additionally calculate the time-resolved optical conductivity
of single- and two-band superconductors in a two-pulse quench-probe setup, where we find good agreement
with existing experimental results. We use the Mattis-Bardeen approach to incorporate impurity scattering and
calculate explicitly the time-evolution of the system. In contrast to previous work we calculate the response

not only within a time-dependent density-matrix formalism but also in a diagrammatic picture derived from an
effective action formalism, which gives a deeper insight into the microscopic processes.

DOI: 10.1103/PhysRevB.104.134504

I. INTRODUCTION

When a continuous symmetry is spontaneously broken,
collective excitations emerge. In the case of a superconductor,
where the complex order parameter Ae acquires a finite
value below a critical temperature 7¢, two bosonic modes
appear: the massive Higgs mode and a massless Goldstone
mode [1,2]. They may be seen as amplitude §A and phase §6
fluctuations of the complex order parameter in the Mexican
hat-shaped free-energy potential. When coupled to a gauge
field, the Goldstone mode is shifted to the plasma frequency
by means of the Anderson-Higgs mechanism while the Higgs
mode remains a stable gapped excitation in the Terahertz
regime [3].

In a two-band superconductor, two gapped Higgs modes
and two phase modes exist. While the global phase fluctuation
occurs again only at energies close to the plasma frequency for
a charged condensate, the relative phase fluctuation, quantized
as the Leggett mode, persists as a gapped excitation at low
energies [4].

Experimental observation of Higgs and Leggett collective
modes is difficult. Since these fields are scalar quantities, no
linear coupling to the electromagnetic field exists at zero mo-
mentum [2]. Thus, there are no direct experimental signatures
in linear response. As a consequence, experiments need to
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be performed in the nonlinear regime. Here, the challenge is
twofold: Intense light sources are required but experiments
also have to be performed on energy scales mostly within the
superconducting gap such that optical excitation of quasipar-
ticles does not deplete the condensate.

Recent developments in ultrafast Terahertz spectroscopy
have caused a surge in interest to study collective excitations
in non-equilibrium superconductors both in theory [5-10] and
experiment [11-18], where first experimental signatures of the
Higgs mode have been observed in various materials. The
main excitation schemes so far consist of two approaches.
First, samples are illuminated in a pump-probe setup where
an excitation of the Higgs mode by a single-cycle THz pump
acting as a quench appears as an oscillation of the probe signal
as a function of pump-probe delay [11]. In a second type of
experiment, the Higgs mode is resonantly driven by an intense
multicycle pulse that yields an electrical field component of
three times the pump frequency in the reflected or transmitted
beam [12,15,17].

The fact that characteristics of the Higgs mode in super-
conductors are observable in experiments is not self-evident.
Early theoretical calculations in the clean limit predicted ex-
tremely weak experimental signatures that relied on breaking
of the particle-hole symmetry. Therefore, the first obser-
vations [12] of the third-harmonic response generated by
the Higgs mode was doubted [19] as it should be over-
laid by much stronger charge fluctuations. Only recently,
the role of impurities has been appreciated as it drasti-
cally enhances the coupling of light to the Higgs mode
due to an additional paramagnetic coupling absent in the
clean limit [20-23]. This coupling becomes the domi-
nant contribution even for small disorder. It was further
shown that impurity scattering yields qualitatively different
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behavior in the polarization dependence of the driving pulses
[23].

Previous studies on third-harmonic generation with im-
purities concentrated mostly on the frequency dependence
for fixed temperature [20-23] or temperature dependence for
fixed frequency [21]. Here, we extend the analysis and calcu-
late the full 2d temperature- and frequency-dependent THG
signal, which allows to better understand and compare the
theory with current experimental setups where only the tem-
perature can be sweeped for fixed driving frequency. We also
calculate the individual contributions of density fluctuations,
Leggett mode and Higgs mode to the third-harmonic gener-
ation response. Our results support the findings of a recent
paper, where the third-harmonic response in the two-band
superconductor MgB, shows a resonance only for the lower
gap [17]. This can be understood from the fact that the upper
band is either in the clean limit or that the Fermi surface is
very small.

In addition to the investigations of previous work on the ef-
fect of impurities in the periodic driving scheme, in this paper,
we also explore the excitation with a two-pulse quench-probe
scheme. We consider both one- and two-band superconductors
where the bands can be in different impurity regimes. To
calculate the time-resolved optical conductivity, we extend
the density-matrix approach of [20] to a two-pulse excitation
scheme. Here, the short first pulse acts as a quench, while
the second probe pulse with variable time-delay probes the
dynamics of the system.

We incorporate the effect of impurities in our model us-
ing the Mattis-Bardeen approximation [24]. This approach
constitutes an excellent description for many conventional
superconductors at least in the linear regime [25]. It has also
been used in [20] but differs from the self-consistent Born
approximation in [21] and [22].

Compared to the density-matrix approach in [20], we ad-
ditionally consider a diagrammatic approach derived from an
effective action formalism, where the Mattis-Bardeen ansatz
is incorporated by an effective finite momentum interaction
vertex. We show that this diagrammatic approach is equivalent
to the density-matrix formalism. There are several advan-
tages of this approach. First of all, it allows to understand
the involved processes in more detail due to a disentangling
with individual diagrams. Secondly, as the Matsubara sums in
the expression can be analytically evaluated, this approach is
computationally more efficient and allows calculations with
more accuracy and greater variation of parameters as a full 2d
temperature and frequency sweep. And finally, in the diagram-
matic approach it is natural to include Coulomb interaction to
perform a fully gauge-invariant calculation.

This article is organized as follows. In Sec. II we formulate
the model (a) in terms of a diagrammatic expansion of an ef-
fective action and (b) in terms of a density-matrix equation of
motion approach that was previously established by Murotani
and Shimano [20]. The two formulations are equivalent. We
then discuss results in the case of a single-band superconduc-
tor in a pump-probe scenario in Sec. III. In Sec. IV we study
in detail the case of a two-band superconductor motivated by
material parameters of MgB,. Here we focus on both pump-
probe and third-harmonic generation (THG) experiments. We
summarize all results in Sec. V.

II. MODEL
A. Hamiltonian

We consider the BCS multiband Hamiltonian

=D €CioCice = ) Uijhy ¢l CmweiCir, (1)
iko i jkk’

where e = s;(k?/2m; — €g,) is the parabolic dispersion of the
ith band with Fermi-energy €5 and electron mass m;. The
factor s; = & determines electron- or hole-like character of
the respective band.

At the mean-field level the interacting term is decoupled in
the pairing channel,

D Al ek, +He. 2
ik
where order parameters A; are self-consistently determined
by the BCS gap equation A; = ij Uij(cj—k,cjkt) [26]. The
order parameters of different bands are mixed by off-diagonal
terms in the coupling matrix U;;. In the present paper, we
parametrize gap-mixing by a parameter v and define

_ (U vUn
Uij = (UUII Un ) )
For given A; and v we can find U;; and U,; such that the gap
equation is satisfied.
To model an experimental probe with a laser pulse, we in-

troduce a time-dependent vector potential A(r) = A(7) e with
polarization vector e by means of minimal coupling,

Z Jzkk’ A Ctka Ciko + Z

ikK'o iko

A2 Ciko Ciko s (4)

where Jp = (K| 7] i k') are intraband transition matrix
elements of the current operator. Here, we have neglected in-
terband excitation, which for materials like MgB, is strongly
suppressed by the separation of Fermi surfaces in the Brillouin
zone. The two terms in H; corresponds to the paramagnetic
and diamagnetic coupling of the laser field, respectively. The
full Hamiltonian is given by H = Ho + H,;.

B. Impurity scattering

In a clean system momentum conservation yields Jik ~
Skk'» or Jaa ~ Sk k+q if a photon wave vector q is consid-
ered. In disordered systems, translational invariance is broken,
so that transitions between states of different momenta are
allowed. Here, we adopt the approach of Murotani and Shi-
mano [20] and model the effects of impurities within the
Mattis-Bardeen (MB) approximation [24]. Explicitly, impu-
rities enter through the approximation

A% de
(e - T Pav = | —=—Kle. Juu |
47 4w
(evF)2
W €ik, €k 5
~3IN0) (eik, €ix'), (5)
Vi

1
W(Ezkv zk’) -
T (e — €iw))* + VP

(6)
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with Fermi velocity vg, density of states at the Fermi level
N;(0), and impurity scattering rate y;. A derivation of this
matrix element is given in Ref. [20].

The Mattis-Bardeen approximation is applicable in the
regime y; < €, for isotropic impurity scattering, and uniform
charge density [24]. These conditions are met for the super-
conductors considered in the present paper, where the dirty
limit is already achieved when the impurity concentration y is
of the order of the superconducting gap A.

We see that impurity scattering broadens the Sy distribu-
tion into a Lorentzian of width y; centered at zero momentum
transfer. The bandstructure defined by H, remains unaffected
in this approximation. Instead of broadening the momentum
resolution of the bandstructure, one may view impurities as
effectively broadening the momentum of the photon.

While the simplicity of the Mattis-Bardeen approach is
appealing, more realistic models of impurities rely on exact
numerical treatment [23] or diagrammatic summation of im-
purity ladder corrections [21,22].

C. Effective action

We first present a perturbative solution of above Hamil-
tonian by a path-integral formalism in imaginary time t
[27-30]. The full problem is formally captured by the partition
function Z = [ D(c’c)e™ with the euclidean action

B
S = /O dr (Z ch rCiko + H) )

iko

As detailed in Appendix A, we decouple the interacting
part of H in the paring channel, introducing collective fields
Ai(wy)exp (i0;(w,)). A; and 6; describe amplitude and phase
fluctuations, respectively, of the superconducting condensate.
These collective fluctuations are dependent on time only, i.e.
the Hamiltonian supports only k = 0 excitations of Higgs and
phase fields.

Performing the fermionic path integral results in an ef-
fective action S[A;, 6;, A] in bosonic and classical EM fields
[see Eq. (A13)], where now Z = [ [], DA;D;teS1A-0-Al
We only keep terms quadratic in collective fields A;, 6; and
to fourth order in A. The resulting terms are diagrammatically
presented in Fig. 1 and Fig. 2 and their integral expressions
are derived in Appendix A.

The diagrammatic representation contains Higgs fields
A;(w) (blue-dashed lines), phase fields (green-dotted lines),
and EM fields (wavy lines). Paramagnetic coupling to the
photon field corresponds to vertices with a single photon
field line, implying the factor A(w). Diamagnetic vertices
with two photon field lines contribute the term A%(w) =
[ dw'A(® — 0)A(w'). Numeric labels (0,1,3) indicate Pauli
matrices 0y, 01, 03 in Nambu space where oy is the identity.
Only paramagnetic vertices introduce external momentum.
Solid black lines correspond to mean-field Nambu Green’s
functions

Go, = liw, — €x03 + Ajoy]™! (®

and loops imply a trace over Nambu indices, frequencies, and
momenta.

(a) k,wn (b) k,w,
A A i O
k, w,+Q k, w,+Q
d
(© A A (d) 6, o
ipEEEEn@EEEEEN] ecocccccco@occececece
Uy’ Jj
(f) K,w,
0i
k, w,+Q

FIG. 1. Diagrammatic representation of terms in the quadratic
effective action S[A,;, 6;, A] in Eq. (A13) involving Higgs fields (left
column) and phase fields (right column). Bubbles correspond to
susceptibilities listed in Eqs. (A23)—(A27). The blue (green) dotted
lines represent Higgs (Leggett) propagators, the wavy black line
represents the electromagnetic field and the solid black line the
Nambu Greens function. Numbers 0,1,3 at the vertices represent
Pauli matrices o0y, o, 03 acting in Nambu space. [(a),(b)] Higgs and

phase susceptibilities x;'™', x>”*. (c) Coupling of Higgs modes

where vertex is the inverse of Eq. (3). (d) Josephson coupling of
phase modes responsible for Leggett mode. The coupling matrix J
is defined in Eq. (A17). (e) Paramagnetic coupling of Higgs modes
with susceptibility x 0?71, (f) Diamagnetic coupling of phase modes
with x?3%3. Other couplings at Gaussian level vanish in the presence
of particle-hole symmetry.

?

Kk”

k, 0, +Q+Q k, w,+Q

FIG. 2. Diagrammatic representation of density-fluctuation con-
tributions in the effective action S[A;, 6;, A] Eq. (A13). Paramagnetic
(a) and diamagnetic (b) terms defining the linear response current
jl;- The paramagnetic contribution (a) vanishes in the clean limit.
Paramagnetic (c) and diamagnetic (d) terms contributing to nonlinear
current j5.
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(a) ::0::: + ::O()’:: + ::@O()’::+
0 O + OO+ O-O- O -

FIG. 3. RPA summation of collective fields in the effective ac-
tion. (a) Higgs modes renormalize paramagnetic nonlinear current.
Here, blue dashed lines correspond to the coupling matrix U/2.
(b) Phase modes renormalize diamagnetic current. Green dotted lines
denote coupling matrix J .

Figures 1 and 2 are a complete representation of all terms in
the quadratic action in the presence of particle-hole symmetry
and impurities in the MB approximation.

In the clean limit paramagnetic photon lines no longer
carry momentum and, as a consequence, diagrams 1(e) and
2(a) vanish. The inclusion of paramagnetic diagrams with ver-
tices Jix' determined by the MB model is the main difference
of the diagramatic formalism from other literature [19,31].

Absence of diagram 1(e) in the clean limit implies that the
Higgs mode does not couple to light without impurities. How-
ever, when a non-parabolicity of the bandstructure is taken
into account, a diamagnetic coupling to the Higgs mode arises,
yielding an additional, nonvanishing diagram [7,19,20].

We note that paramagnetic and diamagnetic terms do not
mix in the present model. Consequently, the partition function
factors into two contributions Z = Zp,;y Zgia. Since only the
paramagnetic part is affected by impurities, and since Zpar,
does not contain phase contributions, we conclude that only
the Higgs mode and density fluctuations are sensitive to im-
purity scattering in the MB approximation.

The path integrals over A;, 6; can be performed exactly at
Gaussian level. This is equivalent to an RPA renormalization
of the density fluctuation terms diagrammatically represented
in Fig. 3 where the dashed and dotted lines correspond to
coupling matrices U;;/2 and Josephson coupling matrices
Ji;l, respectively. After Gaussian integration, one is left with
S[A(w)], explicitly given in Eq. (A28). A functional derivative
with respect to A(w) gives the current

_SSlA@)]

J(@) = A@)

©))

In the single-band case, the diamagnetic RPA series
Fig. 3(b) is exactly zero. This results from the cancellation
of the diamagnetic density-fluctuation contribution 2(d) with
the phase mode contribution, shown in Eq. (A31) of Appendix
A. The cancellation is exact in the continuum limit and does
not rely on particle-hole symmetry. For a lattice model, the
cancellation is imperfect away from low or large filling. At
half filling, where particle-hole symmetry is exact, the phase
mode contribution vanishes and the diamagnetic current re-
mains finite [19], hence no cancellation occurs.

In the two-band case, the phase supports both a Goldstone
mode and the Leggett mode. Here, the Goldstone contribution
cancels the diamagnetic third-order current, while the Leggett
mode is the remaining source of the total diamagnetic current.

The present results are insensitive to long-range Coulomb
interaction. We show in Appendix B how, in the presence

of particle-hole symmetry, the same expression as in the un-
charged case are derived for the continuum model.

D. Density-matrix equations of motion

We solve for the time dynamics of above Hamiltonian
using a density-matrix approach. To this end, we define the
density matrix p = |¥) (¥ol, or, in the basis of Bogoliubov-

de Gennes,
1
A Uk —Vik Cikp
< l ) < l* l > ( ’rl )v (10)
ik vik Uik Ci( K|

_ (Pl P\ _ (Wi a0\
P=1 9 »n | = 2% 1 20 - (D
pikk’ pikk’ (I/Iik 1/’,‘]() (%k ik’>

The time dependence of p is given by Heisenberg’s equation
of motion,

we have

ip = [p, H], (12)

where H is the operator H in the BdG basis.

We are interested in computing the dynamics of the cur-
rent i= —.(%) = jr + Jjp, consisting of a paramagnetic and
diamagnetic contribution,

i = Y e (). a3)
ikk’
2
. sie
S 5= VR
iko !

as well as the dynamics of the superconducting order param-
eter

A; = Z Uij{ci—x)| Cjkt)- (15)
Jk

To apply the MB substitution, we further expand above equa-
tions of motion in orders of A(¢). To account for effects
of a THG response, we consider terms up to third order.
As detailed in Appendix E, the current only has odd order
components j = jlo+jl; + ... and the gap contains even
contributions of A, A = Al +3A], +....

Finally, we exploit the rotational invariance of our model
and perform the integral over angular degrees of freedom
explicitly. Thus, by replacing all momentum summations by
an integral Y, — N;(0) [ dex [ %, we effectively reduce
the model to a one-dimensional system. Note that rotational
invariance of our continuum model neglects polarization de-
pendence of observable quantities.

We are left to compute the equations of motion of the
first-order expectation values, pjk |, and the angle-averaged
quantities

1

A9 d2 2
e g i - el
A due T 8
4 4w Kk Pikle

. d
r(ein) :/?pikbk - (17)

b
R (€is €ii)) =

. (16)
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We solve them numerically using a Runge-Kutta solver on a
discretized energy grid €, of up to 10? points in the interval
[—wp, wp]. A detailed derivation and explicit presentation of
the full equations of motion is given in Appendix E.

II1. SINGLE-BAND SUPERCONDUCTIVITY

Motivated by the experiment of Matsunaga et al. [11] we
choose parameters A = 1.3 meV, ¢ = 1eV, m = 0.78m,,
s =1, and wp = 20 meV that reflect measurements and ab
initio calculations on NbN [32].

A. Optical conductivity

We begin by computing the optical conductivity in linear
response,

),
T iwA(w)’

This can be done in either of two ways. First, by implementing
a time-dependent density-matrix simulation with pulse A(z).
The numerically evaluated current j(¢)|; and the pulse are
then Fast-Fourier transformed and Eq. (18) is evaluated. Here,
one needs to choose a pulse of sufficient w bandwidth such
that the region of interest is covered.

The second way involves the functional derivative of the
diagrams in Figs. 2(a) and 2(b) according to Eq. (9). AtT =0
one obtains the expression for the real part

o(w)

(18)

1 2
o'(w) = —U—F dede'W (e, €)% (e, €, w)
iw 3N
1 2N / A2
= Y deaewe, eH(1— cera
iw EE’
E+E
+ (19)

X - s
(w+in)* —(E+E')

where E' = «/ A% + €2, W (¢, €') is the Lorentzian of Eq. (6),
N the density of states at the Fermi surface, and 75 is an
infinitesimal positive constant.

We can understand the analytical structure of o’'(w) by
inspecting the susceptibility x”?%(e, €', w). For w < 2A it
vanishes exactly. For w > 2A its structure is exemplary shown
in Fig. 4. We observe two straight spectral lines at € =
Fw + €. These features can be understood in the picture of a
particle-hole or hole-particle excitation process, illustrated in
Fig. 4(a). x"°% (¢, €’, ) has nonzero spectral weight at given
€, €' if an occupied state at € can be excited into a state at €’
by a photon of frequency w. Multiplication of the integrand in
Eq. (19) with W (e — €") enforces momentum conservation.

In this picture it is easy to see that the total spectral weight
X% (w) = [ dede' ' (e, €, ) should be approximately
proportional to ®(w — 2A)(w — 2A), where ® is the Heav-
iside function. Since W (e — €’) is constant along contours
€' = +w + €, we find the simple analytical approximation

o' (w) x Olw — 2A)w — 2A)% (20)
-+ y
that holds for @ > 2A in the dirty limit y > A.

In Fig. 5 we plot numerically evaluated real and imaginary

parts ¢’'(w), 0”(w) of the optical conductivity for various

(@) 0) yoeew) @u) @ Wee) @u)

N 1.0

0.8
, ]

/ 0.6
ol

/ 0.2
0]

FIG. 4. (a) Schematic of a particle-hole excitation process where
the pulse contributes energy @ and momentum k. Red (blue) colors
indicate electron (hole) character. (b) The susceptibility — x 0% has
finite weight only for €, €’ corresponding to valid state in an excita-
tion process with w = 4. Rounded features are a result of the gap 2A.
For w < 2A, x"0% is identically zero since no optical excitation is
not possible. (¢) Momentum conservation is enforced by the factor
W (e — €') in Eq. (19).

impurity concentrations and temperatures. ¢’ shows a clear
conductivity gap below 2A. In the clean limit, a pronounced
coherence peak is observed around 2A, reflecting the addi-
tional density of states amassed above the quasiparticle gap.
The conductivity peak grows and shifts to higher w as y is
increased. It then broadens into the characteristic dome shape
frequently observed in experiment [11,24,33]. In the T — 0
limit, the conductivity is expected to show a condensate §
peak at w = 0, which is not numerically resolvable. Instead,
we observe a buildup of spectral weight around w = 0 as
the condensate peak is broadened at finite temperatures. The
imaginary part " follows a 1/ power law as expected for a
superconducting state.

The linear response optical conductivity contains informa-
tion of the bandstructure only and is unaffected by collective

g Led yR20

HT J
£ I
9] I h
| A | -
g 0 T e
% \
N\

108

0.1

0.5
--- 1.0

2.0
--- 5.0

10.0

(4 o4

" (Q—lcm—l)

2—\\\ !\( o
\ ’ 10° A
\&L‘_‘/ \

0.0 05 1.0 10! 100
Frequency (THz) Frequency (THz)

© (d) £ s
B

0.0 . 4K

0 T T
0.0 0.5 1.0

101 100
Frequency (THz)

Frequency (THz)

FIG. 5. Real part ¢’ and imaginary part ¢” of the optical con-
ductivity to first order in the vector potential A. [(a),(b)] Impurity
scattering rates dependence for fixed temperature 7 = 4 K. [(c),(d)]
Temperature dependence for fixed scattering rate y/2A = 10. o’
shows a characteristic conductivity gap below 7 and both o', o”
diverge in the static limit. The inset in (d) shows the temperature
dependence of the gap.
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FIG. 6. (a) Pulse field E(t) realizing a quench. (b) Spec-
tral composition |A(w)|. The gray shaded area illustrates the
quasi-particle continuum. (c) Spectral composition [A%(w)| =
| [do'A(w — 0)A(e')| of the second-order component A%(t) re-
sponsible for excitation of collective modes. The peak around zero
frequency corresponds to a DFG process while the peak at finite
1.2 THz is a SFG process. (d) Evolution of the magnitude of the
order parameter |2A(¢)| for impurity strength varying from y /2A =
0.5 to 20 and Fourier spectrum of the gap oscillations (e). (f) Re-
laxation value A, and amplitude of oscillation show a very similar
dependence as a function of disorder strength, which has maximum
effect at around y &~ A.

modes. This can be inferred from the diagrammatic descrip-
tion where all terms in the RPA renormalization of diagram
Fig. 2(a) containing k = 0 collective fluctuations vanish ex-
actly. To reveal the presence of collective modes, we turn
to the dynamics of the superconducting order parameter and
the nonlinear current j|; and additionally model realistic THz
pulses in a pump-probe setting.

B. Excitation of Higgs mode

We choose the electromagnetic pulse form A(z) =
Apexp(—( — t')? /2r2) cos 2t with coefficients to match the
reported data of Ref. [11]. The resulting waveform is shown
in Fig. 6(a).

A characteristic property of a pump pulse is its pulse length
T compared to the natural timescale of the superconductor
1/A. For T <« 1/A the superconductor is quenched, while it
is adiabatically driven in the opposite limit of T > 1/A.

The different behavior in the two limits can be intuitively
understood within the diagrammatic picture. Here, the pulse
induced change of the order parameter § A(w) is given by the

o, w0 ko,
-1 -1 -w-Q'
Hij Lij w-Q
=gz W+’ >
w w Q’
Whtw Q' K, wyt+w

FIG. 7. Diagrammatic representation of (a) §A;(w) and
(b) 86;(w). Double lines correspond to the RPA summation of Fig. 3.

diagram in Fig. 7(a), which has the integral expression

1 00000 , /’ k, k/
2 o X7 (@) +2/U

x A(@)A(—w — o). 1)

Presence of a collective Higgs mode translates into a peak of
the kernel K(w) = (x°*' (w) 4+ 2/U)~" at the characteristic
mode energy wy = 2A. Excitation of the collective mode,
however, is only possible if energy conservation is satisfied,
i.e., if A(w)A(—wy — ') is finite for some w’. Higgs oscil-
lations are therefore expected when the Fourier transform of
the squared vector potential A%(w) = [ do'A(w — 0HA(@)
overlaps with the mode-energy wy. The double-peaked struc-
ture of A(w) is shown in Fig. 6(c). The first peak, centered
at w = 0, corresponds to a difference frequency generation
process (DFG), while the second peak at w = 22 corresponds
to a sum frequency generation process (SFG). The resonance
frequency of the Higgs mode wy is illustrated by a vertical
line. Remaining terms in Eq. (21) describe the coupling to
light in presence of impurities and ensure momentum conser-
vation in a virtual two step excitation process.

Let us now consider two limiting cases of the optical
pulse width. For At « 1, the frequency spectrum of A”(w)
is very broad. The response of §A(w) is then dominated by
the sharp resonance peak of K(w) giving rise to pronounced
2 A-oscillations of the superconducting gap in the time do-
main. Since the DFG peak is guaranteed to overlap with the
Higgs resonance, these oscillations will always be present,
independent of the frequency of the optical pulse. The SFG
process only contributes if the pulse frequency lies in the
vicinity of Q &~ A.

In the transient limit, At > 1, the spectrum of §A(w) is
finite only for a narrow region around 2£2. In the time domain,
the gap shows forced 292 oscillations, which are resonantly
enhanced for 2Q2 ~ 2A.

Following Matsunaga [11], we choose a pulse with At =
0.68, closest to the quench scenario, and perform sim-
ulations within the density-matrix formulation. The order
parameter responds to the THz pulse by a marked drop fol-
lowed by damped oscillations around a new asymptotic value
As = A(t — o0) of frequency 2A = 0.6 THz as displayed
in Figs. 6(d) and 6(e). The drop of the equilibrium gap is
captured by the w = 0 component of § A. Evaluating Eq. (21)
for w = 0, one finds that x?°%% (w = 0, &', k, K’) is finite
only for o’ > 2A, similar to the discussion in Sec. I A.
Consequently, § A(0) is nonzero only if |A(w)|* overlaps with
the quasiparticle continuum, which is illustrated in Fig. 6(b).
In physical terms, depletion of the superconducting order pa-
rameter is a consequence of quasiparticle excitation by A(w).

Both the oscillation amplitude and A, show a strong de-
pendence on the impurity scattering rate and are peaked at
y ~ A as shown in Fig. 6(f). This is a consequence of mo-
mentum conservation. For y — 0, Higgs oscillations vanish
exactly.

We note that order parameter dynamics are expected to
show oscillations of frequency 2A, and not, as in our case,
2A(t = 0) [6,34]. 2A oscillations have also been observed
in experiment [11]. The discrepancy can be attributed to the
expansion in powers of the pump field A(¢) performed in the
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time-dependent density-matrix formalism. If contributions to
8 A beyond the second order are considered, the oscillation
frequency of the order parameter should correctly reflect the
non-equilibrium value 2A .

From the diagrammatic point of view this discrepancy
arises since calculations are performed within a quasi-
equilibrium framework. Here, we are capturing the nonlinear
response of the U (1) symmetry broken equilibrium ground
state. An intense pump pulse is known to weaken this ground
state, i.e., it decreases the gap A. Strictly speaking the experi-
mental nonlinear response is then measured with respect to the
weakened ground state. Our theoretical description does not
capture this induced change. It fully loses its validity when the
pump induces a phase transition from the superconducting to
the normal state [35]. It is nevertheless interesting that present
day pump probe experiments are performed in a regime where
the induced change of the ground state only quantitatively
affects the nonlinear response. Hence, the quasi-equilibrium
effective action approach has been established as a description
not only of THG but also of pump probe experiments in the
literature [35].

C. Pump-probe spectroscopy

Higher orders of the optical conductivity include contribu-
tions of collective modes that smooth out the absorption edge
and add spectral weight inside the conductivity gap. Here, we
calculate the nonlinear contribution,

J@)|1 + j(@)ls

iwA(w) 22)

o(w,dt,,) =

in a pump-probe setting of the time-dependent density-matrix
formalism. To this end, we pump the system with an in-
tense pulse of fluence Ag = 0.5 x 1078Js/C/m and, after a
delay 6t,,,, apply a weak probe pulse. Following experimental
schemes [36], we perform two simulations. First, we simulate
both a pump and a probe pulse to compute j,,. In a second
simulation we apply the pump only, obtaining j,. We then
compute the optical conductivity from the difference in cur-
rents j = j,, — jp. This ensures that resilient contributions of
the pump do not affect the optical conductivity.

Figures 8(a) and 8(b) show the real and imaginary part of
the optical conductivity o (w, 8t,,) as a function of frequency
and pump-probe delay. It can be seen that the third-order con-
tribution j|; adds spectral weight to the conductivity below
absorption gap. The conductivity shows clear oscillations in
8t pp, as emphasized in Figs. 8(c) and 8(e) where only the non-
linear contribution is plotted for the contributions from Higgs
and density fluctuations, respectively. A Fourier transform of
these oscillations, shown in Figs. 8(d) and 8(e), reveals that
the oscillation frequency matches the resonance frequency of
the Higgs mode 2A. Additionally, the Higgs signal exceeds
the density fluctuations by one order of magnitude.

Our results show that signatures of the Higgs mode are
measurable in the pump-probe response of the optical conduc-
tivity. Yet, to excite the Higgs mode, impurities are crucial.
We find that the calculated time-resolved optical response
of a single-band superconductor in the dirty-limit is in good
agreement with the experimentally measured response [11].
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FIG. 8. [(a),(b)] Real and imaginary part of conductivity spectra
for sweeped pump-probe delay 6+, including the nonlinear contri-
bution in A. (c) Real part of isolated nonlinear Higgs contribution
and (d) Fourier transform showing that frequency of conductivity
oscillation is peaked at 2A. (e) Real part of the nonlinear contribution
from density fluctuations and (f) Fourier transform. This Higgs con-
tribution exceeds the charge density contribution by one magnitude.

IV. MULTIBAND SUPERCONDUCTIVITY

Motivated by the good agreement of the theory with exper-
imental data for a single-band superconductor, we now turn to
the case of a two-band superconductor. For concreteness, we
focus on the superconducting state of MgB,. We model the 7-
and o bands believed to be responsible for superconductivity
by choosing material parameters A, = 3 meV, A, = 7 meV,
€rn =29¢eV, €g, =0.7eV, m; =0.85m,, m, = 1.38m,,
wp =50meV, s, =1,and s, = —1 [37].

Convincing evidence for the two-band character of MgB,
has been found in tunneling measurements [38,39] and
ARPES [40]. However, optical linear response probes have
only revealed signatures of a superconducting gap in the &
band [17,41]. A recent paper [17] on third-harmonic genera-
tion suggests strong evidence of a collective Higgs resonance
in the 7w band, but no collective response in the o band was
observed.
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FIG. 9. [(a),(b)] Real part o’ of linear response optical conduc-
tivity of a two-band superconductor for various impurity scattering
rates at 7 = 4 K. In panel (a) the impurity of concentration of the
first band is y, = 0.01 meV and the second-band impurity scattering
rates are given by the legend. In panel (b) the legend specifies y,
and y, = 0.1 meV. [(c),(d)] o’ and o” for various temperatures at
y1 = 100 meV and y, = 50 meV. The imaginary part follows a 1/w
power law at small frequencies. (inset) BCS temperature dependence
of the two gaps.

A. Optical conductivity

The linear response optical conductivity of multiband su-
perconductors is additively composed of contributions from
the two bands, o (w) = o, + 0,, where the band-specific con-
ductivities are determined by a straightforward generalization
of Eq. (19). Figures 9(a) and 9(b) show optical conductivities
for various different combinations of band impurity concen-
trations.

Experimental measurements of the optical conductivity of
MgB, below T show a clear absorption gap below 2A, and
a dome shaped onset above 2A ;. A second onset at w = 2A,
has so far not been observed. Our simulations reproduce these
findings in two different parameter regimes: in the dirty-clean
limit, where only the first gap contributes to o(w), and in
the dirty-dirty limit shown in Figs. 9(c) and 9(d). Latter case
only shows a weak onset of the ¢ gap, which may be un-
noticeable with experimental uncertainties. The reason of the
subdominant contribution of the second gap lies in the small
Fermi surface of the o band. Explicitly, this can be seen from
the prefactor v;N; in Eq. (19). For our choice of parameters,
which include a high estimate of €f, , this yields a suppression
of the o-gap conductivity by a factor vy, Ny /vg, N, = 6.6. For
a more conservative estimate of €f, , the suppression should be
even more pronounced.

B. Collective modes

Pulse induced changes of the two order parameters A; with
i =, o in the two-band case are given by

1
8i@) = 5 S H @)l [ dof " 0.0 K K)
KK/

x A(@A(—w — o), (23)

FIG. 10. Logarithmic plot of resonance spectrum of Higgs and
Leggett modes as a function of interband coupling parameter v.
False-color plot was computed within the effective action formal-
ism. Solid-green line shows the frequency of the Higgs resonances.
The solid- and dashed-orange lines mark the maximum and width
of the Leggett mode. Red diamonds mark the Leggett oscillation
frequencies extracted from a pumped time-dependent density-matrix
simulation. The two approaches show excellent agreement.

where
H = Xflal +2U22/detU —2U12/detU
—2Uy;/ detU Xglm +2U;,/detU
(24)
and where susceptibilities x; ™', x'°' are listed in Ap-

pendix A. The gaps exhibit two resonances, which are
determined by the Higgs propagator. In Fig. 10 we show a log-
arithmic false-color plot of the quantity | det H|~!, responsible
for any divergence, as a function of frequency w and interband
coupling strength v. As expected the two resonance energies
areat 2A, and 2A,, illustrated by solid green horizontal lines.
Resonances are sharp at small v but decrease and broaden in
the strong interband coupling regime.

Energy conservation in Eq. (23) is established by the factor
A(@w)A(—w — o). Oscillation of the gaps is therefore only
possible for a finite overlap of A%(w) with the resonance fre-
quencies. The matrix structure of H;; further implies that both
gaps will oscillate with all excited modes at finite v. Dynamics
of the phase modes 6; in the frequency domain are determined
by

s jez

1 — 0303
80;(w) = 5 2}: WLi o)X (0)A (). (25)

Due to the Anderson-Higgs mechanism only the dynamics
of the phase difference §¢ = §0, — 86, is physical. Inserting
Eq. (25) yields the expression

., K So
dp(w) = ZA (w)(— - —>

my My
X [a)2 +

Solid- and dashed-orange lines in Fig. 10 trace the maximum
and full width at half max (FWHM) of §¢(w)/A*(w). Red
diamonds are the dominant oscillation frequency of the phase

SAT SA)

Sp(t) ~ —= —
(1) A A,

030 030

BAL AU XP7P + xZ%
0303 ,,0303

Xo

U(ra - sznn Xn

—1
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FIG. 11. Time-resolved optical conductivity [(c),(j),(q)] for three optical pulses that resonantly excite (a) both Higgs modes, (h) the lower
m-band Higgs resonance, and (o) the o-Higgs mode for an interband coupling strength v = 0.2 in the dirty-dirty limit with y, = 100 meV and
¥ = 50 meV. [(b),(i),(p)] show the gap oscillations §A’(¢) as a response to the pump pulse only. [(d),(k),(r)] show the background subtracted
nonlinear optical conductivity. Their Fourier transforms, separated into Higgs, density fluctuation, and Leggett contributions are shown in the
last three columns. The color scales are comparable within each row. They show that the Higgs mode is the dominant contribution for all three
pulses whereas the Leggett mode is negligible. The Leggett frequency is identical to 2A;, for the considered interband coupling v = 0.2.

evaluated by computing §A; in a time-dependent density-
matrix formulation for a broadband optical pulse. The two
methods show excellent agreement. At small coupling the
phase exhibits completely undamped oscillations due to the
absence of decay channels. The Leggett frequency w; in-
creases for stronger coupling. Once its energy reaches the
quasiparticle threshold it is increasingly damped and the res-
onance broadens.

The present results reproduce the findings of Refs. [31,42],
which were obtained in the clean limit. This should come at
no surprise since impurities do not change the frequency of the
collective resonance within the MB approach and additionally
the Leggett mode only couples diamagnetically to electromag-
netic fields.

C. Pump-probe simulations

We proceed to model the pump-probe response of a two-
band superconductor. Analogous to the single-band case we
consider non-linear contributions to the optical conductivity
and pump the system with an intense pulse. After some time
delay 6t,,, the optical conductivity is probed in the linear
response regime by a weak probe pulse.

In Fig. 11 we adopt the dirty-dirty limit with y, =
100 meV and y, = 50 meV as a potential description of
MgB, with v = 0.2 and select various pump pulses shown
in the leftmost panels. Gray and dark gray areas illustrate

the onset of the quasiparticle continuum of the two bands.
Lower panels show A%(w) where Higgs resonance frequencies
are marked by gray vertical lines. The second column shows
the gap dynamics § A;(¢) following the pump pulse. The third
column shows the real part of the time-resolved non-linear op-
tical conductivity o’(w, 8t,,). Panels (d), (k), and (r) show the
isolated nonlinear contribution of the real optical conductivity.

The first pump has a broad frequency spectrum such that
it overlaps with both Higgs resonances. Following the excita-
tion, both gaps oscillate with both frequencies. The overlap
of A(w) with the quasiparticle continuum induces a small
drop of §A’. The optical conductivity shows oscillations in
the pump-probe delay 61,, with mostly 2A, and a small
2A, component. We attribute the subdominance of the § A, -
contribution to the small o-band Fermi surface.

For a narrow-band pulse centered at w = A, (second row),
we observe 2A, oscillations only. Here, the pulse A(w) does
not overlap with the quasiparticle continuum. As a result, the
gap oscillates around its equilibrium value Ao, = A.

When the narrow-band pulse is centered around the second
Higgs resonance at w = 2A, (third row), the gap performs
2A, oscillations only. However, the nonlinear current re-
sponse is weak and numerically hard to resolve.

The last three columns of Fig. 11 show the Fourier trans-
forms of panels (d), (k), and (r), which are further separated
into Higgs, charge density, and Leggett contributions. In all
cases the current is dominated by the Higgs signal, which

134504-9



HAENEL, FROESE, MANSKE, AND SCHWARZ

PHYSICAL REVIEW B 104, 134504 (2021)

_ 024(a) L09(¢c)
3
S 00+ 0.8 1
S -
Y 0.2 g 0.6 1
— £
3 N
©
= 0- 0.2
ha)
=
~5000 L , , 001~ ,
_s5 0 5 Q 30

t (ps) Frequency

FIG. 12. (a) Realistic multicycle pulse of main frequency 2 fed
into time-dependent density matrix simulation. (b) Simulated third-
order current j3(7). (c) Next to the original 2 component, the Fourier
transform | j3(w)| reveals an additional 3€2 component.

exceeds the density fluctuations by roughly one order of
magnitude. The Leggett frequency for v = 0.2 matches the
energy of the lower Higgs modes 2A,. It is, however, al-
ways small compared to the Higgs and density fluctuations.
In panel Fig. 11(u) the Leggett contribution nearly vanishes,
since there is little overlap of the squared pulse A”(w) with its
resonance frequency.

D. Third-harmonic generation

Finally, we simulate the nonlinear response of a multiband
superconductor in a THG setup within the time-dependent
density-matrix framework. We model a realistic multicycle
pulse of frequency €2, exemplary shown in Fig. 12, and com-
pute the third-order current j(¢)|;. The Fourier transform of
j(@)|5 reveals a 32 third-harmonic (TH) component next to
the original first-harmonic (FH) peak.

We adopt the dirty-dirty band description of MgB, with
¥ = 100 meV, y, = 50 meV and choose two different in-
terband coupling strengths, v = 0.05 and v = 0.4. Then, we
sweep temperature to investigate the resonant behavior of
the TH component. We consider three pulses of frequencies
Q2 =0.5,0.6,0.7 THz and expect the TH component to be
resonantly enhanced when 22 = 2A;.

Figures 13(a) and 13(b) show the temperature dependence
of the BCS gap. Horizontal lines mark pulse frequencies
Q used in independent simulations. Resonance conditions
are satisfied at intersections with a gap. In the second row,
Figs. 13(c) and 13(d), the amplitude of the TH peak is found
as a function of temperature. In the weak coupling case, v =
0.05, the THG signal for the lower two frequencies exhibits
a pronounced peak at the resonance condition for the lower
gap. The THG signal peak of the largest frequency is less
pronounced, as this frequency is almost equal to the lower gap
for a range of temperatures. We also observe much smaller
peaks at temperatures where pulses are in resonance with the
larger o -gap.

In the strong coupling case, v = 0.4, we no longer observe
a peak-like resonance for the lower -band gap. This can be
understood as a result of broadening of the Higgs resonance at
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FIG. 13. [(a),(b)] Temperature dependence of the BCS gaps at
v =0.05 and v = 0.4. Horizontal lines mark the three pulse fre-
quencies Q = 0.5, 0.6, 0.7 THz. [(c),(d)] THG current as a function
of temperature for three pulse frequencies ;. We take the THG
current as jz(w = 3L2), i.e., the amplitude of the second peak in
Fig. 12(c) and sweep temperature. [(e),(f)] Decomposition of the
THG signal for pulse of 2 = 0.5 THz in Higgs (H), density fluctua-
tion (D), and Leggett (L) contributions. The main contribution stems
from the collective Higgs mode in both the weak coupling (left) and
strong coupling case (right).

large v, shown in Fig. 14. Here, we plot the nonlinear Higgs
current as a function of temperature 7 and frequency €2 com-
puted within the effective action formalism for a sinusoidal
excitation. Vertical cuts correspond to the three simulations of
Fig. 13. It can be seen that the resonance of the Higgs modes
significantly broadens in the strong coupling case v = 0.4.
Thus, the THG signal is already large when driven slightly
below the 2A,; resonance at 7 = 0 and no sharp peak occurs
when the temperature is increased. This result is further dis-
cussed in Appendix D.

The o gap still induces a sharp resonance peak, albeit small
in comparison to the low-temperature signal.

Panels (e) and (f) of Fig. 13 decompose the THG sig-
nal for the Q2 = 0.5 THz pulse into contributions from the
Higgs mode, density fluctuations, and Leggett mode. The
Leggett mode contribution is found numerically by consider-
ing only the diamagnetic component of the current jp|;. The
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FIG. 14. Nonlinear Higgs current as a function of temperature 7'
and frequency 2 of a sinusoidal pulse computed within the effective
action formalism (a) for v = 0.05 and (b) for v = 0.4. Vertical lines
represent cuts according to the simulations in Fig. 13.

density-fluctuation contribution is found by forcing §A; =0
when solving the equations of motion, removing the self-
consistency condition that induces collective modes. In both
the weak coupling and large-v case the THG response is
dominated by the Higgs mode. The relative contribution of
density fluctuations increases in the strong interband coupling
regime. The Leggett contribution is vanishingly small.

The present results are interesting when compared to the
experimental findings of Ref. [17]. Our results affirm the
claim that the THG response is mainly attributed to the Higgs
resonance of the mw band. The small contribution of the the
o-band Higgs mode and the Leggett mode in our simula-
tion is consistent with the experiment where no signatures
of the Leggett or second Higgs mode were observed. We
have further computed the THG response in the dirty-clean
limit where we found nearly identical results, apart from the
absence of the small o resonance peak at temperatures close
to T¢.

The failure of our theory to produce resonance peaks of
the w-Higgs mode at large v suggests that the MB approx-
imation might not correctly describe the THG response in
the strong coupling limit as assumed for MgB, [31,43]. A
recent study has found that incorporating impurities beyond
Mattis-Bardeen as random onsite-energies in a lattice model
shows a stronger contribution of density fluctuations [23].
This, however, is beyond the scope of this paper and will be
explored in future investigations.

V. CONCLUSION

We have calculated the time-resolved optical response of
dirty multiband superconductors. We have incorporated impu-
rity scattering within the Mattis-Bardeen approximation that
effectively broadens the photon momentum distribution of the
optical pulse. This approach is known to accurately describe
superconductors [11,44], yet deviations in the strong disorder
regime are possible [25,45,46]. The response was calculated
within two different frameworks. First, the time evolution of
the system after an excitation with a light pulse was calculated
explicitly using a time-dependent density-matrix formalism.
Here, the Mattis-Bardeen ansatz enters through a replace-
ment of the matrix element of the current operator with a

Lorentzian-shaped momentum transfer distribution [20]. In
the second approach, we calculated the relevant susceptibil-
ities in a diagrammatic formalism derived from an effective
action approach. Here, impurities enter through a paramag-
netic electromagnetic coupling vertex that carries external
momentum. As a consequence, additional diagrams arise that
usually vanish in the clean limit. While both approaches
yield equivalent results, the diagrammatic approach allows
to understand the relevant processes in more detail and is
numerically more efficient in certain cases.

In accordance with previous literature [19,20,23], we find
that the collective Higgs response is drastically enhanced
even for small impurity concentrations. The Leggett mode
is unaffected by impurity scattering and hence becomes
subdominant. This may change slightly when realistic, non-
parabolic band structures and weak violations of particle-hole
symmetry are taken into account. An interesting further ques-
tion is the inclusion of Coulomb interactions within the MB
approach.

As a first result, we calculated the dynamics of supercon-
ducting order parameter of a single-band superconductor in
the dirty limit excited by a short THz quench pulse. Using
a second probe-pulse after a variable time delay, we further
computed the time-resolved optical conductivity. Both quan-
tities show oscillations with the Higgs frequency wy = 2A.
The optical response is in good agreement to measurements
on NbN [11].

Extending the model to two bands, we studied pump-probe
optical conductivities of the model as an effective low-energy
description of MgB, for various impurity limits of the 7 and o
band. We found that experimental results are well reproduced
either when both bands are dirty, or when only the lower
band is dirty. Here, the collective contribution to the nonlinear
optical response is always dominated by the amplitude mode
of A.

Finally, we presented the third-harmonic generation (THG)
response of the two-band model. Interestingly, results ob-
tained in the weak interband coupling regime seem to match
available experimental data, showing a pronounced THG res-
onance mostly due to the 7-band Higgs mode [17]. However,
our theory shows deviations in the strong interband coupling
case, believed to be representative of MgB,, where no obvious
m-Higgs-resonance is present. We additionally calculated the
full temperature and frequency THG signal, which allows a
better comparison to current experimental setups.

In summary, we have presented simulations of time-
resolved optical conductivities and modelled THG resonance
experiments within the Mattis-Bardeen approximation using
both a diagrammatic approach and a time-dependent density-
matrix formalism for single-band and two-band superconduc-
tors. As studies of collective excitations in superconductors
with THz spectroscopy become more and more common, it is
important to understand the correct excitation scheme in the
presence of impurities. The Mattis-Bardeen approximation, as
shown in this paper for either a density-matrix formalism or
a diagrammatic calculation, allows to describe the effects of
impurities in a simple way. This will help further studies in
achieving more realistic models of experimental results.
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APPENDIX A: DERIVATION OF THE EFFECTIVE ACTION

The problem is stated with the partition function

/D(c c)e™S with S= / dt <Z clkaE) Ciko —i—'H) (Al)
0

iko

We decouple the interacting term in the pairing channel via the Hubbard Stratonovich transformation

exp (/ dt Z (Z cfchj'_N)Uij (Z cjkfic,-m))
ij k k’

= / D(A,-A,-)exp (—/dl’ |:Z A U IA — Z (Aicichika + Aic;(kicjkT):|>' (A2)

ik

The bosonic fields A;(t) are complex, i.e., they permits amplitude and phase fluctuations.

Note that A;(t) does not depend on momentum. This is because the usual BCS Hamiltonian, Eq. (1), is an approximation
of the more general interaction term ) Kk'g U; jcjk H”c;:k LGk L Clki+q1 s where the Cooper pair center of mass momentum is
incorporated through the summation over the small variable q. It is interesting to note that a supercurrent can be modelled even
in the absence of such a center of mass momentum. In that case, the supercurrent is determined by the static component of the
electromagnetic vector potential [47,48].

We decompose A; into real fields and additional express fluctuation with respect to the meanfield saddlepoint, A;(t) —
(A + A1) Ai(t) — (A + Ai(t))e ). The action is

§ = Z / qufq + A ('L')A (7,')) —i(6i(7)—0,(7))

B
+Y / A7 (Cheo [0 + Exleis — (AF + Ai(D)e " Pengein, — (A]7 + Ai(0)e" el ch) + / dtH. (A3)
0

iko

Here we have encountered the Josephson coupling term

Z U AL A OO0 = gl () 4 Uy (M%) + 20U AT A cos(6) — 62) (Ad)

that induces the Leggett mode. We express the action in the Nambu basis \I'jk(wn) = (CszT’ Ci—k})s

S = Z /dr (ATTAY + A(T)Aj(T))e 40 Z/dr\pﬁ((f)c KK, T)Wa (1), (A5)
kK’
where
-1 _ —0: — ik (AYT 4+ Ai(1))e™ ' _sie?
G = <(qu + Ay(r))e— O —9, + £x + Jikk - € A(T)0 2m,~A (7)dk 03 (A6)

Integrating out the Fermions gives
S = Z f AN + A(T)Aj(T))e 00 ZTrln (A7)

where the trace is performed over time, momenta, and Nambu indices, but not over band-indices i. To separate amplitude A;(t)
and phase 0;(7) fields, we introduce a local unitary transformation V; = exp(i6;(t)o3/2) [49],

Trin[-G;'] = Trin [-G;'ViV,' ] = Trn [V, G 'Vi] = TrIn [ G/, (A8)
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We split Gi_l into a meanfield part, G 11., and all remaining contributions %;. In frequency space, this gives

G '=G,} - %, (A9)
Gyl (kan, K o) = [i0, — £x03 + A0\ 181080, 0 (A10)
. 2
Sk, Kop) = — M@y — 00180 — zw@@n — )03k — Jade - € Ay, — )00 + ;’—eA%wn — W) 3.
mi;
(A11)

Note that phase fluctuations 6; live in the o3 channel, i.e., the charge channel.
Next, we expand S at Gaussian level. To compute currents j|; and j|; we additionally keep terms up to fourth order in the
classical field A. In expanding the trace, we use

Trin(-G™") = Trln (-G;'(1 — Go®)) = TrIn (-G, ') — TrZ %(GOE)". (A12)

n=1

The quadratic action is given by the terms

S[A;, 0;, Al = Syr + Sa +Saa + So + Sp.4 + Sopdia + SQPparas (A13)
which are explicitly
Sur = Z U7'AJTAS =Y " Trin [—Gy ], (Al4)
_ ! Xl“"(Qm)—{—ZUzz/detU —2Ujp/detU _
Sa = XQ:A( Qm)( —2Uy, ) detU X3 () + 2011/ det U ijAf(Q'")
1
1 .
= 5 2 A= QH Q) A (), (A15)
ijQm
Saa ==Y Y Wl %" (> . K, KIAQDA(— LR — AR, (A16)
ikk' €,
—iQ, X7 () + 5 - i
Syp = —= " 0:(—2 i —9 Qn
' ; - )( & —em @+ ) 2
1 —if, () i
= —= i\ Nam " 030 Jl 9 Qm
222 )[( ooy ) T (€2
ijQ2m ij
1 —i2,
=5 L (D ) —0;(2m), (A17)
ijQ
So.a —Zz—A2(9m>x, () — ’”9( ), (A18)
2
2) Si€ 03 42
Sqpain = ~ Z S K AN0), (A19)
@) 1 sie” ? 0303 2 2
Sopdia = 5 Z ) Xi (S2)A”(S2)A™ (=2, (A20)
Soppara = Z Wiaae | 177 (K, K, QA (Qn)A(— Q). (A21)
zkk’Q,,,
1 "
Soppara = 7 D D Ml Ve P& K K, Qu, Q1. 2AQAQDARDA= D — 2 = Q). (A22)
KKK 2,22,

Here, A = USA‘—AZL}’ The Higgs and Leggett terms, Eqs. (A16)—(A18), are diagrammatically shown in Fig. 1. The density-
fluctuation terms, Eqs (A19)-(A22) are shown in Fig. 2. The susceptibilities, given by the fermionic bubbles, are

Z Y Tl Go (s, K)owl, (A23)

Wy
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() k k (d) k
i i
.......... @ @ :If‘ m
k k k

FIG. 15. Additional diagrams following from Eq. (A7) that vanish in the presence of particle-hole symmetry and a parabolic dispersion.

xi"k“’(Qm, k, k') = ZTY[Go,i(wm K)o Go i(w, + Qm, K)oy], (A24)
x{’k"’(saz);) = Z X (@, K, K), (A25)
X777 (s QL KK = Z Tr[Go,i(wn + Qm, K)Go i(w + Q + 2, K)Go i(wy, K)o1], (A26)
£k K, K, Q,, 2, Q ZTr[GO ,(w:Lk)Go i(0n + S, KNGo i(0n + Qo + 1, K)Go i(0 + 2 + 2 + 2, K],
) (A27)

We evaluate Matsubara sums in above expressions analytically using the MatsubaraSum package developed by [50].
Additional diagrams, that vanish due to particle-hole symmetry, are listed in Fig. 15. We proceed to integrate out all collective
fields. This gives

S[A] = Sur + 8a + So + Sqpdia + Soppara (A28)

with

=-= Z (Z e X777 (= Qs Q1. K, KDA(QDA(Q — sm)H,-j(szm

l]Q,-,, kk'Q,
x (Z W e 2 7 (s 2, K, KDARDA(= R — szn), (A29)
kk'€2;
IS 1 Si 62 s] 2 2 0303 0303
So =5 D 5 5 AN QAKX ()L () K] (). (A30)
ijQum i £mj

We note that phase and fourth-order diamagnetic density-fluctuation terms combine to give the Leggett contribution

2 303 0303 1
- - s + X
NS Sg,ld,a +8=——= E <— — —2) |:Q,% — W} A2 (—Q2)AX Q). (A31)
1 X2

Thus, the zero-energy Goldstone mode does not contribute to the optical response. Above equations, obtained by Gaussian
integration, have the diagrammatic representation of an RPA summation shown in Fig. 3. For the Higgs propagator this can be
seen by expanding

H=[RU'+Xx]'= %Z (—X%) , (A32)
n=0

where X;; = x;'°'8;; corresponds to fermionic bubbles and U;;/2 corresponds to the to dashed lines. The case of the Leggett
mode is analogous. The currents can now, after analytic continuation of all external frequencies, be computed by a functional
derivative of the action,

8 8
JO = 35 N 2141 = — S SIAL (A33)
In Fourier space this results in
L ssiAl
J(—w) = —m- (A34)
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Latter equality follows in full generality from the chain rule of functional derivation,

SS[A 8 - 8SIA] 8FT '[Alt
# = ——S[FTIA] =/dt ] = Ao _ —j(—w), (A35)
SA(w) SA(w) SA(t) SA(w)
[ Y —
—] e—m)l
where we have denoted the Fourier transform A(w) = FT[A](w) by a tilde.
The Mattis-Bardeen approximation enters by replacing
A dSu (ev)?
Jaw| = N:(0)* | dexdey _—J,w%Nioz/dd/ W (eix, €n A36
> Vaacl ()/ adew | 7= Vil (0) “kdék 30 0) (€ik €ik') (A36)

kk’

according to Eq. (5). For the fourth-order paramagnetic density-fluctuation contribution, Eq. (A22), we follow Ref. [20] and
further approximate

dQ dQ2 dQu d S
> Wide M ger| & Ni(0)? / dekdek/dekm( —"—"|Jikk/|>< kX |J,»kk~|>. (A37)
et 4 4w 4 Am

APPENDIX B: EFFECT OF COULOMB INTERACTIONS

In this section, we will show explicitly that the presence of Coulomb interactions does not alter the results derived above. This
is specific to our case of a continuum model with quadratic band dispersion and the assumption of exact particle hole symmetry
[19]. When particle hole symmetry is broken, the Coulomb interaction will additionally screen the Higgs mode contribution to
the nonlinear current.

We introduce long-range Coulomb interactions with potential V, ~ 1 /q* and decouple the Coulomb action in the density
channel by means of the Hubbard-Stratonovich transformation

exp </ dt Z (Z C,Tkﬂ(,cikg)Vq (Z C,Tk_qacika))
q

iko iko
1
= / Dp(q. T)exp (—/df > (Ep(q, Dp(—q. 1)+ Y _ (g, T)c;rk_q(,cika>)- (B1)
q iko
In the presence of long-range Coulomb interactions, the phase action in Eq. (A17) is modified according to
{ 8q.0 5201 —x1+ % —Qi’zl ixi 84,0526,
—i A A ; i
Sy = -3 Z 8q0 =26, —a —X2 .+ @ 1 iX2 3q.0%226, |. (B2)
24 \p(-Q,, —q)) \ —ixs —ix2 g x0—X2) \p(Q. q)

Here, we have introduced the short notation x; for the susceptibility x> defined in Eq. (A25). The light coupling term of
Eq. (A18) becomes

—i€2,

2
Soa =D o AR i~ ) — i (). (B3)

2m;
i

The matrix in Eq. (B2) has a singular eigenvalue corresponding to the eigenvector (7, i, 1). We can therefore reduce the

description to
1 =g —X-xteE —ntn 526
P 2400 )( o 2L (B4)
’ 2;(,0—1 29”90 —x1+ x —X1— X2 ,0+1S22"9c;

where we have taken the limit 1/V, = 0 (¢ = 0) and have defined new variables

0 = (61 + 62)/2, (B5)
0L = (61 — 62)/2. (B6)
The light-coupling term Eq. (B3) becomes

242 _ig

€A (s1x1/my — s2x2/m =20r
Soa=3 T2 2] B7
b4 =2 4 (S1X1/m1+SzX2/mz p — =520 ®B7)

n
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FIG. 16. Real and imaginary part of optical conductivity computed in the time-dependent density-matrix formalism (blue lines) and from
diagrams Figs. 2(a) and 2(b) in the effective action approach. There is perfect agreement between the two methods.

and after Gaussian integration we obtain

164A4 x1x200/m? + x2/m3)Q2 — A(six1/mi + s2x2/ma)?
2 4 A0+ x2) — xix2$22 )

8o =

Qll

(B8)

Together with the nonlinear diamagnetic density-fluctuation contribution we arrive at the Leggett action §; = S S }, dia T Sg, which
identically matches Eq. (A31) derived in the absence of Coulomb interactions.

APPENDIX C: FIRST-ORDER CURRENTS AND OPTICAL CONDUCTIVITY

The paramagnetic first-order current jp|; is represented by the diagram in Fig. 2(a) and explicitly given by a functional
derivative of Eq. (A21). After analytical continuation and MB substitution one arrives at

2

Vg
i), =A@) Y s [ dedemie o, ) e
The diamagnetic first-order current jp|; reads
2
. e
(o), = —AC0) Y —si > {cj, o), (C2)
i ' ke

where we have used that %AZ(O) = %(w) [ do’A(—w)A(e') = 2A(—w). Note that the k sum does not vanish away from the
Fermi surface and therefore strongly depends on the numerical cutoff. Here, we follow Murotani [20] and regularize the integral

as
2. _ ’
ool =a@ Y 2 | dede T Dy e (€3)

with and Fermi function f(¢) and the band specific carrier density n; = k%/ 372. The diagrammatically derived linear order
optical conductivity exactly matches the results computed in the time domain using the density matrix formalism, as shown in
Fig. 16.

APPENDIX D: THIRD-HARMONIC GENERATION

For THG experiments, we are interested in the nonlinear current j(3€2) evaluated at w = 3Q2 where 2 is the dominant
frequency of the optical pulse A(S2):

8S[A]

i(—3Q) = ———— )
J( ) 5A@) |1

(D1)
A diagrammatic representation of Eq. (D1) is shown in Fig. 17. The field A(w) with respect to which the functional derivative is
performed is colored red. All four choices are equivalent. The functional derivative forces the external frequency of the field A
to be 3€2. In principal one now needs to integrate over all remaining external frequencies, while satisfying energy conservation.
This can be numerically challenging. Here, we focus instead on the case of a monochromatic field A(t) = Ag cos Qf, A(w) =
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(a)
30 k, w,-2Q PVa -Q
Hi'
K, w,+Q zzppzz P, v +Q
2Q
-Q Kk, pVat2Q -Q
(0 KW, P, Va-2Q) (d) K,w,
30 5 Q 30 -Q
YREN
a 20 a " "
k, w,+2Q PiVa k, w,+2Q

FIG. 17. Diagrammatic representation of THG signal. Red photon legs denote A with respect to which the functional derivative has been
performed. Higgs and Leggett propagators (double lines) correspond to an RPA summation shown in Fig. 3.

%(é‘ (w — ) + 5(w + 2)) where external fields possess two discrete frequencies 2. Then energy conservation dictates all
remaining external legs to carry frequency —S2. Note that the energy flow through collective Higgs or Leggett propagators is 2€2,
i.e., THG probes the optical kernel at twice the driving frequency as expected for a nonlinear process.

Figure 18 shows magnitude and phase of the Higgs contribution to the THG current j;(3€2) as a function of 2 and T for
two interband couplings v = 0.05, 0.4. Panels (a), (b), (e), and (f) correspond to the limit of a dirty = band and a clean o band,
whereas the remaining panels are computed for two dirty bands. Both cases are possible descriptions of MgB,. Yellow spectral
lines map out the Higgs resonance that follow 2A,,2A,. In all cases the w resonance is dominant, although the relative o
contribution is enhanced in the dirty-dirty limit and for strong v. Increased interband coupling v decreases and broadens the
overall Higgs response.

The Higgs resonance is sharp at small v, but much broader in the v = 0.4 case. Therefore, slices along the T axis for a
given drive frequency €2 do not exhibit a pronounced resonance peak. The observation of a resonance peak in Ref. [17] when
experimentally sweeping the temperature would be therefore suggestive of a small v coupling in MgB,. This is in disagreement
to Refs. [14,43] that experimentally determined a large v based on evidence of the Leggett mode above 2A .

Lower panels in Fig. 18 show a phase jump of & in the THG current across the first Higgs resonance along the 2 direction
that is most pronounced at low temperatures. The phase also shows features of the o-Higgs resonance, albeit less clearly.
Approaching the resonance along the 7' axis does not yield a phase behavior that is consistently simple to interpret. These results
are to be contrasted to the clean case where one expects a phase jump of 7 /2.

@  y-005 i (b) v=005 [  © v=04 i @ v=04 lid
50 50 50 50
3000
40 10000 40 10000 40 40 3000
g 30 g 30 g 30 2000 g 30 7000
~ 20 5000 20 ~ 20 ~ 20
: 5000 1000 000
10 ‘ 10 10 10
0 0 0 0 0 0 0 0
1 2 1 2 1 2 1 2
Q (THz) Q (THz) Q (THz) Q (THz)

() v=0.05 argj/m (f) v =0.05 argju/m C) v=0.4 argj/m (h) v=0.4 argjy/m
50 1.0 50 1.0 50 1.0 50 1.0
40 05 40 05 40 0.5 40 0.5

S 30 S 30 S 30 S 30
X 0.0 X 00 ¥ 00 ¥ 0.0
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10 ~0.5 10 —0.5 10 —0.5 10 —0.5
0 -1.0 0 -1.0 0 -1.0 0 -1.0
1 2 1 2 1 2 1 2
Q (THz2) Q (THz) Q (TH2) Q(THz)

FIG. 18. Magnitude, up to a prefactor, [(a)—(d)] and phase [(e)—(h)] of Higgs contribution to THG current as a function of driving frequency
Q and temperature 7. (a),(c),(e),(g) correspond to the dirty-clean case with y,, = 100 meV, y, = 0.01 meV and [(c),(d),(g),(h)] correspond to
the dirty-dirty case with y, = 100 meV, y, = 50 meV.
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FIG. 19. Magnitude, up to a prefactor, [(a)—(c)] and phase [(d)—(f)] of Leggett contribution to THG current as a function of driving
frequency 2 and temperature 7" for various interband coupling parameters v as denoted in plot titles.

Figure 19 shows the amplitude and phase response of the Leggett THG signal for three different coupling strengths v =
0.02, 0.2, 0.5. The overall contribution is about three magnitudes smaller than the Higgs contribution and therefore negligible.
At large coupling, the Leggett resonance is very broad but sharpens at high temperatures. This observation was first reported in
Ref. [42]. The phase shows a clear 77 /2 jump across the resonance for all temperatures below T¢.

The density-fluctuation contribution is shown in Fig. 20 for v = 0.05 in different impurity cases. Here clean refers to y =
0.01 meV and dirty specifies y = 100 meV. Results at different v are nearly identical since the only v-dependent quantity in
Eq. (A22) is the superconducting order parameter at finite 7'. For all impurity concentrations, the density-fluctuation mediated
THG signal is peaked at the onset of the quasiparticle continuum of the & band. The signal is about one order of magnitude
smaller than the Higgs contribution in the small v case. For v = 0.4, the density-fluctuation signal remains nearly identical but the

(@) clean-clean lior| clean-dirty |iee| dirty-clean g (d) dity-dirty il
>0 2000 0 2000
20 15000  4q 15000 20
1500 1500
<30 10000 Z 3 10000 £ 30 gz 30
~ 20 ~ 20 = 20 1000 7 1000
5000
10 5000 500 10
0 0
o) (THZ) THz) Q (THz)
(e)50 v=0.05 argJQP/TT v=0.05 arngP/Tl (h) 50 v=0.05 argJQP/Tl
05 0.5 40
< 30 S 30
0.0 00 ¥
|\ 20 I ~ 20
—0.5 -0.5 10
-1.0 -1.0 0
Q (THz) Q (THz) Q(THZ) Q (THZ)

FIG. 20. Magnitude, up to a prefactor, [(a)-(d)] and phase [(e)—(h)] of density-fluctuation contribution to THG current as a function of
driving frequency 2 and temperature 7' for cases (a) clean-clean (b) clean-dirty case, (c) dirty-clean, and (d) dirty-dirty.
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Higgs signal increases, so that the Higgs contribution is only slightly larger. In all but the dirty-dirty case, the density-fluctuation
signal has a large contribution for small €2 and large T .

The bottom row of Fig. 20 shows the phase of the non-linear THG signal. In the dirty-clean and dirty-dirty cases we observe
a clear phase jump of 7 /2 across a resonance.

APPENDIX E: DENSITY-MATRIX EQUATION OF MOTION FORMULATION

The following derivation uses notation similar to [20] and is included to make the present paper self-contained. We start from
the mean field BCS Hamiltonian

Z Etkclka iko 1 Z(A C, —kt lki) (El)
iko

where €y = s5;(k?/2m; — €r;) and the superconducting order parameter is self-consistently determined by A; =
» ik Uij{cj-kycjkr). To incorporate the pulse, we add paramagnetic and diamagnetic coupling to the laser field through

= Jme Aci,cio + D3 —A2 Cheo ik - (E2)

ikk'o iko

The full Hamiltonian is given by H = Ho 4+ H;. The current density can be calculated using

SH
i — _ , E3
J <8A> Jr+ip (E3)

where the paramagnetic component jp and diamagnetic component jp correspond to the first and second terms in ; respectively.
The equilibrium Hamiltonian can be diagonalized through a Bogoliubov transformation, where we introduce the fermionic
Bogoliubov quasiparticles in the form of the two-component spinor

Vi) _ (ux v\ [ Cikt
(wﬁ( C\Vk U Cj(fkn ' 4
1 1 €ik
Ei = 2 A?q 2, 2 (1 —)’ i 2 — _(1 — ;>7 E5
k= /€ T 1A Uig = 5 +E,k [vir| 3 £y (ES)

and Af’q is the equilibrium value of the gap. We are free to choose the initial phase so that u;x and v are both real. Next, we
construct the density matrix p in the Bogoliubov quasiparticle basis

12 151 1.2

pkk Pikk/ <1/f I/f'](/) Wk 'k’>

p = 1Y) (Yol = ( ’22) ( ’ o). (E6)
zkk Pikk’ <1/f I//,k ) W,-k ik’>

We can now rewrite the Hamiltonian in terms of the quasiparticles and their expectation values

2.{.) <6ik(u,-2k —v3) + uxvi(A; + AF) Qukvikex + Afvi — A ) <1/fl~lk>

Ho = 2 (val v,
k k
- ' 2upvner + Ajvi — Afub —enc (U, — Vi) — uacvi(A; + AY)

where

(E7)

In equilibrium, where A; = A%, this reduces to

. - 1 )
= wi.)(ls(l)k _%ik> <¢5) (E8)

ik ik

In non-equilibrium, we can write the time-dependent gap as A;(t) = qu + §A;(t). Furthermore we can decompose §A;(t) =
SA(t) + i8 A () into real and imaginary parts. Then, we find

’ zuikvik _uizk + vizk " 0 —i li{
Z |:8A ( uj + i —2uvn HIAN 0 2 (E9)

The coupling to the pulse becomes

law  —pite \ (Vi
_ ae - A 1t 2t ikKk Pikk iK
ZJ wo AW v Pk likw Vi

ikk’
A L wfex A [yl
2 : . 11 2f 12:( i ik E10
+ — N 2m;Ej (W,k !ﬁ,k ) <Aiq _Gik) <¢i> ’ ( )
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where

lnae = upcttiie + Vi Vike

Pikk' = VikUik' — Uik Uik’ - (E11)
Notice the total Hamiltonian can be expressed as
Ho+Hi=)_ > Uidhihti. (E12)
ab kK’

Next, we decompose the gap into real and imaginary parts A; = A 4 iA”. After the transformation, the gap equation becomes
, 1
N=Y ;% [—u_,-kv.,-k (ol — 30 + 508~ B3 + 00| @13)
j K
Z Ui Z (P — Pjia)- (E14)

Finally, we write the paramagnetic and diamagnetic current densities in terms of density matrices

ip = ZJlkk’ lkk’( Page T 'O:kk) + ptkk’( lklk’ - 'Oilkzk’)]’ (E15)
KK/
A 2 2 11 2 21 12
p=— ZSim'E' [ (i — vix) (Piac — Pitac) + 2uicvirc (Piac + Pigc) - (E16)

We use Heisenberg’s equation of motion to find the time dependence of the density matrix. Writing the density matrix in vector
form,

11
Pikk

p 'lkzk’
pae = 50 |- (E17)
Pikk
2
Pixk’

Heisenberg’s equation of motion is stated in form of a Liouville equation

00 pixk = Z [H[(kl/zlpikq - H,‘(qzlzpiqk’]a (E18)
q

where we have defined the following two matrices:

pil o pl2 11 21
iy P e
H(l) hikk’ hikk’ H(2 _ hikk’ hikk’ (E19)
ikk’ — hll h12 ) Kk — h12 h22
ikk’ ikk’ ikk’ " ikk’ ”
., h3 i R

Note that we work in natural units where i = 1.

In order to solve the equation of motion with the impurity scattering replacement, we proceed using a perturbative approach
with respect to A. This involves expanding all relevant quantities in powers of A. For instance, we expand ;g as P’ =
Palo + P |1 + Paac’ > + - - ., Where pqc|; is proportional to A, pc |, is proportional to A2, etc.

We now solve each order separately. The zeroth-order components are simply the equilibrium values, where the quasiparticles
are occupied according to Fermi statistics

Jix
0
Pk |y =%l o | (E20)
1 — fi
1 1
Hz(kllz/ = O Eix ! 1 . Hz(kzlz = Skk Eix ! 1 (E21)
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We can also use these values to calculate the equilibrium value of the gap, exchanging the sum in the gap equation with an
A = Z U;iN;(0)AS /

integral over the energy:
————— tanh ( JJer+ (qu)2>. (E22)
—wg ) /62 + (AEQ)Z

Now we proceed with the first order. Considering only the terms proportional to A, the equation of motion becomes

. (€9)] 2) (1) (
latpikk’|1 (H,kk,|0 Hyy )pikk’ Tt (H,kk| plkk|0 Hyp pzk’k/| ), (E23)
where
law  —Pix
Kk’ Ly
H»(l), = —Jaa - A Pikk ikk E24
ikk |1 Tk law  —pax |’ (E24)
pikk i
linae Dikk/
L Dikke
H®| = —Jaw - A ikl B E25
kel T —Dikk’ L (£2)
—Pixk linae

We solve the equation by writing it in terms of new functions Flﬁﬁ The first-order expression of p; -’ becomes

lnac P
P Fig
pikk’|1 =Jik-e o | (E26)
_pikk’F;'kk/
lzkk Fkk/
where F is defined according to
. 0 / 11 / /
ihor = (E" = E) \F (e, €) = (f = [)A, (E27)
d
[ihg —(E/—i—E)]Ffl(e,e’) =—(1—f—f)A, (E28)
F2(e, €)= Fl(e, )", (E29)
FP(e, ) =F''(e, ). (E30)

We have introduced a simplified notation € = €y, E' = Ej, Flﬁﬁ = Fi“b (€, €') etc. The collective modes do not couple linearly
to light, and correspondingly 6 A;|; = 0. This can be confirmed by using Eq. (E26) in the gap equation. Hence, we only examine
the response of the current. By substituting Eq. (E26) into Eq. (E15), changing the momentum sums into integrals over energy,
and making the Mattis-Bardeen replacement (5), we find

irl, _ez /dede Wi(e, €)[lie, € ’ReF (e, €) + pi(e, €')’ReF' (e, €)]. (E31)

We can also derive the induced diamagnetic current,

ip®| = —AZ en (E32)
1 .

This derivation is carefully discussed in [20].
We now consider the second-order solution. Keeping only terms proportional to A, we find that the off-diagonal terms in the
equation of motion vanish, and as a result (E18) becomes

. 1 2
lat Pikk = (Hz(klz Ht(klz

(1) (2) (1) (2)
'Oikk|2 + Z szq| IoiktI|1 - Hiqk|1piqk|1) (szk H,kk) pikk|o- (E33)
q
We can decompose H,, |, and Hj, |, into contributions from the diamagnetic current mediated by density fluctuations, Higgs
mode, and Leggett mode as follows:
(, 2) (1,2) (1,2) (1,2)
szk - Hlkk 2.D + szk 2,H + Htkk 2,L° (E34)
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where the diamagnetic density-fluctuation current contribution is

) €k A s €ik A;
s;e A —eg 2 Si€ €ik A
HY| = 8o ———A2[ 7 Tk . HP | =0 ——A2 ’ “1. ®3s
k12,0 = O Ee ek A ik l2,p = K, L A —€ik (E35)
A —e€i A; —€ik
the Higgs contribution is
SA A —e€i A, —€ik
(1) | —ex —A @ _ p A; —€ix
Hidclo.n = e ik l l A —en | Ml = Buacd il €k l —A; T @
—€k  —A; —€ik —A;
and the Leggett contribution is
—i i
M K @) i
Hyge 2L = SO A |z -l Hiyye 2L akk/‘SA;',‘z (E37)
i —i
To simplify the equation of motion, we introduce a new angle-averaged quantity rf”’(e) defined by
dQ
ré(e) = / ?pﬁfk - (E38)
The equations of motion can then be written as
cn 11 _ . (EUF,')2 / N2 11 ’ N2 21 ’ /
idrl(e) = —21AT deé'[lie, € ImF'' (e, €') — pi(e, €)? Im F*' (e, €)|WiCe, €, (E39)
r2(e) = —r!'(e) (E40)

The terms 7! and r?* correspond to density fluctuations. The remaining r¢* terms correspond to the collective modes. We break
up the remaining terms into odd and even components, which are responsible for the Higgs and Leggett modes, respectively:

riZI(E) — r?l,odd(e) + ri21,even(€)’ (E41)
r?l,odd(_e) — _r?l,odd(e), (E42)
ri21,even(€) — ri21,even(_€). (E43)
The equations of motion for these terms are
32
[i0, — 2E1r}"°%(e) = —(1 = 2f)(ui(e)* — vi(€))8A]| —24 (e";’) f de'Wi(e, €li(e, € )pie, €)[F' (€, €') — FP(e, €]
2
(E44)
As;e? A2
[id, — 2E1r2" " (e) = (1 — 2f)————— —i(1 — 2f)8A]| . (E45)

2m,»E 2

After exchanging momentum sums into energy integrals, the gap equations written in terms of the angle averaged quantities
become

1
SA}, = ZUUNJ(O)/de{—uj(e)vj(e)(r}l(e) — ) + E(u,-(,s)2 —v;(e))(r7'(e) + r}z(e))}, (E46)
J
" 1
SA|, = zj: Uiij(O)fdeE(r]?‘(e) —ri*(e)). (E47)

The equations of motion are solved numerically, and must be solved self-consistently with the gap equations at each time step.
This condition induces the collective modes.
Finally, to consider pump-probe simulations and THG, we must go to third order. First, the diamagnetic third-order current

can be directly calculated from the angle-averaged quantities 4.
. sie’A 2 2\ (11 22 21 12
b= —Z de p [(ui(e)* = vi(e)*) (1} (€) = r7*(€)) + 2u(e)iv(e)i(r}' (€) + ri*(€))]. (E48)
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To find the paramagnetic third-order current, we start from the third-order equation of motion

lat Pikk’ ’3 (ng(l/) Hz(kzlz ) + (I_Iz(k1 i(/ Ht(kzlz)

szk |, + Z ,kq’ Pika|, — ,qk‘ Pigk’ ,Oikk/|l- (E49)

We proceed by computing the equation explicitly for p}L . Here, we do not consider any contributions from the Leggett mode
(i.e. terms involving § A) or the A part of the EM field. These terms vanish because of particle-hole symmetry. The remaining
contributions, consisting of density fluctuations and Higgs mode, are

A_A 11
,Ozkk’ ]+5A ’ Exn  En Fie

€ik
En

[i0, — (Eac — Ea)lpopye ’3 = Jik - €livk {A[pilkl’k’

, €ik
e ALl + o] +oal( - PRl - SrR ] @0

Ex

The next step is to insert this into the expression for the paramagnetic current (E15). Replacing summation over k with integrals
over energy, we find

3]

.]P|3 =e Z e Jik [ ikk’ (,o[kk, |3 + P,kk | ) + pikk’ (P,kkr |3 ,O,kk/
KKk’

=e)» Ni(0) / dede'[li(e, €")({e - Jiw Pare) av] + (€ - Tk o) v 5)

+ pie. €)((e - Tnaw P ) av] s — (€ - T Pl ) av5) | (E51)
We see that in fact only the angle averaged quantities
u dQ2 dQu “
(e Jawpiic)a = [ == e Juwpiiic (E52)
occur. The differential equation for these quantities is
. / 11 2 11 11 A A o
[i0; — (E" = E)](e - Jikk’pikk'>Av|3 = {|Jiwk - €| liwk A[p[k,k, 2~ Pikk ] +8A; | = E‘kk'
Ex Ex Av
/ €ik/ €ik
+ <|Jikfk : e|2pik’k{ [P |, + Pagl,] + 8A,»|2< - E—Fi}d{, - E—Fiﬁ}(,) }> (ES3)
hY ik Av
Now we make the final approximation
(ITack - e* P o) 0 = (i - €17) av(Pii )y |- (E54)
With this, the differential equation becomes
. , (e . Jikk’pi“ /)AV , / Ai
[i9, — (E —E)]—“';B = li(e ,e>{A[(piL‘/kf)Av|2 = (P, ] +8A,~|2(—, ) >“}
(1T - €7) av E
, €
+ e, 6>{A[<p;g,k/)m|2 (ol ]+ 887 (~ e ) - e ) }
(ES5)
Note that (|Jack - €|*)ay = ([ Jaa - €]*) ay. Defining
1
Ri’(e,€') = —————(e - Jaw Pl (ES6)
TN e
and noting
ri(€) = (Pl avl2 (ES7)

we rewrite this as

[i0, — (E' — E)IR!' (e, €)|, = li(€/, e){A[r}‘(e’) -]+ 8A§|2(% - %)Fi“(e, e/)}

/
pie e){A[rfl(e/) +rl20] + 8A§|2<—%Fi'2(e, ¢y — ]%Ffl(e, e/)> } (E58)
which precisely gives Eq. 48 in [20]. Similar equations can be derived for the remaining R¢”.
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Rewriting the expression for the paramagnetic current jp in terms of the R?b (e, €’), and then making the Mattis-Bardeen

impurity replacement (5), yields

2.
ir|; = eZ ;—’Z;/dede’m(e, lie. (R (e, €") + RP (e, €)) + pile, €)(R (e, €') — RP (e, €))].  (E59)
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